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Background: Protein S-palmitoylation is a reversible post-translational
modification that plays a significant role in tumor progression. However, the
impact of palmitoylation metabolism on the prognosis and tumor
microenvironment characteristics of lung adenocarcinoma (LUAD)
remains unclear.

Methods: Clinical and mRNA data from LUAD patients were collected from
public databases. A palmitoylation-related gene cluster was constructed using
consensus clustering. A prognostic model based on palmitoylation-related
genes was developed using univariate Cox regression and Lasso regression
analysis, and the contribution of each gene was assessed using shapley
additive explanations (SHAP) analysis. The role of the key gene ZDHHC5 in
LUAD was experimentally validated.

Results: Cluster analysis divided patients into two groups, with group B exhibiting
a better prognosis. Group A had a higher frequency of TP53 mutations, and
significant differences in immune cell infiltration were observed between the two
groups. A prognostic risk model, based on five key genes (ZDHHC5, ZDHHC12,
ZDHHC21, LYPLAL, and PPT2), revealed significant survival differences between
the high-risk and low-risk groups. Immune infiltration analysis showed
differences in immune cell lineages and functional activities between risk
groups. Drug sensitivity analysis indicated varying patient responses to different
chemotherapy drugs across risk strata. Further analysis of ZDHHC5 expression
across 33 cancers demonstrated its upregulation in multiple cancers, including
LUAD. Experimental results suggest that ZDHHC5 may promote LUAD cell
proliferation and metastasis both in vivo and in vitro via the PIZK/AKT pathway.
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Conclusion: A prognostic model based on palmitoylation-related genes offers a
valuable tool for survival prediction and the development of personalized
treatment strategies in LUAD. ZDHHCS5, a key gene related to palmitoylation,
demonstrates potential as both a therapeutic target and a prognostic marker for
LUAD and other cancers.

palmitoylation, lung adenocarcinoma, prognostic model, ZDHHCS5, immune infiltration

Introduction

Lung adenocarcinoma (LUAD), the predominant subtype of non-
small cell lung cancer (NSCLC), is characterized by high aggressiveness
and poor prognosis, imposing a significant burden on global healthcare
systems (1-3). Despite advancements in immunotherapies and
targeted therapies, overall survival (OS) rates among LUAD patients
remain suboptimal, largely due to tumor heterogeneity and resistance
to current treatments (4, 5). Existing diagnostic and therapeutic
strategies often inadequately address the complex molecular features
of LUAD, particularly the critical role of post-translational
modifications, such as palmitoylation, in tumor progression and
immune evasion (6, 7). These limitations highlight substantial gaps
in the understanding of LUAD molecular mechanisms and underscore
the urgent need for further investigation into palmitoylation-related
genes as potential prognostic biomarkers and therapeutic targets. In
our study, a prognostic model was developed using genes associated
with palmitoylation, and their expression profiles and genomic
alterations were characterized, with a specific focus on ZDHHCS.
This approach aims to enhance prognostic accuracy and provide a
scientific foundation for developing more effective treatment strategies.

Protein palmitoylation is a reversible lipid modification (8)
occurring on certain oncogenes and tumor suppressors, and is
dynamically regulated by the zinc-finger DHHC-type (ZDHHC)
palmitoyltransferase family and the palmitoyl protein thioesterase
family (9, 10). This modification regulates protein-protein
interactions, protein stability, and signal transduction, playing a
pivotal role in numerous physiological processes, as well as in tumor
survival and progression (11). ZDHHC5, a key member of the
palmitoyltransferase family (12), has been implicated in cancer
progression and metastasis in recent studies. Aberrant expression
of ZDHHCS5 has been reported in multiple cancer types, including
pancreatic cancer (13), esophageal cancer (14), glioma (15, 16), and
lung cancer (17), and is correlated with poor prognosis. However,
prognostic models based on palmitoylation-related genes remain
lacking, and comprehensive systematic analyses of ZDHHC5’s role
across different cancers—particularly its influence on the tumor
immune microenvironment, microsatellite instability (MSI), drug
sensitivity, and tumor mutational burden (TMB)—are still needed.

This study integrated the expression profiles of palmitoylation-
related genes with genomic variation analysis, consensus clustering,
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and risk model construction to elucidate their prognostic significance
in LUAD. The strength of this approach lies in linking gene
expression patterns with clinical outcomes, thereby facilitating the
identification of potential biomarkers for patient stratification. The
primary objective was to develop a robust prognostic model based on
the expression of palmitoylation-related genes that not only predicts
patient survival but also uncovers molecular mechanisms underlying
tumor behavior and immune regulation. By incorporating advanced
statistical methods such as shapley additive explanations (SHAP)
analysis, the interpretability of the model was enhanced, providing a
scientific basis for personalized therapy and patient management in
LUAD. Furthermore, a pan-cancer analysis of ZDHHC5 was
performed alongside an in-depth investigation of its role in LUAD.
Experimental results suggest that ZDHHC5 may promote LUAD cell
proliferation and metastasis both in vivo and in vitro via the PI3K/
AKT pathway.

Materials and methods
Data sources

RNA sequencing data, survival information, and clinical details
were sourced from The Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov/) database. The GSE13213 dataset was
obtained from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/). A total of 31 palmitoylation-
related genes were identified through a literature review and the
GeneCards database (https://www.genecards.org) (18).
Immunohistochemical images were sourced from the Human
Protein Atlas (HPA) database. Furthermore, the activity levels of
ZDHHCS across 33 tumors were assessed using single-sample Gene
Set Enrichment Analysis (ssGSEA). The flowchart illustrating the
study design is shown in Supplementary Figure SI.

Clustering analysis of palmitoylation-
related genes

Consensus clustering methods were employed to classify
samples into distinct subtypes, facilitating the exploration of
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potential molecular features associated with clinical outcomes. Initially,
the R packages “limma”, “survival”, and “ConsensusClusterPlus” were
loaded for data processing, survival analysis, and clustering analysis,
respectively. For clustering, the ConsensusClusterPlus function was
used to perform consensus clustering on the samples. The parameter
maxK=9 allowed for the division of samples into up to nine groups,
while reps=50 indicated that the clustering procedure would be
repeated 50 times to ensure result stability. The k-means (km)
algorithm was selected for clustering, with Euclidean distance used
to measure sample similarity. During each iteration, 80% of the
samples and 100% of the gene features were selected for analysis
(pItem=0.8, pFeature=1) to enhance the robustness of the clustering.
Ultimately, the samples were divided into two subtypes based on the
clusterNum=2 parameter, and each sample’s clustering category was
mapped to letter labels. This approach allows researchers to effectively
categorize samples based on gene expression data, identify potential
subtype features, and provide a foundation for further clinical research
and exploration of molecular mechanisms.

Construction of a prognostic model

A prognostic model was constructed using gene expression and
survival data. Samples were randomly split into training and testing
sets at a 1:1 ratio. LASSO Cox regression was conducted on the
training set to identify prognostic genes and estimate their
coefficients, with the optimal penalty parameter selected via cross-
validation. Subsequently, a multivariate Cox proportional hazards
model was developed based on the selected genes and refined
through stepwise selection. Risk scores were calculated for each
sample using the final model coefficients, and samples were
stratified into high- and low-risk groups according to the median
risk score of the training set. Survival differences between risk
groups were evaluated using the log-rank test. Model predictive
performance at specific time points was assessed by time-dependent
receiver operating characteristic (ROC) curve analysis. Validation
was conducted on an independent testing set, with only models
meeting predefined significance and performance criteria retained.

SHAP analysis

This study employed the SHAP analysis method, utilizing the R
package “kernelshap” (version 0.9.0) to calculate the contribution of
each gene in the Cox regression prognostic model, and visualized the
SHAP values using the “shapviz” (version 0.10.2) package to
demonstrate the influence of genes on prognostic prediction. First,
single-factor significantly expressed gene expression data from the
TCGA database were retrieved, and expression data and survival data
files from the GEO database were merged. Next, the Cox regression
prognostic model was constructed using the “survival” package
(version 3.8.3) with the function coxph(Surv(futime, fustat) ~., data
= rt), where futime and fustat represent follow-up time and survival
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status, respectively. The model was optimized using the step function
for stepwise regression. The Cox regression model was built using the
“glmnet” package (version 4.1.10). In SHAP analysis, the function
additive_shap(multiCox, rt[,-c(1, 2)]) was used, where multiCox
represents the Cox regression model, and rt[,-c(1, 2)] represents
the gene expression data after removing survival time and status.
Subsequently, the function shapviz(fit, X_pred = rt[,-c(1, 2)], X = rt
[,-c(1, 2)], interactions = TRUE) was used to visualize the SHAP
values, generating bar plots, honeycomb plots, waterfall plots, and
single-sample force plots to demonstrate the influence of genes on
prognostic prediction. The visualization plots were generated using
the “ggplot2” package (version 3.5.2). For the risk score calculation,
the risk score for each sample was computed using the training set
data, and samples were classified into high-risk and low-risk groups
based on trainScore > cutoff. Finally, risk classification was performed
using Risk = as.vector(ifelse(trainScore > cutoff, “high”, “low”)), and
the risk scores and grouping results were output to a file for
subsequent analysis and clinical application.

Prognostic modeling and ZDHHCS survival
analysis

The R package “pheatmap” was used to visualize risk scores.
Risk score data were imported, sorted by risk value, and three types
of plots were generated: (1) a risk score scatter plot distinguishing
high- and low-risk groups; (2) a survival status plot showing patient
survival time and status, with samples ordered by risk; and (3) a
gene expression heatmap annotated by risk groups. A predefined
color scheme was applied to differentiate risk groups and survival
status, while clustering of samples and genes was disabled to
preserve sample order. Kaplan-Meier (KM) curves were fitted to
visualize survival distributions and display survival statistics for risk
groups. Time-dependent ROC curve analysis was performed using
the “timeROC” package to assess the prognostic predictive
performance of risk scores and clinical variables. ROC curves for
risk scores and multiple clinical features were plotted in a single
figure for comparison.

Univariate Cox regression was conducted to assess the
association between each variable and survival. Results were
visualized using forest plots. Subsequently, multivariate Cox
regression was applied to variables significant in univariate
analysis to identify independent prognostic factors, and
corresponding multivariate forest plots were generated. Forest
plots were produced using a custom function, displaying HRs
with confidence intervals, and significance was indicated by P-
values. Based on the combined risk scores and clinical data, survival
curves were constructed using the R packages “survival,” “regplot,”
and “rms.” Samples with missing clinical values were excluded, and
variables such as age were converted to numeric format. A
multivariate Cox model was fitted to the survival data, and the
“regplot” package was employed to generate nomograms.

« »

Calibration curves were subsequently plotted using the “rms
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package, based on KM estimates and bootstrap resampling, to
evaluate model predictive accuracy.

Enrichment analysis

To investigate the functions and pathways related to ZDHHC5
in various cancers, we conducted Gene Set Enrichment Analysis
(GSEA) (19) (http://www.gsea-msigdb.org/gsea/index.jsp),
including Gene Ontology (GO, https://www.geneontology.org/)
and Kyoto Encyclopedia of Genes and Genomes (KEGG,
www.kegg.jp/kegg/keggl.html) analyses. Additionally, the R

»  «

packages “clusterProfiler”, “enrichplot”, and “org.Hs.eg.db” were
employed to further annotate the pathways and functions related to
ZDHHCS5 (20). In the GSEA analysis, the gene list used was derived
from Supplementary Table S1, and the criteria for determining
significantly enriched gene sets were p < 0.05 and error discovery

rate (FDR) < 0.05.

Assessment of immune cell infiltration and
association of ZDHHCS5 with ICP genes and
immunomodulators

Immune cell infiltration analysis was conducted based on
CIBERSORT results. Statistically significant samples (p <0.05)
were first selected, and normal tissue samples were excluded.
Immune cell proportion data were merged with risk scores and
ordered accordingly. Immune function enrichment analysis was
performed using ssGSEA. Gene expression data were preprocessed
to remove low-expression and duplicate probes. Immune gene sets
were loaded via “GSEABase,” and immune function scores were
calculated and normalized using “GSVA.” After exclusion of
normal samples, scores were integrated with risk data. The
association between immune subtypes and risk groups was
evaluated using chi-square tests. Sample names were
standardized, intersecting samples identified, and rare subtypes
removed. Contingency tables were constructed to assess
statistical associations.

Tumor mutation burden (TMB) and risk group relationships
were analyzed using merged TMB and risk score data. After selecting
common samples, TMB values were log2-transformed, and risk
factors were ordered. Box plots generated via “ggpubr” compared
TMB across risk groups with statistical testing. Survival analysis of
TMB employed the “survminer” and “survival” packages.

The TIMER2.0 database (https://cistrome.shinyapps.io/
TIMER/) was used to examine the relationship between
ZDHHC5 and various immune cells. Additionally, we extracted
the expression data for eight common immune checkpoint (ICP)
genes to analyze their correlation with ZDHHCS5 expression. The
outcomes of these analyses were visualized utilizing the “ggplot2”
package in R (21). The TISIDB website (http://cis.hku.hk/TISIDB/
index.php) (22) was used to produce a heatmap to depict the
association between ZDHHCS5 and immunomodulators in diverse
cancer types.
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Relationship between ZDHHC5 and single
nucleotide variant, TMB, and MSI

MSI and TMB are strongly correlated with the efficacy of
immunotherapy (23, 24). To examine these relationships, we used
Spearman’s correlation coefficient to assess the association between
ZDHHCS5 and both TMB and MSI. Furthermore, we explored SNV
expression across various carcinomas.

Drug sensitivity analysis

Drug sensitivity analysis was conducted based on combined risk
scores and drug response data. Common samples were first
identified and merged, and drug sensitivity values were log2-
transformed to improve distribution. Box plots were generated for
drugs showing significant differences, with colors distinguishing
risk groups. Additionally, the “pRRophetic” package was employed
to estimate the half-maximal inhibitory concentration (IC50) of
commonly used drugs in LUAD, investigating treatment response
differences among patients stratified by ZDHHCS5 expression levels.

Cell culture and transfection

BEAS-2, H1299, and HCC827 cell lines were procured
from ProCell (Wuhan, China). Cells were cultured at 37 °C in a
5% CO2 atmosphere in RPMI-1640 medium supplemented
with 10% fetal bovine serum (FBS). Human ZDHHC5-targeted
small interfering RNAs (siRNAs) were designed by the Hanbio
Co. Ltd (Shanghai, China). The siRNA sequences used were as
follows: ZDHHC5si#1:5-GAAAGAGAAGACAAUUGUAAU-3’;
ZDHHC5si#2:5-CGACACCUACCAUGUACAAGU-3;
ZDHHCS5si#3:5-CCUCAGAUGAUUCAAAGAGAU-3’; and
sicontrol: 5-UUCUCCGAACGUGUCACGUTT-3.” The control
plasmid (vector) and the ZDHHC5 overexpression plasmid (OE-
ZDHHCS5) were cloned into the pcDNA 3.1 (+) vector (Hanbio Co.
Ltd, Shanghai, China), and HCC827 cells were transiently
transfected using Lipofectamine 3000 (Invitrogen, Waltham,
Massachusetts, USA) according to the manufacturer’s
instructions. The cells were collected 48-72 hours after transfection.

Real-time quantitative reverse transcription
polymerase chain reaction

Total RNA was extracted using the TRIzol reagent (Invitrogen,
USA), and complementary DNA was synthesized using the PrimeScript
RT kit (Takara). QRT-PCR was performed using Takara SYBR Green
assay. The qRT-PCR data were analyzed using the 2-AACt method, with
[-actin serving as the internal control. The specific primers used were:
ZDHHC5-F: 5-AGACCACCTACAGCAAATCCA-3’; ZDHHCS5-R:
5-CCTGACACCTTCTTGACTCCT-3’ p-actin-F: 5°-
GAGAAAATCTGGCACCACACC-3% and B-actin-R: 5’-
GGATAGCACAGCCTGGATAGCAA-3.
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Western blot

Intracellular proteins were extracted using RIPA lysis buffer
supplemented with 1% protease inhibitor (P1005, Beyotime, China)
and phosphatase inhibitor (P1081, Beyotime, China). The
concentration of the isolated proteins was measured using the
bicinchoninic acid (BCA) assay (Beyotime Biotechnology). The
total cell lysates were subsequently subjected to 4%-20% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
followed by transfer to polyvinylidene fluoride (PVDF)
membranes. To prevent nonspecific binding, the membranes were
incubated with 5% skim milk in TBST buffer for one hour and were
then incubated overnight at 4 °C with primary antibodies at their
recommended concentrations. After this incubation period, the
membranes were exposed to horseradish peroxidase (HRP)-
conjugated secondary antibodies for one hour. The visualization
of protein bands was accomplished using a chemiluminescent HRP
substrate in conjunction with an imaging system (Chemidoc, Bio-
Rad). The primary antibodies utilized in this study, at their
designated dilutions, included ZDHHC5 (Cat No: YN6038,
1:1000; ImmunoWay Biotechnology, Plano, TX, USA), PI3K(Cat
No: YW8045, 1:1000; ImmunoWay Biotechnology, Plano, TX,
USA), p-PI3K(Cat No: YP0765, 1:1000; ImmunoWay
Biotechnology, Plano, TX, USA), AKT (Cat No: YM8463, 1:1000;
ImmunoWay Biotechnology, Plano, TX, USA), p-AKT (Cat No:
YM8304, 1:1000; ImmunoWay Biotechnology, Plano, TX, USA),
and o-tubulin (Cat No: 11224-1-AP, 1:1000; Proteintech,
Wubhan, China).

Immunohistochemical assay

THC staining was performed on mouse tumor samples. Sections
were incubated overnight with primary antibodies against
ZDHHC5 and Ki67, with sheep serum used as a negative control.
Following incubation, the sections were treated with an anti-rabbit
secondary antibody and a streptavidin-peroxidase complex. After
staining, the sections were counterstained with hematoxylin,
followed by dehydration and mounting. Staining intensity was
graded as 0 (no staining), 1+ (weak), 2+ (moderate), or 3+
(strong). H-scores were calculated as the product of intensity and
extent scores, independently assessed by two pathologists. The
antibodies used in this study and their specified dilutions were:
ZDHHCS5 (Cat No: 84803-4-RR, 1:500; Proteintech, Wuhan, China)
and Ki67 (Cat No: YM8189, 1:400; ImmunoWay Biotechnology,
Plano, TX, USA).

Cell proliferation and colony formation
assays

To assess cell growth, 1 x 1074 cells were transferred to each
well of a 24-well plate and cultured in 10% FBS RPMI 1640
medium. The cells were collected at 24-, 48-, and 72-hour
intervals, and their absorbance was measured using Cell Counting
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Kit (CCK)-8. Cells (500 cells/well) were transferred to 6-well plates
and cultured for 10 days. The cells were fixed with formaldehyde
and stained with crystal violet (Sigma-Aldrich). Cells were counted
using an inverted microscope, and images were captured. Each
experiment was performed in triplicate.

Wound-healing assay

The cells were first transferred to 6-well plates at a density of 1 x
1075 cells per well. Subsequently, a consistent wound was created
by gently scratching the cell monolayer using the tip of a 10 uL
plastic pipette. Cell migration was monitored at 0 h and 24 h. Each
experiment was performed in triplicate.

Transwell assays

To perform the migration assay, 2 x 10 cells were suspended in
200 uL of serum-free medium and seeded into the upper chamber
of a Transwell system (BD Biosciences, USA). For the invasion
assay, 50 UL of Matrigel, diluted 1:8, was added to each well and
incubated at 37 °C for 4 hours to allow the Matrigel to solidify.
Subsequently, 5 x 10* cells were suspended in 200 uL of serum-free
medium and added to the upper chamber containing Matrigel. The
lower chamber was filled with 600 UL of medium containing 10%
fetal bovine serum (FBS) to provide the necessary nutrients and
conditions for cell growth. The cells were incubated for 24 hours to
complete the migration and invasion process. After incubation, the
cells in the lower chamber were fixed with formaldehyde to preserve
their morphology. The cells were then stained with crystal violet. To
ensure accurate results, five random fields of view were selected for
photography and analysis. This experiment was repeated three
times to confirm the reliability and reproducibility of the findings.
Through this procedure, the migration and invasion capabilities of
the cells were assessed, providing valuable data for further research.

Tumor xenografts models

The animal experimentation protocol for this study was
approved by the Fujian Anburi Biological Experimental Animal
Ethics Committee (IACUC FJABR2025061001). BALB/c nude mice
(4-6 weeks old) were purchased from Jiangsu Jinpu Biotechnology
Co., Ltd. All mice were housed on standard rodent chow in a
specific pathogen-free environment at 23 °C with a 12-hour light-
dark cycle. After randomization, mice were subcutaneously injected
with HCC827 cells transfected with ZDHHC5 knockdown. Each
group consisted of six mice, with 100 pl of a solution containing 5 x
1016 cells injected per mouse. Tumor growth was monitored
weekly by measuring the maximum (A) and minimum (B) tumor
diameters, and tumor volume was calculated using the formula:
volume = 0.5 x A x B. The experiment was conducted over 4 weeks.
Mice were euthanized when the tumor diameter reached 1.5 cm or
at the end of the experiment, and tumor tissues were collected for
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IHC staining to assess tumor growth and changes in related
molecular markers.

Statistical analysis

The data were assessed and visualized using R software
(version 4.4.2) (https://cran.r-project.org/). GraphPad Prism
9.0 was utilized for both the visualization and statistical
evaluation of the experimental data. A p < 0.05 was regarded as
statistically significant.

Results

Expression and genomic variation analysis
of palmitoylation-related genes

Figure 1A illustrates the differential expression of 31
palmitoylation-related genes between normal and LUAD tumor
tissues, revealing that 13 genes were downregulated while another
13 were upregulated in LUAD. A correlation heatmap of these genes
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is presented in Figure 1B. Additionally, Figures 1C and D depict the
frequencies of copy number variations (CNVs) in palmitoylation-
related genes and their genomic distribution, respectively. These
analyses provided a deeper understanding of the expression
characteristics of palmitoleic acid-related genes in LUAD and
their potential biological significance, offering valuable insights for
further mechanistic studies.

Consensus clustering analysis and somatic
mutation, and immune-related differences
between different groups

The unsupervised clustering analysis of LUAD patients was
conducted based on the expression levels of 31 palmitoylation-
related genes. The clustering heatmap at k=2 reveals highly
consistent dark squares within the two subtypes, with clear
boundaries, indicating that the clustering results are stable and
reliable (Figures 2A-C; Supplementary Figure S2A). Among these
clusters, group B demonstrated a better prognosis (Figure 2D).
Heatmaps displayed the differentially expressed genes between the
two clusters (Figure 2E). GO enrichment analysis revealed that the
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FIGURE 1

Expression and genomic variation analysis of palmitoylation-related genes. (A) Expression levels of palmitoylation-related genes were compared
between normal tissues and LUAD tissues. (B) Correlation analysis of the expression patterns among palmitoylation-related genes. (C) Frequencies of
CNVs in palmitoylation-related genes. (D) Schematic representation of the chromosomal distribution of palmitoylation-related genes and their

corresponding CNV locations. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 2

Results of consensus clustering analysis. (A) Consensus cumulative distribution function (CDF) curves for different cluster numbers. (B) Relative
changes in the area under the CDF curves at varying k values. (C) Heatmap of the consensus matrix at k = 2, illustrating the stability of sample
clustering. (D) KM survival curves showing the comparison of survival outcomes between groups A and B. (E) Heatmap depicting gene expression
differences between the two identified subtypes.. (F) GO enrichment analysis. (G) KEGG enrichment analysis.

biological process terms included microtubule basal movement,
cilium movement, and cilium organization. In terms of cellular
components, enriched terms included microtubules, motile cilia,
and the cytoplasmic region. The molecular function terms primarily
included peptidase regulatory activity, endopeptidase inhibitory
activity, and peptidase inhibitory activity (Figure 2F). KEGG
enrichment analysis indicated that the differentially expressed
genes (DEGs) were predominantly enriched in the neuroactive
ligand-receptor interaction pathway (Figure 2G). Through these
analyses, a deeper understanding of the functions of palmitoleic
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acid-related genes in LUAD and their potential biological
significance has been gained, offering new directions for future
mechanistic studies.

The distribution of somatic mutations was analyzed between
group A and group B. In group B, 193 out of 219 samples (88.13%)
exhibited gene mutations, whereas in group A, 257 out of 277
samples (92.78%) showed mutations. Notably, group A exhibited a
significantly higher frequency of TP53 mutations (Supplementary
Figures S2B, C). In group B, higher levels of CD8 T cells, monocytes,
CD4 memory resting T cells, MO macrophages, resting dendritic
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cells, and resting mast cells were observed, while in group A,
elevated levels of naive B cells, CD4 memory activated T cells,
and M1 macrophages were found (Supplementary Figure S2D).
Differential expression analysis of HLA genes revealed that HLA-
DMA, HLA-DQB2, HLA-DQB1, HLA-DRB1, HLA-DPB1, HLA-
DRB5, and HLA-]J gene expression was upregulated in group B,
whereas HLA-A and HLA-C gene expression was upregulated in
group A (Supplementary Figure S2E). These findings offer valuable
insights into the differences in the tumor immune
microenvironment and may serve as a foundation for the
development of personalized immunotherapy strategies.

Construction of a risk model, SHAP
analysis, and evaluation of its prognostic
performance

Univariate Cox regression analysis was conducted to identify
palmitoylation-related genes significantly associated with prognosis
(Figure 3A). Subsequently, Lasso regression analysis was conducted
on these prognosis-related genes, resulting in the selection of five
genes for the development of the prognostic model (Figures 3B, C).
Risk scores were calculated using the formula provided below: Risk
score = (0.3869 x ZDHHC5 expression) + (0.2069 x ZDHHCI12
expression) + (-0.1710 x ZDHHC21 expression) + (0.1539 X
LYPLALI expression) + (0.1709 x PPT2 expression). The average
importance of these five genes, based on SHAP values, was
illustrated by bar graphs, with ZDHHCS5 exhibiting the highest
contribution, followed by ZDHHC21 and PPT2, indicating their
prominent roles in model prediction (Figure 3D). The swarm plots
depicted the relationship between gene expression levels and SHAP
values; colors ranging from violet to orange represented low to high
expression, respectively. Distinct distributions of SHAP values
corresponding to high expression levels of different genes further
demonstrated the impact of gene expression on risk prediction
(Figure 3E). Waterfall plots and force diagrams for individual
samples illustrated the specific contributions of genes to
prediction outcomes, where genes with negative values decreased
the risk prediction score, and those with positive values increased it,
thereby providing an intuitive representation of the model’s internal
decision-making process (Figures 3F, G). Finally, the PCA scatter
plot clearly separated the high-risk group from the low-risk group,
indicating the strong discriminatory capacity of the model features
in sample risk classification (Figure 3H).

The risk distribution graph demonstrated a stepwise increase in
patients’ risk scores, with a marked reduction in survival time in the
high-risk group (Figure 4A). The Kaplan-Meier analysis
demonstrates that the survival rate in the low-risk group is
significantly higher than that in the high-risk group (Figure 4B).
Moreover, validation with the GEO database yielded consistent
results (Figure 4C). The predictive performance of the risk model,
assessed by the ROC curve, yielded area under the curve (AUC)
values of 0.669, 0.640, and 0.614 at 1, 3, and 5 years, respectively
(Figure 4D). Stratified survival analyses according to gender
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(Figure 4E), age (Figure 4F), and tumor stage (Figure 4G)
indicated that risk scores had a significant impact on survival
across all strata, with the low-risk group consistently exhibiting a
more favorable prognosis. Based on the aforementioned results, the
risk scoring model not only predicts OS but also offers valuable
insights for developing personalized treatment strategies for
patients in clinical settings, highlighting its significant
clinical applicability.

Univariate and multivariate Cox regression analyses
demonstrated that both tumor stage and risk score significantly
influenced patient survival risk, with the risk score exhibiting the
highest hazard ratio, thereby emphasizing its role as a key
prognostic factor (Figures 5A, B). Furthermore, validation using
the GEO database confirmed that the risk score serves as an
independent prognostic factor in both univariate and multivariate
Cox regression analyses (Figures 5C, D). A nomogram integrating
sex, age, risk score, and staging was constructed to assign scores and
predict 1-, 3-, and 5-year survival probabilities (Figure 5E).
Calibration curves indicated a high concordance between
predicted and observed survival probabilities, reflecting
satisfactory model performance (Figure 5F). ROC curve analysis
further confirmed the model’s predictive accuracy, with AUC values
0f0.747,0.716, and 0.696 for 1-, 3-, and 5-year survival, respectively
(Figure 5G). Based on the above analysis, this prognostic model
demonstrates significant potential for assessing patient survival risk
and guiding clinical decision-making. It provides physicians with
individualized survival estimates and aids in the development of
more targeted treatment strategies, ultimately enhancing the overall
management of patient prognosis.

Association analysis of risk scores with
immune infiltration characteristics,
molecular typing, TMB, and drug sensitivity

Immune cell differential analysis revealed that memory resting
mast cells, B cells, and plasma cells, were significantly more
abundant in the low-risk group, whereas resting NK cells,
activated CD4 memory T cells, and M0- and MI1-type
macrophages were enriched in the high-risk group (Figure 6A).
Functional immune analyses indicated enhanced activity in B cells,
activated dendritic cells, dendritic cells, HLA molecules, mast cells,
infiltrating dendritic cells, neutrophils, T-cell co-stimulation, helper
T cells, Thl cells, tumor-infiltrating lymphocytes, and type II
interferon responses within the low-risk group. Conversely,
increased expression of MHC class I molecules and
parainflammatory markers was observed in the high-risk group
(Figure 6B). Immunophenotyping analysis demonstrated a
statistically significant difference in immunophenotype
distribution between different risk groups (Figure 6C). TMB was
markedly elevated in the high-risk group compared to the low-risk
group, as shown in Figure 6D. Survival analysis revealed that
patients with high TMB had significantly improved survival
probability relative to those with low TMB (p = 0.024)
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FIGURE 3
Construction of the risk model. (A) Hazard ratio forest plot; (B) Partial likelihood deviance and its standard error based on different lambda values in
the LASSO regression model for selecting the optimal model parameters; (C) Path diagram of LASSO regression coefficients showing the changes in
the regression coefficients of five genes across different lambda values; (D) Histogram of average SHAP values of genes indicating the relative
importance of each gene's contribution to model prediction; (E) SHAP value swarm plot demonstrating the distribution of SHAP values for each
gene across different samples and the effect of expression levels on model prediction; (F) SHAP waterfall plot illustrating the positive and negative
contributions of each gene to the prediction result in a representative patient sample; (G) SHAP force plot showing the cumulative effect from the
baseline prediction value to the final prediction outcome; (H) PCA plot.

(Figure 6E). Further stratification combining risk status and
mutation burden demonstrated that patients with high TMB and
low risk exhibited the highest survival rates, while those with low
TMB and high risk showed the lowest survival rates (Figure 6F).
These results suggest that TMB and risk stratification jointly
influence patient survival outcomes.

The differences in drug sensitivity between the two groups were
further investigated. It was found that the low-risk group exhibited
lower IC50 values for Ribociclib, Selumetinib, and Axitinib,
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indicating increased sensitivity to these drugs. Conversely, higher
IC50 values were observed in the low-risk group for 5-Fluorouracil,
Talazoparib, Sapitinib, Fenretinide, Cediranib, Fluvastatin,
Galiellalactone, Dasatinib, Alisertib, Apitolisib, Osimertinib,
Gefitinib, and Erlotinib, suggesting decreased sensitivity
(Figure 7). These findings offer valuable guidance for selecting the
most appropriate drugs based on patients’ risk scores in clinical
practice, particularly in the context of precision medicine and
targeted treatment strategies.
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FIGURE 4
Prognostic evaluation of the risk model. (A) The upper panel presents the risk score distribution; the middle panel illustrates the distribution of
survival status and survival time; the lower panel displays a heatmap of the expression levels of five genes associated with the risk score; (B) Kaplan-
Meier OS curve for the TCGA dataset between the two risk groups; (C) Kaplan-Meier OS curve for the GEO dataset between the two risk groups;
(D) Time-dependent ROC curves; Survival analysis stratified by gender (E), age (F), and clinical stage (G).

ZDHHCS5 expression and activity across
various cancer types

Next, the role of ZDHHCS5, the most critical gene in the model,
was further investigated in a pan-cancer context. ZDHHC5
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expression across 33 tumor types was analyzed using the TCGA
database, with tissues ranked from highest to lowest expression. The
highest expression level was detected in head and neck squamous
cell carcinoma (HNSC) (Figure 8A). Compared with normal tissues,
significantly higher expression of ZDHHC5 was detected in 13
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FIGURE 5

Independent prognostic value and assessment of predictive efficacy of risk models. (A) Univariate Cox regression analysis in the TCGA dataset;
(B) Multivariate Cox regression analysis in the TCGA dataset; (C) Univariate Cox regression analysis in the GEO dataset; (D) Multivariate Cox
regression analysis in the GEO dataset; (E) In the TCGA dataset, a nomogram constructed based on age, gender, risk score, and staging;

(F) Calibration curve of the nomogram; (G) ROC curve of the nomogram. ***p < 0.001.

cancer types: invasive breast carcinoma (BRCA), bladder urothelial
carcinoma (BLCA), cholangiocarcinoma (CHOL), cervical
squamous cell carcinoma and endocervical adenocarcinoma
(CESC), esophageal carcinoma (ESCA), kidney chromophobe
(KICH), liver hepatocellular carcinoma (LIHC), LUAD, lung
squamous cell carcinoma (LUSC), stomach adenocarcinoma
(STAD), thyroid carcinoma (THCA), uterine corpus endometrial
carcinoma (UCEC), and kidney renal papillary cell carcinoma
(KIRP) (Figure 8B). In contrast, downregulated expression was
observed in colon adenocarcinoma (COAD). The activity levels of
ZDHHCS5 across 33 tumor types are shown in Figure 8C, with the
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highest activity in rectal adenocarcinoma (READ) and the lowest in
lower-grade glioma (LGG). Figure 8D presents the comparison of
ZDHHC5 activity between tumor and normal tissues. Elevated
activity was observed in BRCA, CESC, CHOL, glioblastoma
multiforme (GBM), LUSC, LUAD, pancreatic adenocarcinoma
(PAAD), STAD, UCEC, and THCA, while reduced activity was
noted in LIHC, COAD, pheochromocytoma and paraganglioma
(PCPG), and kidney renal clear cell carcinoma (KIRC).
Additionally, THC staining from the HPA database showed a
significant increase in ZDHHCS5 protein expression across eight
tumor types compared to normal tissues (Supplementary Figure
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Correlation analysis of risk scores with immune infiltration characteristics, molecular typing, and TMB. (A) Demonstrating the differences in the
proportions of different immune cell infiltrates in the two risk groups; (B) Comparison of immune-related functional scores assessed based on the
ssGSEA method among different risk groups; (C) Distribution of TCGA patients among immune subtypes and the differences in their proportions in
the two risk groups; (D) TME expression in the high-risk and low-risk groups; (E) KM survival curves for groups with different TMB expression levels;
(F) KM curves for survival analysis based on combined grouping of risk score and TMB. *p < 0.05; **p < 0.01; ***p < 0.001.

S3). These findings highlight the markedly elevated expression of  specific survival (DSS) was investigated across various tumor types.
ZDHHCS in various cancers, suggesting its potential involvement  Elevated ZDHHCS5 expression was associated with reduced OS in
in cancer progression. adrenocortical carcinoma (ACC), PAAD, LUAD, uveal melanoma
(UVM), LGG, and GBM (Figure 9A). In ACC and PAAD, high

ZDHHCS5 expression was also correlated with shorter DFS

ZDHHC5 expression, survival, and (Figure 9B). Furthermore, increased ZDHHC5 expression was
enrichment analysis in pan-cancer analysis  associated with worse DSS outcomes in ACC, GBM, PAAD,
UVM, and LGG (Figure 9C). High expression levels of ZDHHC5

The association between ZDHHCS5 expression and OS, disease- ~ were also inversely correlated with PES in ACC, LGG, UVM, and
free survival (DFS), progression-free survival (PFS), and disease- PAAD (Figure 9D). Conversely, elevated ZDHHCS expression in
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Results of drug sensitivity analysis between the two risk groups.

KIRC was positively associated with both OS and PES (Figures 9A,
D), and similarly, it correlated positively with DSS in KIRC, THCA,
and thymoma (THYM) (Figure 9C). KM survival analysis further
confirmed that patients with high ZDHHC5 expression had worse
OSin PAAD, LUAD, LGG, UVM, and ACC (Supplementary Figure
S4A), and poorer DFS in PAAD and ACC (Supplementary Figure
S4B). Additionally, high ZDHHCS expression was correlated with
reduced DSS and PFS in PAAD, LGG, ACC, and UVM
(Supplementary Figures S4C, D), while it was positively associated
with OS and PFS in THCA and KIRC, respectively (Supplementary
Figures S4A, D). The diagnostic utility of ZDHHC5 was also
evaluated using TCGA and GTEx datasets (Supplementary
Figures S5, S6). In TCGA, 12 tumor types had AUC values
exceeding 0.7 (Figure 9E). In the GTEx dataset, 19 tumor types
showed AUC values above 0.7, with PAAD, CHOL, STAD, and
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READ exhibiting AUC values greater than 0.9 (Figure 9E). These
findings underscore the strong diagnostic potential of ZDHHC5
across a broad range of tumors. Moreover, the heterogeneous
expression patterns and prognostic implications of ZDHHC5 in
different cancers highlight its biological significance and potential
clinical relevance as a biomarker for personalized cancer therapy.
GSEA and GO functional analyses demonstrated a significant
association between ZDHHC5 and various immune-related
functions in HNSC, COAD, uterine carcinosarcoma (UCS),
LUSC, THCA, and STAD. However, enrichment patterns varied
across tumor types. For example, STAD and THCA exhibited
opposite enrichment trends, with negative enrichment observed
in STAD and positive enrichment in THCA (Supplementary Figure
S7A). These functions included detection of chemical stimuli,
natural killer cell activation involved in immune responses, and
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ZDHHCS5 expression and activity across various cancer types. (A) ZDHHCS5 expression in tumor tissues; (B) Expression of ZDHHC5 in tumor and
normal samples; (C) ZDHHC5 activity in tumor tissues; (D) ZDHHCS5 activity in tumor and normal samples. *p < 0.05; **p < 0.01; ***p < 0.001.

regulation of defense responses to bacterial and fungal pathogens.
GSEA, based on KEGG pathways, identified a positive correlation
between ZDHHCS and several immune-related signaling pathways
in UCS, LIHC, UVM, LGG, LUSC, THYM, and GBM
(Supplementary Figure S7B). These pathways included antigen
processing and presentation, T-cell receptor signaling, toll-like
receptor signaling, the intestinal immune network for IgA
production, cytokine-cytokine receptor interactions, and natural
killer cell-mediated cytotoxicity signaling pathway. These results
further highlight the potential role of ZDHHCS in regulating tumor
immunity and provide a theoretical foundation for future research

in cancer immunotherapy.

ZDHHC5 and its association with immune
infiltration, immune modulators, immune
checkpoints, SNV-derived neoantigens,
MSI, and TMB across cancers

Tumor immune cell infiltration is a key component of the
tumor microenvironment (TME) and plays a critical role in
determining tumor prognosis (25, 26). Accordingly, the
association between ZDHHCS5 expression and immune cell
infiltration was investigated. Figure 10 illustrates the positive
correlation between ZDHHC5 expression and various immune-
infiltrating cell types, including macrophages, neutrophils, cancer-
associated fibroblasts, endothelial cells, mast cells, and
monocytes. In most tumor types, ZDHHC5 expression was
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favorably associated with immune cell infiltration. However, in
THYM, ZDHHCS5 expression was negatively correlated with CD4"
and CD8" T cells. In addition, Figure 10 also presents the
relationships between ZDHHCS5 expression and immune,
microenvironmental, and stromal scores across multiple cancer
types. These findings further highlight the complex role of
ZDHHCS5 in modulating the tumor immune microenvironment
and suggest potential mechanisms through which it may influence
tumor progression.

The correlation between ZDHHC5 and common ICP genes was
also investigated. In most tumor types, a strong connection was
observed between ICP genes and ZDHHC5 expression
(Supplementary Figure S8A). However, in THCA, skin cutaneous
melanoma (SKCM), ESCA, CESC, HNSC, and LUSC, most ICP
genes exhibited an inverse relationship with ZDHHC5 expression.
According to data from the TISIDB database, ZDHHC5 expression
across cancers was associated with immunostimulators,
immunoinhibitors, and major histocompatibility complex (MHC)
genes. Specifically, in GBM, mesothelioma (MESO), ovarian cancer
(OV), UVM, testicular germ cell tumors (TGCT), sarcoma (SARC),
UCS, and LGG, ZDHHCS expression was positively correlated with
immunostimulators, while negative correlations were observed in
BLCA, ESCA, breast invasive carcinoma (BRCA), COAD, and
LUSC (Supplementary Figure S8B). In addition, ZDHHC5
expression showed a positive association with immunoinhibitors
in GBM, LGG, OV, TGCT, UCS, and SARC, whereas negative
associations were observed in COAD, BRCA, LUSC, and PAAD
(Supplementary Figure S8C). ZDHHCS5 was also associated with
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FIGURE 9

Forest plots and AUC values between ZDHHC5 and survival across multiple cancers. (A) The connection between ZDHHC5 and OS; (B) The
connection between ZDHHC5 and DFS; (C) The connection between ZDHHC5 and DSS; (D) The connection between ZDHHCS5 and PFS; (E) AUC
values based on TCGA and GTEx databases across various types of cancer.

MHC gene expression in ACC, CHOL, GBM, LGG, KIRC, OV, findings further underscore the complexity and tumor-specific
SARC, TGCT, THCA, UCS, and UVM. Conversely, negative  variability of ZDHHC5 in immune regulation.

correlations were identified in BRCA, BLCA, COAD, CESC, SNVs are among the most common and widespread changes in
ESCA, LIHC, READ, LUSC, HNSC, LUAD, KIRP, and prostate  the genome (27). Supplementary Figure S8E illustrates the levels of
adenocarcinoma (PRAD) (Supplementary Figure S8D). These = SNVs neoantigens in pan-cancer cells. TMB, which represents the
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Relationship between various immune cell infiltrations and ZDHHCS in different tumors.

shown in Supplementary Figure S8G, ZDHHCS5 was strongly
associated with MSI in UVM, KICH, KIRC, and UCEC, and
inversely associated with MSI in ACC, BRCA, THCA, SKCM,

HNSC, and diffuse large B-cell lymphoma (DLBC). These

findings form the foundation for further investigation of its

total somatic mutation load in tumor cells (28), is a promising

marker for assessing the response to immunotherapy (29). Our

study demonstrated a favorable correlation between ZDHHC5 and
TMB in UCEC, ACC, THYM, SARC, STAD, LUAD, LGG, and

PAAD (Supplementary Figure S8F). Previous studies have

mechanism of action and potential clinical applications.

established that MSI correlates with tumor prognosis (30). As
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ZDHHCS expression, clinical
characterization, and enrichment analysis
in LUAD

Given the significantly elevated expression of ZDHHCS in
LUAD and its strong associations with patient prognosis, the
tumor immune microenvironment, and various ICP genes, a
detailed investigation into its specific role in LUAD was
conducted, considering the high incidence and clinical relevance
of this cancer. ZDHHCS5 expression was observed to be markedly
elevated in LUAD samples (n = 541) compared to normal lung

tissues (n = 59) (Figure 11A). Paired sample analysis further

confirmed these results (Figure 11B). KM survival analysis
indicated that patients with low ZDHHCS5 expression had
significantly longer OS than those with high expression (p =
0.024) (Figure 11C). Co-expression analysis identified genes
strongly correlated with ZDHHC5 (|correlation coefficient| > 0.7,
p < 0.001). The six most positively correlated genes were OSBP,
MARK2, TMEM127, GANAB, RELA, and PATLI, all with
correlation coefficients greater than 0.7 (Figure 11D). The five
most negatively correlated genes included RNU4ATAC, RNU4-2,
DTNB-AS1, H2AC20, and RNU1-67P (Figure 11E). Cox regression
analysis validated that ZDHHC5 expression and clinical stage were
independent prognostic factors in LUAD (Figures 11F, G). A total
of 364 DEGs were detected between the high and low ZDHHC5
expression groups (Supplementary Table S2). Of these, 306 genes
were upregulated in the high-expression group, while 58 genes
showed increased expression in the low-expression group.
Heatmaps of the top 50 DEGs in each group were generated to
visualize these differences (Figure 11H). These results not only
enhance our understanding of the role of ZDHHC5 in LUAD but
also offer valuable insights for the development of future
therapeutic strategies.

GO, KEGG, and GSEA enrichment analyses were performed to
explore the potential regulatory mechanisms of ZDHHC5 DEGs.
GO and KEGG analyses revealed significant associations of DEGs
with 206 GO terms and 13 KEGG pathways (Supplementary Tables
S3, S4). GO analysis alone revealed that the DEGs were
predominantly involved in various biological processes, including
filament organization, keratinization, and keratinocyte
differentiation intermediates. Cellular components were enriched
in desmosomes, connexin complexes, and cornified envelopes. For
molecular functions, DEGs were enriched in structural constituents
of the skin epidermis, voltage-gated monoatomic ion channel
activity, and voltage-gated monoatomic cation channel activity
(Supplementary Figure S9A). The most notable KEGG pathways
included neuroactive ligand-receptor interactions, human
papillomavirus infection, and the PI3K-Akt signaling pathway
(Supplementary Figure S9B). GSEA demonstrated significant
enrichment of cell cycle checkpoint functions in the ZDHHC5
high-expression group, suggesting a role for ZDHHCS in regulating
cell cycle pathways (Supplementary Figures S9C, D). Thus, a more
comprehensive understanding of the molecular mechanisms of
ZDHHCS5 in LUAD can be obtained, providing a theoretical
foundation for the development of future therapeutic strategies.
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Correlations between ZDHHCS5, immune
infiltration, and drug sensitivity in LUAD

Further analyses of the TME were conducted. The ZDHHC5
low-expression group exhibited notably higher estimated and
immune scores than the ZDHHCS5 high-expression group
(Figure 12A). Furthermore, we observed substantial disparities in
the proportions of immune cells between the two groups, with eight
out of 22 immune cell types showing notable differences
(Figure 12B). Further correlation analyses revealed an association
between ZDHHCS5 expression and various immune cell types.
ZDHHC5 showed a positive association with macrophages MO (r
=0.13, p =0.004), T cells CD4 memory resting (r = 0.21, p < 0.001),
monocytes (r = 0.1, p = 0.027), macrophages M2 (r = 0.13, p =
0.007), macrophages M1 (r = 0.11, p = 0.025), and NK cells resting
(r=0.1, p = 0.032), while showing negative correlations with T cells
follicular helper (r = -0.1, p = 0.033), T cells CD8 (r = -0.11, p =
0.021), T cells gamma delta (r = -0.2, p < 0.001), and plasma cells (r
-0.26, p < 0.001) (Figures 12C, D). Furthermore, we identified 13
ICP genes associated with ZDHHCS5 (p < 0.001); CD276 had the
highest correlation coefficient (COR = 0.49). Importantly, all ICP
genes positively correlated with ZDHHCS5 expression (Figure 12E).

Finally, our analysis of ZDHHC5 expression and its association
with immunotherapy demonstrated that patients with low
ZDHHCS5 expression showed improved efficacy across treatments
with programmed death 1 (PD1) inhibitors alone, cytotoxic T-
lymphocyte-associated protein 4 (CTLA4) inhibitors, or a
combination of PD1 and CTLA4 inhibitors (Figure 12F). These
observations indicate the significant role of ZDHHCS5 in
modulating immune cell infiltration, affecting responses to
immunotherapy, and suggest potential clinical therapeutic avenues.

LUAD samples were classified into high and low expression
groups based on ZDHHCS levels to examine its correlation with drug
sensitivity (Supplementary Figure S10). Analysis revealed that
patients with low ZDHHCS5 expression exhibited significantly
reduced IC50 values for various drugs, including vorinostat,
venetoclax, sabutoclax, ribociclib, PRIMA-1MET, obatoclax
mesylate, niraparib, nilotinib, mitoxantrone, linsitinib, entinostat,
doramapimod, dabrafenib, afuresertib, and leflunomide, suggesting
enhanced sensitivity. Conversely, the high ZDHHCS5 expression
group demonstrated markedly lower IC50 values for cediranib,
indicating increased drug sensitivity. These findings indicate that
ZDHHCS may have a pivotal role in modulating drug resistance,
offering insights for developing personalized treatment approaches.
Future research should delve into the molecular mechanisms by
which ZDHHCS5 influences drug metabolism and response, aiming to
enhance the treatment outcomes and prognostic precision for LUAD.

ZDHHCS5 may promote the proliferation
and metastasis of LUAD cells via the PI3K/
AKT pathway

Further experiments validated the overall function of ZDHHC5
in LUAD patients. According to data from the Cancer Cell Line
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Encyclopedia database, ZDHHCS5 expression was relatively high in
the H1299 and HCC827 cell lines (Supplementary Figure S11). As a
key palmitoylation-related protein, ZDHHCS5 has been studied in
various cancer types, indicating its functional significance. It is
hypothesized that the role of ZDHHCS is not limited to LUAD.
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Therefore, both the LUAD cell line HCC827 and the NSCLC cell
line H1299 were used for experimental validation. Our findings
revealed that ZDHHCS5 expression was significantly elevated in
H1299 and HCC827 cells compared to normal lung epithelial
BEAS-2B cells (Supplementary Figure S12A). The efficiency of
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Correlations between ZDHHCS5 and immune infiltration in LUAD. (A) Connection between ZDHHC5 and TME; (B) Effect of high and low ZDHHC5
expression on immune cell infiltration; (C) Connection graph between ZDHHC5 and immune cells; (D) Lollipop plot between ZDHHC5 and immune
cells; (E) Correlation between ZDHHC5 and ICP genes; (F) Correlation between ZDHHCS5 and immunotherapy. *p < 0.05; **p < 0.01; ***p < 0.001.

ZDHHC5 knockdown was assessed via qRT-PCR and Western
blotting, which demonstrated that both siRNA-2 and siRNA-3
effectively reduced ZDHHC5 mRNA and protein levels in both
cell lines (Supplementary Figures S12B, C). Colony formation and
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CCK-8 assays showed that ZDHHCS5 knockdown significantly
inhibited the proliferative capacity of H1299 and HCC827 cells
(Figures 13A, D). In addition, the invasion and migration abilities of
cells following ZDHHC5 knockdown were evaluated using
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Transwell and wound healing assays. The results revealed that the
migration and invasion abilities of tumor cells were significantly
reduced after ZDHHC5 knockdown (Figures 13B, C).

Additionally, HCC827 cells were transfected with an
overexpression plasmid (OE-ZDHHCS5) and a control plasmid
(vector) to overexpress ZDHHC5 (due to its low baseline
expression in this cell line). Transfection efficiency was validated
by qRT-PCR (Supplementary Figure S12D) and Western blotting
(Supplementary Figure S12E). Colony formation assays showed
that the number of colonies in the OE-ZDHHC5 group was
significantly higher than in the vector group (Figure 13E).
Moreover, wound healing assays indicated that the migration
ability of OE-ZDHHCS5 cells was significantly enhanced
compared to the control group 24 hours after scratching
(Figure 13F). These results suggest that overexpression of
ZDHHCS5 significantly enhances the proliferation and migration
abilities of the HCC827 cell line.

Disruption of the PI3K/AKT signaling pathway plays a critical
role in regulating cell growth (31, 32). KEGG analysis demonstrated
significant enrichment of ZDHHCS within the PI3K/AKT pathway.
To assess the impact of ZDHHCS5, PI3K/AKT and its phosphorylated
forms (p-AKT/p-PI3K) were analyzed by Western blotting following
ZDHHCS5 knockdown. The results indicated that ZDHHC5
knockdown substantially reduced the phosphorylation levels of
AKT and PI3K (Figure 14A). To further investigate the
relationship between ZDHHC5 and lung adenocarcinoma (LUAD)
development in vivo, HCC827 cells were transfected with
shZDHHCS5 lentivirus, with shZDHHC5-3 showing the highest
knockdown efficiency. These cells were then used for subsequent
experiments (Supplementary Figures S12F, G). Transfected cells were
injected into nude mice to establish xenograft tumor models. The
results revealed that ZDHHCS5 knockdown significantly reduced
tumor volume and weight in the mice (Figures 14B-D). Western
blot analysis further confirmed that ZDHHC5 knockdown markedly
decreased the expression levels of p-AKT and p-PI3K in the tumor
tissues (Figure 14E). Additionally, the expression of the cell
proliferation marker Ki67 was significantly downregulated
following ZDHHC5 knockdown (Figures 14F, G). In summary,
ZDHHC5 knockdown may inhibit LUAD cell proliferation and
metastasis by suppressing the PI3K/AKT signaling pathway.

Discussion

LUAD, a common subtype of NSCLC, is characterized by high
invasiveness and poor prognosis (33-35). As the incidence of
LUAD continues to rise, it has become a significant public health
challenge (36). Consequently, it is crucial to identify new
therapeutic targets and prognostic biomarkers. Recent advances
in molecular biology have highlighted the critical role of
palmitoylation in cancer progression (18, 37). This study,
therefore, aims to investigate the role of palmitoylation-related
genes in LUAD and propose a prognostic prediction model based
on these genes, with the goal of providing scientific guidance for
clinical decision-making.
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This study thoroughly examined the genomic variations,
expression profiles, and their impact on patient prognosis of
palmitoylation-related genes in LUAD, elucidating the role of
these genes in LUAD. A multi-dimensional research strategy was
employed, beginning with the identification of distinct gene
expression subpopulations through consensus clustering analysis.
This was followed by the construction of a prognostic risk model
based on SHAP analysis to assess the contribution of each gene.
Additionally, the connections between risk scores, immune
infiltration characteristics, TMB, and drug sensitivity were
explored. In particular, the key gene ZDHHC5 was the focus of
the model. Its expression in various cancers, along with its
associations with prognosis, immune cell infiltration, ICP genes,
immune regulatory factors, MSI, TMB, and drug sensitivity were
analyzed. Functional enrichment analysis delved deeper into the
link between ZDHHC5, LUAD prognosis, and immune response.
Experimental validation suggests that ZDHHC5 may promote
LUAD cell proliferation, invasion, and migration through the
PI3K/AKT pathway. In conclusion, through experimental
validation and multi-omics analysis, the multifaceted roles of
ZDHHCS in cancer were revealed. These findings not only
enhance the accuracy of diagnostic markers but also provide a
theoretical basis for targeted therapy.

The palmitoleic acid-modified gene prognostic model
developed in this study demonstrated significant advantages in
immune microenvironment and prognostic stratification. The
model accurately distinguished between low-risk and high-risk
groups, with the low-risk group enriched in memory quiescent
mast cells, B cells, and plasma cells, accompanied by enhanced B cell
activation and type II interferon response. In contrast, the high-risk
group was enriched in quiescent NK cells and M0/M1
macrophages, and exhibited high expression of MHC-I molecules.
This analysis overcomes the limitations of traditional mutation/
metabolic models, which only quantify cell abundance, and
provides a more in-depth understanding of immune
microenvironment characteristics. Additionally, risk scores
significantly differentiated survival rates across all subgroups
stratified by gender, age, and stage. Univariate and multivariate
Cox regression analyses indicated that the HR for risk scores was
the highest, outperforming the traditional TNM staging system,
with patients in the high-risk group and high TMB exhibiting the
poorest survival outcomes. By integrating risk scores with clinical
variables, a nomogram was constructed, improving the AUC values
for 1-, 3-, and 5-year OS to 0.747, 0.716, and 0.696, respectively,
thereby providing a direct tool for personalized treatment. This
model addresses the limitations of existing tools by linking
palmitoleic acid gene expression with the functional state of the
immune microenvironment, resolving the inability to dynamically
elucidate immune suppression mechanisms and the differing
prognoses among patients at the same stage. These findings
further highlight its significant potential for clinical translation.

The risk model based on a five-gene signature has shown
considerable potential for clinical applications. The predictive
model developed integrates gene expression data and survival
information, effectively predicting patient prognosis and
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Impact of ZDHHC5 knockdown and overexpression in H1299 and HCC827 cells. (A) Colony formation assay to verify proliferation ability; (B) Wound
healing assay to verify migration ability; (C) Transwell assay to verify migration and invasion ability; (D) CCK-8 assay to verify proliferation ability; (E)
Colony formation assay shows more colonies in OE-ZDHHC5 group; (F) Wound healing assay indicates higher migration rate in OE-ZDHHC5 group
at 24 hours. **p < 0.01; ***p < 0.001; ****p < 0.0001.

providing a scientific foundation for the formulation of  NGS technology offers higher throughput and greater accuracy (39).
personalized treatment strategies. In clinical practice, gQRT-PCR  Although NGS incurs higher equipment and operational costs, it
and NGS detection panels are essential tools for gene detection.  delivers more comprehensive information, particularly in precision
qRT-PCR technology is sensitive, simple, cost-effective, and suitable =~ medicine and personalized treatment, by identifying genes
for routine clinical testing, providing rapid results (38). In contrast,  associated with tumor progression. From a cost-effectiveness
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The effect of ZDHHC5 knockdown on tumor growth and the PI3K/AKT signaling pathway. (A) ZDHHC5 knockdown reduces the phosphorylation
levels of AKT and PI3K; (B) HCC827 mouse xenograft tumor image; (C) Comparison of tumor weights between NC and shZDHHC5 groups;

(D) Tumor growth curve; (E) Western blot results from HCC827 mouse model showing that shZDHHC5 inhibits the AKT/PI3K signaling pathway;
(F) Immunohistochemical staining of ZDHHCS5 and Ki67. Scale bars, 100 um; (G) Comparison of ZDHHCS5 and Ki67 immunohistochemical scores.

**p < 0.01; ***p < 0.001.

standpoint, while qRT-PCR has advantages in cost, NGS holds
greater potential when high-throughput, multi-gene simultaneous
detection is required. As technology progresses and equipment
costs decline, the feasibility and accessibility of NGS in clinical
settings will continue to improve. By combining the strengths of
qRT-PCR and NGS, particularly in cancer screening and risk
prediction, more personalized and precise diagnostic and
treatment strategies can be achieved.

The immune microenvironment plays an integral role in the
progression of LUAD (40, 41). By analyzing the differences in
immune infiltration between two palmitoylation-related groups,
significant variations in immune infiltration characteristics were
observed. The group B exhibited higher proportions of monocytes,
CD4 memory resting T cells, and CD8 T cells, suggesting that
patients in this group may have stronger antitumor immune

Frontiers in Immunology

responses, which could help explain their better prognosis. In
contrast, group A was characterized by elevated levels of naive B
cells and activated CD4 memory T cells, potentially reflecting
weaker immune responses that may promote tumor progression.
Differential expression of HLA genes further revealed immune
escape mechanisms (42, 43), with multiple HLA genes associated
with enhanced antigen presentation being upregulated in group B,
thereby promoting T cell-mediated cytotoxicity. The analysis of
somatic mutations in this study revealed the genomic characteristics
of LUAD and their association with the expression of
palmitoylation-related genes. Notably, compared to the better-
prognosed group B, group A exhibited higher mutation
frequencies and was characterized by elevated TP53 mutation
levels. This difference in mutation frequency suggests that
mutational burden may play an essential role in tumor
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progression and patient prognosis (44). The higher mutation rate in
group A may indicate that these tumors exhibit a more aggressive
phenotype, which could lead to increased genomic instability and
alterations in cellular pathways, thereby promoting tumorigenesis.
Furthermore, the correlation between somatic mutations and
immune cell infiltration highlights the complex interplay between
the TME and host immune responses. group B exhibited higher
levels of CD8 T cells and other immune cell infiltration, which are
often associated with enhanced antitumor immunity. In contrast,
group A was characterized by elevated levels of naive B cells and
activated CD4 T cells, which may reflect reduced immune response
efficiency, further emphasizing the potential influence of somatic
mutations on immune escape mechanisms.

A prognostic risk model constructed using genes associated with
palmitoylation-related pathways revealed significant differences in
sensitivity to multiple chemotherapy drugs between low-risk and
high-risk groups, highlighting the potential for developing
personalized treatment strategies based on individual risk profiles.
Specifically, the low-risk group exhibited lower IC50 values for
ribociclib, selumetinib, and axitinib, indicating greater sensitivity to
these targeted therapies. This suggests that patients with a better
prognosis may benefit from more aggressive treatment regimens
incorporating these drugs. In contrast, the high-risk group
demonstrated higher IC50 values for several traditional
chemotherapy drugs (such as 5-fluorouracil, talazoparib, and
osimertinib), suggesting potential resistance to these agents. The
observed resistance in the high-risk group emphasizes the need to
explore alternative treatment strategies, including combination
therapy or novel drugs, to overcome existing resistance
mechanisms. Overall, the correlation between risk scores and drug
sensitivity underscores the importance of personalized medicine in
the treatment of LUAD. By integrating genomic sequencing and risk
stratification, clinicians can optimize treatment regimens, improve
outcomes, and reduce unnecessary toxic side effects.

Differential expression of palmitoylation-related genes, particularly
ZDHHCS5, ZDHHCI12, LYPLA1, and PPT2, underscores the potential
roles of these genes in the pathogenesis and prognosis of LUAD.
ZDHHCS5, identified as the key gene in our risk model, will be
discussed in detail later. ZDHHCI2 has been shown to be involved in
tumor progression. Studies have demonstrated that ZDHHCI12-
mediated claudin-3 palmitoylation plays a decisive role in OV
progression (45). Research on LYPLAI indicates that its inhibition can
suppress the proliferation and migration of NSCLC cells (46). Although
PPT?2 has received limited attention in LUAD research, previous studies
have shown its use in constructing an OV prognosis model based on
genes related to mitochondrial metabolism (47). In summary, the
expression patterns and functional significance of ZDHHCS,
ZDHHCI2, and PPT2 in LUAD not only enhance our understanding
of the molecular mechanisms underlying this malignancy but also
provide new avenues for developing targeted therapies to improve
patient outcomes. Future studies should focus on elucidating the
precise mechanisms by which these genes regulate tumor behavior
and assess their potential as therapeutic targets for LUAD.

ZDHHCS, a member of the ZDHHC protein family (15), plays a
crucial role in protein palmitoylation, directly affecting protein
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stability, localization, and interactions (45, 48). However, its role
varies across cancer types. In gliomas and pancreatic cancer,
ZDHHC5 promotes tumorigenesis and progression by regulating
oncogenes and tumor suppressor genes (13, 49). This study found
that ZDHHCS5 overexpression enhances tumor cell proliferation and
metastasis by activating PI3K/AKT and other pathways associated with
tumor progression, driving malignant transformation. Additionally,
ZDHHCS is critical in cancer immune escape. As a key enzyme
regulating PD-L1 stability, ZDHHCS5 enhances PD-L1 stability via
palmitoylation, promoting PD-L1-mediated immune suppression,
which may exacerbate tumor growth and metastasis, leading to poor
prognosis (50). In KIRC, ZDHHC5’s role differs significantly from
other tumors. High ZDHHC5 expression is associated with better
prognosis, showing significant positive effects on OS and PES.
ZDHHC5 may improve the tumor microenvironment and regulate
fatty acid metabolism, leading to better prognosis. KIRC, a tumor with
high immune infiltration (51), may benefit from ZDHHC5’s role in
immune cell infiltration and function. As a regulator of fatty acid
metabolism, ZDHHC5 may inhibit lipid accumulation in KIRC by
modulating fatty acid uptake, distribution, oxidation, and storage,
further improving prognosis. In summary, the opposite prognostic
effects of ZDHHCS5 in KIRC and LUAD are likely related to its distinct
mechanisms in different tumor microenvironments, the signaling
pathways it regulates, and the unique functions of its fatty acid
palmitoylation targets. These findings provide important directions
for future research.

Tumor-infiltrating immune cells significantly influence cancer
treatment efficacy and patient prognosis (52, 53). Limited studies
have investigated ZDHHCS5 and immune infiltration in cancer;
therefore, our research offers a novel perspective on the role of
ZDHHCS in the TME. Our research highlighted a meaningful
relationship between ZDHHC5 and immune cell infiltration in
various types of cancer. Specifically, ZDHHCS5 expression positively
correlated with macrophage and neutrophil infiltration, both of
which are critical in the TME for promoting angiogenesis,
inflammation, and tumor progression (54-56). Conversely, in
THYM, ZDHHCS5 expression negatively correlated with CD4+
and CD8+ T cells, which are crucial for anti-tumor immunity
(57-59). The positive correlation between ZDHHC5 and
macrophages and neutrophils suggests that ZDHHC5 may foster
a tumor-promoting microenvironment by regulating cytokine
production and immune cell recruitment. This hypothesis is
consistent with our GSEA results, which indicate that ZDHHC5
participates in immune-related pathways, including cytokine-
cytokine receptor interactions, and antigen processing and
presentation. These findings imply that high ZDHHCS5 expression
facilitates immune evasion mechanisms, thereby driving tumor
growth and progression. Additionally, the negative correlation
between ZDHHC5 and CD4+ and CD8+ T cells in THYM
suggests the potential immunosuppressive role of ZDHHC5 in
certain cancers. CD4+ and CD8+ T cells are pivotal in
orchestrating an effective antitumor response (60, 61), and their
reduced infiltration into tumors with high ZDHHCS5 expression
may indicate impaired immune surveillance, potentially leading to
resistance to T cell-mediated immunotherapy. Previous studies
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have shown that MSI and TMB have a substantial effect on the
response and prognosis of patients with cancer undergoing
immunotherapy (62, 63). Our results highlighted that ZDHHC5
expression exhibited a significant relationship with MSI and TMB
in various tumors, and further in vivo experiments are required to
confirm the impact of ZDHHCS5 on TMB. ICP gene expression can
influence the efficacy of immunotherapy in difterent cancers (64—
67). Our study uncovered that most ICP genes were positively
related to ZDHHCS in most tumors. We further investigated the
correlation between ZDHHC5 and immune modulators, including
immunostimulators, immunoinhibitors, and MHCs, and found that
ZDHHCS5 strongly correlated with multiple immune modulators in
different cancers. In conclusion, our results showed the varied role
of ZDHHCS in regulating the TME. Understanding the impact of
ZDHHCS5 on immunity may pave the way for new targeted
therapies to modulate the immune environment in cancers.

The clinical translational potential of ZDHHCS5 as a therapeutic
target is increasingly recognized. Numerous studies have highlighted
its critical role in tumors and metabolic diseases, particularly in the
regulation of cancer cell proliferation, immune evasion, and various
cellular physiological processes. Several compounds have been
identified as potential inhibitors of ZDHHCS5-mediated
palmitoylation, demonstrating promising therapeutic prospects. For
instance, docosahexaenoic acid (DHA) inhibits ZDHHCS5 activity,
promotes PD-L1 degradation, and exerts immune-enhancing effects
(68). The LXR agonist T0901317 exhibits anti-proliferative effects in
breast cancer cell models (69). Lomitapide has shown anti-tumor
effects in pancreatic cancer animal models (13). Although 2-
bromopalmitate (2-BP) has been used in preclinical studies as a
broad-spectrum inhibitor to suppress tumorigenesis, its lack of
specificity limits its clinical applicability (70-72). These findings
provide a foundation for the development of selective ZDHHC5
small-molecule inhibitors. Innovative delivery strategies also present
new opportunities for ZDHHC5-targeted therapy. Targeted delivery
systems, such as antibody-drug conjugates or nanoparticles, can
direct drugs precisely to tumor tissues while minimizing off-target
effects on normal tissues. However, off-target effects remain a
challenge in ZDHHCS5-targeted therapy. Due to the high
conservation of the DHHC motif among ZDHHC family members,
achieving selectivity for a single isoenzyme through competitive
inhibition is difficult, leading to off-target effects with broad-
spectrum inhibitors like 2-BP (73). ZDHHCS5 plays significant roles
in the central nervous system, fatty acid metabolism, tumorigenesis,
and cardiac function (50). Therefore, inhibiting ZDHHC5 may have
adverse effects on cardiac and neural tissues. To mitigate off-target
effects, future strategies may focus on targeting substrate recruitment
sites, employing PROTAC degradation technology, utilizing targeted
delivery systems, and exploring combination therapies. These
approaches hold promise for improving treatment specificity and
efficacy while minimizing side effects. Future research should
prioritize the development of highly specific, low-toxicity inhibitors
and assess their pharmacokinetics, pharmacodynamics, and safety to
facilitate their clinical application.

Through in vitro and in vivo experiments, we found that
ZDHHCS5 may promote LUAD proliferation and metastasis via
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the PI3K/AKT pathway. The underlying mechanism may be as
follows: First, the regulation of ZDHHCS is closely associated with
palmitoylation, which plays a crucial role in the activation, stability,
and function of PI3K, AKT, and related molecules such as EGFR
and mTOR. Specifically, PI3K, AKT, and other key molecules,
including EGFR and mTOR, can be regulated by palmitoylation,
thereby influencing the activity of the PI3K/AKT pathway and
cellular biological behavior. Palmitoylation of AKT is particularly
critical for its function and subcellular localization. AKT undergoes
S-palmitoylation at the Cys344 residue, a modification that
facilitates its translocation from the cytoplasm to the plasma
membrane, a necessary step for its activation. Mutations at
Cys344 lead to reduced phosphorylation at key sites (e.g., T308
and T450), impairing AKT function in processes such as autophagy
(74). Thus, AKT palmitoylation plays a pivotal role in maintaining
its functional stability and activity in cellular signaling. Although
there is currently no direct evidence indicating that PI3K itself
undergoes palmitoylation, existing literature suggests that
palmitoylation may regulate AKT signaling through indirect
mechanisms (75). For instance, ZDHHC22-mediated
palmitoylation of mTOR reduces AKT signaling in breast cancer
cells. Therefore, although further validation is needed to confirm
whether PI3K is directly modified by palmitoylation, it is reasonable
to speculate that PI3K may also be regulated by palmitoylation
through indirect mechanisms. Moreover, palmitoylation of
molecules such as EGFR and mTOR is critical for the regulation
of the PI3K/AKT pathway. Palmitoylation of EGFR promotes the
recruitment of PI3K, thereby activating the downstream AKT
signaling pathway. Studies have shown that ZDHHC20 regulates
the activation of the PI3K/AKT signal by palmitoylating EGFR and
its subunits (76). When EGFR palmitoylation is inhibited, PI3K
recruitment decreases, leading to a significant reduction in AKT
phosphorylation and affecting cell proliferation. Palmitoylation of
mTOR, mediated by ZDHHC22, reduces AKT signaling in breast
cancer cells (77), further suggesting that mTOR palmitoylation may
influence AKT activation. Additionally, palmitoylation of PCSK9
also plays a role in regulating the PI3K/AKT pathway. In liver
cancer, palmitoylation of PCSK9 enhances its binding to PTEN,
leading to PTEN degradation and relieving its inhibitory effect on
AKT signaling (78). This mechanism suggests that ZDHHC5 may
further impact AKT signaling by regulating the interaction between
PCSK9 and PTEN. In summary, ZDHHC5 may precisely regulate
the activation of the PI3K/AKT signaling pathway by
palmitoylating key molecules such as AKT, EGFR, and mTOR,
thereby influencing tumor cell proliferation and metastasis.
Additionally, ZDHHCS5’s regulation of the interaction between
PCSK9 and PTEN may further impact AKT signaling. However,
the specific mechanisms require further experimental validation.
Although this study provides a comprehensive analysis, several
limitations should be noted. First, reliance on publicly available
datasets introduces potential batch effects and variability due to
differences in data collection and processing methods. Second, while
the sample size is large, it may still be insufficient to fully capture the
diversity of cancer types and patient responses. Third, the study lacks
experimental validation of the underlying mechanisms. Finally,
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although the relationship between ZDHHCS5 and various clinical and
molecular characteristics was explored, its precise role in cancer
progression and prognosis remains unclear. Future research will
involve patient recruitment from multiple clinical centers, with
samples collected from diverse geographical locations and
population backgrounds, to further investigate the association
between ZDHHCS5 expression and treatment response. Additionally,
our findings will be validated using humanized models, such as PDX
mice and organoids, as well as additional LUAD cell lines. Mechanistic
studies will incorporate CO-IP and mass spectrometry to identify the
palmitoylation substrates of ZDHHC5 in LUAD cells, with particular
attention to whether key molecules in the PI3K/AKT pathway
undergo palmitoylation. We will also explore how ZDHHC5
regulates the PI3K/AKT pathway through this mechanism. These
experiments aim to address the current limitations and further
strengthen the generalizability of our findings.

Conclusions

In brief, our findings underscore the essential role of
palmitoylation-related genes, particularly ZDHHCS, in the
pathogenesis and prognosis LUAD. The differential expression
and genomic variations of these genes suggest their potential as
biomarkers for patient risk stratification and treatment guidance.
Consensus clustering analysis revealed significant immune-related
differences between subgroups, indicating that alterations in the
immune microenvironment may influence tumor behavior and
patient prognosis. Furthermore, a robust prognostic model
constructed using SHAP analysis emphasizes the importance of
ZDHHCS and its associated genes in predicting survival probability.
Our correlation analysis further elucidated the complex
relationships between risk scores, immune infiltration, TMB, and
drug sensitivity, suggesting that ZDHHCS5 may serve not only as a
prognostic marker but also as a potential therapeutic target. In
conclusion, these findings offer new insights into the biology of
LUAD and may inform future clinical strategies.
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