
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zhiming Lin,
Third Affiliated Hospital of Sun Yat-sen
University, China

REVIEWED BY

Nima Gharahdaghi,
University of Oxford, United Kingdom
Lingxiao Xu,
The First Affiliated Hospital of Nanjing Medical
University, China

*CORRESPONDENCE

Junping Wen

junpingwen@163.com

Zhihan Chen

han213@163.com

†These authors have contributed equally to
this work

RECEIVED 07 June 2025
ACCEPTED 21 August 2025

PUBLISHED 05 September 2025

CITATION

Wu Y, Dai Y, Gao F, Xie H, Pan S, He J, Liu J,
Lin H, Chen Z and Wen J (2025) Identification
of crosstalk genes and diagnostic biomarkers
in systemic sclerosis associated sarcopenia
through integrative analysis and
machine learning.
Front. Immunol. 16:1642806.
doi: 10.3389/fimmu.2025.1642806

COPYRIGHT

© 2025 Wu, Dai, Gao, Xie, Pan, He, Liu, Lin,
Chen and Wen. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 05 September 2025

DOI 10.3389/fimmu.2025.1642806
Identification of crosstalk genes
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Shuyao Pan1,2†, Juanjuan He1,2, Jianwen Liu1,2, He Lin1,2,
Zhihan Chen1,2* and Junping Wen1,3*

1Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China, 2Department of
Rheumatology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China, 3Department of
Endocrinology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
Background: Sarcopenia associated with systemic sclerosis (SSc) significantly

compromises patient prognosis and quality of life. However, reliable diagnostic

biomarkers remain lacking. This study aimed to identify molecular markers for

early detection using integrative computational approaches.

Methods: An integrated analysis based on the Gene Expression Omnibus (GEO)

database was performed. Crosstalk genes (CGs) were identified using least

absolute shrinkage and selection operator (LASSO) regularization, ensemble

decision trees, and support vector machine-based feature selection. Machine

learning algorithms were employed to construct a predictive scoring model and

to assess the diagnostic value of key biomarkers. Hub mRNAs were validated

using quantitative polymerase chain reaction (qPCR). Immune cell infiltration

profiles and functional correlations were also examined.

Results: Five key CGs—NOX4, STC2, NEK6, IGSF10, and EMX2—were identified

as molecular links between SSc and sarcopenia. A predictive model incorporating

NOX4 and NEK6 was developed, and a diagnostic threshold was established. PCR

validation confirmed the differential expression of NOX4 and NEK6 in both SSc

and SSc-associated sarcopenia, demonstrating high predictive accuracy.

Furthermore, the combined NOX4-NEK6 model exhibited a superior area

under the curve (AUC) compared to either gene alone. Immune infiltration

analysis revealed significant correlations between CGs and multiple immune

cell populations.

Conclusion: This study proposes NOX4 and NEK6 as novel biomarkers, offering a

non-invasive strategy for the early detection of SSc-associated sarcopenia. This

study also reveals a shared immune-dysregulationnode linking SSc and sarcopenia,

positions these crosstalk genes as multi-disease prevention targets, and paves the

way for personalized immunotherapy and rapid bench-to-bedside translation.
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Introduction

Systemic sclerosis (SSc) is a rare autoimmune disorder

characterized by fibrosis of the skin and internal organs,

vasculopathy, and immune dysregulation (1). In recent years,

sarcopenia—defined by the progressive loss of skeletal muscle

mass and function—has garnered increasing attention (2). The

prevalence of sarcopenia among patients with SSc is significantly

higher than in the general population, with reported rates ranging

from 20.7% to 54.8% (3–7), and 44% in our previous study. In SSc,

high levels of pro-inflammatory cytokines like IL - 6 and TNF-a
contribute to muscle loss. Excess ROS leads to apoptosis and

neuromuscular junction failure in myopenia, while also

promoting sarcopenic anabolic resistance by disrupting key

protein signaling. Importantly, SSc-associated sarcopenia not only

severely impairs quality of life (8), but is also closely associated with

rapid disease progression and increased in-hospital mortality (9),

highlighting the urgent need for mechanistic insights and early

intervention strategies.

Two major limitations currently hinder the clinical diagnosis of

sarcopenia. Dual-energy X-ray absorptiometry (DXA), considered

the gold standard for assessing muscle mass, is restricted by the

need for specialized equipment and technical expertise (10). While

bioelectrical impedance analysis (BIA) offers greater convenience,

its accuracy is affected by variables such as hydration status (11).

Functional evaluations, including isometric grip strength and the

five-times sit-to-stand test, are valuable but also require

standardized procedures and tools (12, 13). These limitations

have spurred the search for novel biomarkers and intelligent

assessment systems. In recent years, there has been a growing

interest in biomarkers that may have diagnostic value for

sarcopenia. The indicators that have been found include those

linked to hormones, metabolism, inflammation, genetics, amino

acids, and more (14). With a modest level of diagnostic accuracy,

the creatinine to cystatin C ratio (Cr/CysC) has become the most

commonly used diagnostic biomarker among them. Nevertheless,

there is variation in the diagnostic performance of these common

biomarkers for sarcopenia depending on the diagnostic criteria.

Furthermore, people with coronary heart disease, chronic kidney

disease, type 2 diabetes, and the elderly make up the majority of the

populations under study (15). Research on biomarkers for

sarcopenia linked to systemic sclerosis is currently lacking.

Current therapeutic strategies predominantly involve exercise

interventions and nutritional supplementation, with resistance

training combined with protein or b-hydroxy-b-methylbutyrate

(HMB) supplementation recognized as the gold standard (16).

However, clinical evidence suggests that nutritional support alone

yields limited improvements in muscle function and must be paired

with structured exercise programs to achieve therapeutic efficacy (17).

Innovative non-pharmacological interventions—such as gut

microbiota modulators (probiotics/prebiotics), whole-body

vibration therapy, blood flow restriction training, and

neuromuscular electrical stimulation—offer alternative options for

patients with exercise limitations (18). Nonetheless, these approaches

often suffer from delayed efficacy and poor patient adherence,
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underscoring the need for targeted therapies based on underlying

pathophysiological mechanisms.

Advancements in histological techniques have enabled gene

expression profiling to become a powerful tool for elucidating the

mechanisms of SSc-associated sarcopenia. In this study, we aimed

to identify crosstalk genes, along with differentially expressed genes

(DEGs) that were dysregulated in both SSc and sarcopenia and to

construct a robust genetic prediction model. We further validated

the identified biomarkers and risk model in our own cohort. These

findings offer promising avenues for early diagnosis and provide a

foundation for investigating the mechanistic interactions

underlying SSc and sarcopenia.
Methods

Data sources

Microarray datasets were obtained from the Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) (19),

which hosts a wide range of high-throughput sequencing and gene

expression data. The terms “systemic sclerosis” and “sarcopenia”

were used as search keywords to identify relevant gene expression

datasets, and non-human samples were excluded.

The GSE181549 dataset (20), based on the GPL13497 platform,

includes 113 skin samples from SSc patients and 44 from healthy

controls. The GSE167186 dataset (21), generated using the

GPL20301 platform, comprises 72 skin samples, including 24

from patients with sarcopenia and 48 from healthy controls. All

patients with SSc met the diagnostic criteria established by the

American College of Rheumatology (ACR) (22), and sarcopenia

diagnoses were based on the guidelines set by the European

Working Group on Sarcopenia in Older People (EWGSOP) (23).

As these datasets are publicly available and freely accessible, no

ethics committee approval was required. The complete workflow is

illustrated in Figure 1.
Identification of differentially expressed
genes

To ensure that the same gene was compared in both datasets, we

first converted Agilent probe IDs (GSE181549) and Illumina Ensembl

IDs (GSE167186) toofficialHGNCgene symbolsusing themost recent

platform annotation files. Only genes unambiguously mapped to

identical symbols in both datasets were retained. DEGs were

identified separately from the GSE181549 and GSE167186 datasets

using the “limma”Rpackage.Benjamini andHochberg’s approachwas

used to adjust P-values for controlling the false discovery rate (FDR).

Genes with a adjusted P-value < 0.05 and an absolute log fold change (|

logFC|) > 0.5 were considered statistically significant. The results were

visualized through gene clustering heatmaps and volcano plots. A

comparative analysis of DEGs from the two datasets was performed,

and overlapping genes potentially involved in the pathogenesis of both

SSc and sarcopenia were identified using a Venn diagram.
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Machine learning algorithms

Further screening of the shared genes between SSc and

sarcopenia was conducted using three widely accepted machine

learning algorithms: Least Absolute Shrinkage and Selection

Operator (LASSO), Random Forest (RF), and Support Vector

Machine - Recursive Feature Elimination (SVM-RFE).

Initially, the 19 previously identified common genes were input

into the LASSO algorithm within the SSc dataset. A regression

model was constructed using the “glmnet” R package with 10-fold

cross-validation and a seed value of 100. The “family” parameter

was set to “binomial,” and the optimal value of the regularization

parameter was determined using “lambda.1min.” The log(l)
profiles of the LASSO coefficients for the 19 features were plotted,

followed by the generation of the binomial deviance curve and the

log(l) curve. The optimal value for 1 standard error (1-SE) from the

minimum criterion was subsequently determined.

Next, the Random Forest algorithm was implemented using the

R package randomForest (v4.7-1.1). The model was trained on the

SSc cohort with the following parameters: ntree = 500 (number of

trees grown), mtry = floor(sqrt(p)) = 4 (number of variables

randomly sampled as candidates at each split, where p=19 is the
Frontiers in Immunology 03
total number of input genes), nodesize = 1 (minimum size of

terminal nodes) and the Gini impurity criterion. To ensure

reproducibility, a random seed was set to 100. Variable

importance was assessed with the Gini impurity decrease

(MeanDecreaseGini), and the top 10 predictors were visualized.

Finally, SVM-RFE recursively eliminated the least important

features based on their SVM weight coefficients while conducting

cross-validation to evaluate model accuracy and error rates (24).

This algorithm was performed using the e1071 package (v1.7-14)

with default parameters: radial basis function kernel, cost = 1, and

gamma = 1/19. The algorithm recursively eliminated features with

the smallest absolute weight coefficients. Ten-fold cross-validation

monitored prediction accuracy across progressively smaller feature

subsets (from 19 to 1 feature), with the subset achieving minimum

cross-validation error selected as optimal.

Genes identified by the intersection of all three machine

learning algorithms, visualized through a Venn diagram, were

selected as the diagnostic gene targets for SSc-associated sarcopenia.

Additionally, a similarity analysis of the common DEGs was

performed using the “GOSemSim” R package to compare these

genes with reference genomes. The geometric mean of Gene

Ontology (GO) semantic similarity scores—encompassing
FIGURE 1

Entire working processes of the study. SSc, Systemic sclerosis; DEGs, differently expressed genes; LASSO, Least Absolute Shrinkage and Selection
Operator; SVM-RFE, Support Vector Machine - Recursive Feature Elimination.
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biological process, molecular function, and cellular component—

was calculated. The results were illustrated using a cloud and rain

plot generated by the “ggplot2” R package.
Construction and validation of the SSc-
associated sarcopenia risk score

The expression levels of candidate diagnostic genes were

evaluated separately in the SSc and sarcopenia cohorts. The

diagnostic utility of these biomarkers was assessed using receiver

operating characteristic (ROC) curve analysis, and the area under

the curve (AUC) was calculated.

Multivariate logistic regression analysis was conducted to

construct a risk score for SSc-associated sarcopenia based on the

shared diagnostic genes. For each sample, the risk score was

computed using the gene expression levels and the corresponding

logistic regression coefficients. The formula for the risk score was

defined as follows:

Risk score  =o
i
coefficient _ i� Expression _ i

where Coefficient_i represents the regression coefficient for

gene i, and Expression_i denotes the expression level of gene i in

each patient.

A nomogram was constructed using the “rms” R package to

enhance the clinical applicability of the risk model. The

performance of the model was evaluated through ROC curve

analysis and AUC values. Model calibration and predictive

consistency were assessed using calibration curves and

concordance indexes (C-index).

To ensure the internal validation of model performance and

guard against the risk of overfitting, this study adopted a 5-fold

cross-validation strategy in the systemic sclerosis dataset. We

repeated the entire 5-fold cross-validation process 200 times.

During each iteration of cross-validation, we meticulously

calculated key performance metrics, including the Discriminant

Index (Dxy), AUC value, Coefficient of Determination (R2), and

Brier score. Finally, we aggregated the mean values of all

performance metrics to obtain a comprehensive assessment of the

model’s performance.
Verification of Hub mRNAs using
quantitative PCR

Peripheral blood samples were collected from 32 SSc patients

and 20 healthy individuals at Fujian Provincial Hospital. All

patients were diagnosed according to the ACR classification

criteria for SSc (22). The study protocol was approved by the

Ethics Committee of Fujian Provincial Hospital. All procedures

complied with the Declaration of Helsinki, and written informed

consent was obtained from all participants.

qPCR was performed to validate the expression levels of the hub

mRNAs, NOX4 and NEK6. Total RNA was extracted using TRI
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REAGENT BD (MRCGENE) according to the manufacturer’s

instructions. RNA was then reverse transcribed into complementary

DNA (cDNA) using the GeneAmp PCR System 9700 (Applied

Biosystems). qPCR was conducted on a QuantStudio™ 5 Real-Time

PCR System (Applied Biosystems), using GAPDH as the internal

control. The relative expression levels of target genes were calculated

using the 2−DDCtmethod. Primer sequences for the hub genes are listed

in Table 1.

Using PCR data obtained from our center as the validation set,

we assessed the diagnostic performance of NOX4, NEK6, and a

dual-gene model for SSc by constructing ROC curves. Calibration

curves were also generated to provide a comprehensive evaluation

of model performance. To further explore the potential involvement

of NOX4 and NEK6 in the pathogenesis of SSc-associated

sarcopenia, we conducted comparative analyses across three

distinct cohorts: 12 SSc patients with sarcopenia, 20 SSc patients

without sarcopenia, and 20 healthy controls. This approach allowed

for systematic evaluation of both diagnostic efficacy and

mechanistic associations. Patients classified as having sarcopenia

also met the diagnostic criteria established by the Asian Working

Group for Sarcopenia 2014 (AWGS2014) (25).
Immune infiltration landscape in SSc

To investigate immune infiltration patterns in the GSE181549

dataset, we utilized the CIBERSORT algorithm to perform

deconvolution analysis, quantifying the relative proportions of 22

immune cell subpopulations (26). The distribution of these immune

subsets was visualized using a stacked bar chart generated with the

“ggplot2 (v3.3.0)” package. Comparative analysis between SSc

patients and healthy controls was then performed. Spearman’s

rank correlation coefficients were computed to evaluate

associations between candidate diagnostic genes and the

abundance of immune cells. We also have applied the Benjamini-

Hochberg procedure to adjust the p-values for controlling the FDR

across the multiple comparisons. Hierarchical clustering heatmaps

were constructed using the “pheatmap” package to visualize the

relationships between the two conserved genes and immune cell

composition. The adjusted P-values < 0.05 were considered

statistically significant.
TABLE 1 Primer sequences used for real-time quantitative PCR.

m-RNA Primers

GAPDH
F:5’GGGAAACTGTGGCGTGAT3’
R:5’GAGTGGGTGTCGCTGTTGA3’

NOX4
F:5’ CAGTCAAACAGATGGGATACAGA 3’
R:5’ GTCCACAACAGAAAACACCAAC3’

NEK6
F:5’ ACCCACAGAGGCATCCCAAC 3’
R:5’ CCTTGGCGTCCATCATCTCA 3’
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Statistical analysis

All statistical analyses and visualizations were performed using

R software (version 4.2.1). Differences in gene expression levels and

immune cell fractions between clinical groups were assessed using a

two-sided Wilcoxon test. Correlation analyses were conducted

using Spearman’s rank test. A P-value < 0.05 was considered

indicative of statistical significance.
Results

Identification of DEGs and intersecting
genes in SSc and sarcopenia

Analysis of the SSc dataset GSE181549 revealed 382 DEGs in

the SSc group (Figure 2A). To identify DEGs associated with

sarcopenia, skeletal muscle samples from 24 sarcopenia patients

and 48 healthy controls were analyzed using dataset GSE167186,

yielding 508 DEGs (Figure 2B). Intersecting the DEGs from both

datasets identified 19 shared genes (Figure 2C), providing valuable

insights into the common molecular mechanisms underlying SSc

and sarcopenia. Heatmaps illustrating these 19 intersecting genes in

both datasets (Figures 2D, E) demonstrated clear differences in gene

expression patterns between disease and control groups. The 19
Frontiers in Immunology 05
shared genes were: FCN1, NOX4, STC2, NEK6, LTBP2, H19,

HAPLN3, SLC16A3, IGFBP3, IGSF10, VCAM1, PCOLCE2,

NNMT, EMX2, CHST1, LPL, RPRML, ADIPOQ, ZNF469.
Identification of target genes through
machine learning

To further identify candidate diagnostic biomarkers capable of

discriminating between disease and control states, three machine

learning algorithms were applied to the 19 shared genes: LASSO

regression, RF, and SVM-RFE. In the SSc group, LASSO coefficient

profiling (Figure 3A) and optimal lambda selection (Figure 3B)

indicated that the tuning parameter l was 0.0146, which balanced

model complexity and predictive performance. The LASSO model

identified 10 candidate genes. These 19 genes were also evaluated

using the RF classifier, and the top 10 genes were ranked by

importance (Figure 3C). To further improve diagnostic accuracy,

the SVM-RFE method was employed. Model accuracy peaked at

0.879 with 13 genes (Figure 3D), and the minimum error rate was

0.121 (Figure 3E). Ultimately, five genes—NOX4, STC2, NEK6,

IGSF10, and EMX2—were identified through the intersection of all

three algorithms (Figure 3F). Functional prioritization by the

“Friends” analysis confirmed that NOX4, STC2, NEK6, and EMX2

were among the top 10 functionally relevant genes (Figure 3G).
FIGURE 2

Identification of DEGs and the common genes in SSc and sarcopenia. (A) Volcano plots showed differentially expressed genes (DEGs) of systemic
sclerosis. (B) The volcano plot of DEGs in sarcopenia patients. (C) The shared DEGs between SSc and sarcopenia by overlapping the DEGs of them.
(D) The shared DEG heatmap in SSc group. (E) The shared DEG heatmap in sarcopenia group. CON, Control; SSc, systemic sclerosis.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1642806
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1642806
Screening of diagnostic biomarkers and
construction of a predictive model in SSc
and sarcopenia datasets

For the five candidate biomarkers, single-gene expression

analyses were conducted. In the GSE181549 dataset, the

expression levels of NOX4, STC2, and NEK6 were significantly

upregulated in the SSc group relative to controls, whereas IGSF10

and EMX2 were downregulated (Figure 4A). In the sarcopenia

dataset GSE167186, NOX4 expression was elevated, and NEK6

expression was reduced in sarcopenia patients compared with

controls (Figure 4B). The expression of STC2, IGSF10, and EMX2

showed no significant differences.

The objective of this study was to identify biomarkers with

relevance to both SSc and sarcopenia. Since NOX4 and NEK6 were

differentially expressed in both datasets, they were selected for

further validation. ROC curve analysis was used to evaluate their

diagnostic performance. In the SSc dataset, the AUC was 0.893

(95% CI: 0.845 – 0.941) for NOX4 and 0.795 (95% CI: 0.725 – 0.865)

for NEK6 (Figure 4C), indicating robust diagnostic potential. In the

sarcopenia dataset, the AUC for NOX4 was 0.662 (95% CI: 0.524 –

0.801), and for NEK6, it was 0.661 (95% CI: 0.533 – 0.789)

(Figure 4D), suggesting limited individual predictive efficacy

in sarcopenia.

To identify more effective diagnostic indicators, this study first

confirmed that NOX4 and NEK6 serve as independent risk factors

for both SSc and sarcopenia through multivariate regression

analysis. A risk score model was subsequently constructed by

weighting the normalized expression levels of NOX4 and NEK6

using the regression coefficients derived from multivariate logistic

regression analysis. As shown in Figure 4E, the SSc risk score was

calculated as: normalized expression of NOX4 × 1.624 + normalized

expression of NEK6 × 0.704. For sarcopenia (Figure 4F), the risk

score was: normalized expression of NOX4 × 2.229 + normalized
Frontiers in Immunology 06
expression of NEK6 × (–2.369). The ROC curves indicated high

predictive accuracy for both diseases (Figures 4G, I). The C-index of

the two-gene risk model exceeded that of the single-gene models,

indicating superior predictive performance. The bias-corrected

calibration curves were closely aligned with the ideal curve

(Figures 4H, J). Additionally, to mitigate the risk of overfitting,

we conducted internal cross-validation within the GSE181549

dataset. The results, as shown in Supplementary Table 1,

demonstrated an AUC of 0.890, which further confirms the

model’s robust classification performance and stability.
Validation of biomarkers and evaluation of
predictive model performance in our
cohort

To further validate the expression levels of NOX4 and NEK6,

whole blood samples were collected from 20 healthy controls and 32

SSc patients, including 12 with sarcopenia and 20 without. The

results revealed that NOX4 expression was elevated in both the SSc

sarcopenia and non-sarcopenia groups compared to healthy

controls (Figure 5A). In contrast, NEK6 expression was reduced

in both patient groups (Figure 5B). However, no statistically

significant differences in NOX4 and NEK6 expression were

observed between the SSc sarcopenia and non-sarcopenia groups.

Using PCR data from our cohort as the validation set,

Figures 5C, D demonstrated satisfactory diagnostic performance

of NOX4 (AUC = 0.798, 95% CI: 0.679 – 0.917) and NEK6 (AUC =

0.812, 95% CI: 0.690 – 0.935) for SSc. The two-gene risk score

showed superior predictive capability, achieving an AUC of 0.894

(Figure 5E). Moreover, the bias-corrected calibration plot closely

approximated the ideal curve (Figure 5F). To further assess the roles

of NOX4 and NEK6 in the pathogenesis of SSc-associated

sarcopenia, ROC curves were generated to evaluate their
FIGURE 3

Screening of diagnostic genes by machine learning (A) Path diagram of the LASSO regression model. (B) The optimal tuning parameter selection
map of LASSO algorithm. (C) SSc top-10 genes according to their discriminant ability in the RF algorithm. (D) SVM-RFE 10-fold cross-validation
accuracy. (E) SVM-RFE 10-fold cross-validation error rate. (F) The Venn diagram showed five candidate diagnostic genes in SSc by intersecting the
results of there algorithms. (G) Cloud and rain map of friends analysis of 19 common DEGs in GSE181549 and GSE167186.
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diagnostic performance. NOX4 (AUC = 0.798, 95% CI: 0.633 –

0.962) and NEK6 (AUC = 0.873, 95% CI: 0.749 – 0.996) exhibited

high diagnostic accuracy for SSc-associated sarcopenia (Figures 5G,

H). The two-gene model showed the highest discriminative

performance, with an AUC of 0.941 (95% CI: 0.861 – 1.000),

supporting its favorable predictive efficacy (Figure 5I). The
Frontiers in Immunology 07
calibration plot demonstrated excellent agreement between

predicted probabilities and observed outcomes after bias

correction, closely aligning with the ideal curve across the full

probability range (Figure 5J).

To assess the diagnostic utility of NOX4 and NEK for

sarcopenia in SSc, we performed a Pearson correlation analysis
FIGURE 4

Construction of predictive scoring model (A) The expression level of the shared genes in GSE181549 for SSc. (B) The expression level of the shared
genes in GSE167186 for sarcopenia. (C) ROC curves of NOX4 and NEK6 for SSc. (D) ROC curves of NOX4 and NEK6 for sarcopenia. (E, F)
Nomogram predicting the probability of SSc and sarcopenia. (G, H) ROC curve and Calibration curves of risk model in GSE181549. (I, J) ROC curve
and Calibration curves of risk model in GSE167186.
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with ASMI. ASMI and NOX4 have a substantial negative

connection (r=-0.31, p=0.041). Additionally, there is a positive

connection (r = 0.45, p = 0.01) between ASMI and NEK6.
Immune infiltration landscape in SSc

A comprehensive analysis was conducted to characterize the

immune cell infiltration patterns and their functional relevance in SSc

and control groups. Figure 6A illustrates the relative proportions of

immune cell subsets, indicating significant alterations in the SSc group.

The CIBERSORT algorithm was employed to calculate the proportions

of 22 immune cell types in each sample from the GSE181549 dataset.

Notably, several immune cells, including activated CD4+ memory T

cells, activated NK cells, M1 macrophages, and both resting and

activated dendritic cells and mast cells, exhibited significantly

increased infiltration in the SSc group compared to controls (Figure 6B).
Frontiers in Immunology 08
As shown in Figure 6C, NOX4 and NEK6 were significantly

correlated with infiltration levels of various immune cells in the SSc

cohort, including plasma cells, dendritic cells, naive CD4+ T cells,

macrophages, NK cells, and neutrophils. Specifically, NOX4

displayed strong positive correlations with both M1 and M2

macrophages, and significant negative correlations with resting

dendritic cells, activated dendritic cells, plasma cells, activated

CD4+ memory T cells, and resting mast cells (Figure 7A).

Correlation coefficients greater than 0.3 were observed between

NOX4 andM1/M2 macrophages, plasma cells, and both resting and

activated dendritic cells (Figure 7B). Similarly, NEK6 showed

positive correlations with macrophages and monocytes, and

negative correlations with plasma cells, resting and activated

dendritic cells, and mast cells (Figure 8A). Significant correlations

(R > 0.3) were noted between NEK6 and M1 macrophages as well as

plasma cells (Figure 8B). These findings suggest that NOX4 and

NEK6 may influence the pathophysiological progression of SSc by
FIGURE 5

Genes validation and assessment of diagnostic effectiveness of predictive model in SSc-sarcopenia (A, B) The expression of NOX4 and NEK6 in SSc-
sarcopenia by PCR in our cohort. (C–E) ROC curves of NOX4, NEK6 and the two-gene risk model for SSc in our cohort. (F) Calibration curves of the
SSc risk model. (G–I) ROC curves of NOX4, NEK6 and the two-gene risk model for SSc-sarcopenia in our cohort. (J) Calibration curves of the SSc-
sarcopenia risk model. Statistical significance **P <0.01, ***P <0.001.
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modulating immune cell infiltration, thereby offering novel

perspectives for immunomodulatory therapeutic strategies.
Discussion

This study identified NOX4 and NEK6 as dual diagnostic

biomarkers for SSc-associated sarcopenia through integrative

bioinformatics and machine learning approaches. The dual-gene

risk score model exhibited strong diagnostic efficacy, with AUC

values exceeding 0.89 in both discovery and validation cohorts.

These findings provide valuable insights into the shared molecular

mechanisms underlying SSc and sarcopenia and propose a clinically

applicable tool for early disease detection.

The model positions NOX4 and NEK6 as pivotal contributors

to SSc-associated sarcopenia. NOX4, an isoform of NADPH

oxidase, is known to regulate intracellular reactive oxygen species

(ROS) levels (27). While ROS play critical roles in cellular signaling,

excessive ROS induce oxidative stress, resulting in cellular damage

and dysfunction (28). Oxidative stress is considered a central

pathogenic factor in SSc, promoting inflammation, immune

dysregulation, and fibrosis. Numerous studies have demonstrated

that ROS overproduction is closely associated with these

pathological processes in SSc (29). Our previous study confirmed

elevated expression of IL - 6 and NOX4 in peripheral blood

mononuclear cells (PBMCs) from SSc patients using RT-PCR
Frontiers in Immunology 09
(30). Additionally, a recent study found that NOX4 was

upregulated in the skin tissues of SSc patients, with its expression

consistently validated across four independent datasets (31).

Elevated NOX4 expression may contribute to muscle atrophy

via ROS-mediated mitochondrial dysfunction and protein

degradation, both of which are implicated in the pathogenesis of

sarcopenia (32). Hammers et al. (33) reported increased NOX4

levels in the muscle tissue of myotonic dystrophy mouse models

and Duchenne muscular dystrophy (DMD) patients. Notably,

NOX4 upregulation was primarily localized to the interstitial

spaces between muscle fibers. Targeting NOX4 genetically or

pharmacologically significantly reduced fibrosis in atrophic

respiratory and limb muscles, further supporting its role in

muscle degeneration.

Conversely, NEK6, a serine/threonine kinase involved in cell

cycle regulation, exhibited reduced expression in patients with SSc.

Its downregulation may lead to increased reactive oxygen species

(ROS) levels and DNA damage (34), thereby contributing to

progressive muscle degradation. In this study, decreased NEK6

expression in the peripheral blood of SSc patients may have elevated

ROS levels, subsequently promoting the pathogenesis of SSc. Several

studies have confirmed that increased ROS levels mediate excessive

oxidative stress, which plays a pivotal role in SSc pathogenesis (29,

35–37), consistent with our findings. Moreover, NEK6 expression

was also found to be downregulated in patients with myasthenia

gravis, suggesting that decreased NEK6 expression may impair
FIGURE 6

The immune infiltration landscape of SSc. (A) The heatmap showing the distribution of different immune cell types in skin samples of SSc and
controls. (B) Infiltrating difference of immune cells between SSc patients and controls in the box plot. (C) The heatmaps showed the correlation of
two DEGs with immune cell infiltration in SSc patients. Statistical significance. *P <0.05, **P <0.01, ***P <0.001 and **** P<0.0001.
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muscle cell regeneration and contribute to the development

of sarcopenia.

Notably, analysis of the SSc dataset (GSE181549) revealed

significantly elevated NEK6 expression in lesional skin biopsies of
Frontiers in Immunology 10
patients with systemic sclerosis compared to healthy controls. In

contrast, both sarcopenia-related datasets and our independent

qPCR validation cohort demonstrated markedly reduced NEK6

expression in peripheral blood samples of SSc patients relative to
FIGURE 7

Spearman correlation between NOX4 and immune cells in SSc. (A) Correlation Coefficient of NOX4 and immune cells (B) Representative correlations
between NOX4 and selected immune cell subtypes.
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healthy individuals. This discrepancy in expression patterns may be

attributed primarily to tissue-specific biological differences, as the

GEO dataset utilized cutaneous samples, while our validation

employed peripheral blood specimens. The use of peripheral
Frontiers in Immunology 11
blood for biomarker validation aligns with our objective to

develop minimally invasive diagnostic tools, given the clinical

impracticality of repeated skin biopsies. Future investigations

incorporating multi-compartmental sampling (e.g., cutaneous and
FIGURE 8

Correlation between NEK6 and immune cells in SSc.(A) Correlation Coefficient of NEK6 and immune cells (B) Representative correlations between
NEK6 and selected immune cell subtypes.
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circulating tissues) are warranted to elucidate the tissue-specific

regulatory mechanisms governing NEK6 expression in

SSc pathogenesis.

When using PCR to confirm mRNA expression, we saw a

definite tendency of difference between the two patient groups,

even though there were no statistically significant variations in

NOX4 and NEK6 expression levels. This pattern may indicate that

NOX4 and NEK6 may have an potential association between SSc

and sarcopenia. However, this possible relationship has not been

statistically demonstrated because of the limited sample size. In

order to more precisely evaluate the variations in their expression

levels and determine whether there is statistical significance, we

therefore intend to increase the sample size in subsequent research

on NOX4 and NEK6 in SSc associated sarcopenia.

In the sarcopenia dataset (GSE167186), the individual AUC

values for NOX4 and NEK6 were 0.662 (95% CI: 0.524 – 0.801) and

0.661 (95% CI: 0.533 – 0.789) respectively. These values indicate a

limited capacity for either gene to predict sarcopenia when

considered in isolation. The collective AUC for the dual-gene

model increased to 0.703, suggesting a marginal improvement in

predictive performance when both genes are considered together.

We acknowledge that these AUC values are modest and may not

convey a strong predictive power. This observation could be due to

several factors. First, the genetic heterogeneity and complex

pathophysiology of sarcopenia may not be fully captured by only

two biomarkers. Second, the relatively small sample size of the

GSE167186 cohort might limit the statistical power to detect a

stronger association. Third, the expression levels of NOX4 and

NEK6 might be influenced by various confounding factors, such as

age, sex, and comorbidities, which were not accounted for in this
Frontiers in Immunology 12
analysis. Despite the limitations, our findings provide a preliminary

insight into the potential of NOX4 and NEK6 as biomarkers. We

propose that future research, including larger sample sizes and the

integration of additional biomarkers or clinical variables, could

enhance the model’s predictive performance.

Systematic immune profiling revealed significant alterations in

the immune microenvironment of SSc. Importantly, both NOX4

and NEK6 exhibited extensive correlations with immune cell

dynamics (Figures 6-8), suggesting their potential roles as

immunomodulators in SSc pathogenesis. Specifically, NOX4

demonstrated strong positive correlations with pro-inflammatory

M1 and M2 macrophages (Figures 7A, B), implicating its

involvement in macrophage polarization and fibrotic processes,

which are known pathological hallmarks of SSc (38). Similarly,

NEK6 showed a positive correlation with M1 macrophages and a

negative association with plasma cells (Figures 8A, B). Previous

studies have indicated that cytokines such as IL - 6 and TGF-b,
produced by B cells, can induce myofibroblast differentiation.

Additionally, autoantibodies can form immune complexes that

bind to fibroblasts and stimulate profibrotic effects. Some

autoantibody specificities, such as those targeting PDGF, observed

in subsets of SSc patients, may directly bind to fibroblasts and

activate them (39). Collectively, these findings suggest that NOX4

and NEK6 may contribute to SSc progression by modulating

immune cell populations.

This study employed advanced computational approaches to

address the heterogeneity in sarcopenia diagnosis. By integrating

bioinformatics analyses with three machine learning algorithms

(LASSO, RF, and SVM-RFE), we minimized selection bias and

enhanced the reliability of biomarker identification. Furthermore,
FIGURE 9

Schematic diagram of the mechanisms and proposed application.
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qPCR validation in a clinical cohort reinforced the translational

relevance of our findings. Notably, the dual-gene risk score

outperformed single-gene models, underscoring the value of

combinatorial biomarkers in complex, multifactorial diseases. The

inclusion of immune cell profiling provided additional mechanistic

insight by linking gene expression markers to immune-mediated

pathological processes.

Despite the robust methodology and significant findings of our

study, it is crucial to address its limitations, particularly regarding

sample size. A post-hoc power analysis based on the logistic regression

model developed with the systemic sclerosis dataset GSE181549 has

indicated that our current sample size of 157 is indeed less than the

required 345 to achieve the desired C-index of 0.894 with adequate

power. This discrepancy underscores a limitation in our study,

potentially affecting the statistical power and the generalizability of

our results. We propose that future studies should employ larger

sample sizes to further validate our biomarkers and enhance the

reliability of our predictive model. Secondly, while NOX4 and NEK6

expression is strongly linked to disease phenotypes, we couldn’t

address all possible confounders. Thus, we intend to perform

cellular and animal functional studies to determine these genes’

causal roles in disease development. Additionally, multi-omics

approaches may be required to improve diagnostic specificity.

Future studies should prioritize longitudinal cohort designs to

assess the prognostic utility of NOX4 and NEK6 and to explore

therapeutic strategies targeting these pathways.
Conclusion

This study pioneers the application of machine learning and

bioinformatics to identify genes shared between SSc and sarcopenia.

Our results establish NOX4 and NEK6 as novel diagnostic

biomarkers for SSc-associated sarcopenia and propose a non-

invasive strategy for its early detection. Shown in Figure 9, these

molecules represent promising targets for future diagnostic and

therapeutic applications. Validation in large-scale studies is

necessary to evaluate their utility for early screening and risk

stratification in SSc populations.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

The studies involving humans were approved by the Ethics

Committee of Fujian Provincial Hospital. The studies were

conducted in accordance with the local legislation and
Frontiers in Immunology 13
institutional requirements. The participants provided their written

informed consent to participate in this study.
Author contributions

YW: Validation, Visualization, Data curation, Supervision,

Conceptualization, Project administration, Methodology,

Investigation, Resources, Writing – review & editing, Software,

Funding acquisition, Writing – original draft, Formal analysis. YD:

Software, Funding acquisition, Visualization, Conceptualization,

Resources, Investigation, Writing – original draft, Formal analysis,

Project administration, Writing – review & editing, Validation, Data

curation, Methodology, Supervision. FG: Validation, Data curation,

Resources, Conceptualization, Visualization, Formal analysis,

Writing – review & editing, Project administration, Investigation,

Supervision, Funding acquisition, Software, Methodology, Writing –

original draft. HX: Investigation, Software, Funding acquisition,

Validation, Resources, Data curation, Conceptualization, Project

administration, Writing – review & editing, Supervision, Writing –

original draft, Methodology, Formal analysis, Visualization. SP:

Validation, Funding acquisition, Resources, Conceptualization,

Writing – review & editing, Data curation, Project administration,

Writing – original draft, Methodology, Software, Visualization, Formal

analysis, Supervision, Investigation. JH: Software, Supervision, Formal

analysis, Resources,Writing– review&editing,Data curation,Writing–

original draft, Methodology, Investigation, Visualization,

Conceptualization, Project administration, Validation, Funding

acquisition. JL: Data curation, Software, Writing – original draft,

Investigation, Writing – review & editing, Resources, Visualization,

Validation, Funding acquisition, Methodology, Formal analysis,

Supervision, Project administration, Conceptualization. HL: Formal

analysis, Project administration, Resources, Visualization, Data

curation, Investigation, Writing – review & editing, Conceptualization,

Validation, Funding acquisition, Supervision, Methodology, Software.

ZC: Data curation, Methodology, Project administration,

Conceptualization, Validation, Visualization, Supervision, Funding

acquisition, Software, Writing – original draft, Formal analysis,

Investigation, Resources, Writing – review & editing. JW: Resources,

Formal analysis, Validation, Funding acquisition, Project

administration, Visualization, Supervision, Investigation, Data

curation, Writing – original draft, Methodology, Writing – review &

editing, Conceptualization, Software.
Funding

The author(s) declare financial support was received for

theresearch and/or publication of this article. This work was

supported by the Natural Science Foundation of Fujian Province

(Grant Nos. 2023J011199 and 2024J011652) and the Joint Funds for

the Innovation of Science and Technology, Fujian Province (Grant

Nos. 2023Y9305 and 2023Y9318).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1642806
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1642806
Acknowledgments

The authors express their sincere gratitude to all researchers

who shared and published the data used in this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial
Frontiers in Immunology 14
intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.1642806/

full#supplementary-material
References
1. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet (London England). (2019)
393:2636–46. doi: 10.1016/S0140-6736(19)31138-9

2. Coletta G, Phillips SM. An elusive consensus definition of sarcopenia impedes
research and clinical treatment: A narrative review. Ageing Res Rev. (2023) 86:101883.
doi: 10.1016/j.arr.2023.101883

3. Yuan S, Larsson SC. Epidemiology of sarcopenia: Prevalence, risk factors, and
consequences. Metabolism: Clin Exp . (2023) 144:155533. doi: 10.1016/
j.metabol.2023.155533

4. Butt S, Emmanuel A. Systemic sclerosis and the gut. Expert Rev Gastroenterol
Hepatol. (2013) 7:331–9. doi: 10.1586/egh.13.22

5. Caimmi C, Caramaschi P, Venturini A, Bertoldo E, Vantaggiato E, Viapiana O,
et al. Malnutrition and sarcopenia in a large cohort of patients with systemic sclerosis.
Clin Rheumatol. (2018) 37:987–97. doi: 10.1007/s10067-017-3932-y

6. Siegert E, March C, Otten L, Makowka A, Preis E, Buttgereit F, et al. Prevalence of
sarcopenia in systemic sclerosis: assessing body composition and functional disability
in patients with systemic sclerosis. Nutr (Burbank Los Angeles County Calif.). (2018)
55-56:51–5. doi: 10.1016/j.nut.2018.03.046

7. Corallo C, Fioravanti A, Tenti S, Pecetti G, Nuti R, Giordano N. Sarcopenia in
systemic sclerosis: the impact of nutritional, clinical, and laboratory features.
Rheumatol Int. (2019) 39:1767–75. doi: 10.1007/s00296-019-04401-w

8. Zuo X, Li X, Tang K, Zhao R, WuM,Wang Y, et al. Sarcopenia and cardiovascular
diseases: A systematic review and meta-analysis. J cachexia sarcopenia Muscle. (2023)
14:1183–98. doi: 10.1002/jcsm.13221

9. Hongkanjanapong S, Pongkulkiat P, Mahakkanukrauh A, Suwannaroj S,
Foocharoen C. Clinical outcomes and associated factors with mortality in systemic
sclerosis patients with sarcopenia. Am J Med Sci. (2025) 369:35–43. doi: 10.1016/
j.amjms.2024.07.025

10. Sabatino A, D’Alessandro C, Regolisti G, di Mario F, Guglielmi G, Bazzocchi A,
et al. Muscle mass assessment in renal disease: the role of imaging techniques.
Quantitative Imaging Med Surg. (2020) 10:1672–86. doi: 10.21037/qims.2020.03.05
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