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1The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China,
2College of Traditional Chinese Medicine, Dazhou Vocational College of Chinese Medicine,
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Background: Atherosclerosis (AS), characterized by lipid accumulation,

contributes significantly to global cardiovascular morbidity. Ferroptosis, an

iron-dependent form of cell death triggered by lipid peroxidation, is emerging

as a critical player in AS progression. Therefore, our study seeks to elucidate the

intricate mechanisms of ferroptosis within the lipid metabolism pathway in AS.

Methods: Differentially expressed genes were identified from the GSE100927

dataset, subsequently isolating AS lipid metabolism-related ferroptosis genes

(ASLMRFeGs). Unsupervised cluster analysis was performed on AS samples to

identify molecular clusters. WGCNA was performed to uncover module Hub

genes. Multiple machine learning models (LASSO, SVM-RFE, RF) were applied to

screen Hub genes. Experimental validation was performed by ox-LDL-induced

HUVECs and RAW 264.7 cells. Single-cell data analyzes the gene structure and

gene expression status of individual cells.

Results: Six ASLMRFeGs (CTSB, CYBB, DPP4, HILPDA, HMOX1, IL1B) alter the

immune microenvironment in AS. AS samples were stratified into two molecular

clusters, exhibiting significant variations in inflammation and immune responses.

Enrichment analysis of the 225module Hub genes showed close association with

inflammation, immune responses, cytoskeleton organization, and various

organelles. Machine learning identified four candidate Hub genes (TYROBP,

CSF1R, LCP2, C1QA). In vitro experiments showed that dysregulated lipid

metabolism promotes ferroptosis, and inhibition of ferroptosis improves

mitochondrial and lysosomal dysfunction and suppresses endoplasmic

reticulum stress. Ferrostatin-1, an ferroptosis inhibitor, attenuated the ox-LDL-

induced upregulation of CYBB, HMOX1, IL1B, TYROBP, and CSF1R genes. A

nomogram for predicting AS risk was constructed incorporating the expression

levels of these five validated Hub genes. Single-cell data analysis results
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suggested that these genes were highly expressed in foam cells, inflammatory

macrophages, smooth muscle cells, and helper T cells.

Conclusion: In AS, abnormal lipid metabolism may drive ferroptosis via key

regulatory genes (CYBB, HMOX1, IL1B, TYROBP, CSF1R), while also reshaping

the immune microenvironment, potentially through the modulation of

organelle function.
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1 Introduction

Atherosclerosis (AS) is a chronic inflammatory condition that

significantly impacts the vascular wall, primarily due to disruptions

in lipid metabolism, vascular endothelial dysfunction, and

inflammation (1, 2). AS serves as the foundational pathology

underlying various cardiovascular diseases (CVDs), including

ischemic heart disease and stroke, which continue to be leading

causes of mortality in China and contribute substantially to global

morbidity and mortality, with an alarming upward trend year by

year (3).

The concept of “ferroptosis”, a recently unveiled form of cell

death characterized by its iron-dependent accumulation of lipid

peroxides, is central to our study. Ferroptosis represents an

oxidative mode of cell death resulting from a pronounced buildup

of reactive oxygen species (ROS) consequent to a decline in

intracellular antioxidant capacity (4). Multiple mechanistic

revelations underscore the pivotal role of ferroptosis in AS

progression and plaque formation. These mechanisms encompass

the induction of endothelial cell damage, activation of macrophage-

mediated inflammatory responses, promotion of foam cell

generation, and facilitation of the proliferation and migration of

vascular smooth muscle cells (5). However, herein lies a crucial

research gap. While the relationship between lipid metabolism and

AS has been extensively studied (6), the intricate interplay between

lipid metabolism and ferroptosis within the context of AS remains

relatively uncharted territory. This study aims to bridge this gap by

providing novel insights into the pathogenesis of AS and potential

therapeutic avenues.

To delve into the mechanisms that underlie lipid metabolism in

AS and ferroptosis, our study embarked on a comprehensive

exploration. It commenced with a differential expression analysis,

aimed at pinpointing AS lipid metabolism-related ferroptosis genes

(ASLMRFeGs) and unraveling the immune profiles by juxtaposing

control and AS samples. Subsequently, unsupervised cluster

analysis was executed on the AS specimens predicated on

ASLMRFeGs, leading to the delineation of molecular clusters with

inherent associations with lipid metabolism and ferroptosis.

Furthermore, this analysis strived to discern disparities in gene

expression, immune responses, and underlying biological processes
02
inherent to these clusters. Following this, the weighted gene co-

expression network analysis (WGCNA) approach came into play,

facilitating the identification of module Hub genes. To uncover

candidate Hub genes, multiple topology algorithms were harnessed.

Leveraging these identified Hub genes, we embarked on

constructing a series of predictive models via machine learning

algorithms. The performance of these predictive models underwent

rigorous validation, encompassing the deployment of a nomogram,

calibration curves, decision curve analysis (DCA), and scrutiny

across three external datasets. Lastly, we ventured into the realm of

predicting potential therapeutic agents for AS, grounded in

ASLMRFeGs and Hub genes. The objective of this study is to

investigate, through a series of bioinformatics analyses, the key

genes involved in ferroptosis triggered by abnormal lipid

metabolism in the context of AS, as well as the underlying

mechanisms and the impact of these genes on the immune

microenvironment. Furthermore, the study includes in vitro

experiments to validate the role of these key genes in ferroptosis

and lipid metabolism disorders, and to assess the influence of

cellular organelles on lipid metabolism anomalies and ferroptosis.
2 Materials and methods

2.1 Bioinformatics analysis

2.1.1 Subjects and dataset acquisition
The entire study process is depicted in Figure 1. Five gene

expression profiles (GSE100927, GSE43292, GSE28829, GSE57691,

and GSE159677) related to AS were retrieved from the Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)

database using the keywords “atherosclerosis” with species limited

to “Homo sapiens.” The GSE100927 dataset (GPL17077) includes

35 healthy control arteries and 69 atherosclerotic diseased arteries,

totaling 104 samples that served as the training set (7). The datasets

GSE43292 (GPL6244), GSE28829 (GPL570), and GSE57691

(GPL10558) were used as validation sets, with the GSE43292

dataset including 32 healthy control arteries and 32

atherosclerotic diseased arteries, totaling 64 samples (8); the

GSE28829 dataset including 13 early atherosclerotic plaques and
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16 advanced atherosclerotic plaques, totaling 29 samples (9); and

the GSE57691 dataset including 10 control samples and 9

abdominal aortic samples from patients with abdominal aortic

occlusive disease, totaling 19 samples (10). Lastly, the GSE159677

dataset (GPL18573) for single-cell data analysis includes 3 carotid

atherosclerotic cores and 3 control samples (11).

2.1.2 Identification of differentially expressed
genes and ASLMRFeGs

The GSE100927 dataset was used to identify the DEGs

associated with AS by comparing the disease and control groups

using the “limma” R package, with the criteria set at adj.P<0.05 and |

logFC|>1 for DEGs selection (12). Lipid metabolism-related genes

(LMRGs) were obtained from the Molecular Signature Database

(MsigDB, https://www.gsea-msigdb.org/) and supplemented with

genes having a “relevance score” greater than the mean (4.1689)

from the GeneCards (https://www.genecards.org/, accessed on

March 15, 2025) database under the keyword “lipid metabolism”.

Ferroptosis-related genes (FeRGs), including driver, suppressor,

and marker genes, were obtained from the FerrDb V2 (http://

www.zhounan.org/ferrdb/current/, accessed on March 15, 2025)

database (13). The intersection of DEGs, LMRGs, and FeRGs

yielded ASLMRFeGs.

2.1.3 Functional enrichment analysis
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes

(KEGG) were performed using the DAVID (https : / /

davidbioinformatics.nih.gov/home.jsp, accessed on March 15,

2025) database (P<0.05). Gene Set Enrichment Analysis (GSEA)

was conducted via the “GSEA” and “clusterProfiler” R package (14).

KEGG pathway gene sets (c2.cp.kegg.v7.4.symbols.gmt) were

obtained from the MSigDB database. Genes were ranked in

descending order based on logFC values of differentially expressed

genes. GSEA was performed using the clusterProfiler R package

with default weighted enrichment statistic calculation. Multiple

hypothesis testing correction was applied using the Benjamini-

Hochberg method, retaining significant pathways with FDR <

0.05. The most significantly enriched pathways (NES > 0 for

upregulated, NES < 0 for downregulated) were visualized

using enrichplot.

2.1.4 Immune infiltration and correlation analysis
We performed immune cell quantification using the

CIBERSORT deconvolution algorithm with the LM22 signature

matrix (containing gene expression signatures of 22 human

immune cell subtypes) (15). Data preprocessing involved

automatic logarithmic transformation, quantile normalization,

and Z-score normalization. The n-support vector regression (n-
SVR) algorithm was implemented with parameter optimization

(n=0.25-0.75), model selection by root-mean-square error

minimization, and non-negative constraint enforcement. To

evaluate the reliability of our results, we performed a 1000

permutation test (perm=1000), retaining significant results with a

P < 0.05. Differences between the two groups (C1 compared to C2

cluster, control compared to AS group) were compared using the
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Wilcox test, and the results were visualized using the “vioplot” R

package (16). Subsequently, Spearman correlation analysis was

employed to reveal the relationship between ASLMRFeGs and

immune cells.

2.1.5 Unsupervised clustering analysis
Unsupervised clustering analysis of AS samples based on

ASLMRFeGs expression profiles was performed using the

“ConsensusClusterPlus” R package (17). The AS samples were

grouped by applying the k-means algorithm with 1000 iterations,

k=9, reps=50, pItem=0.8, pFeature=1, clusterAlg=km,

distance=euclidean. The appropriate number of clusters was

determined based on the matrix heat map, cumulative

distribution function (CDF) curve, consensus matrix, and

consistent cluster score (>0.9).

2.1.6 Gene set variation analysis
We performed pathway activity quantification using GSVA on

normalized expression profiles with the “c2.cp.kegg.symbols.gmt”

gene set (18). The expression matrix was de-duplicated using the

avereps function and filtered to include only AS group samples.

Single-sample pathway enrichment scores were calculated using the

GSVA algorithm, normalized by min-max scaling. Differential

pathway analysis between predefined clusters (C1 compared to

C2 cluster) was performed using two-sample t-tests (adj.P<0.05).

The final visualization highlighted the up- and down-regulated

pathways with the most significant differences (|t-value| > 2).

2.1.7 WGCNA
We performed co-expression network analysis using the

WGCNA R package (19). We retained genes with expression

standard deviations ranking in the top 25% of highly variable

genes and excluded low-expression genes and low-quality

samples. The Euclidean distance matrix of gene expression

profiles was calculated, and a hierarchical clustering dendrogram

was constructed using the average linkage method. A cut height of

80 was set to remove samples that were too distant from the central

cluster. The pickSoftThreshold function was used to evaluate the

scale-free topology fit, selecting the minimum b value (soft

thresholding power) that ensured R² > 0.9 for scale-free network

construction. A weighted adjacency matrix was constructed based

on the Pearson correlation coefficient raised to the power of the

chosen b, and the topological overlap matrix (TOM) was further

calculated to reduce noise interference. Dynamic tree cutting

clustering was performed with parameters set as follows:

minModuleSize=100, deepSplit=2, mergeCutHeight=0.25, and

modules were divided using the cutreeDynamic function, with

highly correlated modules (cor > 0.75) merged using the

mergeCloseModules function. The first principal component of

each module was calculated using moduleEigengenes. Pearson

correlation with phenotypic data was computed, and significance

was adjusted using Student’s t-test. Genes with expression

correlated with the target trait (GS) and module eigengenes

(MM) were identified, with genes defined as hub genes if GS >

0.5 and MM > 0.8.
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2.1.8 Construction of Protein-Protein Interaction
network and screening of candidate hub genes

To further narrow down the Hub genes, the module Hub genes

were imported into the STRING database (https://www.string-

db.org/, accessed on March 15, 2025), and “Homo sapiens” was

selected as the species with high confidence (0.7) (20). The PPI

network of modular Hub genes was constructed, and topological

analysis was performed using the Cytoscape plugin “CytoHubba” to

filter out the candidate Hub genes with degree centrality,

betweenness centrality, and closeness centrality greater than the

mean and construct the PPI network of candidate Hub genes (21).

2.1.9 Construction of predictive model based on
multiple machine learning methods

The Least Absolute Shrinkage and Selection Operator (LASSO)

regression algorithm is a linear model that achieves feature selection

and sparsity by introducing an L1 regularization term, effectively

screening out important variables and reducing model complexity

(22). Support Vector Machine-Recursive Feature Elimination

(SVM-RFE) optimizes the feature set by recursively training SVM

models and eliminating the features with the smallest weights (23).

Random Forest (RF) is an ensemble learning method that assesses
Frontiers in Immunology 04
the importance and contribution of features by constructing

multiple decision trees.

We utilized the “glmnet” R package to perform LASSO

regression with a binomial distribution (family=binomial) and L1

regularization (alpha=1). The optimal lambda value was

determined through 10-fold cross-validation using deviance as the

evaluation metric. Subsequently, we extracted the non-zero

coefficient genes to establish the final feature gene set, excluding

the intercept term.

For SVM-RFE analysis, we employed the “e1071,” “kernlab,”

and “caret” R packages. A radial basis function kernel was used, and

classification performance was evaluated using 10-fold cross-

validation with root mean square error (RMSE) as the metric.

Feature subset evaluation included specific gene numbers (2, 4, 6,

and 8 genes) and continuous sequences (10–40 genes with a step

size of 3). The feature gene combination that minimized cross-

validation RMSE was selected as the optimal feature set.

RF analysis was conducted using the “randomForest” R package

with parameters set as follows: 500 initial decision trees

(ntree=500), default mtry parameter (square root of features), and

classification mode. The optimal number of trees was determined

by minimizing the out-of-bag (OOB) error, followed by model
FIGURE 1

Flowchart of this study.
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reconstruction. Feature importance was assessed by calculating the

mean decrease in Gini index, and genes with importance scores >2

were identified as significant features. The area under the receiver

operating characteristic (ROC) curve was visualized using the

“pROC” R package (24).

2.1.10 Construction and validation of a
nomogram model

A nomogram model was established using the “rms” R package

to predict the risk of developing AS, and its predictive power was

estimated by using calibration curves and DCA.

2.1.11 Validation of hub Genes
The GSE28829, GES43292 and GSE57691 datasets were used

for external validation, and the Wilcoxon test was used to compare

the differences in expression between the two groups, with P<0.05

considered significant.

2.1.12 Single-cell data analysis
Single-cell sequencing of scRNA-seq data from the GSE159677

dataset was performed using the “Seurat” R package to detect

marker genes in each cell cluster (25). Using the “Seurat” R

package, initial quality control was performed by excluding cells

with fewer than 300 or more than 7500 detected genes, as well as

cells with granulocyte gene proportions greater than 15% or

hemoglobin gene proportions greater than 1%. Data were

normalized using LogNormalize (scale factor=10,000) and the top

2,500 highly variable genes were selected via variance-stabilizing

transformation. Dimensionality reduction employed principal

component analysis (20 PCs selected by elbow method) followed

by cell clustering (Shared Nearest Neighbor algorithm,

resolution=0.3) and UMAP visualization (n.neighbors=30,

min.dist=0.3). Cell populations were annotated using established

marker genes (Supplementary Table S1), and cellular proportions

across experimental groups were quantified and visualized using

stacked bar plots.

2.1.13 Gene-drug interaction
Imported the ASLMRFeGs and Hub genes into the DGIbd

database (https://dgidb.org/) to obtain drug candidates and screen

for FDA-approved drugs (26).

2.1.14 Molecular docking
The 3D structure of drugs was obtained from the PubChem

database (https://pubchem.ncbi.nlm.nih.gov/), and the crystal

structure of protein was obtained from the PDB database (https://

www.rcsb.org/), and the protein receptor and small molecule ligand

were dehydrated and hydrogenated using PyMOL software, and

then the molecular docking analysis was performed using

AutoDockTools and PyMOL software for visualization. The drugs

were molecularly docked to the Hub genes, and the binding energy

was calculated; the smaller the binding energy, the better and more

stable the binding.
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2.1.15 Statistical analysis
All bioinformatics statistical analyses were performed using R

software, and P<0.05 was considered significant.
2.2 Experimental validation

2.2.1 Reagents and instruments
Experimental cells: Human umbilical vein endothelial cells

(HUVECs) (Procell, Cat.CL-0675); Mouse RAW 264.7 cells (iCell,

Cat.CL-0190).

Reagents: Oxidized low-density lipoprotein (ox-LDL) (Yiyuan

Biotechnology, Cat.YB-002-1); Fetal bovine serum (Biosharp,

Cat.BL205A); Trypsin-EDTA Solution (Biosharp, Cat.BL512A);

RPMI-1640 medium (gibco, Cat.C11875500BT); DMEM medium

(Pricella, Cat.PM150210); Penicillin/Streptomycin (Biosharp,

Cat.BL505A); Oil red O (ORO) staining Kit (Solarbio, Cat.G1262);

Paraformaldehyde, 4% (Solarbio, Cat.P1110); Cell count kit-8 (CCK-8)

(Solarbio, Cat.CA1210); ROS detection Kit (BestBio, Cat. BB-47053);

Mito-FerroGreen (DOJINDO, Cat.M489); Mounting medium,

antifading (with DAPI) (Solarbio, Cat.S2110); Ferrostatin-1 (Fer-1)

(APExBIO, Cat.A4371); JC-1 (Beyotime,Lot.C2003S); Serum-free cell

freezing medium (Biosharp, Cat.BL203B); RNA extraction solution

(Servicebio, Cat.G3013); Phosphate Buffered Saline (Servicebio,

Cat.G4202); Chloroform substitute (Servicebio, Cat.G3014); RNA

lysate (Servicebio, Cat.G3029); Water Nuclease-Free (Servicebio,

Cat.G4700); SweScript All-in-One RT SuperMix for qPCR (One-Step

gDNA Remover) (Servicebio, Cat.G3337); 2×Universal Blue SYBR

Green qPCR Master Mix (Servicebio, Cat.G3326); isopropanol

(Sinopharm, Cat.80109218); Anhydrous ethanol (Sinopharm,

Cat.10009218).

Instruments: inverted fluorescence microscope (Nikon, Eclipse Ci);

microplate reader (Tecan, Spark 10M); vortex mixer (Servicebio, SMV-

3500); sealing instrument (Servicebio, FS-A20); microplate centrifuge

(Servicebio, SMP-2); High-speed frozen microcentrifuge (DragonLab,

D3024R); fluorescent quantitative PCR instrument (Bio-rad, CFX

Connect); PCR instrument (Eastwin, ETC811).

2.2.2 Cell culture
Cells were cultured in RPMI-1640 medium (for HUVECs) or

DMEM medium (for RAW 264.7 cells), supplemented with 10%

fetal bovine serum and 1% penicillin/streptomycin and incubated at

37°C in humidified 5% CO2. Cells were used from passages 3-8.

Cells were divided into three groups as follows: ①the Control

group (CTRL): Cells were cultured normally without any treatment;

②the Model group (MOD): Cells were treated with ox-LDL (100 mg/
mL) for 24 hours; ③the Fer-1 group (Fer-1): Cells were treated with

ox-LDL (100 mg/mL) and Fer-1 (10 mM) for 24 hours.
2.2.3 ORO staining
Cells were fixed in 4% paraformaldehyde for 30 minutes and

subsequently rinsed three times. Afterwards, the cells were stained

with ORO for 1 hour at room temperature.
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2.2.4 Cell activity assay
Cells were cultured in 96-well plates at a density of 2×105 per

well. After treatment with different interventions for 24 hours, 10 μL

of CCK-8 was added to each well and incubated at 37°C for 1 hour.

The absorbance was measured at 450 nm using a microplate reader.

2.2.5 ROS assay
DCFH-DA was diluted at 1:1000, the 12-well plates were

removed from incubator, the medium was taken out. Then we

washed cells with phosphate buffered saline for 3 times, 1 mL

DCFH-DA was added, the cells were incubated at 37 °C for 2 hours,

and then the cells were washed with serum-free medium for 3 times.

2.2.6 Fe2+ detection
To detect intracellular mitochondrial Fe2+, Mito-FerroGreen

were used according to the manufacturer’s protocol. The cells were

inoculated in 12-well plates and cultured in a 5% CO2 incubator at

37°C. After removing the medium, the cells were washed with

serum-free medium for 3 times. Mito-Ferrogreen working solution

5mmol was added and cultured 1 hour in 5% CO2 incubator at 37°C.

After the supernatant was removed, the cells were washed with

serum-free medium for 3 times.

2.2.7 JC-1 staining
JC-1 staining were used according to the manufacturer’s

protocol. After the 12-well plates were removed from incubator,

the culture medium was sucked out, the cells were washed once by

phosphate buffered saline, and 0.5 mL cell culture medium and 0.5

mL JC-1 staining working solution were added, and fully mixed.

The cells were incubated at 37 °C for 20 minutes in the incubator.

After, the supernatant was removed and washed with JC-1 dyeing

buffer twice. Add cell culture medium 1 mL.

2.2.8 Quantitative real-time polymerase chain
reaction

Total RNA was extracted from cell lines using Trizol total RNA

isolation reagent (Invitrogen) according to the manufacturer’s

specifications and treated with Turbo DNase (Ambion). cDNA

was synthesized from total RNA (0.5 mg) using random hexamers

with the TaqMan cDNA Reverse Transcription Kit (Applied

Biosystems). Primers were designed using Primer Express v3.0

software, and real-time PCR was performed using SYBR Select

Master Mix (Applied Bio-Systems). All reactions were carried out

on the 7500 Fast Real-Time PCR System (Applied Biosystem). The

average of independent analyses for each gene and sample was

calculated using the DD threshold cycle (Ct) method and was

normalized to the endogenous reference control gene. The above

primers were synthesized by Sangon Biotech (Shanghai) Co., Ltd

(https://www.sangon.com/) (Supplementary Table S2).

2.2.9 Statistical analysis
Fluorescence microscopy was used for observation and

photography. Quantification was performed using Image J

software, and results were presented as mean ± standard
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deviation. Statistical analysis was conducted with GraphPad

Prism version 9.0 software. For data that met the criteria of

normal distribution and homogeneity of variance, one-way

analysis of variance (ANOVA) was used to compare differences

among groups, followed by Tuke’s HSD post hoc test for pairwise

comparisons; for data not meeting these criteria, the Kruskal-Wallis

H non-parametric test was employed to compare differences

between groups. A P<0.05 was considered statistically significant.
3 Results

3.1 Bioinformatics analysis

3.1.1 Ferroptosis in lipid metabolism pathways
alters the immune infiltration microenvironment
in AS

Differential gene expression analysis of the AS-related dataset

GSE100927 identified 418 DEGs (adj.P<0.05 and |logFC|>1),

comprising 295 up-regulated and 123 down-regulated genes

(Figures 2A–C) (Supplementary Table S3). To elucidate the

functional implications of these DEGs in AS, we employed the

GSEA and KEGG functional enrichment analysis method to

uncover differential regulatory pathways between high- and low-

expression groups. Our comprehensive analysis disclosed that the

pathogenesis of AS chiefly encompasses organelle dysfunction

(lysosomes, exosomes, endoplasmic reticulum, Golgi apparatus),

cardiomyopathies (dilated cardiomyopathy, hypertrophic

cardiomyopathy), metabolic dysregulation (tyrosine and

propionic acid metabolism, valine, leucine, and isoleucine

biosynthesis, glycosaminoglycan degradation), lipid metabolism

disorder (lipids and AS, lipoprotein particle binding, cholesterol

efflux, lipolytic metabolic processes), cell death mechanisms

(ferroptosis, apoptosis), inflammatory processes (neutrophil

extracellular trap formation, positive regulation of tumor necrosis

factor, IL-6, IL-8, IL-12, and IL-1b production), and immune

dysregulation (primary immunodeficiency, natural killer cell-

mediated cytotoxicity, B-cell receptor signaling pathways). These

pathways are closely associated with various organelles, such as

lysosomes, endoplasmic reticulum (ER), and Golgi apparatus

(Figures 2D–H).

From the FerrDb database, we retrieved 484 FeRGs

(Supplementary Table S4), while 5151 LMRGs were obtained

from public databases and literature queries (Supplementary

Table S5). The intersection of these datasets with DEGs yielded

six ASLMRFeGs (CTSB, CYBB, DPP4, HILPDA, HMOX1, IL1B)

(Figure 3A). Among these, CTSB (logFC=1.530), CYBB

(logFC=1.116), DPP4 (logFC=1.430), HMOX1 (logFC=1.839),

and IL1B (logFC=1.447) exhibited higher expression in AS,

whereas HILPDA (logFC=-1.172) displayed lower expression

(Figures 3B, C). In addition, CTSB, CYBB, DPP4, HILPDA, and

IL1B are ferroptosis driver genes, whereas HMOX1 is a

bidirectional regulator of ferroptosis (driver and suppressor). To

delve deeper into the roles of ASLMRFeGs in AS progression, we

conducted correlation analyses. The results illuminated robust
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synergistic effects among CTSB, CYBB, DPP4, HMOX1, and IL1B,

whereas HILPDA exhibited an antagonistic relationship with CTSB,

CYBB, DPP4, and HMOX1 (Figure 3D).

Expanding our investigation into the immune microenvironment

of AS, we analyzed specific immune cell types infiltrating AS tissues

using the CIBERSORT method (Figure 3E). Our findings revealed

significantly elevated levels of memory B cells, activated memory CD4

T cells, follicular helper T cells, g-d T cells, M0 macrophages, and

activated mast cells in AS. Conversely, significantly lower levels of naive

B cells, plasma cells, CD8 T cells, resting memory CD4 T cells,
Frontiers in Immunology 07
regulatory T cells, resting NK cells, monocytes, and resting mast cells

were observed in AS (Figure 3F). Furthermore, correlation analysis

unveiled significant positive associations of CTSB, CYBB, DPP4, and

HMOX1 with M0 macrophages, along with significant negative

correlations with M1 macrophages, resting mast cells, and resting

memory CD4+ T cells. IL1B showed a negative association with M2

macrophages and resting mast cells but a positive link with activated

mast cells (Figure 3G). These findings suggest that ASLMRFeGs

contribute to the regulation of the immune microenvironment in AS

by influencing specific immune cell infiltration and activation states.
FIGURE 2

Identification of DEGs of AS by differential expression analysis. (A). The GSE100927 dataset after normalization; (B, C). The (B) heatmap and (C) volcano
plot for DEGs; (D, E). The GSEA for the (D) control and (E) AS samples. (F-H). The (F) biological process, (G) cellular component, molecular function, and
(H) pathway analysis of the DEGs.
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3.1.2 Identification of lipid metabolism pathway
ferroptosis-related molecular clusters in AS

To classify the 69 AS samples based on the expression profiles of

the six ASLMRFeGs, a consensus clustering algorithm was

employed, resulting in the identification of two distinct and stable

groups: the C1 cluster (n=33) and the C2 cluster (n=36)

(Figures 4A–E). Further analysis of the expression differences of

the six ASLMRFeGs between the C1 and C2 clusters revealed that

CTSB, CYBB, DPP4, HMOX1, and IL1B were highly expressed in

the C2 cluster, while HILPDA was highly expressed in the C1

cluster (Figures 4F, G).

Immune infiltration analyses of the two clusters demonstrated

that the C1 cluster had a significantly higher abundance of memory

B cells, naive CD4 T cells, resting memory CD4 T cells, M1

macrophages, and resting mast cells. In contrast, the C2 cluster
Frontiers in Immunology 08
exhibited significantly higher levels of follicular helper T cells and

M0 macrophages (Figures 4H, I).

GSVA was then utilized to investigate potential biological and

functional differences between the two clusters. The results indicated

that the C2 cluster was primarily enriched in pathways related to

inflammation and immune response, including leukocyte

proliferation, regulation of dendritic cell chemotaxis, neutrophil

chemotaxis, antigen processing and presentation, the Toll-like

receptor signaling pathway, and the NOD-like receptor signaling

pathway. Conversely, the C1 cluster was mainly associated with

pathways affecting the structure and function of the cardiovascular

system and cell signaling, such as glycoprotein complex, regulation of

cell communication by electrical coupling involved in cardiac

conduction, dilated cardiomyopathy, hypertrophic cardiomyopathy,

arrhythmogenic right ventricular cardiomyopathy, vascular smooth
FIGURE 3

Identification and immune infiltration analysis of AS lipid metabolism-related ferroptosis genes (ASLMRFeGs). (A). Venn diagram showing six
ASLMRFeGs; (B, C). The (B) heatmap and (C) volcano of expression levels of the ASLMRFeGs between the AS and control groups; (D). Correlation
analysis between ASLMRFeGs; (E). The degree of immune cell infiltration for each sample; (F). Boxplot showing differences in immune infiltration
between AS and control groups; (G). Correlation analysis of ASLMRFeGs and immune cells. *P<0.05, **P<0.001, ***P<0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1642984
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1642984
FIGURE 4

Identification of lipid metabolism pathway ferroptosis-related molecular clusters in AS. (A). Heatmap of the consensus clustering matrix for k=2;
(B-D). The (B) cumulative distribution function (CDF) curves, (C) CDF delta area curves, (D) PCA, and (E) the score of consensus clustering; (F, G).
The (F) heatmap and (G) boxplot of expression levels of the ASLMRFeGs between two clusters; (H). The degree of immune cell infiltration in each AS
sample; (I). Comparison of immune cell infiltration between two clusters; (J, K) The GSVA analysis of the C1 and C2 clusters demonstrates
differences in (J) pathways and (K) biological processes. *P<0.05, **P<0.001, ***P<0.0001.
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muscle contraction, the TGF-beta signaling pathway, and the Wnt

signaling pathway (Figures 4J, K). These findings suggest that, based

on the expression of ASLMRFeGs, AS samples can be divided into

two subgroups with significantly different biological functions,

particularly in terms of inflammation and immune response.
Frontiers in Immunology 10
3.1.3 Identification and functional enrichment
analysis of candidate module hub genes

By utilizing WGCNA, co-expression networks and modules

were constructed for both control and AS samples (Figures 5A, B).

Upon setting the soft threshold to 6, 8 distinct modules with
FIGURE 5

Co-expression network of DEGs and two lipid metabolism pathway ferroptosis-related molecular clusters. (A, B, G, H). (A, B) All samples and (G, H)
AS samples clustering plot after removing outlier samples; (C, I). The selection of soft threshold power; (D, J). Dendrogram of all genes clustered
based on the measurement of dissimilarity (1-TOM); (E, K). Correlation analysis between module eigengenes and clinical status; (F, L). Scatter plot
between module membership in the turquoise module and the gene significance for (F) AS or (L) C1 Cluster.
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different colors were identified, among which the “turquoise”

module exhibited the strongest positive correlation with AS

(r=0.72) (Figures 5C-E). This particular module comprised 6069

module genes and 1425 module Hub genes (Figure 5F). Moreover,

WGCNA analysis revealed module Hub genes that were associated

with lipid metabolism pathway ferroptosis in AS samples

(Figures 5G, H). When the soft threshold was set to 11, a total of

8 modules with distinct colors were detected. Among them, the

“black,” “blue,” “brown,” “green,” and “turquoise” modules are

significantly correlated with the C2 cluster, and once again, the

“turquoise”module showcased the highest positive correlation with

the C2 cluster (r=0.87) (Figures 5I–K). In order to screen the most

relevant molecular modules for lipid metabolism and ferroptosis,

we enriched the genes in the different modules and showed that the

“turquoise” module was closely related to inflammatory response,

immune response, lipid metabolism, and ferroptosis; the “black”

module was related to cell cycle; the “blue” module was related to
Frontiers in Immunology 11
muscle contraction, regulation of actin cytoskeleton, and cell

signaling; and the “green” module was related to cell adhesion

and angiogenesis, while the “brown” module was not significantly

enriched. Therefore, the “turquoise” module, which includes 3284

module genes and 1515 module Hub genes, was used for the study

(Figure 5L) (Supplementary Table S6).

The intersection of module genes from the two “turquoise”

modules and DEGs resulted in 225 candidate module Hub genes

(Figure 6A), and constructed a PPI network with 118 nodes and 359

edges (Figure 6B). The analysis of these genes using gene ontology

and KEGG revealed their involvement in various biological functions

and pathways. The gene ontology analysis encompassed three main

categories: biological process, cellular component, and molecular

function. Among the 225 candidate module Hub genes, 189 were

linked to biological processes, 55 to cellular components, and 41 to

molecular functions, while the KEGG enrichment analysis identified

52 signaling pathways (P<0.05). The biological process analysis
FIGURE 6

Identification and functional enrichment analysis of module Hub genes. (A). Venn diagram showing the 225 candidate module Hub genes; (B). PPI
network of candidate module Hub genes, with pink representing upregulated genes and green representing downregulated genes; (C). External
validation screening module Hub genes; (D). PPI network of module Hub genes, with colors darkening according to degree centrality values; (E-G).
The (E) biological process, (F) cellular component, molecular function, and (G) pathway analysis of candidate module Hub genes; (H-J). The (H)
biological process, (I) cellular component, molecular function, and (J) pathway analysis of module Hub genes.
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indicated the participation of these genes in several processes,

including inflammatory response, immune response, signal

transduction, the positive regulation of tumor necrosis factor,

macrophage cytokine, IL-6, IL-8, and IL-10 production, and

lipoprotein catabolic process. The cellular component analysis

highlighted the role of various cellular membranes and organelles,

especially the lysosomal membrane, late endosome membrane,

endocytic vesicle membrane, endosome membrane, ER-to-Golgi

transport vesicle membrane, Golgi membrane, and mitochondrial

outer membrane. Furthermore, the molecular function analysis

emphasized their involvement in MHC class II protein complex

binding, transmembrane signaling receptor activity, superoxide-

generating NAD(P)H oxidase activity, signaling receptor activity,

actin filament binding, and cysteine-type endopeptidase activator

activity involved in apoptotic processes (Figures 6E, F). The pathway

analysis revealed enrichment in various pathways, including the B cell

receptor signaling pathway, the Fc epsilon RI signaling pathway, the

chemokine signaling pathway, the NOD-like receptor signaling

pathway, the Toll-like receptor signaling pathway, the T cell

receptor signaling pathway, the Rap1 signaling pathway, Th17 cell

differentiation, natural killer cell-mediated cytotoxicity, complement

and coagulation cascades, lysosome, phagosome, efferocytosis,

neutrophil extracellular trap formation, Fc gamma R-mediated

phagocytosis, leukocyte transendothelial migration, and lipid and

AS (Figure 6G). The above results show that the pathogenesis of

ferroptosis in the AS lipid metabolism pathway involves

abnormalities in several biological processes, including cellular

communication, immune response, and metabolic response.

3.1.4 Screening and functional enrichment
analysis of module hub genes

To further screen the candidate Hub genes, 225 candidate

module Hub genes were externally validated by single-gene

differential analysis in the GSE43292, GSE28829, and GSE57691

datasets. This validation revealed that 76 module Hub genes were

significantly differentially expressed across all four datasets

(Figures 6C, D) (Supplementary Table S7). These 76 genes were

then imported into the DAVID database for gene ontology and

KEGG pathway analysis. The results showed that 61 genes were

correlated with biological processes, 36 with cellular components,

and 14 with molecular functions. Additionally, KEGG enrichment

analysis identified 38 signaling pathways (P<0.05).

The biological process analysis indicated involvement in several

processes, including immune response, inflammatory response,

signal transduction, positive regulation of phagocytosis, actin

filament organization, positive regulation of tumor necrosis factor

and interleukin-6 production, superoxide anion generation,

leukocyte cell-cell adhesion, negative regulation of neuron

apoptotic process, positive regulation of macrophage fusion, and

interleukin-10-mediated signaling pathway. The cellular

component analysis identified the phagolysosome, late endosome

membrane, Golgi membrane, endosome membrane, ER-to-Golgi

transport vesicle membrane, lysosome, phagocytic vesicle, and

lamellipodium. The molecular function analysis highlighted

amyloid-beta binding, MHC class II protein complex binding,
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actin binding, signaling receptor activity, cytokine binding, and

superoxide-generating NADPH oxidase activator activity

(Figures 6H, I).

Pathway analysis indicated enrichment in the Rap1 signaling

pathway, the Fc epsilon RI signaling pathway, phagosome,

neutrophil extracellular trap formation, leukocyte transendothelial

migration, cell adhesion molecules, Th1 and Th2 cell differentiation,

Th17 cell differentiation, lipid and AS, and natural killer cell-

mediated cytotoxicity. These findings suggest that AS may

modulate lipid metabolism and ferroptosis by regulating

inflammation and immune responses (Figure 6J).

3.1.5 Machine learning screening of candidate
hub genes

Subsequently, these 76 module Hub genes were imported into

the STRING database to construct a PPI network with a “score” ≥

0.7, which had 40 nodes and 79 edges (Figure 6D). 8 candidate Hub

genes (TYROBP, CSF1R, PTPRC, ITGAM, LCP2, CYBB, HLA-

DRA, and C1QA) with degree centrality, betweenness centrality,

and closeness centrality all greater than the mean were filtered out

(Supplementary Table S8), and the constructed PPI network of

candidate Hub genes includes 8 nodes and 15 edges (Figure 7A). To

further refine the selection of characterized genes, 3 types of

machine learning algorithms were employed: LASSO regression,

SVM-RFE, and RF. LASSO regression identified 6 key genes

(TYROBP, CSF1R, PTPRC, LCP2, HLA-DRA, and C1QA)

(Figures 7B, C), SVM-RFE identified 6 featured genes (CSF1R,

PTPRC, TYROBP, LCP2, C1QA, and ITGAM) (Figure 7D), and RF

obtained 4 important genes (CSF1R, TYROBP, C1QA, and LCP2)

(Figures 7E, F) (Supplementary Table S9). Ultimately, an

intersection of the genes identified by these methods yielded 4

characterized genes: TYROBP, CSF1R, LCP2, and C1QA, which

were all up-regulated in AS (Figure 7G).

Similarly, external validation of single-gene differential analysis of

six ASLMRFeGs in the GSE43292, GSE28829, and GSE57691

datasets showed that CYBB, HMOX1, and IL1B were significantly

differentially expressed in these datasets and up-regulated in AS.

Therefore, we considered these three ASLMRFeGs and four

characterized genes as candidate Hub genes, namely, CYBB,

HMOX1, IL1B, CSF1R, TYROBP, C1QA, and LCP2 (Figures 7H–J).
3.2 Experimental validation

3.2.1 Inhibition of ferroptosis attenuates ox-LDL-
induced lipid accumulation and increases cell
activity in HUVECs and RAW 264.7 cells

We validated this using the RAW 264.7 and HUVECs dual cell

lines, one belonging to endothelial cells and one to macrophages.

Firstly, we needed to confirm that ox-LDL-induced HUVECs and

RAW 264.7 cells clearly caused abnormal lipid metabolism, so ORO

staining was used to detect intracellular lipid accumulation, and

CCK-8 was used to detect cell activity. The results showed that there

was only a small amount of ORO staining observed in normal

HUVECs and RAW 264.7 cells, and extensive ORO staining was
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visible in the cytoplasm of ox-LDL-treated HUVECs and RAW

264.7 cells in the MOD group, with increased cell volume and

rounded or irregular morphology. The relative area of ORO was

significantly increased (P<0.01) and cell activity was significantly

decreased (P<0.01) in the MOD group compared with the CTRL

group, suggesting that ox-LDL-induced HUVECs and RAW 264.7

cells resulted in an intracellular abnormality of lipid metabolism,

which led to significant lipid accumulation and decreased cell

activity in the cells (Figures 8A–F).

To verify whether abnormal lipid metabolism could promote

ferroptosis, we used Mito-FerroGreen to detect mitochondrial Fe2+

content. The results showed that, compared with the CTRL group,

the MOD group significantly elevated mitochondrial Fe2+ content

(P<0.01), suggesting that ox-LDL induces ferroptosis in HUVECs

and RAW 264.7 cells and that abnormalities in lipid metabolism

promote ferroptosis (Figures 8G–J). Then, we used Fer-1 (an

inhibitor of ferroptosis) for subsequent experiments, and the

results showed that the Fer-1 group significantly alleviated

intracellular lipid accumulation (P<0.01), elevated cell activity

(P<0.05), and reduced mitochondrial Fe2+ content (P<0.01)

compared with the MOD group, suggesting that inhibition of

ferroptosis improves lipid metabolism and cell activity to a

certain extent (Figures 8A–F).
Frontiers in Immunology 13
In order to predict the potential mechanism of lipid metabolism

in AS and ferroptosis, we used qRT-PCR to examine the expression

levels of ASLMRFeGs and Hub genes. The results showed that ox-

LDL treatment (MOD group) significantly up-regulated the

expression of CYBB, HMOX1, IL1B, CSF1R, TYROBP, and LCP2

genes, while down-regulating C1QA gene compared with the CTRL

group in both HUVECs and RAW 264.7 cells. Treatment with the

ferroptosis inhibitor Ferrostatin-1 (Fer-1 group) significantly

attenuated this ox-LDL-induced upregulation of CYBB, HMOX1,

IL1B, CSF1R, and TYROBP genes compared with the MOD group

in both cell lines. Additionally, Fer-1 attenuated LCP2 upregulation

specifically in RAW 264.7 cells (Figures 8K, L).

3.2.2 Inhibition of ferroptosis improves ox-LDL-
induced mitochondrial and lysosomal
dysfunction and ER stress overactivation in
HUVECs and RAW 264.7 cells

The previous bioinformatics analysis results indicated that the

mechanisms by which lipid metabolism regulates AS and

ferroptosis are closely related to various organelles, particularly

mitochondria, lysosomes, the ER, and the Golgi apparatus.

Therefore, we investigated the role of mitochondria using three

different methods: the JC-1 fluorescent dye to measure the relative
FIGURE 7

Identification of candidate Hub genes. (A). PPI network of candidate Hub genes; (B, C). LASSO regression identified six key genes; (D). SVM-RFE
identified six featured genes; (E, F). RF obtained four important genes; (G). Venn diagram showing the four candidate Hub genes; (H-J). External
verification of ASLMRFeGs in the (H) GSE43292, (I) GSE28829, and (J) GSE57691 datasets. Specifically, * indicates P<0.05, ** indicates P<0.001, and
*** denotes P<0.0001.
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fluorescence intensity ratio (red/green fluorescence) of

mitochondrial membrane potential, with a higher ratio indicating

better mitochondrial function; DCFH-DA fluorescent staining to

assess the content of ROS; and qRT-PCR to detect the relative

expression level of mtDNA-ND1 in mitochondria to determine

mitochondrial function.

The results showed that the fluorescence intensity ratio of

mitochondrial membrane potential was significantly weaker, the

fluorescence intensity of ROS was significantly stronger, and the

relative expression level of ND1 in mitochondria was decreased in

the MOD group compared with the CTRL group. This suggests that

ox-LDL-induced mitochondrial dysfunction in HUVECs

(Figures 9A–E) and RAW 264.7 cells (Figures 9F–J) promote

ROS production. However, Fer-1 antagonized the mitochondrial-

damaging effects induced by ox-LDL, indicating that inhibition of

ferroptosis improved mitochondrial dysfunction induced by

abnormalities in lipid metabolism.
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Next, we found that 6 hours of ox-LDL intervention upregulated

the relative expression of LAMP1 and LAMP2 genes in HUVECs

and the LAMP2 gene in RAW 264.7 cells. At 12 hours, ox-LDL

intervention continued to upregulate LAMP2 gene expression in

HUVECs. However, after 24 hours of ox-LDL intervention, both

LAMP1 and LAMP2 gene expression were downregulated in both

HUVECs (Figures 9K, L) and RAW 264.7 cells (Figures 9N, O). In

contrast, Fer-1 treatment increased the expression of both LAMP1

and LAMP2 genes. These findings suggest that abnormal lipid

metabolism may induce lysosomal activation in the early stages,

followed by lysosomal damage in later stages. Inhibition of

ferroptosis may help mitigate lysosomal damage.

GOLGA2 is a classical marker of the Golgi apparatus. We found

that the MOD group downregulated GOLGA2 gene expression

compared with the CTRL group, whereas Fer-1 upregulated

GOLGA2 gene expression compared with the MOD group

(Figures 9M, P).
FIGURE 8

Effect of ox-LDL on ferroptosis in HUVECs and RAW 264.7 cells. (A, B). ORO staining of HUVECs (n=9, bar=500 mm); (C). CCK-8 to detect the
relative activity in HUVECs (n=9); (D, E). ORO staining of RAW 264.7 cells (n=9, bar=50 mm); (F). CCK-8 to detect the relative activity in RAW 264.7
cells (n=9); (G-I). Mito-FerroGreen to detect mitochondrial Fe2+ content in (G, H) HUVECs and (I, J) RAW 264.7 cells (n=5, bar=500mm); (K, L). qRT-
PCR to detect the relative expression levels of ASLMRFeGs and Hub genes in (K) HUVECs and (L) RAW 264.7 cells (n=9). Results are expressed as the
mean ± S.D. *P<0.05 vs. the CTRL group, **P<0.01 vs. the CTRL group, #P<0.05 vs. the MOD group, ##P<0.01 vs. the MOD group.
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The ER is an important organelle for lipid and protein synthesis.

Under various stimuli, overloaded protein synthesis exceeds the

storage capacity of the ER, promoting ERS. GRP78 and CHOP are

commonly used as markers of ERS. We also detected genes of the

three pathways of ERS (IRE1, ATF6, PERK, XBP1, and EIF2A). The

results indicated that in HUVECs, the MOD group significantly

increased the expression of ATF6, GRP78, CHOP, and EIF2A genes
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while decreasing the expression of IRE1, PERK, and XBP1 genes

compared to the CTRL group. In contrast, the Fer-1 group

upregulated IRE1, ATF6, PERK, and XBP1 genes and

downregulated GRP78 and CHOP gene expression compared to

the MOD group. In RAW 264.7 cells, the MOD group upregulated

IRE1, PERK, GRP78, CHOP, and EIF2A genes while

downregulating ATF6 and XBP1 genes compared to the CTRL
FIGURE 9

Effect of ox-LDL on mitochondria, lysosomes, Golgi apparatus, and endoplasmic reticulum in HUVECs and RAW 264.7 cells. (A, C). JC-1 staining to
detect mitochondrial membrane potential in HUVECs (n=9, bar=500mm); (B, D). DCFH-DA fluorescent staining to detect ROS content in HUVECs
(n=9, bar=500mm); (E). qRT-PCR to detect the relative expression levels of mitochondrial mtDNA ND1 in HUVECs (n=9); (F, H). JC-1 staining to
detect mitochondrial membrane potential in RAW 264.7 cells (n=9, bar=500mm); (G, I). DCFH-DA fluorescent staining to detect ROS content in RAW
264.7 cells (n=9, bar=500mm); (J). qRT-PCR to detect the relative expression levels of mitochondrial mtDNA ND1 in RAW 264.7 cells (n=9); (K-M).
qRT-PCR to detect the relative expression levels of (K) LAMP1, (L) LAMP2, and (M) GOLGA2 in HUVECs (n=9); (N-P). qRT-PCR to detect the relative
expression levels of (N) LAMP1, (O) LAMP2, and (P) GOLGA2 in RAW 264.7 cells (n=9); (Q-R). qRT-PCR to detect the relative expression levels of
IRE1, ATF6, PERK, GRP78, XBP1, CHOP, and EIF1A in (Q) HUVECs and (R) RAW 264.7 cells (n=9). Results are expressed as the mean ± S.D. *P<0.05
vs. the CTRL group, **P<0.01 vs. the CTRL group, #P<0.05 vs. the MOD group, ##P<0.01 vs. the MOD group.
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group. In contrast, the Fer-1 group downregulated IRE1, PERK,

GRP78, CHOP, and EIF2A genes compared to the MOD group

(Figures 9Q, R). This suggests that abnormal lipid metabolism

significantly activates ERS, and inhibition of ferroptosis

suppresses ERS.
3.3 Construction and evaluation of
nomogram

We constructed a nomogram to assess the role of ASLMRFeGs

and Hub genes in predicting the risk of AS development

(Figure 10A). Previous bioinformatics analyses indicated that

TYROBP, CSF1R, LCP2, C1QA, CYBB, HMOX1, and IL1B were

upregulated in AS samples. However, our in vitro experiments

revealed that C1QA was downregulated in the AS model group, and

that inhibition of ferroptosis did not improve the expression of

C1QA and LCP2. Therefore, we chose TYROBP, CSF1R, CYBB,

HMOX1, and IL1B to construct a nomogram to predict the risk of

AS. The predictive efficiency of the nomogram was then evaluated

using calibration curves and DCA (Figures 10B, C). External

validation was performed using the GSE28829, GSE43292, and

GSE57691 datasets, and the ROC curves demonstrated that these

gene-based prediction models performed well (all AUC>0.70),

effectively distinguishing normal and AS samples (Figure 10D).
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3.4 Single-cell data analysis

The previous immune infiltration analysis indicated that

ASLMRFeGs were significantly associated with M0 macrophages,

M1 macrophages, resting mast cells, and resting memory CD4 T

cells. We then further analyzed the expression status of

ASLMRFeGs and Hub genes in different cells using scRNA-seq

datasets. After quality control, normalization, dimensionality

reduction with clustering and annotation of the GSE159677

dataset (Figures 11A, B), the results likewise showed significant

differences in foam cells, inflammatory macrophages, endothelial

cells, and smooth muscle cells between AS and control samples

(Figures 11C, D). In addition, Hub genes were highly expressed in

foam cells, inflammatory macrophages, smooth muscle cells, and

helper T cells (Figures 11E, F).
3.5 Gene-drug interaction

Inputting 3 ASLMRFeGs (CYBB, HMOX1, and IL1B) and 2

Hub genes (TYROBP and CSF1R) into the DGIbd yielded 119

potential drugs, of which 57 were FDA-approved and 31 had an

“interaction score” > 0.1. Subsequently, through additional

literature screening, 13 drugs with potential effects on AS were

identified, including Chrysin, Apigenin, Vitamin D, Selenium,
FIGURE 10

Construction and assessment of nomogram. (A). A nomogram was constructed based on TYROBP, CYBB, HMOX1, IL1B, and CSF1R to predict the
risk of developing AS; (B, C). Construction of (B) calibration curve and (C) DCA for assessing the predictive efficiency of the nomogram; (D). ROC
curves for Hub genes in the external validation set.
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Sunitinib, Canakinumab, Rilonacept, Diacetylrhein, Tiludronic

acid, Risedronic acid, Clodronic acid, Etidronic acid,

and Hydroquinone.

To investigate the interaction affinity of the drugs with the Hub

gene and the key gene for ferroptosis, GPX4, we employed

molecular docking techniques. Due to the large molecular weights

of Canakinumab and Rilonacept, and the limitations imposed by

Selenium as a metal molecule in accessing their 3D structure data,

we were unable to include these compounds in our analysis and had

to exclude them. Additionally, Vitamin D was separated into its two

forms, D2 and D3, for individual assessment. The molecular

docking analysis involved 11 drugs and 6 proteins: IL1B (1L2H),

HMOX1 (1N45), CSF1R (2I0V), CYBB (3A1F), GPX4 (2OBI), and

TYROBP (2L34). Out of 66 docking interactions, 51 showed a

pooled energy of ≤ -5.0 kcal/mol, and all drugs demonstrated

binding energies to GPX4 of <-5.5 kcal/mol (Table 1). These

findings suggest a potential association of these drugs with the

process of ferroptosis.
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4 Discussion

Ferroptosis has emerged as a critical process implicated in the

development of AS, suggesting that targeting ferroptosis could hold

promise as a therapeutic strategy for CVDs (27). Moreover, lipid

metabolism plays an important role in the regulation of cell survival

and death, which may affect cellular susceptibility to ferroptosis by

influencing the processes of lipid synthesis, degradation, storage,

conversion, and utilization (28). Therefore, lipid metabolism,

serving as an intermediary process, intricately connects AS and

ferroptosis. Prior research has shown that improving lipid

metabolism can effectively delay AS progression by enhancing

mitochondrial function, reducing oxidative stress and

inflammation, and inhibiting ferroptosis (27, 29). To gain further

insights into the underlying mechanisms of lipid metabolism in the

development of ferroptosis in AS, this study employed

bioinformatics analysis to investigate ASLMRFeGs, subtype AS

samples based on the ASLMRFeGs, and develop a prediction
FIGURE 11

Single-cell data analysis. (A, B). Gene number, sequencing depth, and mitochondrial percentage for different samples. (C). Annotated cell types.
(D). Immune cell abundance in AS and control samples. (E, F). Expression of Hub genes in different cell types.
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model using machine learning techniques, aiming to elucidate the

potential associations between lipid metabolism and ferroptosis

in AS.

We validated this using two cell lines: ox-LDL-induced

HUVECs and RAW264.7 cells to construct in vitro models of

endothelial damage and foam cells due to abnormal lipid

metabolism. Our goal was to demonstrate that abnormal lipid

metabolism causes endothelial cells and macrophages to undergo

ferroptosis, which accelerates the formation of AS. The experiments

showed that the MOD group exhibited significant lipid

accumulation and massive ferroptosis in endothelial cells and

macrophages, which was ameliorated by the addition of Fer-1.

This suggests that aberrant lipid metabolism induces ferroptosis in

endothelial cells and macrophages, thereby promoting AS. Our

further studies found that abnormal lipid metabolism causes

dysfunction or abnormal activation of various organelles, which

may also be the mechanisms for the occurrence of ferroptosis in AS.

Specifically, mitochondrial and lysosomal dysfunction, as well as

ERS, were identified as key contributors to ferroptosis in

this context.
4.1 The role of ASLMRFeGs in AS and
ferroptosis

The initial step involved differential expression analysis to

compare gene expression levels between control and AS samples.

The analysis identified CTSB, CYBB, DPP4, HMOX1, and IL1B as

highly expressed in AS, whereas HILPDA exhibited lower

expression levels. External validation and in vitro experiments

demonstrated that CYBB, HMOX1, and IL1B were upregulated in

endothelial injury and foam cell models.

The CYBB gene encodes NADPH oxidase 2 (NOX2), a pivotal

enzyme responsible for the generation of ROS within the vascular

system (30). ROS play a critical role in the pathogenesis of AS

through multiple mechanisms, including the modulation of cellular
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proliferation and death, the regulation of inflammatory responses,

the induction of oxidative stress, the promotion of lipid

peroxidation, the impairment of endothelial function, and the

dysregulation of vascular tone (31, 32). NOX2 is primarily

expressed in macrophages, and its mRNA expression level

demonstrates a strong correlation with the severity of AS lesions

(33). Clinical evidence indicates that genetic deficiency of NOX2

significantly attenuates atherosclerotic burden (34). Furthermore,

NOX2-specific inhibitors have shown therapeutic potential in AS by

stabilizing vulnerable plaques through enhanced macrophage

efferocytosis via the MertK/PI3K/AKT pathway (35), and by

retarding AS progression through the mitigation of oxidative

stress and suppression of angiogenic factors, including VEGF and

HIF-1a (36). Therefore, the CYBB and its encoded NOX2 enzyme

hold significant pathophysiological importance in AS and are

anticipated to serve as potential targets for the diagnosis and

treatment of AS.

Heme oxygenase-1 (HMOX1) is a critical enzyme that degrades

heme into carbon monoxide, biliverdin, and ferrous ions. In AS

lesions, HMOX1 expression is significantly upregulated in foamy

macrophages, yet its role in AS pathogenesis is complex and

context-dependent (37, 38). On the one hand, HMOX1 promotes

AS progression by interacting with lactate dehydrogenase B to

facilitate the degradation of mitochondrial transcription factor A

by Lon peptidase 1, which leads to mitochondrial dysfunction and

ferroptosis, thereby exacerbating AS (39). Moreover, overexpression

of HMOX1 in macrophages drives inflammation and ferroptosis-

related oxidative stress, increasing plaque burden in AS mouse

models (40). However, on the other hand, genetic deletion of

HMOX1 worsens AS lesion progression in LDLR-deficient mice,

suggesting a protective role. This protective effect may be mediated

by HMOX1’s antioxidant properties, suppression of lipid

peroxidation, and modulation of nitric oxide pathways (41, 42).

Interleukin-1b (IL-1b) is a potent pro-inflammatory cytokine

that plays a key role in the pathogenesis of AS. Compared to the

normal population, AS patients exhibit significantly elevated mRNA
TABLE 1 The binding energy of the drug and the Hub genes. (kcal/mol).

Drug CSF1R CYBB GPX4 HMOX1 IL1B TYROBP

Hydroquinone -6.4 -5.1 -5.7 -6.1 -5.0 -4.2

Etidronic acid -6.4 -5.0 -5.7 -6.1 -5.0 -4.2

Risedronic acid -6.4 -5.1 -5.6 -5.6 -5.1 -4.2

Clodronic acid -6.4 -5.1 -5.7 -6.2 -4.8 -4.3

Diacetylrhein -6.4 -5.0 -5.6 -6.1 -5.5 -4.4

Tiludronic acid -6.3 -5.0 -5.7 -6.2 -5.0 -4.2

Apigenin -6.3 -5.0 -5.6 -5.9 -5.2 -4.2

Vitamin D2 -6.4 -5.1 -5.7 -5.9 -4.7 -4.4

Vitamin D3 -6.4 -5.0 -5.6 -6.1 -4.8 -4.4

Chrysin -6.3 -5.0 -5.5 -6.1 -5.0 -4.4

Sunitinib -6.3 -5.0 -5.7 -5.8 -4.7 -4.1
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1642984
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1642984
and protein levels of IL-1b, which are positively correlated with

disease severity (43, 44). In the early stages of AS, IL-1b promotes

inflammatory responses by inducing the expression of endothelial cell

adhesion factors (e.g., ICAM-1, VCAM-1) and chemokines (e.g.,

MCP-1), which in turn drive the accumulation of inflammatory cells

in the vasculature as well as invasion into the intima (45). In recent

years, several new drug studies and clinical trials have demonstrated

that inhibition of IL-1b effectively reduces the risk of residual

inflammation in atherosclerotic cardiovascular disease, targeting IL-

1b as a potential therapeutic target for AS (46–48). However, while

the role of IL-1b in the inflammatory response has been extensively

studied, the specific mechanisms by which IL-1b affects AS through

modulation of ferroptosis remain unclear. A recent study revealed

that IL-1b can regulate iron-sulfur cluster homeostasis by inducing

the acetylation of the mitochondrial inner membrane protein

nicotinamide nucleotide transhydrogenase, thereby inhibiting

ferroptosis in tumor cells and mediating immunotherapy resistance

(49). This finding suggests that IL-1bmay similarly influence cellular

iron metabolism and ferroptosis processes in AS, thereby affecting

disease progression.
4.2 Lipid metabolism influences ferroptosis
by regulating organelle function

WGCNA identified a total of 225 module Hub genes associated

with atherosclerotic lipid metabolism and ferroptosis. Functional

enrichment analysis revealed that these genes are involved in crucial

biological processes, including inflammation, immune response,

cytoskeleton organization, and cell migration, which have been

extensively studied and confirmed in AS (50–52). In addition, these

module Hub genes also exhibit close associations with various

organelles, such as mitochondria, lysosomes, the ER, and the

Golgi apparatus. Therefore, we investigated the role of these

organelles in ferroptosis in the AS lipid metabolism pathway. The

experimental results showed that abnormal lipid metabolism

damaged mitochondrial and lysosomal function and promoted

ERS, which in turn promotes ferroptosis. Inhibition of ferroptosis

using Fer-1 antagonizes the damaging effects of lipid

metabolism abnormalities.

4.2.1 Mitochondrial dysfunction and ferroptosis
Our experiments demonstrated that abnormal lipid metabolism

can damage mitochondrial mtDNA, causing mitochondrial

dysfunction, promoting ROS production, and increasing

mitochondrial Fe2+ content, which in turn promotes ferroptosis.

Mitochondria, as a major source of ROS in cells, play a crucial role

in regulating cellular metabolism, signal transduction, and death

signaling, especially in iron metabolism as well as material and

energy metabolism (53). Mitochondrial redox function plays a

decisive role in the development of AS. By enhancing

mitochondrial oxidative metabolism promotes fatty acid

degradation, reduces intracellular lipid accumulation, limits foam

cell formation, and delays the onset of AS (54, 55), whereas

inhibition of ferroptosis can attenuate AS by decreasing lipid
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peroxidation and endothelial dysfunction (56). Studies have

revealed distinct changes in mitochondria during ferroptosis,

including marked shrinkage, increased membrane density, and a

reduction or disappearance of mitochondrial cristae, which is not

consistent with characteristics of other cell death, such as apoptosis

and cell necrosis (57). To counteract the detrimental effects of

ferroptosis on mitochondria, mitochondria significantly inhibit

oxidative stress-induced ferroptosis by overexpressing

mitochondrial ferritin or mitochondrial catalase, which inhibit

mitochondrial iron overload or ROS accumulation (58). In

addition, mitochondria play a central role in fatty acid

metabolism by providing specific lipid precursors for lipid

oxidation, which is a key step in cellular ferroptosis (53).

Mitochondrial energy metabolism is also closely intertwined with

ferroptosis, and inhibition of the mitochondrial tricarboxylic acid

cycle or the electron transfer chain can attenuate mitochondrial

membrane potential hyperpolarization, l ipid peroxide

accumulation, and ferroptosis (59).

4.2.2 Lysosomal dysfunction and ferroptosis
Lysosomes, as acidic membrane-bound organelles, serve as the

endpoints of various vesicular transport pathways, including

endocytosis, phagocytosis, and autophagy pathways, which are

essential for promoting lipid catabolism and transport and

maintaining cellular lipid homeostasis (60). Lysosomal proteins

LAMP1 and LAMP2 have been shown to bind cholesterol with

high affinity and specificity through their luminal domain 1 and

facilitate the flow of cholesterol through the NPC2-NPC1 export

pathway (61). Additionally, lysosomes may rely on membrane

contacts with other organelles for lipid transfer, and cholesterol

transfer in the ER-to-lysosomal direction was enhanced in a VAP-

dependent manner by overexpression of STARD-3 (62); STARD-3

also transfers cholesterol from lysosomes to mitochondria to

provide precursors for steroid hormones synthesized in

mitochondria (63).

Recently, it was found that inhibition of lysosome-dependent

cell death limited Erastin-induced ferroptosis, suggesting that

ferroptosis is a lysosomal cell death process and that lysosomes

contribute to ferroptosis through mechanisms such as autophagy

activation, the release of lysosomal cathepsins, and the

accumulation of lysosomal iron or nitric oxide (64, 65). Many

studies have shown that excessive activation of autophagy and

lysosomes degrades ferritin, increases unstable iron accumulation,

and promotes iron-dependent cell death (66). Cathepsin B (CTSB)

is a mediator of organelle-specific initiation of ferroptosis, and

activation of the transcription factor STAT3 upregulates CTSB,

which is translocated from the lysosome to the nucleus, leading to

DNA damage and subsequent STING1-dependent ferroptosis (65).

Conversely, CTSB-dependent albumin catabolism promotes

glutathione synthesis by exporting cystine from lysosomes via the

transporter cystinosis fuels, thereby inhibiting lethal lipid

peroxidation (67). Additionally, it was found that lysosomal

damage caused by mitochondrial dysfunction induced ferroptosis

(68). This indicates that lysosomes regulate lipid metabolism

through membrane contacts with other organelles, influencing
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autophagy, cathepsin release, and thus ferroptosis. Our study

suggests that endothelial cell injury and foam cell models may

lead to activation of lysosomes and promotion of autophagy in the

initial phase, followed by lysosomal over-excitation, causing

dysfunction, whereas inhibition of ferroptosis improves

lysosomal function.

4.2.3 ERS and ferroptosis
The ER plays a critical role in the synthesis, processing,

packaging, and transportation of proteins and lipids. When

unfolded or misfolded proteins accumulate in the ER, it leads to a

pathological condition known as ERS. To counter ERS, cells initiate

the unfolded protein response (UPR) signaling cascade by

activating the expression of molecular chaperones, regulating lipid

synthesis, and promoting ER-associated degradation, which helps

reduce the levels of unfolded or misfolded proteins and restore ER

homeostasis (69, 70). ERS has been identified as a key regulator of

cholesterol deposition, macrophage differentiation, and endothelial

dysfunction. The ER is directly involved in the formation of lipid

droplets and the maintenance of lipid homeostasis. When disorders

of lipid metabolism are exacerbated, it promotes ERS and URP,

disrupting the normal metabolism of adipose tissue, triggering an

inflammatory response in adipocytes, enhancing the secretion of

adipokines, and causing ectopic lipid deposition, which contributes

to the development of metabolic diseases (71). This situation is

particularly pronounced in obese patients, where overnutrition

stimulates adipogenesis, creating an imbalance in the body’s

microenvironment, inducing progressive hypertrophy of

adipocytes, stimulating the ER to synthesize more proteins for the

formation of lipid droplets, and altering the flow and thickness of

ER membranes via the ER sensors IRE1a and PERK, which lead

directly to ERS (72). Furthermore, ERS is an important cause of

endothelial and macrophage apoptosis in advanced lesions (73).

Inhibiting macrophage ERS promotes the polarization of

differentiated M2 macrophages toward an M1 phenotype, thereby

inhibiting foam cell formation (74). ERS also contributes to an

imbalance between nitric oxide and ROS, causing oxidative stress,

damaging endothelial cells, and promoting the progression of AS

and plaque formation (73, 75).

The classical UPR signaling pathway involves the activation of

three classes of ER membrane proteins: IRE1, PERK, and ATF6

(71). In normal conditions, the chaperone protein Bip and GRP78

bind to these three proteins, preventing their activation and keeping

them in an inactive state. However, when external stimuli or

changes in ER homeostasis result in the excessive accumulation of

misfolded or unfolded proteins, Bip binds to the abnormal proteins

in the ER lumen, dissociates from and activates IRE1a, PERK, and
ATF6 to carry out their respective functions. This activation

enhances ER protein folding capacity, inhibits intracellular

protein synthesis, and restores ER homeostasis (76). Nevertheless,

if the degree of ERS surpasses the UPR’s regulatory range, it disrupts

ER homeostasis, leading to various metabolic abnormalities

associated with ER function. GRP78 and CHOP are commonly

used as markers of ERS, and our experiments also validated the

three branches of ERS. First, based on the expression of GRP78 and
Frontiers in Immunology 20
CHOP genes, it was shown that abnormal lipid metabolism

significantly activated ERS, which might be excessive, and the use

of Fer-1 inhibited the excessive ERS of the cells. It was further found

that the abnormal lipid metabolism regulated the UPR branch of

IRE1 and PERK, and the use of Fer-1 regulated the branches of

IRE1, PERK, and ATF6.

In the first branch, autophosphorylated IRE1 activates the RNase

structural domain and catalyzes the splicing of XBP1 mRNA,

generating the active transcription factor XBP-1s. XBP-1s is involved

in inflammation, cell survival, lipid metabolism, and calcification to

regulate endothelial cell proliferation, transformation, and apoptosis,

smooth muscle cell phenotypic switching, and the accumulation of

foam cells that thereby affect AS (77). Furthermore, the overexpression

of IREI and XBP1 has been shown to increase cellular susceptibility to

ferroptosis (78, 79). Additionally, IRE1 activates c-Jun NH2 terminal

kinase (JNK) in response to ERS. Inhibition of the IRE1/JNK pathway

not only reduces ERS-induced apoptosis and improves vascular

endothelial dysfunction (80) but also attenuates ferroptosis in acute

kidney injury (81). Collectively, these studies indicate the IRE1 branch

plays a crucial role in AS progression through XBP-1s/JNK signaling,

ERS-induced apoptosis, and enhanced ferroptosis susceptibility.

Unexpectedly, our experiments revealed that ox-LDL-induced lipid

accumulation promotes ERS while concomitantly downregulating

XBP1 expression. This apparent paradox, ERS induction with

reduced IRE1/XBP1 signaling, suggests a potential compensatory

adaptation may occur under sustained lipid stress. We hypothesize

that persistent lipid overload triggers feedback inhibition of the IRE1/

XBP1 pathway to mitigate excessive cellular stress responses, which

could consequently reduce ferroptosis susceptibility. This

interpretation aligns with our observation that ferroptosis inhibition

(Fer-1) alleviates both lipid accumulation and ERS severity. Under such

conditions of reduced lipid stress, restoring IRE1/XBP1 signaling could

theoretically help reestablish ER homeostasis through ER-associated

degradation of misfolded proteins and upregulation of pro-homeostatic

genes (77), potentially delaying AS progression. However, the precise

mechanisms underlying lipid-mediated suppression of IRE1/XBP1 and

its functional consequences require further experimental investigation.

In the second branch, PERK plays a dual role, serving not only

to reduce the protein load of ERS but also to signal the cell death

pathway. Phosphorylated PERK phosphorylates eIF2a, thereby
inhibiting mRNA translation, reducing protein influx into the ER,

and facilitating the translation of ATF4. CHOP is an important

target gene regulated by ATF4, and sustained ERS causes CHOP to

activate genes responsible for encoding apoptosis (82). In addition,

PERK acts as a negative regulator of ferroptosis, and the occurrence

of ferroptosis is accompanied by the activation of the PERK-eIF2a-
ATF4-CHOP signaling pathway, and inhibition of ERS reduces

ferroptosis (83–85). Our experiments found that abnormal lipid

metabolism up-regulated the expression of the EIF2A and CHOP

genes; the use of Fer-1 improved the expression of the PERK,

EIF2A, and CHOP genes, possibly due to the negative feedback

regulation of up-regulated EIF2A to inhibit the expression of PERK.

In the third branch, ATF6 is released and translocated to the

Golgi, where it undergoes cleavage by resident proteases (site 1 and

site 2 proteases) and subsequently moves to the nucleus to activate
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the transcription of various chaperone molecules. Previous studies

have shown that increased expression of ATF6a contributes to

enhanced resistance against ferroptosis (86).

4.2.4 Golgi apparatus and ferroptosis
Additionally, the Golgi apparatus plays a key role in regulating

protein and lipid synthesis, modification, and distribution within

the cell. Golgi stress not only triggers the production of ROS but

also promotes the accumulation of lipid peroxides, ultimately

inducing ferroptosis (87). In short, the module genes obtained by

WGCNA provide a preliminary indication of the mechanisms by

which abnormalities of lipid metabolism regulate AS and

ferroptosis, in which inflammation and immune responses play

key roles. In particular, the abnormalities of lipid metabolism may

affect ferroptosis and AS by regulating cell organelle function.
4.3 Machine learning models identification
of hub genes

Our integrated bioinformatics and machine learning pipeline

(LASSO, SVM-RFE, and RF) robustly identified four Hub genes

(TYROBP, CSF1R, LCP2, C1QA) significantly associated with AS

lipid metabolism and ferroptosis pathways based on the GSE100927

transcriptomic dataset. However, subsequent in vitro validation in

ox-LDL-induced models yielded crucial and unexpected findings

that necessitated refinement of the final predictive model.

Bioinformatics analysis indicated upregulation of C1QA in AS

samples. However, our in vitro experiments in both HUVECs and

RAW 264.7 cells consistently showed that ox-LDL treatment

downregulated C1QA expression. Furthermore, ferroptosis

inh ib i t ion (Fer-1) d id not s ign ificant ly rescue th i s

downregulation. This stark contrast between the bioinformatics

prediction and experimental observation suggests that C1QA’s

regulation in human AS tissue might involve complex

microenvironmental factors, compensatory mechanisms, or cell-

type interactions not fully recapitulated in the simplified in vitro

model, or potentially reflect differences in disease stage. While LCP2

was upregulated by ox-LDL in vitro (aligning directionally with its

bioinformatics association), its response to ferroptosis inhibition

was cell-type specific: Fer-1 significantly attenuated LCP2

upregulation only in RAW 264.7 macrophages, not in HUVECs.

This suggests LCP2’s role in AS ferroptosis may be more prominent

within the myeloid compartment, a nuance masked in bulk

tissue analysis.

This discrepancy highlights a fundamental strength and

limitation of purely computational biomarker discovery. Machine

learning excels at identifying correlative signatures from complex

bulk tissue data but cannot inherently predict. Discordance between

in vivo (bioinformatics) and in vitro experimental gene regulation.

Whether a gene’s dysregulation is mechanistically linked to a

specific pathway (ferroptosis) in all relevant cell types. Our

findings underscore that experimental validation is essential not

only to confirm dysregulation but also to assess directionality,

pathway linkage, and cell-type specificity within the specific
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pathological context being modeled. The in vitro model revealed

crucial nuances masked in the bulk analysis.

Given the contradictory directionality for C1QA and the

inconsistent ferroptosis-linkage of LCP2 across cell types, we

prioritized genes for the nomogram based on concordant

bioinformatics association AND consistent experimental

validation in our model system. TYROBP and CSF1R met these

criteria, which were identified by machine learning, showed

concordant upregulation in vitro, and their upregulation was

consistently attenuated by ferroptosis inhibition in both cell lines.

Consequently, the final nomogram included TYROBP and CSF1R.

However, the exclusion of LCP2 and C1QA does not diminish the

validity of the machine learning approach but rather exemplifies its

role as a discovery engine that requires biological grounding. They

emphasize that experimental validation is indispensable for

translating computational predictions into biologically relevant

biomarkers and understanding their mechanistic drivers; bulk

transcriptomics has limitations in resolving cell-type specific

responses and differentiating primary drivers from secondary

effects. Additionally, the C1QA contradiction suggests its role in

AS may be highly context-dependent or involve mechanisms not

captured by acute ox-LDL exposure in single cell types, warranting

investigation into complement signaling dynamics in AS

ferroptosis; the LCP2 cell-specificity reinforces the central role of

macrophages in ferroptosis-related processes within AS plaques.

Future studies employing single-cell or spatial transcriptomics on

AS lesions, coupled with targeted in vivomodulation, will be crucial

to resolve these discrepancies, understand the cell-specific roles of

LCP2 and C1QA, and further validate the predictive power of

TYROBP and CSF1R.

TYROBP, a protein tyrosine kinase-binding protein, is widely

expressed in natural killer cells, neutrophils, and monocytes/

macrophages. Studies have shown that TYROBP/DAP12 is highly

expressed in the plaques of high-fat diet-fed ApoE-/- mice, where it

promotes AS formation through the TREM-1/DAP12 pathway.

This effect can be mitigated by pravastatin, which modifies the

inhibition of this pathway (88). Similarly, TYROBP has been found

to be highly expressed in the aorta of a high-fat diet-fed novel

Tibetan minipig model of AS (89). Multiple bioinformatics analyses

have also identified TYROBP as upregulated in AS, suggesting its

potential as a biomarker for the AS (90–92). Although the

relationship between TYROBP and ferroptosis has not yet been

fully elucidated, a mouse model of lipopolysaccharide-induced

acute lung injury revealed that TREM2 can inhibit DAP12

expression and reduce ferritin accumulation, thereby inhibiting

macrophage ferroptosis (93).

CSF1R, a colony-stimulating factor 1 receptor, is highly

expressed in macrophages and regulates their survival,

proliferation, and function by binding to its ligand, CSF1 (94).

Inhibition of CSF1R has been shown to suppress macrophage

proliferation, thereby slowing the progression of AS (95).

Conversely, activation of CSF1R promotes lipid uptake by

macrophages and the formation of foam cells, a critical step in

the development of atherosclerotic plaques (96). Moreover, CSF1R

activation is closely associated with inflammatory responses. For
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instance, IL-6 enhances STAT3 activity, which further upregulates

CSF1R expression and boosts macrophage survival and secretion of

inflammatory factors, thereby exacerbating AS (97). Additionally,

GRK5 has been reported to reduce AS by desensitizing macrophage

CSF1R (98).The relationship between CSF1R and ferroptosis is not

yet fully understood. However, CSF1R has been identified by Xu

et al. as a potential biomarker associated with ferroptosis in AS and

atrial fibrillation (99).
4.4 Clinical implications and future
directions

Then, we selected three ASLMRFeGs (CYBB, HMOX1, and

IL1B) and two Hub genes (TYROBP and CSF1R) of the models

combined with the results of the in vitro experiments and

constructed a nomogram to predict the incidence of AS, which

was validated in three external datasets and demonstrated

satisfactory predictive ability to effectively differentiate between

AS and normal samples.

In the above analysis, we obtained three ASLMRFeGs and two

Hub genes, which we believe are also potential targets for the

treatment of AS. Therefore, we obtained 13 potential drugs for

the treatment of AS by querying databases and literature. Chrysin is

a flavonoid compound, and its protective effects on the

cardiovascular system have been confirmed. It can delay AS by

improving lipid metabolism, enhancing vascular function, and

inhibiting inflammatory responses (100). Apigenin is also a

natural flavonoid compound. Thanks to its antioxidant and anti-

inflammatory properties, as well as its antihypertensive effects and

regulation of lipid metabolism, it is considered a candidate drug for

treating AS (101). Vitamin D is a fat-soluble vitamin. Studies have

found that vitamin D deficiency is associated with the development

and progression of AS, and it increases the risk of severe coronary

artery disease in women (102). Supplementation with vitamin D

can reduce the formation of VSMC foam cells through the JNK-

TLR4 signaling pathway, thereby delaying the progression of AS

(103). Selenium is an essential trace element for the human body. It

is absorbed and metabolized into selenocysteine to produce

selenoproteins. Due to their antioxidant properties, selenoproteins

show certain therapeutic potential in AS. Studies have shown that

selenium supplementation can eliminate AS, improve plaque

vulnerability, and enhance vascular tension (104). Sunitinib is

primarily used for treating tumors and was previously thought to

have certain cardiotoxicity (105, 106). However, recent findings

indicate that due to its potent anti-inflammatory characteristics, it

exhibits immunomodulatory effects in chronic cardiovascular

inflammation models, reducing circulating TNF-a levels, and is

thus considered a potential drug for inflammatory diseases

(107).Canakinumab and Rilonacept are IL-1b antagonists.

Targeting inflammatory pathways for AS treatment is considered

an important approach to reducing residual inflammatory risk in

atherosclerotic cardiovascular disease (108–110). Diacetylrhein is

an orally active anthraquinone compound that mainly inhibits the

activation of IL-1b by reducing the production of IL-1 converting
Frontiers in Immunology 22
enzyme. It has been found to alleviate AS caused by IL-1 (111).

Tiludronic acid, risedronic acid, clodronic acid, and etidronic acid

are all bisphosphonates, which are drugs used to treat

hypercalcaemia and osteoporosis. However, numerous reports

have found that they have certain therapeutic potential for AS

(112). A meta-analysis found that nitrogen-containing

bisphosphonates can reduce the intima-media thickness and

plaque area in AS patients (113). Hydroquinone is a phenolic

compound widely found in nature and has antioxidant properties

(114). Its various derivatives are considered potential drugs for

treating AS due to their anti-inflammatory, antioxidant, and

endothelial function-improving effects (115–117).

Through database and literature searches, we identified several

potential drugs for the treatment of AS. Our discovery was based

solely on literature that suggests these drugs may have therapeutic

and ameliorative effects on AS. However, it is not clear whether

these drugs can treat AS by improving lipid metabolism and

regulating ferroptosis. Therefore, we utilized molecular docking

techniques and found that these drugs exhibit good binding affinity

with the key ferroptosis gene GPX4, suggesting the possibility of

their regulation of ferroptosis. Nevertheless, these findings still

require further experimental validation.
4.5 Innovations and limitations

In this study, a comprehensive bioinformatics analysis was

conducted to investigate the potential mechanisms linking

ferroptosis in lipid metabolism pathways to AS. Three ASLMRFeGs

(CYBB, HMOX1, and IL1B) were identified, highlighting the close

association between ferroptosis mediated by lipid metabolic pathways

and immune responses, as well as its impact on the immune

infiltration microenvironment in AS. Furthermore, two distinct

lipid metabolism pathway ferroptosis-related molecular clusters

were discovered in AS samples, exhibiting significant disparities in

immune response and inflammation. Machine learning models and

in vitro experiments identified two Hub genes (TYROBP and

CSF1R), and their roles in AS pathogenesis and progression were

delineated. Moreover, a nomogram was constructed using Hub genes

combined with ASLMRFeGs to predict the risk of AS development,

demonstrating promising diagnostic efficacy. Additionally, this study

identified 13 potential drugs for the treatment of AS based on

ASLMRFeGs and Hub genes. Finally, we induced HUVECs and

RAW 264.7 cells using ox-LDL in an attempt to establish a model of

endothelial damage and foam cells caused by abnormal lipid

metabolism. It was demonstrated that lipid metabolism

abnormalities prominently contributed to ferroptosis and that

inhibition of ferroptosis improved the expression of CYBB,

HMOX1, IL1B, TYROBP, and CSF1R genes, which are important

genes for lipid metabolism to regulate ferroptosis and AS.

Ferroptosis, a novel form of cell death, has been the subject of

numerous bioinformatics studies exploring its link to AS. However, the

pathogenesis of AS, intricately tied to lipid metabolism abnormalities

and immune dysregulation, presents a research gap concerning the

bioinformatics of ferroptosis induced by lipid metabolism disturbances
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within the atherosclerotic context, a gap our study begins to bridge.

Subsequently, while the association of the five hub genes we identified,

CYBB, HMOX1, IL1B, TYROBP, and CSF1R, with AS has been

confirmed by various studies, the relationship of these genes with

lipid metabolism and ferroptosis, particularly in the atherosclerotic

context, remains unclear. This is especially true for IL1B, TYROBP, and

CSF1R, warranting further investigation. Additionally, through the

validation of a dual-cell line model, we discovered various organelle

dysfunctions associated with the interplay between abnormal lipid

metabolism and ferroptosis.

Nevertheless, it should be noted that although we used a two-cell

line for our experiments, the in vitromodel does not perfectly replicate

the intricate regulatory mechanisms in the human body. Further

confirmation of the specific expression patterns of these genes in

animal models of AS and in humans is necessary, and additional

investigations are required to unravel their precise mechanisms.

Furthermore, our study has uncovered potential mechanisms for the

treatment of AS. However, additional clinical studies are necessary to

validate the efficacy of these drugs in managing AS. Moreover, further

experimental validation is required to ascertain whether these

medications exert their therapeutic effects on AS by modulating

ferroptosis and lipid metabolism.

The multifaceted approach employed in this study,

encompassing bioinformatics analysis, molecular characterization,

and machine learning modeling, advances our understanding of AS

pathophysiology. It provides a foundation for the development of

personalized diagnostic tools and innovative therapeutic strategies

to combat this prevalent and challenging cardiovascular condition.

Inflammatory and immune responses have emerged as potential

mechanisms underlying ferroptosis in AS lipid metabolism

pathways, shedding light on the intricate interplay between lipid

metabolism, ferroptosis, and immune dysregulation in AS. In

summary, our study offers a novel perspective on understanding

AS, which may guide future research endeavors in this field.
5 Conclusions

CYBB, HMOX1, IL1B, TYROBP, and CSF1R are key genes

associated with ferroptosis, a form of cell death triggered by lipid

metabolism abnormalities in the context of atherosclerosis. These

genes are also crucial in modulating the immune-infiltrated

microenvironment in patients with AS. Inflammatory and

immune responses may serve as pivotal mechanisms through

which ferroptosis manifests within atherosclerosis lipid

metabolism pathways. Abnormal lipid metabolism promotes

ferroptosis and may contribute to the progression of AS,

potentially through the modulation of organelle function.
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AS Atherosclerosis
Frontiers in Immunol
ASLMRFeGs Atherosclerosis Lipid Metabolism-Related Ferroptosis Genes
CCK-8 Cell Count Kit-8
CDF Cumulative Distribution Function
CVDs Cardiovascular Diseases
DCA Decision Curve Analysis
DEGs Differentially Expressed Genes
ER Endoplasmic Reticulum
ERS Endoplasmic Reticulum Stress
Fer-1 Ferrostatin-1
FeRGs Ferroptosis-Related Genes
GEO Gene Expression Omnibus
GSEA Gene Set Enrichment Analysis
GSVA Gene Set Variation Analysis
HUVECs Human Umbilical Vein Endothelial Cells
ogy 27
KEGG Kyoto Encyclopedia of Genes and Genomes
LASSO Least Absolute Shrinkage and Selection Operator
LMRGs Lipid Metabolism-Related Genes
NOX2 NADPH oxidase 2
ORO Oil Red O
ox-LDL Oxidized Low-Density Lipoprotein
PPI Protein-Protein Interaction
qRT-PCR Quantitative Real-Time Polymerase Chain Reaction
RF Random Forest
ROC Receiver Operating Characteristic
ROS Reactive Oxygen Species
SVM-RFE Support Vector Machine-Recursive Feature Elimination
UPR Unfolded Protein Response
WGCNA Weighted Gene Co-expression Network Analysis
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