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Interaction of vaginal microbiota
and biomarkers in Premature
rupture of membranes: from
bench to beside
Yudi Deng, Yang Li , Tiana Liu and Fuju Wu*

Department of Obstetrics and Gynecology, The Second Hospital of JilinUniversity, Changchun,
Jilin, China
Preterm premature rupture of membranes (PROM) is a critical obstetric

complication endangering maternal and neonatal health, with growing

evidence linking vaginal microecology to its pathogenesis. This review

synthesizes the relationship between vaginal microbiota and PROM risk, as well

as microecology-targeted prevention and management strategies. A balanced

vaginal microbiome, dominated by lactobacilli that maintain an acidic protective

environment, is essential for reproductive health. Dysbiosis—marked by reduced

lactobacilli and increased pathogens like Gardnerella and Atopobium—impairs

local immunity, weakens fetal membranes, and elevates PROM risk, with bacterial

vaginosis (BV) strongly associated with this condition. Pathogenic overgrowth

activates inflammatory (via TLR-mediated IL-1b, TNF-a, IL-6 overproduction)

and oxidative stress pathways: pro-inflammatory cytokines promote cervical

ripening, induce matrix metalloproteinases (MMPs) to degrade fetal membrane

collagen, while reactive oxygen species (ROS) directly damage structural

proteins, compromising membrane integrity. Monitoring inflammatory/

oxidative stress biomarkers (e.g., cytokine levels, ROS activity) enables early risk

assessment. Potential interventions include probiotics to restore microbial

balance, antioxidants/immunomodulators to counteract stress/inflammation,

and MMP inhibitors to preserve membrane structure, all aiming to improve

pregnancy outcomes. In conclusion, vaginal microecology plays a pivotal role

in PROM development, underscoring the need for early microecological

monitoring. Future research should dissect mechanistic complexities and

develop precision tools for preterm labor management.
KEYWORDS

preterm premature rupture of membranes (PROM), vaginal microecology, bacterial
vaginosis (BV), inflammation, oxidative stress
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1 Introduction

Premature rupture of membranes (PROM), especially when it

happens prior to 37 weeks of gestation, is a common and significant

pregnancy complication that impacts a considerable number of

expectant mothers globally (2020) (1). The incidence of preterm

premature rupture of membranes (PPROM) frequently results in

early labor, which may lead to various negative perinatal

consequences, such as neonatal respiratory distress syndrome,

sepsis, necrotizing enterocolitis, and developmental disorders in

infants (2). These conditions significantly impact neonatal survival

rates and may also lead to irreversible long-term developmental

damage. Moreover, PPROM increases the risk of maternal

infection, particularly when membranes are ruptured, as bacteria

may ascend and invade the amniotic cavity, potentially causing

severe infectious complications such as chorioamnionitis (3, 4).

Therefore, it is clinically crucial to conduct a thorough investigation

into the etiology of PPROM and its potential effects on the health of

mothers and infants to reduce the rate of preterm birth and enhance

the prognosis for both mothers and infants.

The intricate and diverse mechanisms contributing to PPROM

are often linked to elements like physical harm to the fetal

membranes, immune system reactions, and the presence of

infections. Recent research has increasingly highlighted the

importance of vaginal microbiota in preterm premature rupture of

membranes (PPROM) (5, 6). A balanced vaginal microbiota is

defined by a dominance of Lactobacillus species (7) which helps

sustain the vagina’s acidic conditions by generating lactic acid,

thereby suppressing pathogen development. In contrast, an

imbalance in the vaginal microbiota results in fewer lactobacilli and

a rise in harmful bacteria (8). This imbalance can disturb the local

immune response and compromise the membranes, which may

elevate the risk of membrane rupture. Bacterial vaginosis (BV),

commonly seen as a sign of vaginal microbial imbalance, has

shown a significant correlation with an increased risk of PPROM

(9). Moreover, BV is frequently associated with heightened levels of

pro-inflammatory cytokines such as IL-6 and IL-8 (10), which

contribute to membrane rupture by enhancing cervical ripening

and stimulating uterine contractions. Furthermore, changes in

certain biochemical markers are recognized as important indicators

for the early identification of PPROM. In recent studies, fluctuations

in the levels of these biochemical markers have been recognized as

promising biomarkers for evaluating the cervicovaginal environment

and predicting the risk of premature rupture of the membranes (11,

12). The objective of this paper is to conduct a comprehensive

examination of the influence of vaginal microbiota and biochemical

markers on PPROM. Additionally, the study will explore the

potential for enhancing pregnancy outcomes through the early

monitoring of these biomarkers. This research is of significant

importance for elucidating the mechanisms underlying PPROM

and for the development of effective intervention strategies.
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2 Overview of vaginal microbiota

2.1 Normal vaginal microbiota composition

To comprehend the traits of both healthy and dysbiotic

cervicovaginal microbiota, it is crucial to acknowledge the intricacies

of this microbial ecosystem and its significant influence on female

reproductive health. The phrase ‘vaginal microbiota’ pertains to the

diverse microbial community that inhabits the lower genital tract of

females. The makeup and equilibrium of this microbiota are essential

for preserving reproductive health.Typically, the vaginal microbiota is

highly specific and exhibits low diversity, with a predominance of

certain beneficial bacterial species, particularly Lactobacillus. The

combined activities of these microorganisms lead to the development

of a stable micro-ecosystem, which is essential for preserving the health

of the female reproductive system (13). In the vagina of a healthy

woman, Lactobacillus is the predominant beneficial bacterial species,

which maintains the acidic environment through the secretion of lactic

acid and other metabolic products, thereby inhibiting the growth of

harmful pathogens (14). Lactobacillus bacteria are the primary species

within the vaginal microbiota, and their dominance is considered an

indicator of vaginal health. Indeed, the cervicovaginal microbiota

comprises at least five principal community state types (CSTs), each

characterized by a dominant Lactobacillus species (15) (Table 1).
2.2 Other common commensal bacteria

In addition to Lactobacillus, the vagina is inhabited by a variety

of other commensal bacteria.In a healthy state, these bacteria do not

induce disease and play a role in sustaining the balance of the

vaginal microecological environment to a certain degree (16). These

commensal bacteria are typically found in microenvironments

dominated by Lactobacillus. However, when there is a reduction

in Lactobacillus numbers, these bacteria may proliferate

uncontrol labl . For example, Bifidobacterium spp. are

predominantly located within the gut, although they can also be

identified in the vagina in certain instances. In BV patients,

bifidobacteria can coexist alongside Gardnerella and anaerobic

bacteria, but they cannot fulfil the core function of lactobacilli.

They produce lactic acid and serve as a defense against potential

pathogens, but the effect was not significant (20). As another

illustration, Gardnerella vaginalis is less prevalent in individuals

with optimal vaginal health; however, its abundance markedly

increases in cases of BV (21). Although it is an important marker

of vaginal dysbiosis, it may also be present as a normal commensal

in some individuals. Additionally, an increase in the anaerobic

bacteria Prevotella spp. andMobiluncus spp. is typically observed in

cases of vaginal dysbiosis, particularly in individuals diagnosed with

BV. The presence of these organisms is directly contributes to an

inflammatory response and an elevated vaginal pH level (15, 22).
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2.3 Physiological functions of vaginal
microbiota

2.3.1 Maintain a stable vaginal microenvironment
Lactobacillus is essential for preserving the stability of the

vaginal microenvironment. Its main physiological role involves

metabolizing glycogen to generate lactic acid, which helps to

sustain the vagina’s acidic environment (23). As a result, this

process usually keeps the vaginal pH between 3.5 and 4.5 (24) a

spectrum that has been demonstrated to effectively curb the

proliferation of different pathogens. The primary functions of

vaginal microbiota are to maintain the stability of the vaginal

microenvironment and to defend against pathogens that invade

the vagina. The metabolites produced by beneficial bacteria, such as

Lactobacillus, along with their immunomodulatory mechanisms,

enable vaginal microbiota to serve as a natural defense barrier for

the female reproductive tract. The vast majority of women (35/36,

97%) who underwent vaginal delivery at term exhibited a vaginal

microbiome characterised by >75% abundance of Lactobacillus spp.

Furthermore, 83% (30/36) of these women demonstrated

Lactobacillus spp. abundance levels exceeding 98%. Samples

obtained prior to PPROM were comparatively enriched for

intermediate or Lactobacillus spp. depleted communities

(PPROM; 14/60, 23% vs. Control; 1/36, 3%, P Farrell = 0.011),

decreased total Lactobacillus spp. abundance (PPROM; 79% vs.

Control; 96%, P Farrell = 0.016) and increased richness (total

number of species observed, PPROM; 65 vs. Control; 10, P Farrell

= 0.0086) (25). Rupture of the amniotic membrane takes place in

the middle to late stages of pregnancy (24-29 + 6 and 30-36 + 6

weeks of gestation), prompting researchers to label these two

periods as the ‘immune clock.’ (25–27). Furthermore, Zheng et al.

(28) and Juliana et al. (29) underscore the significance of preserving

the natural equilibrium of the vaginal microbiota throughout the

gestational period.
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2.3.2 Resistance to pathogen invasion
An additional important function of the vaginal microbiome is

its protective role against pathogens, achieved via various

mechanisms. During pregnancy, increased concentrations of

vaginal oestradiol and glycogen lead to greater vaginal acid levels,

subsequently fostering the dominance of Lactobacillus. This genus

is able to directly prevent the proliferation of harmful bacteria by

influencing pH levels and producing antimicrobial compounds.

Additionally, it enhances the host’s immune response, thereby

strengthening the body’s defenses (30). The four principal

mechanisms by which Lactobacillus resists pathogen invasion are

as follows: the phenomenon of competitive exclusion, defined as

Lactobacilli competing for adhesion sites by preferentially

occupying receptor sites on vaginal epithelial cells, thus

preventing the colonization of these cells by pathogens (31). The

process of immunomodulation refers to the alteration of the

immune system’s response to external stimuli. Lactobacillus has

the ability to stimulate the release of anti-inflammatory cytokines,

including IL-10, and simultaneously reduces the overproduction of

pro-inflammatory components through its interactions with vaginal

epithelial cells, which helps to deter undesirable inflammatory

responses (32, 33). Furthermore, Lactobacilli have been shown to

enhance local immune defenses by stimulating the mucosal

immune system (MALT) (34). The secretion of antimicrobial

substances is a key defense mechanism employed by these

microorganisms. In addition to lactic acid and hydrogen

peroxide, Lactobacillus lactis is capable of secreting bacteriocins

and other antimicrobial peptides. Antimicrobial agents possess the

ability to directly suppress the proliferation of harmful bacteria or

eliminate them by compromising their cell walls and membrane

structures (35). Various antimicrobial substances linked to the

protection of vaginal epithelial cells, such as neutrophil

gelatinase-associated lipocalin, calcium-binding proteins, and

hyaluronic acid, are selectively stimulated by Lactobacillus casei
TABLE 1 Five principal community state types of cervicovaginal microbiota in healthy woman.

CST
type

Dominant
bacteria

Function Clinical significance References

CST I Lactobacillus crispatus Dominant acidifier: Sustains optimal pH ≤ 4.5 barrier against pathogens Associated with vaginal
health, low infection and
preterm birth risk

(16)

CST II Lactobacillus gasseri Dominant lactic acid producer: maintains an acidic environment, supports
normal pregnancy, and reduces the risk of infection.

Associated with normal
pregnancy, low infection risk

(17)

CST III Lactobacillus iners Weak acidifiers:have a weaker acidifying effect, and their clinical significance is
controversial.associated with variable health outcomes, including the possibility
of bacterial vaginosis

Controversial: Linked with
both health and BV

(16)

CST IV Lactobacillus jensenii Lactic acid-producing acidifiers: maintain acidic pH levels, associated with low
infection rates and favorable pregnancy outcomes.

Associated with low infection
risk, good
pregnancy outcomes

(18)

CST V L. iners & anaerobic
bacteria
(Gardnerella,
Prevotella)

Associated with dysbiosis and increased pathogenic activity Linked with vaginal dysbiosis,
increased infection risk

(19)
BV, Bacterial vaginosis.
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L. iners (36). The symbiotic relationship between the host and

microorganisms is sustained; the vaginal microbiota significantly

contribute to maintaining the integrity of the mucosal barrier

against external pathogens through their interaction with the host

immune system. A dysbiotic vaginal microbiota facilitates the

penetration of pathogens through the mucosal barrier, thereby

precipitating infection and inflammation (37).
3 Biochemical markers associated
with PROM of the fetal membranes

Recent studies have extensively examined the importance of

biochemical markers in forecasting premature rupture of the

membranes. Research indicates a strong connection between

particular inflammatory factors, elements related to oxidative

stress, and markers like matrix metalloproteinases with both the

structural integrity of the membranes and the inflammatory

response (38). The subsequent section will examine the particular

roles of inflammation, oxidative stress, and additional biochemical

markers in the context of premature rupture of the membranes.
3.1 Inflammation-related biochemical
markers

The integrity of the fetal membrane relies on both its

mechanical strength and the regulation of local and systemic

inflammatory responses (39). A substantial body of evidence from

numerous studies suggests that the inflammatory response plays a

crucial role in the pathogenesis of premature rupture of

membranes, particularly concerning the involvement of various

inflammatory cytokines and mediators (40–42). A case-control

study of patients in the FTB, PTB, PROM and pPROM groups

(n > 6) revealed that: TNF-a, IL-6 and ADAMTS9 mRNA

levels were significantly higher in the PROM and pPROM groups

(p < 0.001). (42). Furthermore, evidence indicates that a reduction

in Lactobacillus and an increase in pathogenic bacteria

(e.g., Sneathia spp.) are associated with increased fragility of the

fetal membranes and the onset of early neonatal sepsis (EONS) (42).

3.1.1 Various inflammatory cytokines
Research has shown that the microbiota associated with

premature rupture of membranes, including Gardnerella vaginalis

and Atopobium vaginae, are significantly linked to increased pro-

inflammatory factors (40, 43–45). In particular, pro-inflammatory

factors such as IL-1 and IL-6, which are markedly elevated in the

inflammatory vaginal environment, exacerbate cervical ripening

and fetal membrane fragility, thereby heightening the risk of

PROM (46) (Table 2).

3.1.2 Mediator of inflammation
Prostaglandins (PGs) are biologically active lipid molecules

metabolized from arachidonic acid found in cell membranes.

They are essential in the body’s inflammatory response and in
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facilitating uterine contraction (56). Prostaglandin E2 (PGE2) and

prostaglandin F2a (PGF2a) are two prostaglandins closely

associated with pregnancy and childbirth; additionally, they might

play a role in the premature rupture of membranes.PGE2 is

particularly significant in the onset of labor, primarily by

regulating cervical softening and initiating uterine contractions

(57). Research indicates that in instances of preterm premature

rupture of membranes (PPROM), prostaglandin E2 (PGE2)

exacerbates the inflammatory response by activating local

immune cells and promoting the secretion of interleukin-1 (IL-1)

and interleukin-6 (IL-6) (58). Concurrently, prostaglandin F2a
(PGF2a) is essential in facilitating labor progression by inducing

contractions of the uterine muscles. Importantly, the amniotic fluid

from patients experiencing PPROM demonstrates significantly

increased levels of PGF2a, highlighting its crucial function in the

contractions occurring after membrane rupture (57, 59, 60).
3.2 Oxidative stress-related biochemical
markers

Oxidative stress refers to a physiological state that occurs due to

an overproduction of reactive oxygen species or inadequate
TABLE 2 Inflammatory markers and PROM risk.

Inflammatory
marker

Mechanism
of action

Impact on
PROM risk

References

IL-1 Key initiator of
acute
inflammatory
response. Elevated
during PROM,
activates NF-
kB signaling.

Increases
inflammation,
weakens
membranes,
raises
PROM risk.

(43, 44, 46)

IL-6 Pro-inflammatory
cytokine secreted
by monocytes,
macrophages, and
fetal
membrane cells.

Elevated in
PPROM
patients, early
PROM
marker,
increases
rupture risk.

(42, 47–49)

IL-1b Regulates PI3K/
AKT pathway,
induces IL-6
production,
activates
NLRP3
inflammasome.

Increases
cytokines,
disrupts ECM,
heightens
PROM risk.

(41, 45, 50–53)

TNF-a Produced by
macrophages and
T cells, key in
infectious
inflammation.

Promotes
MMP
expression,
degrades ECM,
increases
membrane
rupture risk.

(42, 54, 55)
IL-1, Interleukin 1. PROM, Preterm Rupture of Membranes. NF-kB, Nuclear Factor kappa-
light-chain-enhancer of activated B cells.
IL-6, Interleukin 6; PPROM, Preterm Prerupture of Membranes; IL-1b, Interleukin 1 Beta;
PI3K, Phosphoinositol-3 Kinase; AKT, Protein Kinase B; NLRP3, NOD-like Receptor Family
Pyrin Domain Containing 3. ECM, Extracellular Matrix; TNF-a, Tumor Necrosis Factor
Alpha; MMP, Matrix Metalloproteinase.
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performance of the antioxidant defense mechanisms during the

body’s metabolic activities (61). This condition has been identified

as a major contributing element to the onset of preterm premature

rupture of membranes, particularly in instances of preterm delivery

(45, 62). This condition increases the vulnerability of the fetal

membranes by disrupting their cellular structure and modulating

the inflammatory response (63) (Figure 1).

Abbreviation: ECM, Extracellular Matrix. ROS, Reactive

Oxygen Species. SOD, Superoxide Dismutase. CAT, Catalase.

PI3K, Phosphoinositol-3 Kinase. AKT, Protein Kinase B. NF-kB,
Nuclear Factor kappa-light-chain-enhancer of activated B cells.

NLRP3, NOD-like Receptor Family Pyrin Domain Containing 3.

Bcl-2, B-cell CLL/lymphoma 2. Caspase-1, Cysteinyl aspartate

specific proteinase 1, IC-1b, Interleukin 1b.

3.2.1 Reactive oxygen species and antioxidant
enzymes

ROS are naturally occurring by-products of cellular

metabolism, including superoxide, hydrogen peroxide, and

hydroxyl radicals (64). Under standard conditions, the human

body has an antioxidant defense mechanism that can eliminate

these reactive oxygen species. Nonetheless, the existence of a

microbial community largely made up of non-Lactobacillus

species might increase ROS production, thereby worsening

cellular and tissue harm (65). An excessive accumulation of ROS

within the fetal membrane can lead to embrittlement and eventual
Frontiers in Immunology 05
rupture of the membrane structure. Antioxidant enzymes, such as

superoxide dismutase (SOD) and catalase (CAT), play a pivotal role

in the scavenging of ROS. SOD converts superoxide radicals into

hydrogen peroxide, which is then broken down into water and

oxygen by CAT. These antioxidant enzymes are essential for

maintaining cellular redox homeostasis through the regulation of

ROS production and scavenging (66). In patients with PPROM, it

has been demonstrated that the IL-1b-induced PI3K/AKT pathway

can facilitate ROS generation, while the activity of antioxidant

enzymes is significantly diminished. This evidence suggests that

oxidative stress may be a critical mechanism underlying the fragility

and rupture of the fetal membrane (67).

3.2.2 Oxidative stress
Reactive oxygen species (ROS) have the capability to directly

damage collagen and elastin, which serve as structural proteins

within the extracellular matrix (68). Collagen in the fetal

membranes is essential for maintaining their strength and

elasticity. ROS-mediated oxidative damage to collagen fibers

results in their weakening, which subsequently increases the

likelihood of membrane rupture (69). Concurrently, this process

triggers the NLRP3 inflammatory vesicle, amplifying the

inflammatory response and cytokine secretion within the fetal

membranes (45, 51, 53). Such reactions further compromise the

integrity of collagen fibers in the fetal membranes, thereby

increasing their fragility. An excess of ROS may also activate
FIGURE 1

This image illustrates how microbial structural imbalances within the vaginal environment contribute to the transition from normal fetal membranes
to premature rupture. The microbial imbalance generates reactive oxygen species (ROS), which activate NLRP3 inflammatory vesicles and promote
the maturation of IL-1b via caspase-1. This process subsequently activates NF-kB and increases oxidative stress. Concurrently, ROS influence the
PI3K/AKT and SOD/CAT pathways, resulting in damage to the extracellular matrix (ECM), which can ultimately lead to premature membrane rupture.
ECM, Extracellular Matrix. ROS, Reactive Oxygen Species. SOD, Superoxide Dismutase. CAT, Catalase. PI3K, Phosphoinositol-3 Kinase. AKT, Protein
Kinase B. NF-kB, Nuclear Factor kappa-light-chain-enhancer of activated B cells. NLRP3, NOD-like Receptor Family Pyrin Domain Containing 3. Bcl-
2, B-cell CLL/lymphoma 2. Caspase-1, Cysteinyl aspartate specific proteinase 1, IC-1b, Interleukin 1b.
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apoptotic pathways by damaging mitochondrial membranes. The

accumulation of apoptotic cells within fetal membrane tissues can

weaken the structural integrity of the membrane, thereby elevating

the risk of PPROM (70).
3.3 Other relevant biochemical markers

In addition to biochemical markers associated with

inflammation and oxidative stress, matrix metalloproteinases

(MMPs) and their inhibitory factors (TIMPs), among others, have

been identified as playing a significant role in premature rupture of

the membranes.

3.3.1 Matrix metalloproteinases and their
inhibitors

MMPs are a class of enzymes that degrade extracellular matrix

proteins and play a crucial role in tissue remodeling and the renewal

of the extracellular matrix (71). However, excessive activation of

MMPs can disrupt the extracellular matrix, leading to an increased

risk of premature rupture of membranes. MMP-9 is a particularly

abundant matrix metalloproteinase found in fetal membrane tissue

and is primarily responsible for the degradation of collagen and

elastin. In patients with PPROM, there is a significant increase in

MMP-9 activity, resulting in the degradation of collagen fibers and a

reduction in membrane strength (72).

Tissue inhibitor of metalloproteinases (TIMP-1) serves as an

endogenous inhibitor of MMPs preventing their excessive

degradation of the extracellular matrix through binding interactions

(71). A reduction in TIMP-1 activity may result in uncontrolled

MMP activity, thereby exacerbating membrane degradation in the

context of premature rupture of the membrane (73).

3.3.2 Fibronectin
Fibronectin, a multifunctional protein found within the

extracellular matrix, is crucial for cell adhesion, migration, and

tissue repair.The findings showed a notable rise in fibronectin

concentrations in cervicovaginal secretions from patients who

were undergoing premature rupture of the membranes. This

finding implies that fibronectin may act as an early biochemical

marker for membrane rupture (74). Evidence suggests that

fibronectin is a crucial factor in preserving the structural integrity

of fetal membranes due to its role in extracellular matrix remodeling

and the fetal membrane repair processes (55, 75).
4 Direct interaction of vaginal
microbiota with biochemical markers

The microbiota of the vagina is crucial for ensuring the health of

the female reproductive system, especially in thwarting infections

and maintaining the ecological balance within the vaginal

environment. However, a dysbiotic microbiota—characterized by

a reduction in Lactobacillus and an increase in pathogenic bacteria

—can trigger a range of adverse biological responses that influence
Frontiers in Immunology 06
the expression levels of biochemical markers. These biochemical

markers not only serve as diagnostic indicators of inflammatory and

oxidative stress states but also interact with changes in vaginal

microbiota, creating positive or negative feedback mechanisms that

further impact reproductive health. This paragraph will examine the

direct interactions between vaginal microbiota and biochemical

markers, with a particular emphasis on the effects of dysbiosis on

biochemical markers and the counteracting influences of these

markers on the balance of vaginal microbiota.
4.1 Influence of vaginal microbiota on
biochemical markers

The stabilisation of the vaginal microbiota is largely dependent

on the presence of Lactobacillus, with strains such as Lactobacillus

crispatus and Lactobacillus gasseri playing a particularly significant

role.The lactic acid produced by these bacteria maintains the acidic

environment of the vagina, which inhibits the multiplication of

pathogenic bacteria.In the event of a dysbiotic vaginal microbiota,

as observed in cases of bacterial vaginosis or anaerobic bacteria, a

localised pro-inflammatory response is initiated, accompanied by a

notable elevation in the levels of inflammatory biochemical

markers, including IL-1, IL-6 and TNF-a.
4.1.1 Mechanisms of elevated inflammation-
related biochemical markers due to dysbiosis

Antimicrobial peptides (AMPs) play a crucial role in

maintaining the physiological barrier of the vagina. They

contribute to microbiota stability by inhibiting pathogenic

organisms (76). Human beta-defensin-2 (HBD-2) is a vital

antimicrobial peptide that protects against microbial invasion

through the innate immune system (77). Various research works

indicate that levels of HBD-2 are markedly lower in individuals

suffering from bacterial vaginosis (BV) while being heightened in

healthy pregnant women (78). A decrease in HBD-2 levels has been

observed in instances of dysbiotic vaginal microbiota, characterized

by an imbalance in microbiota dominated by pathogenic bacteria

such as Gardnerella vaginalis. Such imbalances indicate a disruption

of vaginal microecology (79, 80). Moreover, reduced concentrations

of HBD-2 have been demonstrated to hinder immune function and

elevate the likelihood of premature rupture of membranes (PROM)

as a result of an inflammatory reaction that raises pro-inflammatory

biochemical indicators, such as IL-6 and TNF-a (81). Concurrently,

the proliferation of pathogenic bacteria, such as Gardnerella

vaginalis and Atopobium vaginae, which are indicative of

dysbiotic vaginal microbiota, leads to the destruction of epithelial

cell integrity and stimulates the release of pro-inflammatory factors

by local immune cells (13, 82). Pro-inflammatory factors have been

shown to activate inflammatory signals via the NF-kB and AP-1

pathways, thereby amplifying local inflammatory responses. For

example, IL-1b increases the release of IL-6 by activating the PI3K/

AKT signaling pathway via the NLRP3 inflammasome, which

facilitates the maturation of IL-1b through the activation of
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caspase-1 (83). As pro-inflammatory factor levels rise, there is a

substantial influx of immune cells from local tissues, further

disrupting the vaginal environment. The persistence of this

inflammatory response leads to the disruption and increased

fragility of the fetal membrane structure, consequently

heightening the risk of premature rupture of the membranes.

Additionally, in women experiencing premature rupture of the

membranes, specific inflammatory factors such as CXCL10,

CCL26, CCL22, and IL-16 are strongly associated with CST type

IV vaginal microbiota, particularly pathogenic bacteria like

Sneathia sanguinegens (83). The concentration of these pro-

inflammatory mediators tends to rise as the non-Lactobacillus-

dominated microbiota expands. This imbalance in gut microbiota

initiates a localized inflammatory reaction, leading to heightened

biochemical indicators linked to inflammation and a greater

likelihood of premature rupture of the membranes (Figure 2).

4.1.2 Modulation of markers associated with
oxidative stress

It has been demonstrated that the prevalence of L. iners

fluctuates considerably during the early stages of pregnancy, with

a notable increase observed as vaginal cleanliness declines (84). This

indicates that the rise in biochemical markers linked to vaginal
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microbiota dysbiosis and oxidative stress may be attributable to the

prevalence of L. iners, which facilitates the proliferation of

pathogenic bacteria, resulting in elevated levels of ROS

production. This, in turn, further exacerbates the imbalance in

the vaginal environment and tissue damage (85, 86). In a usual

situation, Lactobacilli hinder the growth of harmful bacteria by

preserving an acidic environment and generating hydrogen

peroxide (H2O2). When dysbiosis occurs, there is a decrease in

HBD-2 levels, resulting in a rise of pathogenic bacteria in the

vaginal area.The production of toxins and the induction of

reactive oxygen species (ROS) by these bacteria lead to oxidative

stress (87). ROS production results in damage and increased

fragility of the fetal membrane structure, due to the attack on

collagen fibres and other extracellular matrix proteins that occur

within the fetal membrane (88). Concurrently, the activity of

antioxidant enzymes (e.g. SOD, CAT) within the vaginal

environment is diminished, thereby further compromising the

capacity to avert oxidative stress (89). The available literature

indicates a negative correlation between specific microbial types

(e.g., Gardnerella vaginalis and Atopobium vaginae) and CXCL10

levels. This suggests that these pathogens may contribute to the

disruption of vaginal microecological stability by triggering

inflammation and oxidative stress (90).
FIGURE 2

The figure illustrates the mechanisms by which Gardnerella vaginalis and Atopobium vaginae activate NLRP3 inflammatory vesicles through TNF,
LPS, and other pathways. This activation results in the release of the inflammatory factors IL-1b and IL-18, subsequently triggering cellular pyroptosis.
TNF, Tumor Necrosis Factor. NF-kB, Nuclear Factor kappa-light-chain-enhancer of activated B cells. LPS, Lipopolysaccharide. TNFR, Tumor Necrosis
Factor Receptor. TLR, Toll-like Receptor. IFNb, Interferon Beta. AMPs, Antimicrobial Peptides. IL-1b, Interleukin 1 Beta. CASP11, Caspase 11. IL-1R,
Interleukin 1 Receptor. IFNAR, Interferon Alpha and Beta Receptor. ROS, Reactive Oxygen Species. NLRP3, NOD-like Receptor Family Pyrin Domain
Containing 3. CARD, Caspase Recruitment Domain. ox-mtDNA, Oxidized Mitochondrial DNA. Cathepsins, Proteolytic enzymes found in lysosomes.
N-GSDMD, N-terminal Gasdermin D. API, Apoptosis Inhibitor. IL-18, Interleukin 18.
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Oxidative stress linked to dysbiosis increases the risk of fetal

membrane rupture. Besides directly harming cellular structures, an

overabundance of reactive oxygen species (ROS) further encourages

the breakdown of the extracellular matrix through the activation of

MMPs (90). It is evident that the inflammatory response and

oxidative stress induced by dysbiosis not only increase the levels

of pro-inflammatory cytokines but also enhance the expression of

biochemical markers related to oxidative stress, thereby further

accelerating the degradation of fetal membranes.
4.2 Reverse effects of biochemical markers
on vaginal microbiota

4.2.1 Changes in the composition of the vaginal
microbiota by the inflammatory environment

In non-pregnant women, the vaginal microbiota composition is

less stable, marked by a higher percentage of pathogens. In contrast,

a healthy pregnancy is associated with increased stability of the

vaginal microbiota, showcasing a higher prevalence of beneficial

bacteria like Lactobacillus. This shift may serve to address the

protective needs of both the fetus and the mother (91). Notably, a

microbiota dominated by a single strain of Lactobacillus iners

during the early stages of pregnancy is significantly associated

with the occurrence of preterm labor (6). The research revealed

that L. iners was detected in merely 85% of women who underwent

preterm deliveries, while only 16% of those with full-term

pregnancies showed the presence of this strain (92). Furthermore,

the pro-inflammatory cytokines IL-1b and TNF-a not only

promote localized inflammation but also have a considerable

impact on the makeup of the vaginal microbiota (93). As levels of

inflammation increase, the quantity of Lactobacillus bacteria

diminishes, whereas the presence of anaerobic pathogens, such as

Gardnerella vaginalis and Atopobium vaginae, rises. This change

exacerbates dysbiosis, thereby heightening the risk of premature

rupture of membranes. In women of African descent, inflammatory

conditions are more conducive to the colonization of anaerobic

bacteria like Gardnerella and Prevotella, resulting in a transition of

the vaginal microbiota from a state dominated by Lactobacillus to

one defined by anaerobic dysbiosis (94). A strong correlation has

been observed between vaginal cleanliness, leukocyte esterase levels,

and the composition of the vaginal microbiota. Specifically, the

presence of leukocyte esterase correlates with a notable increase in

the abundance of L. iners, while the abundance of L. crispatus shows

a significant decline (85). The CST IV microbiota, characterized by

the dominance of non-Lactobacillus bacteria in the vagina during

inflammatory states, has been associated with elevated levels of

several pro-inflammatory biochemical markers (95). Pro-

inflammatory agents, including IL-1b, not only enhance the

synthesis of HBD2 within an inflammatory context but also

modify the vaginal microbiota’s composition, suppressing the

growth of beneficial bacteria such as Lactobacillus while

encouraging the increase of pathogenic bacterial populations. A

study involving 317 patients diagnosed with bacterial vaginosis

(BV) revealed that vaginal hBD-2 levels were 54.48% lower
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compared to those in the healthy control group (p < 0.01).

Furthermore, a significant negative correlation was observed

between Nugent scores and both hBD-1 (Spearman’s rho =

-0.2118; p = 0.0001) and hBD-2 (Spearman’s rho = -0.2117; p =

0.0001) levels (78). It has been proposed that during the

inflammatory process, the concentration of intravaginal AMPs,

such as HBD2, increases, effectively inhibiting the reproduction of

pathogenic bacteria and protecting beneficial microbiota (80, 90).

This counterproductive mechanism suggests that biochemical

markers play a crucial role in maintaining the equilibrium of

vaginal microbiota, thereby facilitating the prevention of infection.

4.2.2 Adaptive changes in bacterial microbiota
under oxidative stress conditions

In the context of oxidative stress, AMPs influence the

composition of the vaginal microbiota in two principal ways: first,

by directly inhibiting pathogenic bacteria, and second, by

modulating the local inflammatory response (96). For instance,

the overproduction of ROS and other oxidative stress-related

markers can adversely affect the vaginal microbiota. ROS are not

only toxic to host cells but also impact the environmental

conditions necessary for microorganisms to survive and thrive

(97). In the presence of oxidative stress, pathogenic bacteria

capable of tolerating oxidative damage, such as Sneathia spp.,

tend to dominate the vaginal environment, further exacerbating

the inflammatory response and tissue damage. The survival of

Lactobacillus in this oxidative stress environment is compromised,

leading to a reduction in its population. Consequently, this

reduction results in an increase in vaginal pH, creating a more

favorable environment for the colonization and proliferation of

pathogenic bacteria. Oxidative stress promotes the adaptive growth

of pathogenic bacteria by altering the vaginal microecology, thereby

heightening the likelihood of an inflammatory response and

membrane rupture. This feedback mechanism suggests that

elevated biochemical markers are not merely a consequence of

changes in the vaginal milieu; rather, they actively contribute to the

perpetuation of microbiota dysbiosis, establishing a vicious cycle

(98). For example, in the context of oxidative stress, L. iners exhibits

enhanced resilience and the ability to persist in a dysbiotic vaginal

environment (85). However, the presence of L. iners does not

effectively inhibit the colonization of other harmful bacteria and

may instead serve as a marker of vaginal microbiota dysbiosis (84).
5 Mechanism of synergy between
vaginal microbiota and biochemical
markers in PROM

Recent studies have demonstrated that the vaginal microbiota

and biochemical markers exert a synergistic effect on the

pathogenesis of premature rupture of membranes. This paragraph

will provide a detailed discussion of the mechanisms underlying the

synergy between vaginal microbiota and biochemical markers in the

context of PROM.
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5.1 Synergistic effects through
inflammatory pathways

5.1.1 Vaginal microbiota triggers an inflammatory
response and activates the expression of relevant
biochemical markers

Changes in the vaginal microbiota have been demonstrated to

play a pivotal role in the initiation of the inflammatory response. The

usual vaginal microbiome is defined by a dominance of Lactobacillus

species, which produce lactic acid to create an acidic setting, thereby

effectively preventing the proliferation of harmful bacteria (23, 24).

However, in the event of a dysbiotic vaginal microbiota, the

proliferation of pathogenic bacteria, including Gardnerella vaginalis,

Prevotella and Atopobium vaginae, is observed (99). The colonisation

of pathogenic bacteria has been demonstrated to have a dual impact

on the vaginal barrier function, leading to its destruction and the

subsequent activation of the host’s innate immune system. This occurs

through direct interaction with host cells, which in turn triggers an

inflammatory response (42, 82, 100). These pathogenic bacteria have

been demonstrated to activate host immune cells via the TLR (Toll-

like receptor) pathway, which results in the excessive release of pro-

inflammatory cytokines (e.g. IL-1b, TNF-a, IL-6) (101, 102). The

TLR2/TLR1 heterodimer has been demonstrated to recognize

bacterial triacylglycerol lipopeptides, such as those derived from

Mycoplasma, and to activate Th17-type immune responses, which

subsequently lead to pro-inflammatory reactions. The normal vaginal

microbiota, particularly Lactobacillus, has been shown to suppress
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TLR2 expression, thereby preventing excessive inflammatory

responses against commensal bacteria. However, in instances where

the microbiota is disrupted, TLR2/TLR1 heterodimers activated by

pathogens like Streptococcus gordonii trigger Th17 responses,

resulting in inflammation and pyroptosis (103). The presence of

lipopolysaccharide (LPS) has been shown to induce the activation of

Toll-like receptor 4 (TLR4), thereby stimulating the nuclear factor

kappa B (NF-kB) pathway and promoting the secretion of pro-

inflammatory mediators such as interleukin-6 (IL-6) and vascular

endothelial growth factor-A (VEGF-A). During periods of microbial

imbalance, the overgrowth of potentially pathogenic bacteria, such as

those associated with aerobic vaginitis, can lead to increased secretion

of LPS, which in turn activates the NF-kB pathway, disrupting the

balance of vaginal microbiota and exacerbating inflammation (104).

TLR9 has been found in the cytoplasm of cells and is capable of

recognizing non-methylated CpG dinucleotides in bacterial DNA, for

instance, in Staphylococcus. This recognition process is induced via

the MyD88 pathway, resulting in the secretion of IFN-g and IL-1b.
During bacterial community dysregulation, the secretion of bacterial

DNA through TLR9 is induced by antibiotic action (105).

It has been demonstrated that the levels of these inflammatory

markers are markedly elevated in patients diagnosed with BV (19).

The release of pro-inflammatory factors has been demonstrated to

cause direct damage to fetal membrane cells (106), additionally, the

expression of MMPs (e.g., MMP-8, MMP-9) is triggered (107),

further disruption of the collagen fibre structure of the membranes

results in an increased brittleness of the membranes (Figure 3).
FIGURE 3

This image illustrates that certain bacteria, such as Gardnerella vaginalis, Prevotella, and Atopobium vaginae, induce an excessive release of
inflammatory cytokines, including IL-1b, TNF-a, and IL-6, through the activation of TLRs. This activation results in damage to fetal membrane cells.
Consequently, this damage triggers the expression of MMPs, specifically MMP-8 and MMP-9, which disrupts the collagen fiber structure of the fetal
membranes and may ultimately contribute to PROM. TLRs, Toll-like Receptors. IL-1b,Interleukin 1 Beta. TNF-a, Tumor Necrosis Factor Alpha. IL-6,
Interleukin 6.MMP-8, Matrix Metalloproteinase 8. MMP-9, Matrix Metalloproteinase 9. PROM, Preterm Rupture of Membranes.
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5.1.2 Biochemical markers further exacerbate
inflammation leading to premature rupture of
membranes

Biochemical markers in the inflammatory response serve not only

as indicators of inflammation but also have the potential to directly

exacerbate fetal membrane damage. Matrix metalloproteinases

(MMPs) represent a category of enzymes crucial for breaking down

the extracellular matrix, which is vital for the proper remodeling of fetal

membranes (62, 108). However, when activated by the inflammatory

response, the overexpression of MMPs leads to structural damage to

the membranes. Specifically, MMP-9 and MMP-8 are released in large

quantities during inflammation and infection, resulting in the

degradation of crucial structural components, such as collagen fibers

and elastin, thereby weakening the strength and elasticity of the

membranes (71). At the same time, pro-inflammatory cytokines such

as IL-1b and IL-6 worsen the damage to fetal membranes by increasing

the activity of MMPs (109). Studies have demonstrated that the levels

of IL-6 in amniotic fluid are significantly elevated in women

experiencing premature rupture of membranes (PROM) and are

strongly correlated with increased MMP-9 activity. (110). The

combined effects of these pro-inflammatory factors and MMPs

contribute to the premature rupture of the fetal membranes due to

accelerated degradation of the extracellular matrix.
5.2 Synergistic effects through oxidative
stress pathways

Dysbiosis of the vaginal microbiota is associated with both an

inflammatory response and exacerbation of fetal membrane damage

via the oxidative stress pathway (111). A reduction in Lactobacillus

levels correlates with a significant increase in oxidative stress, which

facilitates the proliferation of pathogenic bacteria such as

Gardnerella and Prevotella. These bacteria produce substantial

quantities of ROS, which not only directly damage fetal

membrane cells but also exacerbate inflammatory responses by

activating pro-inflammatory pathways (99). Elevated levels of ROS

in the vagina have been significantly linked to the disruption of fetal

membranes and an increased risk of preterm labor (8, 112). For

instance, Gardnerella vaginalis, Prevotella, and Sneathia can

generate considerable amounts of ROS as a result of their

metabolic processes. The overproduction of ROS leads to

oxidative damage to fetal membrane cells and further enhances

the release of pro-inflammatory cytokines by activating

inflammatory pathways such as NF-kB. Research has shown that

in patients with vaginal dysbiosis, ROS levels are markedly elevated,

accompanied by a reduction in the antioxidant capacity of fetal

membrane cells, resulting in increased oxidative damage to these

cells (113, 114). The interplay between oxidative stress and vaginal

microbiota dysbiosis significantly influences the structure and

function of fetal membranes, resulting in cellular-level

disruptions. Reactive oxygen species (ROS) not only inflict direct

damage on lipids, proteins, and DNA inside the cells of the fetal

membrane but also encourage the breakdown of the extracellular

matrix through the activation of matrix metalloproteinases (MMPs)
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(115). In patients experiencing premature rupture of membranes,

elevated levels of oxidative damage markers, including lipid

peroxidation products (MDA), have been detected in fetal

membrane tissues, underscoring the substantial role of oxidative

stress in fetal membrane injury (116). Furthermore, oxidative stress

adversely affects the signaling processes of fetal membrane cells,

particularly through the activation of pathways such as NF-kB and

MAPK. This stimulation increases the production of pro-

inflammatory elements, which, in turn, heightens the

inflammatory response and the functioning of MMPs. As a result,

this establishes a harmful cycle that causes the swift degradation of

membranes, stemming from the synergistic impact of oxidative

stress and inflammation, ultimately culminating in the premature

rupture of membranes (117, 118).
5.3 Other synergistic mechanisms

5.3.1 Co-regulation involving MMPs and others
MMPs play a crucial role in both the physiological remodeling

and pathological degradation of the fetal membrane. The activation

of MMPs occurs through inflammatory and oxidative stress

pathways; however, their expression is also modulated by the

microbiota and other metabolites (119). For instance, the vaginal

microbiota, predominantly composed of Lactobacillus spp., not

only maintains an acidic environment but also diminishes MMP

activity by inhibiting the production of pro-inflammatory factors

(24). Conversely, when the microbiota becomes dysbiotic,

particularly with the prevalence of pathogens, MMP activity is

heightened, leading to accelerated degradation of cell membranes

and an increased risk of premature rupture of membranes (24, 120).

Bacterial metabolites, including short-chain fatty acids (SCFAs) and

lipopolysaccharides (LPS), may affect the activity of MMP through

both direct and indirect pathways (121). In the context of vaginal

dysbiosis, metabolites produced by pathogenic bacteria may further

exacerbate fetal membrane degradation by activating MMPs (122,

123). Moreover, the degradation of fetal membranes is closely

linked to the action of MMP inhibitors, such as tissue inhibitors

of metalloproteinases (TIMPs). During healthy pregnancies, MMP

activity is tightly regulated by TIMPs, which help maintain the

structural integrity of the fetal membrane (73). However, in the

presence of inflammatory and oxidative stress, TIMP expression is

diminished, leading to the deregulation of MMP activity and further

disruption of the fetal membrane.

5.3.2 Influence on metabolism and signalling in
fetal membrane cells

Vaginal microbiota and their metabolites can regulate the

function and structure of fetal membranes by influencing the

metabolism and signaling of fetal membrane cells (74, 124).

Metabolites produced by Lactobacillus, including lactic acid and

hydrogen peroxide, are essential for preserving the balance of fetal

membrane cells and for inhibiting harmful bacteria. However, a

reduction in Lactobacillus populations may disrupt the metabolic

pathways of fetal membrane cells.
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The impact of vaginal microbiota imbalance on amniotic

membrane cells extends beyond mere inflammation activation; it

profoundly disrupts fundamental metabolic processes and crucial

signaling pathways within the cells. Dysregulation associated with

bacterial vaginosis, for instance, significantly affects amino acid,

carbohydrate, and energy metabolic pathways, thereby impacting

the nutrient supply and energy homeostasis of amniotic membrane

cells. This disruption manifests as abnormal alterations in lipid

metabolic pathways, including fatty acid oxidation and membrane

lipid synthesis, closely linked to insulin resistance and impaired

cellular signaling (125). Concurrently, the imbalance in the

microbial community directly induces excessive levels of reactive

oxygen species (ROS) in amniotic fluid cells via metabolic processes,

inhibiting important antioxidant enzymes such as superoxide

dismutase (SOD) and glutathione peroxidase (GPX), which

disrupts the balance of oxidation-reduction processes. Furthermore,

this oxidative stress state activates the NLRP3 inflammasome,

promoting the maturation of the IL-1b inducer, leading to collagen

degradation and extracellular matrix (ECM) damage, thus increasing

the risk of amniotic membrane structural damage (126). Additionally,

dysbiosis has been shown to interfere with crucial non-inflammatory

signaling pathways, including the reduction of antimicrobial peptides

such as human beta-defensin-2 (HBD-2), weakening the innate

immune barrier function, and disrupting tryptophan metabolism

(e.g., kynurenine accumulation), which affects the differentiation of

amniotic membrane cells and the barrier repair function through the

aryl hydrocarbon receptor (AhR) pathway. While this pathway has

been extensively studied in the context of intestinal microbiota, it has

received comparatively minimal attention concerning vaginal

microbiota (127). Notably, these effects often occur independently

of the classic inflammatory response.

Furthermore, substances produced by harmful bacteria,

including lipopolysaccharides (LPS), have the capacity to trigger

apoptosis and inflammatory reactions in fetal membrane cells

through the activation of the TLR signaling pathway (128). The

activation of the TLR pathway not only enhances the release of pro-

inflammatory factors but also regulates gene expression.

In response to the negative effects of dysbiosis, metabolites of

lactic acid bacteria establish a crucial protective signaling network.

Lactic acid not only lowers vaginal pH to create a chemical barrier

but also directly enhances the barrier function of the cervical

epithelium. Clinical observations indicate that elevated levels of

lactic acid are significantly associated with the upregulation of tight

junction proteins, such as ZO-1 (129). Short-chain fatty acids

(SCFAs), including acetate and propionate, are produced by

Lactobacillus. These SCFAs activate G protein-coupled receptors,

such as GPR43, thereby exerting potent anti-inflammatory effects.

They promote IL-10 secretion, inhibit the NF-kB pathway, and

alleviate oxidative damage (130). Simultaneously, SCFAs inhibit

the assembly of the NLRP3 inflammasome and the maturation of

IL-1b, thus protecting the extracellular matrix (ECM) from

excessive proteolytic damage (131). Perhaps most importantly,

Lactobacillus colonization can reverse the abnormalities in purine

degradation and membrane lipid metabolism caused by dysbiosis

through metabolic reprogramming. This process restores energy
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metabolism homeostasis and reduces the risk of insulin resistance.

Its metabolites, such as nicotinamide, enhance the efficiency of the

mitochondrial respiratory chain via the NAD+ pathway, inhibit

excessive activation of p38 MAPK, and effectively maintain

mitochondrial function. Consequently, this alleviates cellular

stress damage and comprehensively enhances the defensive and

reparative capabilities of the amniotic membrane (132).
6 Clinical implications based on the
interaction of vaginal microbiota with
biochemical markers

Recent studies have demonstrated that dysregulation of vaginal

microbiota is closely linked to alterations in biochemical markers,

including pro-inflammatory cytokines and MMPs. As a result, the

combined evaluation and handling of vaginal microbiota paired

with biochemical indicators offer novel possibilities for the clinical

identification and management of premature rupture of membranes

and preterm labor.
6.1 Diagnostic

6.1.1 Combined vaginal microbiota test and
biochemical marker test

In clinical diagnosis, the combined assessment of vaginal

microbiota and biochemical markers can enhance the early

detection of premature rupture of membranes. Traditional

diagnostic methods typically depend on clinical symptoms or the

identification of individual pathogens; however, the dynamics of the

vaginal microbiota, particularly the balance between microbiota

such as Lactobacillus crispatus and Gardnerella vaginalis, are crucial

for the onset of PROM (16, 133, 134). Studies have demonstrated

that dysbiosis of the vaginal microbiota, characterized by a decrease

in Lactobacillus and an increase in anaerobic bacteria, is frequently

associated with elevated levels of pro-inflammatory factors (e.g., IL-

6, TNF-a) and MMPs (e.g., MMP-8, MMP-9). These biochemical

markers are integral to the process of premature rupture

of membranes.

By integrating vaginal microbiota testing with biochemical

markers, clinicians can more effectively identify patients at risk,

facilitating timely interventions. For instance, in individuals

diagnosed with bacterial vaginosis (BV), elevated levels of

pathogenic bacteria, such as Gardnerella vaginalis and Prevotella,

closely correlate with variations in inflammatory markers. These

markers can serve as crucial reference points for the early diagnosis

of premature rupture of membranes (135). The combination of

vaginal microbiota assessment and biochemical markers not only

enhances diagnostic sensitivity and specificity but also lays the

groundwork for individualized treatment approaches (136).

Furthermore, the detection of interactions between pro-

inflammatory cytokines and vaginal fmicrobiota may prove

valuable in evaluating the progression of fetal membrane rupture.

Research indicates that the inflammatory response is a significant
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trigger for premature rupture, with elevated inflammatory markers

showing a positive correlation with structural damage to the fetal

membranes (137). By routinely assessing these biochemical markers

alongside microbiota status, clinicians can better predict a patient’s

risk of preterm rupture of membranes and implement

timely interventions.

6.1.2 Exploration of new diagnostic markers
In addition to traditional markers of inflammation and MMPs,

scientists have recently begun to investigate new diagnostic markers,

such as the detection of vaginal metabolites and indicators of

oxidative stress. For instance, the generation of ROS is closely

linked to oxidative damage to fetal membranes, and certain

oxidative stress markers, such as malondialdehyde (MDA), can

indicate the extent of structural damage to these membranes

(138, 139). Furthermore, specific metabolites, such as short-chain

fatty acids (SCFAs), may reflect the relationship between microbial

metabolic activity and imbalances in the vaginal environment,

potentially providing a diagnostic basis for the early identification

of high-risk patients (130). By exploring these novel markers, future

diagnostic tools are expected to be more comprehensive and accurate,

enabling effective differentiation between various types of microbial

diseases and their corresponding biomarker changes, thereby offering

personalized diagnostic solutions for diverse patient populations.

Novel diagnostic markers currently under investigation include

specific metabolites identified through metabolomic analyses, such as

lactic acid, acetic acid, and lactate (140). Dynamic changes in vaginal

metabolites not only reflect the balance of the microbiota but can also

serve as early warning signals for inflammatory responses and tissue

destruction. Additionally, microbial genetic markers are increasingly

utilized in diagnostics due to advancements in genomics. This novel
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testing approach can accurately identify potential pathogens and

assess the risk of preterm labor and rupture of membranes by

analyzing their metabolic activity (137, 141).
6.2 Therapeutic strategies

The present study proposes a therapeutic approach involving

the concurrent administration of probiotics (e.g., Lactobacillus and

Bifidobacterium) and antibiotics to regulate the vaginal

microbiota (Figure 4).

6.2.1 Therapeutic strategies to modulate vaginal
microbiota to influence biochemical markers

The regulation of vaginal microbiota has garnered significant

attention in recent years as a potential therapeutic strategy for

addressing premature rupture of membranes (74, 142). The

application of probiotics, such as Lactobacillus crispatus and

Lactobacillus rhamnosus, has been shown to restore Lactobacillus

dominance in the vagina, thereby mitigating the inflammatory

response and the overexpression of MMPs. Clinical studies

indicate that regular probiotic use is associated with decreased

levels of pro-inflammatory biochemical markers, reduced

colonization by pathogenic bacteria, and a lower risk of preterm

labor and PROM (143). Furthermore, antibiotic therapy may be

employed to regulate vaginal microbiota, particularly in patients

diagnosed with bacterial vaginosis or aerobic vaginitis (142).

However, the use of antibiotics must be approached with caution,

as they can disrupt normal microbiota and potentially exacerbate

the inflammatory response. Consequently, a combined approach

utilizing both probiotics and antibiotics, which targets pathogenic
FIGURE 4

This study presents therapeutic strategies aimed at modulating vaginal microbiota through the use of probiotics, such as Lactobacillus crispatus and
Lactobacillus rhamnosus, in conjunction with antibiotics. Additionally, it explores the targeting of biochemical markers using antioxidants,
immunomodulators, MMP inhibitors, and lipopolysaccharides to further influence the vaginal microbiota. MMP, Matrix Metalloproteinase.
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bacteria while promoting the restoration of beneficial microbiota,

has emerged as a promising therapeutic strategy. Some studies have

demonstrated that this combination therapy yields improved

outcomes, with probiotics effectively reducing the expression of

pro-inflammatory markers while restoring microbial balance. This

dual approach not only addresses infections in the short term but

also diminishes the risk of reinfection and inflammatory flare-ups

by maintaining long-term microbiota stability (144). Additionally,

personalized probiotic therapies tailored to individual microbiota

differences are increasingly being investigated and may serve as a

crucial tool in the prevention and treatment of preterm rupture in

the future. However, its clinical application still faces multiple

challenges. The primary challenge lies in the precise identification

of key functional strains. Vaginal microbiota exhibit significant

variability among individuals (e.g., classification based on

community state type (CST)), and it remains unclear which

combination of lactobacilli (e.g., a single strain of L. crispatus or a

mixed population of L. gasseri and L. crispatus) is most effective in

treating specific types of dysbiosis. Furthermore, the colonization,

persistence, and stability of exogenous probiotics are inadequate,

with vaginal colonization rates typically falling below 30%. This is

partly due to competitive exclusion effects from the native

microbiota (e.g., L. iners inhibits the proliferation of exogenous

strains through metabolic products). The high heterogeneity of host

responses further complicates matters—individual genetic

backgrounds, immune states, and local microenvironmental

factors (such as pH fluctuations and differences in cervical mucus

composition) can significantly influence the metabolic activity and

immunomodulatory efficacy of probiotics. The anti-inflammatory

effects of the same strain can vary by up to fivefold across different

hosts, further hindering the precision of interventions. These

challenges collectively impede the standardized application and

predictability of the efficacy of probiotic therapy in clinical settings.

6.2.2 Therapeutic strategies for targeting
biochemical markers to regulate microbiota

The management of premature rupture of membranes heavily

relies on the regulation of biochemical markers. This can be

achieved by either modulating the inflammatory response or

suppressing the overactivity of MMPs, the degradation of fetal

membranes can be mitigated, thereby delaying or preventing

premature rupture. Recent studies indicate that antioxidants can

effectively lower levels of oxidative stress and diminish ROS-

induced damage to fetal membranes. For instance, vitamins C

and E, as antioxidants, can inhibit ROS generation and protect

fetal membrane cells from oxidative stress-related damage (145,

146). In the realm of anti-inflammatory therapy, certain

immunomodulatory drugs, such as TNF-a inhibitors, have

demonstrated promising therapeutic effects (147). These agents

reduce the release of pro-inflammatory factors, thereby

interrupting the inflammatory cascade and decreasing MMP

activity. Furthermore, biological drugs like MMP inhibitors,

which specifically target MMP activity to reduce fetal membrane

degradation, are currently under preclinical investigation (71, 121).

Additionally, probiotic treatments that modulate microbiota can
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protect fetal membranes by diminishing the metabolites of

pathogenic bacteria, such as LPS, and significantly reducing the

aberrant expression of biochemical markers[ (73, 123). By

integrating multiple treatment modalities, including probiotics,

anti-inflammatory agents, and antioxidants, future therapeutic

strategies can become more comprehensive and individualized,

providing a variety of options for patients at high risk of

premature rupture of membranes and preterm labor.

6.2.3 Emerging microbiota-targeted therapies
In recent years, significant breakthroughs have been achieved in

the prevention and treatment of vaginal microecological imbalances

and premature rupture of membranes (PROM). The focus has

centered on three main areas: probiotic intervention, vaginal

microbiota transplantation (VMT), and biofilm-targeted therapy.

A key advancement in probiotics has been the selection of specific

strains (148). A study by Short et al. involving HIV-positive

pregnant women demonstrated that the presence of Lactobacillus

in the gut significantly reduces the expression of pro-inflammatory

factors (IL-6 and TNF-a) and matrix metalloproteinases (MMP-9),

thereby lowering the risk of preterm birth (149). Large-scale clinical

trials have shown that probiotics can decrease the risk of recurrent

preterm PROM in high-risk pregnant women by 30% to 40%, while

also extending the average gestational age at pregnancy termination

by two to three weeks (150). Further randomized clinical trials have

confirmed that using probiotic preparations containing L. crispatus

during mid-pregnancy can reduce the risk of recurrent preterm

PROM (P = 0.006) (151). Prebiotics, such as oligosaccharides,

enhance the acid barrier by promoting the growth of lactobacilli,

which indirectly inhibits biofilm formation (152). For high-risk

groups, such as those with a history of preterm birth or bacterial

vaginosis (BV), probiotic treatment with L. rhamnosus GR-1 can

normalize vaginal microbiota in mid-pregnancy and reduce GBS

colonization by 40% (153). Treatment plans should be personalized

and optimized based on microbial community genotyping (e.g.,

intervention for L. iners-dominant differentiation) and

metabolomics (e.g., short-chain fatty acid levels).

Vaginal microbiota transplantation (VMT) is an emerging

therapy that rapidly restores the microecological balance centered

on lactobacilli by transplanting healthy donor microbiota (154). The

first human clinical trial confirmed its effectiveness against recurrent

bacterial vaginosis (BV). However, strict donor screening is essential

to prevent the transmission of pathogenic bacteria, such as ensuring

that the abundance of L. crispatus exceeds 70% (155). Current

challenges include verifying long-term safety, standardizing

transplantation methods (e.g., lyophilized preparations versus fresh

samples), and establishing ethical guidelines.Biomembrane-targeted

therapy represents an innovative solution to drug resistance. Enzymes

such as lysozyme and DNase can degrade the extracellular polymers

present in biomembranes (156). New anti-biofilm agents, including

phages, can specifically lyse pathogenic bacteria without harming

commensal bacteria (157). Furthermore, targeted delivery systems,

such as pH-responsive nanogels, have been shown to enhance the

penetration efficiency of drugs into the deeper layers of the vaginal

epithelium (158, 159).
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In summary, contemporary treatment strategies are

increasingly integrating multimodal approaches: probiotics

provide fundamental microecological regulation, VMT facilitates

rapid reconstruction, and biofilm-targeted therapies overcome the

challenges of drug resistance. In the future, it will be crucial to

incorporate multi-omics technologies (such as spatial

transcriptomics) to analyze the dynamic interactions between the

microbiota and the host, promote individualized treatment plans

and phased clinical trials, and fundamentally revolutionize the

prevention and treatment system for PROM.
6.3 Preventive strategies and standardised
assessment of vaginal health

6.3.1 Microbiota state typing (CST)-guided
prevention

Different CST types necessitate strain-specific probiotic

regimens. The optimal condition is CST-I (Lactobacillus

crispatus-dominant), which can be sustained through the oral

intake of Lactobacillus crispatus strains, such as L. crispatus

DSM31983. This regimen maintains a low pH (approximately

4.0), inhibiting the adherence of pathogens and consequently

reducing the risk of preterm birth (43). In the case of CST-III

type, characterized by Lactobacillus acidophilus dominance,

vaginal suppositories containing Lactobacillus rhamnosus GR-1

and Lactobacillus gasseri (10^9 CFU/day for 10 days) have been

shown to significantly extend the gestational latency period in

patients experiencing preterm PROM. This effect is attributed to

the enhancement of local immune defensin HBD-2 secretion and

the regulation of the placental TLR signaling pathway. For CST-

IV/V type, which consists of a mixed dominance of anaerobic

bacteria, a biofilm-targeted therapy is necessary: following the

degradation of the biofilm matrix by lysozyme, Lactobacillus

rhamnosus CA15 (10^10 CFU/ml) or PB01 strain (>10^8 CFU/

ml) is administered sequentially for 10 days, resulting in an

increase in the proportion of lactobacilli to 62 ± 8% while

concurrently reducing pro-inflammatory factors IL-6/TNF-a
(160). For women with a history of preterm birth or concurrent

PROM, extending the probiotic treatment duration to 28 days

significantly decreases the incidence of PROM (relative risk (RR)

= 0.42, p < 0.001) (133, 160). It is crucial to acknowledge that the

protective effects of orally administered probiotics on

asymptomatic women remain contentious. Additionally, the

probiotic dosage should be adjusted based on dynamic

monitoring of vaginal pH (161, 162). There is a lack of

consensus regarding the clinical significance of CST-III

microbiota. Some researchers hypothesize that this condition

may evolve into a mixed type (CST-IV). To achieve a more

refined classification, it is essential to incorporate host immune

markers, such as HBD-2 levels. Furthermore, while vaginal

microbiota transplantation (VMT) has been shown to reduce

the risk of PROM by 40% in animal models, the long-term

safety of this procedure and its standardized methodology

require further validation.
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6.3.2 Dynamic monitoring of vaginal pH
Vaginal pH dynamic monitoring serves as a crucial tool for

assessing the microecological balance of the female reproductive

tract, with its fluctuations closely associated with pregnancy

outcomes and the risk of PROM. A normal vaginal environment

depends on a microecological balance predominantly maintained

by lactobacilli, which ensure an acidic pH (≤4.5) that inhibits

pathogen colonization through lactic acid metabolism. A

sustained pH exceeding 4.7 indicates a microecological imbalance,

such as bacterial vaginosis (BV), which is significantly correlated

with an increased risk of PROM (163). When the pH level rises

above 4.7, the population of lactobacilli diminishes, facilitating the

proliferation of anaerobic bacteria, such as Gardnerella, and

activating the TLR pathway. This activation leads to the release of

pro-inflammatory factors, including IL-6 and TNF-a (133). These

inflammatory responses induce oxidative stress (elevated reactive

oxygen species, ROS), activating matrix metalloproteinase MMP-9,

which degrades collagen in the amniotic membrane, thereby

increasing its fragility. In early pregnancy, a pH level greater than

4.7, coupled with reduced levels of defensin HBD-2, heightens the

risk of PROM by 2.3 times. Fluctuations in pH levels exceeding 0.5

units per week indicate a shift in the microbiota toward a high-risk

type (CST-IV), necessitating a more refined classification based on

immune markers (163). Smart tampon sensors facilitate real-time

monitoring of vaginal pH at home, addressing the limitations of

traditional single-visit clinic testing. Dynamic monitoring of vaginal

pH is a key indicator for predicting PROM. By identifying early

dysbiosis and guiding targeted probiotic interventions alongside

inflammation marker analysis, these sensors provide precise

strategies for improving pregnancy outcomes. Moving forward, it

is essential to promote standardized home monitoring technologies

and integrated prediction models that consider both microbiome

and immune factors.
7 Challenges and prospects

7.1 Challenges

While the current study elucidates the mechanisms of

interaction between vaginal microbiota and biochemical markers

in PROM, several challenges remain in clinical application and

research practice. First, the reproducibility and stability of study

results require further attention. The high variability of vaginal

microbiota among individuals, coupled with the complex array of

factors influencing microbiota—such as genetic background,

environmental influences, and lifestyle habits—often complicates

the standardization of results across different studies. Thus,

validating these findings in larger clinical trials and ensuring the

reliability of the results represent significant challenges at present.

Second, the difficulties associated with clinical translation must not

be overlooked. The assessment of the safety and efficacy of

treatments necessitates additional clinical trial data. For instance,

although probiotic therapies have demonstrated potential in

regulating vaginal microbiota, their long-term safety and optimal
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1642942
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Deng et al. 10.3389/fimmu.2025.1642942
use in conjunction with antibiotics and anti-inflammatory drugs

warrant thorough investigation (16). In addition, therapies

targeting biochemical markers, such as MMP inhibitors, require

rigorous clinical validation to confirm their efficacy in patients at

high risk of premature rupture.
7.2 Prospects

In the future, advancements in multi-omics research techniques

(e.g., metabolomics, microbiomics, transcriptomics) will enable a

more precise and in-depth study of the interactions between

vaginal microbiota and biochemical markers. By integrating multi-

omics approaches, we can achieve a comprehensive understanding of

the metabolic functions of vaginal microbiota, microbe-host

interactions, and the dynamics of biochemical markers. This

comprehensive approach will enable the identification of novel

pathological mechanisms linked to the premature rupture of

membranes, thus establishing a basis for tailored diagnostic and

therapeutic strategies. In terms of clinical implications, an improved

comprehension of how vaginal microbiota interacts with biochemical

markers could strengthen the application of personalized medicine in

preventing and managing premature rupture of membranes. Future

treatment trends may include combined probiotic therapy, marker-

based targeted therapies, and the concurrent use of antioxidants and

anti-inflammatory drugs for individuals at high risk of premature

rupture. Furthermore, the development of convenient and efficient

tools for testing vaginal microbiota and biochemical markers will

significantly improve the accuracy of clinical diagnoses and the

effectiveness of early interventions.
8 Conclusions

Research has highlighted the significant interaction between

vaginal microbiota and biochemical markers in instances of

premature rupture of membranes. Dysbiosis within the

microbiota is strongly associated with changes in the expression

of pro-inflammatory cytokines, matrix metalloproteinases (MMPs),

and various other biochemical markers.These elements interact

through inflammatory responses and oxidative stress pathways,

ultimately influencing the stability of fetal membranes. Based on

these findings, a comprehensive evaluation of vaginal microbiota

along with biochemical indicators presents new strategies for the

early identification and tailored management of premature rupture

of membranes.Despite notable advancements in research,

challenges persist, particularly regarding the reproducibility of
Frontiers in Immunology 15
results and the clinical applicability of findings. Looking ahead,

the advancement of multi-omics technology promises to enhance

our understanding of vaginal microbiota and biochemical markers,

thereby providing more effective tools and strategies for the clinical

management of preterm birth. Future research and clinical practice

should prioritize improving the accuracy of diagnostic tools and

tailoring treatments to enhance pregnancy outcomes and mitigate

the effects of preterm birth on maternal and infant health.
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