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Background: Protein S-palmitoylation is a reversible post-translational

modification that plays a significant role in tumor progression. However, the

impact of palmitoylation metabolism on the prognosis and tumor

microenvironment characteristics of lung adenocarcinoma (LUAD)

remains unclear.

Methods: Clinical and mRNA data from LUAD patients were collected from

public databases. A palmitoylation-related gene cluster was constructed using

consensus clustering. A prognostic model based on palmitoylation-related

genes was developed using univariate Cox regression and Lasso regression

analysis, and the contribution of each gene was assessed using shapley

additive explanations (SHAP) analysis. The role of the key gene ZDHHC5 in

LUAD was experimentally validated.

Results: Cluster analysis divided patients into two groups, with group B exhibiting

a better prognosis. Group A had a higher frequency of TP53 mutations, and

significant differences in immune cell infiltration were observed between the two

groups. A prognostic risk model, based on five key genes (ZDHHC5, ZDHHC12,

ZDHHC21, LYPLA1, and PPT2), revealed significant survival differences between

the high-risk and low-risk groups. Immune infiltration analysis showed

differences in immune cell lineages and functional activities between risk

groups. Drug sensitivity analysis indicated varying patient responses to different

chemotherapy drugs across risk strata. Further analysis of ZDHHC5 expression

across 33 cancers demonstrated its upregulation in multiple cancers, including

LUAD. Experimental results suggest that ZDHHC5 may promote LUAD cell

proliferation and metastasis both in vivo and in vitro via the PI3K/AKT pathway.
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Conclusion: A prognostic model based on palmitoylation-related genes offers a

valuable tool for survival prediction and the development of personalized

treatment strategies in LUAD. ZDHHC5, a key gene related to palmitoylation,

demonstrates potential as both a therapeutic target and a prognostic marker for

LUAD and other cancers.
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Introduction

Lung adenocarcinoma (LUAD), the predominant subtype of non-

small cell lung cancer (NSCLC), is characterized by high aggressiveness

and poor prognosis, imposing a significant burden on global healthcare

systems (1–3). Despite advancements in immunotherapies and

targeted therapies, overall survival (OS) rates among LUAD patients

remain suboptimal, largely due to tumor heterogeneity and resistance

to current treatments (4, 5). Existing diagnostic and therapeutic

strategies often inadequately address the complex molecular features

of LUAD, particularly the critical role of post-translational

modifications, such as palmitoylation, in tumor progression and

immune evasion (6, 7). These limitations highlight substantial gaps

in the understanding of LUADmolecular mechanisms and underscore

the urgent need for further investigation into palmitoylation-related

genes as potential prognostic biomarkers and therapeutic targets. In

our study, a prognostic model was developed using genes associated

with palmitoylation, and their expression profiles and genomic

alterations were characterized, with a specific focus on ZDHHC5.

This approach aims to enhance prognostic accuracy and provide a

scientific foundation for developing more effective treatment strategies.

Protein palmitoylation is a reversible lipid modification (8)

occurring on certain oncogenes and tumor suppressors, and is

dynamically regulated by the zinc-finger DHHC-type (ZDHHC)

palmitoyltransferase family and the palmitoyl protein thioesterase

family (9, 10). This modification regulates protein–protein

interactions, protein stability, and signal transduction, playing a

pivotal role in numerous physiological processes, as well as in tumor

survival and progression (11). ZDHHC5, a key member of the

palmitoyltransferase family (12), has been implicated in cancer

progression and metastasis in recent studies. Aberrant expression

of ZDHHC5 has been reported in multiple cancer types, including

pancreatic cancer (13), esophageal cancer (14), glioma (15, 16), and

lung cancer (17), and is correlated with poor prognosis. However,

prognostic models based on palmitoylation-related genes remain

lacking, and comprehensive systematic analyses of ZDHHC5’s role

across different cancers—particularly its influence on the tumor

immune microenvironment, microsatellite instability (MSI), drug

sensitivity, and tumor mutational burden (TMB)—are still needed.

This study integrated the expression profiles of palmitoylation-

related genes with genomic variation analysis, consensus clustering,
02
and risk model construction to elucidate their prognostic significance

in LUAD. The strength of this approach lies in linking gene

expression patterns with clinical outcomes, thereby facilitating the

identification of potential biomarkers for patient stratification. The

primary objective was to develop a robust prognostic model based on

the expression of palmitoylation-related genes that not only predicts

patient survival but also uncovers molecular mechanisms underlying

tumor behavior and immune regulation. By incorporating advanced

statistical methods such as shapley additive explanations (SHAP)

analysis, the interpretability of the model was enhanced, providing a

scientific basis for personalized therapy and patient management in

LUAD. Furthermore, a pan-cancer analysis of ZDHHC5 was

performed alongside an in-depth investigation of its role in LUAD.

Experimental results suggest that ZDHHC5 may promote LUAD cell

proliferation and metastasis both in vivo and in vitro via the PI3K/

AKT pathway.
Materials and methods

Data sources

RNA sequencing data, survival information, and clinical details

were sourced from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov/) database. The GSE13213 dataset was

obtained from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). A total of 31 palmitoylation-

related genes were identified through a literature review and the

GeneCards database (https://www.genecards.org) (18).

Immunohistochemical images were sourced from the Human

Protein Atlas (HPA) database. Furthermore, the activity levels of

ZDHHC5 across 33 tumors were assessed using single-sample Gene

Set Enrichment Analysis (ssGSEA). The flowchart illustrating the

study design is shown in Supplementary Figure S1.
Clustering analysis of palmitoylation-
related genes

Consensus clustering methods were employed to classify

samples into distinct subtypes, facilitating the exploration of
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potential molecular features associated with clinical outcomes. Initially,

the R packages “limma”, “survival”, and “ConsensusClusterPlus” were

loaded for data processing, survival analysis, and clustering analysis,

respectively. For clustering, the ConsensusClusterPlus function was

used to perform consensus clustering on the samples. The parameter

maxK=9 allowed for the division of samples into up to nine groups,

while reps=50 indicated that the clustering procedure would be

repeated 50 times to ensure result stability. The k-means (km)

algorithm was selected for clustering, with Euclidean distance used

to measure sample similarity. During each iteration, 80% of the

samples and 100% of the gene features were selected for analysis

(pItem=0.8, pFeature=1) to enhance the robustness of the clustering.

Ultimately, the samples were divided into two subtypes based on the

clusterNum=2 parameter, and each sample’s clustering category was

mapped to letter labels. This approach allows researchers to effectively

categorize samples based on gene expression data, identify potential

subtype features, and provide a foundation for further clinical research

and exploration of molecular mechanisms.
Construction of a prognostic model

A prognostic model was constructed using gene expression and

survival data. Samples were randomly split into training and testing

sets at a 1:1 ratio. LASSO Cox regression was conducted on the

training set to identify prognostic genes and estimate their

coefficients, with the optimal penalty parameter selected via cross-

validation. Subsequently, a multivariate Cox proportional hazards

model was developed based on the selected genes and refined

through stepwise selection. Risk scores were calculated for each

sample using the final model coefficients, and samples were

stratified into high- and low-risk groups according to the median

risk score of the training set. Survival differences between risk

groups were evaluated using the log-rank test. Model predictive

performance at specific time points was assessed by time-dependent

receiver operating characteristic (ROC) curve analysis. Validation

was conducted on an independent testing set, with only models

meeting predefined significance and performance criteria retained.
SHAP analysis

This study employed the SHAP analysis method, utilizing the R

package “kernelshap” (version 0.9.0) to calculate the contribution of

each gene in the Cox regression prognostic model, and visualized the

SHAP values using the “shapviz” (version 0.10.2) package to

demonstrate the influence of genes on prognostic prediction. First,

single-factor significantly expressed gene expression data from the

TCGA database were retrieved, and expression data and survival data

files from the GEO database were merged. Next, the Cox regression

prognostic model was constructed using the “survival” package

(version 3.8.3) with the function coxph(Surv(futime, fustat) ~., data

= rt), where futime and fustat represent follow-up time and survival
Frontiers in Immunology 03
status, respectively. The model was optimized using the step function

for stepwise regression. The Cox regression model was built using the

“glmnet” package (version 4.1.10). In SHAP analysis, the function

additive_shap(multiCox, rt[,-c(1, 2)]) was used, where multiCox

represents the Cox regression model, and rt[,-c(1, 2)] represents

the gene expression data after removing survival time and status.

Subsequently, the function shapviz(fit, X_pred = rt[,-c(1, 2)], X = rt

[,-c(1, 2)], interactions = TRUE) was used to visualize the SHAP

values, generating bar plots, honeycomb plots, waterfall plots, and

single-sample force plots to demonstrate the influence of genes on

prognostic prediction. The visualization plots were generated using

the “ggplot2” package (version 3.5.2). For the risk score calculation,

the risk score for each sample was computed using the training set

data, and samples were classified into high-risk and low-risk groups

based on trainScore > cutoff. Finally, risk classification was performed

using Risk = as.vector(ifelse(trainScore > cutoff, “high”, “low”)), and

the risk scores and grouping results were output to a file for

subsequent analysis and clinical application.
Prognostic modeling and ZDHHC5 survival
analysis

The R package “pheatmap” was used to visualize risk scores.

Risk score data were imported, sorted by risk value, and three types

of plots were generated: (1) a risk score scatter plot distinguishing

high- and low-risk groups; (2) a survival status plot showing patient

survival time and status, with samples ordered by risk; and (3) a

gene expression heatmap annotated by risk groups. A predefined

color scheme was applied to differentiate risk groups and survival

status, while clustering of samples and genes was disabled to

preserve sample order. Kaplan–Meier (KM) curves were fitted to

visualize survival distributions and display survival statistics for risk

groups. Time-dependent ROC curve analysis was performed using

the “timeROC” package to assess the prognostic predictive

performance of risk scores and clinical variables. ROC curves for

risk scores and multiple clinical features were plotted in a single

figure for comparison.

Univariate Cox regression was conducted to assess the

association between each variable and survival. Results were

visualized using forest plots. Subsequently, multivariate Cox

regression was applied to variables significant in univariate

analysis to identify independent prognostic factors, and

corresponding multivariate forest plots were generated. Forest

plots were produced using a custom function, displaying HRs

with confidence intervals, and significance was indicated by P-

values. Based on the combined risk scores and clinical data, survival

curves were constructed using the R packages “survival,” “regplot,”

and “rms.” Samples with missing clinical values were excluded, and

variables such as age were converted to numeric format. A

multivariate Cox model was fitted to the survival data, and the

“regplot” package was employed to generate nomograms.

Calibration curves were subsequently plotted using the “rms”
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package, based on KM estimates and bootstrap resampling, to

evaluate model predictive accuracy.
Enrichment analysis

To investigate the functions and pathways related to ZDHHC5

in various cancers, we conducted Gene Set Enrichment Analysis

(GSEA) (19) (http://www.gsea-msigdb.org/gsea/index.jsp),

including Gene Ontology (GO, https://www.geneontology.org/)

and Kyoto Encyclopedia of Genes and Genomes (KEGG,

www.kegg.jp/kegg/kegg1.html) analyses. Additionally, the R

packages “clusterProfiler”, “enrichplot”, and “org.Hs.eg.db” were

employed to further annotate the pathways and functions related to

ZDHHC5 (20). In the GSEA analysis, the gene list used was derived

from Supplementary Table S1, and the criteria for determining

significantly enriched gene sets were p < 0.05 and error discovery

rate (FDR) < 0.05.
Assessment of immune cell infiltration and
association of ZDHHC5 with ICP genes and
immunomodulators

Immune cell infiltration analysis was conducted based on

CIBERSORT results. Statistically significant samples (p < 0.05)

were first selected, and normal tissue samples were excluded.

Immune cell proportion data were merged with risk scores and

ordered accordingly. Immune function enrichment analysis was

performed using ssGSEA. Gene expression data were preprocessed

to remove low-expression and duplicate probes. Immune gene sets

were loaded via “GSEABase,” and immune function scores were

calculated and normalized using “GSVA.” After exclusion of

normal samples, scores were integrated with risk data. The

association between immune subtypes and risk groups was

evaluated using chi-square tests . Sample names were

standardized, intersecting samples identified, and rare subtypes

removed. Contingency tables were constructed to assess

statistical associations.

Tumor mutation burden (TMB) and risk group relationships

were analyzed using merged TMB and risk score data. After selecting

common samples, TMB values were log2-transformed, and risk

factors were ordered. Box plots generated via “ggpubr” compared

TMB across risk groups with statistical testing. Survival analysis of

TMB employed the “survminer” and “survival” packages.

The TIMER2.0 database (https://cistrome.shinyapps.io/

TIMER/) was used to examine the relationship between

ZDHHC5 and various immune cells. Additionally, we extracted

the expression data for eight common immune checkpoint (ICP)

genes to analyze their correlation with ZDHHC5 expression. The

outcomes of these analyses were visualized utilizing the “ggplot2”

package in R (21). The TISIDB website (http://cis.hku.hk/TISIDB/

index.php) (22) was used to produce a heatmap to depict the

association between ZDHHC5 and immunomodulators in diverse

cancer types.
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Relationship between ZDHHC5 and single
nucleotide variant, TMB, and MSI

MSI and TMB are strongly correlated with the efficacy of

immunotherapy (23, 24). To examine these relationships, we used

Spearman’s correlation coefficient to assess the association between

ZDHHC5 and both TMB and MSI. Furthermore, we explored SNV

expression across various carcinomas.
Drug sensitivity analysis

Drug sensitivity analysis was conducted based on combined risk

scores and drug response data. Common samples were first

identified and merged, and drug sensitivity values were log2-

transformed to improve distribution. Box plots were generated for

drugs showing significant differences, with colors distinguishing

risk groups. Additionally, the “pRRophetic” package was employed

to estimate the half-maximal inhibitory concentration (IC50) of

commonly used drugs in LUAD, investigating treatment response

differences among patients stratified by ZDHHC5 expression levels.
Cell culture and transfection

BEAS-2, H1299, and HCC827 cell lines were procured

from ProCell (Wuhan, China). Cells were cultured at 37 °C in a

5% CO2 atmosphere in RPMI-1640 medium supplemented

with 10% fetal bovine serum (FBS). Human ZDHHC5-targeted

small interfering RNAs (siRNAs) were designed by the Hanbio

Co. Ltd (Shanghai, China). The siRNA sequences used were as

follows: ZDHHC5si#1:5’-GAAAGAGAAGACAAUUGUAAU-3’;

ZDHHC5s i#2 :5 ’ -CGACACCUACCAUGUACAAGU-3 ’ ;

ZDHHC5si#3:5’-CCUCAGAUGAUUCAAAGAGAU-3’; and

sicontrol: 5’-UUCUCCGAACGUGUCACGUTT-3.’ The control

plasmid (vector) and the ZDHHC5 overexpression plasmid (OE-

ZDHHC5) were cloned into the pcDNA 3.1 (+) vector (Hanbio Co.

Ltd, Shanghai, China), and HCC827 cells were transiently

transfected using Lipofectamine 3000 (Invitrogen, Waltham,

Massachusetts, USA) according to the manufacturer ’s

instructions. The cells were collected 48–72 hours after transfection.
Real-time quantitative reverse transcription
polymerase chain reaction

Total RNA was extracted using the TRIzol reagent (Invitrogen,

USA), and complementary DNAwas synthesized using the PrimeScript

RT kit (Takara). qRT-PCR was performed using Takara SYBR Green

assay. The qRT-PCR data were analyzed using the 2-DDCtmethod, with

b-actin serving as the internal control. The specific primers used were:

ZDHHC5-F: 5’-AGACCACCTACAGCAAATCCA-3’; ZDHHC5-R:

5 ’ -CCTGACACCTTCTTGACTCCT-3 ’ ; b -ac t in-F : 5 ’ -

GAGAAAATCTGGCACCACACC-3 ’ ; and b-actin-R: 5 ’-

GGATAGCACAGCCTGGATAGCAA-3’.
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Western blot

Intracellular proteins were extracted using RIPA lysis buffer

supplemented with 1% protease inhibitor (P1005, Beyotime, China)

and phosphatase inhibitor (P1081, Beyotime, China). The

concentration of the isolated proteins was measured using the

bicinchoninic acid (BCA) assay (Beyotime Biotechnology). The

total cell lysates were subsequently subjected to 4%–20% sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),

followed by transfer to polyvinylidene fluoride (PVDF)

membranes. To prevent nonspecific binding, the membranes were

incubated with 5% skim milk in TBST buffer for one hour and were

then incubated overnight at 4 °C with primary antibodies at their

recommended concentrations. After this incubation period, the

membranes were exposed to horseradish peroxidase (HRP)-

conjugated secondary antibodies for one hour. The visualization

of protein bands was accomplished using a chemiluminescent HRP

substrate in conjunction with an imaging system (Chemidoc, Bio-

Rad). The primary antibodies utilized in this study, at their

designated dilutions, included ZDHHC5 (Cat No: YN6038,

1:1000; ImmunoWay Biotechnology, Plano, TX, USA), PI3K(Cat

No: YW8045, 1:1000; ImmunoWay Biotechnology, Plano, TX,

USA), p-PI3K(Cat No: YP0765, 1:1000; ImmunoWay

Biotechnology, Plano, TX, USA), AKT (Cat No: YM8463, 1:1000;

ImmunoWay Biotechnology, Plano, TX, USA), p-AKT (Cat No:

YM8304, 1:1000; ImmunoWay Biotechnology, Plano, TX, USA),

and a-tubulin (Cat No: 11224-1-AP, 1:1000; Proteintech,

Wuhan, China).
Immunohistochemical assay

IHC staining was performed on mouse tumor samples. Sections

were incubated overnight with primary antibodies against

ZDHHC5 and Ki67, with sheep serum used as a negative control.

Following incubation, the sections were treated with an anti-rabbit

secondary antibody and a streptavidin-peroxidase complex. After

staining, the sections were counterstained with hematoxylin,

followed by dehydration and mounting. Staining intensity was

graded as 0 (no staining), 1+ (weak), 2+ (moderate), or 3+

(strong). H-scores were calculated as the product of intensity and

extent scores, independently assessed by two pathologists. The

antibodies used in this study and their specified dilutions were:

ZDHHC5 (Cat No: 84803-4-RR, 1:500; Proteintech, Wuhan, China)

and Ki67 (Cat No: YM8189, 1:400; ImmunoWay Biotechnology,

Plano, TX, USA).
Cell proliferation and colony formation
assays

To assess cell growth, 1 × 10^4 cells were transferred to each

well of a 24-well plate and cultured in 10% FBS RPMI 1640

medium. The cells were collected at 24-, 48-, and 72-hour

intervals, and their absorbance was measured using Cell Counting
Frontiers in Immunology 05
Kit (CCK)-8. Cells (500 cells/well) were transferred to 6-well plates

and cultured for 10 days. The cells were fixed with formaldehyde

and stained with crystal violet (Sigma-Aldrich). Cells were counted

using an inverted microscope, and images were captured. Each

experiment was performed in triplicate.
Wound-healing assay

The cells were first transferred to 6-well plates at a density of 1 ×

10^5 cells per well. Subsequently, a consistent wound was created

by gently scratching the cell monolayer using the tip of a 10 uL

plastic pipette. Cell migration was monitored at 0 h and 24 h. Each

experiment was performed in triplicate.
Transwell assays

To perform the migration assay, 2 × 104 cells were suspended in

200 mL of serum-free medium and seeded into the upper chamber

of a Transwell system (BD Biosciences, USA). For the invasion

assay, 50 mL of Matrigel, diluted 1:8, was added to each well and

incubated at 37 °C for 4 hours to allow the Matrigel to solidify.

Subsequently, 5 × 104 cells were suspended in 200 mL of serum-free

medium and added to the upper chamber containing Matrigel. The

lower chamber was filled with 600 mL of medium containing 10%

fetal bovine serum (FBS) to provide the necessary nutrients and

conditions for cell growth. The cells were incubated for 24 hours to

complete the migration and invasion process. After incubation, the

cells in the lower chamber were fixed with formaldehyde to preserve

their morphology. The cells were then stained with crystal violet. To

ensure accurate results, five random fields of view were selected for

photography and analysis. This experiment was repeated three

times to confirm the reliability and reproducibility of the findings.

Through this procedure, the migration and invasion capabilities of

the cells were assessed, providing valuable data for further research.
Tumor xenografts models

The animal experimentation protocol for this study was

approved by the Fujian Anburi Biological Experimental Animal

Ethics Committee (IACUC FJABR2025061001). BALB/c nude mice

(4–6 weeks old) were purchased from Jiangsu Jinpu Biotechnology

Co., Ltd. All mice were housed on standard rodent chow in a

specific pathogen-free environment at 23 °C with a 12-hour light-

dark cycle. After randomization, mice were subcutaneously injected

with HCC827 cells transfected with ZDHHC5 knockdown. Each

group consisted of six mice, with 100 µl of a solution containing 5 ×

10^6 cells injected per mouse. Tumor growth was monitored

weekly by measuring the maximum (A) and minimum (B) tumor

diameters, and tumor volume was calculated using the formula:

volume = 0.5 × A × B. The experiment was conducted over 4 weeks.

Mice were euthanized when the tumor diameter reached 1.5 cm or

at the end of the experiment, and tumor tissues were collected for
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1643112
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1643112
IHC staining to assess tumor growth and changes in related

molecular markers.
Statistical analysis

The data were assessed and visualized using R software

(version 4.4.2) (https://cran.r-project.org/). GraphPad Prism

9.0 was utilized for both the visualization and statistical

evaluation of the experimental data. A p < 0.05 was regarded as

statistically significant.
Results

Expression and genomic variation analysis
of palmitoylation-related genes

Figure 1A illustrates the differential expression of 31

palmitoylation-related genes between normal and LUAD tumor

tissues, revealing that 13 genes were downregulated while another

13 were upregulated in LUAD. A correlation heatmap of these genes
Frontiers in Immunology 06
is presented in Figure 1B. Additionally, Figures 1C and D depict the

frequencies of copy number variations (CNVs) in palmitoylation-

related genes and their genomic distribution, respectively. These

analyses provided a deeper understanding of the expression

characteristics of palmitoleic acid-related genes in LUAD and

their potential biological significance, offering valuable insights for

further mechanistic studies.
Consensus clustering analysis and somatic
mutation, and immune-related differences
between different groups

The unsupervised clustering analysis of LUAD patients was

conducted based on the expression levels of 31 palmitoylation-

related genes. The clustering heatmap at k=2 reveals highly

consistent dark squares within the two subtypes, with clear

boundaries, indicating that the clustering results are stable and

reliable (Figures 2A-C; Supplementary Figure S2A). Among these

clusters, group B demonstrated a better prognosis (Figure 2D).

Heatmaps displayed the differentially expressed genes between the

two clusters (Figure 2E). GO enrichment analysis revealed that the
FIGURE 1

Expression and genomic variation analysis of palmitoylation-related genes. (A) Expression levels of palmitoylation-related genes were compared
between normal tissues and LUAD tissues. (B) Correlation analysis of the expression patterns among palmitoylation-related genes. (C) Frequencies of
CNVs in palmitoylation-related genes. (D) Schematic representation of the chromosomal distribution of palmitoylation-related genes and their
corresponding CNV locations. *p < 0.05; **p < 0.01; ***p < 0.001.
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biological process terms included microtubule basal movement,

cilium movement, and cilium organization. In terms of cellular

components, enriched terms included microtubules, motile cilia,

and the cytoplasmic region. The molecular function terms primarily

included peptidase regulatory activity, endopeptidase inhibitory

activity, and peptidase inhibitory activity (Figure 2F). KEGG

enrichment analysis indicated that the differentially expressed

genes (DEGs) were predominantly enriched in the neuroactive

ligand-receptor interaction pathway (Figure 2G). Through these

analyses, a deeper understanding of the functions of palmitoleic
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acid-related genes in LUAD and their potential biological

significance has been gained, offering new directions for future

mechanistic studies.

The distribution of somatic mutations was analyzed between

group A and group B. In group B, 193 out of 219 samples (88.13%)

exhibited gene mutations, whereas in group A, 257 out of 277

samples (92.78%) showed mutations. Notably, group A exhibited a

significantly higher frequency of TP53 mutations (Supplementary

Figures S2B, C). In group B, higher levels of CD8 T cells, monocytes,

CD4 memory resting T cells, M0 macrophages, resting dendritic
FIGURE 2

Results of consensus clustering analysis. (A) Consensus cumulative distribution function (CDF) curves for different cluster numbers. (B) Relative
changes in the area under the CDF curves at varying k values. (C) Heatmap of the consensus matrix at k = 2, illustrating the stability of sample
clustering. (D) KM survival curves showing the comparison of survival outcomes between groups A and B. (E) Heatmap depicting gene expression
differences between the two identified subtypes.. (F) GO enrichment analysis. (G) KEGG enrichment analysis.
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cells, and resting mast cells were observed, while in group A,

elevated levels of naïve B cells, CD4 memory activated T cells,

and M1 macrophages were found (Supplementary Figure S2D).

Differential expression analysis of HLA genes revealed that HLA-

DMA, HLA-DQB2, HLA-DQB1, HLA-DRB1, HLA-DPB1, HLA-

DRB5, and HLA-J gene expression was upregulated in group B,

whereas HLA-A and HLA-C gene expression was upregulated in

group A (Supplementary Figure S2E). These findings offer valuable

ins ights into the di ffe rences in the tumor immune

microenvironment and may serve as a foundation for the

development of personalized immunotherapy strategies.
Construction of a risk model, SHAP
analysis, and evaluation of its prognostic
performance

Univariate Cox regression analysis was conducted to identify

palmitoylation-related genes significantly associated with prognosis

(Figure 3A). Subsequently, Lasso regression analysis was conducted

on these prognosis-related genes, resulting in the selection of five

genes for the development of the prognostic model (Figures 3B, C).

Risk scores were calculated using the formula provided below: Risk

score = (0.3869 × ZDHHC5 expression) + (0.2069 × ZDHHC12

expression) + (–0.1710 × ZDHHC21 expression) + (0.1539 ×

LYPLA1 expression) + (0.1709 × PPT2 expression). The average

importance of these five genes, based on SHAP values, was

illustrated by bar graphs, with ZDHHC5 exhibiting the highest

contribution, followed by ZDHHC21 and PPT2, indicating their

prominent roles in model prediction (Figure 3D). The swarm plots

depicted the relationship between gene expression levels and SHAP

values; colors ranging from violet to orange represented low to high

expression, respectively. Distinct distributions of SHAP values

corresponding to high expression levels of different genes further

demonstrated the impact of gene expression on risk prediction

(Figure 3E). Waterfall plots and force diagrams for individual

samples illustrated the specific contributions of genes to

prediction outcomes, where genes with negative values decreased

the risk prediction score, and those with positive values increased it,

thereby providing an intuitive representation of the model’s internal

decision-making process (Figures 3F, G). Finally, the PCA scatter

plot clearly separated the high-risk group from the low-risk group,

indicating the strong discriminatory capacity of the model features

in sample risk classification (Figure 3H).

The risk distribution graph demonstrated a stepwise increase in

patients’ risk scores, with a marked reduction in survival time in the

high-risk group (Figure 4A). The Kaplan-Meier analysis

demonstrates that the survival rate in the low-risk group is

significantly higher than that in the high-risk group (Figure 4B).

Moreover, validation with the GEO database yielded consistent

results (Figure 4C). The predictive performance of the risk model,

assessed by the ROC curve, yielded area under the curve (AUC)

values of 0.669, 0.640, and 0.614 at 1, 3, and 5 years, respectively

(Figure 4D). Stratified survival analyses according to gender
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(Figure 4E), age (Figure 4F), and tumor stage (Figure 4G)

indicated that risk scores had a significant impact on survival

across all strata, with the low-risk group consistently exhibiting a

more favorable prognosis. Based on the aforementioned results, the

risk scoring model not only predicts OS but also offers valuable

insights for developing personalized treatment strategies for

patients in clinical settings, highlighting its significant

clinical applicability.

Univariate and multivariate Cox regression analyses

demonstrated that both tumor stage and risk score significantly

influenced patient survival risk, with the risk score exhibiting the

highest hazard ratio, thereby emphasizing its role as a key

prognostic factor (Figures 5A, B). Furthermore, validation using

the GEO database confirmed that the risk score serves as an

independent prognostic factor in both univariate and multivariate

Cox regression analyses (Figures 5C, D). A nomogram integrating

sex, age, risk score, and staging was constructed to assign scores and

predict 1-, 3-, and 5-year survival probabilities (Figure 5E).

Calibration curves indicated a high concordance between

predicted and observed survival probabilities, reflecting

satisfactory model performance (Figure 5F). ROC curve analysis

further confirmed the model’s predictive accuracy, with AUC values

of 0.747, 0.716, and 0.696 for 1-, 3-, and 5-year survival, respectively

(Figure 5G). Based on the above analysis, this prognostic model

demonstrates significant potential for assessing patient survival risk

and guiding clinical decision-making. It provides physicians with

individualized survival estimates and aids in the development of

more targeted treatment strategies, ultimately enhancing the overall

management of patient prognosis.
Association analysis of risk scores with
immune infiltration characteristics,
molecular typing, TMB, and drug sensitivity

Immune cell differential analysis revealed that memory resting

mast cells, B cells, and plasma cells, were significantly more

abundant in the low-risk group, whereas resting NK cells,

activated CD4 memory T cells, and M0- and M1-type

macrophages were enriched in the high-risk group (Figure 6A).

Functional immune analyses indicated enhanced activity in B cells,

activated dendritic cells, dendritic cells, HLA molecules, mast cells,

infiltrating dendritic cells, neutrophils, T-cell co-stimulation, helper

T cells, Th1 cells, tumor-infiltrating lymphocytes, and type II

interferon responses within the low-risk group. Conversely,

increased express ion of MHC class I molecules and

parainflammatory markers was observed in the high-risk group

(Figure 6B). Immunophenotyping analysis demonstrated a

statistically significant difference in immunophenotype

distribution between different risk groups (Figure 6C). TMB was

markedly elevated in the high-risk group compared to the low-risk

group, as shown in Figure 6D. Survival analysis revealed that

patients with high TMB had significantly improved survival

probability relative to those with low TMB (p = 0.024)
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(Figure 6E). Further stratification combining risk status and

mutation burden demonstrated that patients with high TMB and

low risk exhibited the highest survival rates, while those with low

TMB and high risk showed the lowest survival rates (Figure 6F).

These results suggest that TMB and risk stratification jointly

influence patient survival outcomes.

The differences in drug sensitivity between the two groups were

further investigated. It was found that the low-risk group exhibited

lower IC50 values for Ribociclib, Selumetinib, and Axitinib,
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indicating increased sensitivity to these drugs. Conversely, higher

IC50 values were observed in the low-risk group for 5-Fluorouracil,

Talazoparib, Sapitinib, Fenretinide, Cediranib, Fluvastatin,

Galiellalactone, Dasatinib, Alisertib, Apitolisib, Osimertinib,

Gefitinib, and Erlotinib, suggesting decreased sensitivity

(Figure 7). These findings offer valuable guidance for selecting the

most appropriate drugs based on patients’ risk scores in clinical

practice, particularly in the context of precision medicine and

targeted treatment strategies.
FIGURE 3

Construction of the risk model. (A) Hazard ratio forest plot; (B) Partial likelihood deviance and its standard error based on different lambda values in
the LASSO regression model for selecting the optimal model parameters; (C) Path diagram of LASSO regression coefficients showing the changes in
the regression coefficients of five genes across different lambda values; (D) Histogram of average SHAP values of genes indicating the relative
importance of each gene’s contribution to model prediction; (E) SHAP value swarm plot demonstrating the distribution of SHAP values for each
gene across different samples and the effect of expression levels on model prediction; (F) SHAP waterfall plot illustrating the positive and negative
contributions of each gene to the prediction result in a representative patient sample; (G) SHAP force plot showing the cumulative effect from the
baseline prediction value to the final prediction outcome; (H) PCA plot.
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ZDHHC5 expression and activity across
various cancer types

Next, the role of ZDHHC5, the most critical gene in the model,

was further investigated in a pan-cancer context. ZDHHC5
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expression across 33 tumor types was analyzed using the TCGA

database, with tissues ranked from highest to lowest expression. The

highest expression level was detected in head and neck squamous

cell carcinoma (HNSC) (Figure 8A). Compared with normal tissues,

significantly higher expression of ZDHHC5 was detected in 13
FIGURE 4

Prognostic evaluation of the risk model. (A) The upper panel presents the risk score distribution; the middle panel illustrates the distribution of
survival status and survival time; the lower panel displays a heatmap of the expression levels of five genes associated with the risk score; (B) Kaplan-
Meier OS curve for the TCGA dataset between the two risk groups; (C) Kaplan-Meier OS curve for the GEO dataset between the two risk groups;
(D) Time-dependent ROC curves; Survival analysis stratified by gender (E), age (F), and clinical stage (G).
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cancer types: invasive breast carcinoma (BRCA), bladder urothelial

carcinoma (BLCA), cholangiocarcinoma (CHOL), cervical

squamous cell carcinoma and endocervical adenocarcinoma

(CESC), esophageal carcinoma (ESCA), kidney chromophobe

(KICH), liver hepatocellular carcinoma (LIHC), LUAD, lung

squamous cell carcinoma (LUSC), stomach adenocarcinoma

(STAD), thyroid carcinoma (THCA), uterine corpus endometrial

carcinoma (UCEC), and kidney renal papillary cell carcinoma

(KIRP) (Figure 8B). In contrast, downregulated expression was

observed in colon adenocarcinoma (COAD). The activity levels of

ZDHHC5 across 33 tumor types are shown in Figure 8C, with the
Frontiers in Immunology 11
highest activity in rectal adenocarcinoma (READ) and the lowest in

lower-grade glioma (LGG). Figure 8D presents the comparison of

ZDHHC5 activity between tumor and normal tissues. Elevated

activity was observed in BRCA, CESC, CHOL, glioblastoma

multiforme (GBM), LUSC, LUAD, pancreatic adenocarcinoma

(PAAD), STAD, UCEC, and THCA, while reduced activity was

noted in LIHC, COAD, pheochromocytoma and paraganglioma

(PCPG), and kidney renal clear cell carcinoma (KIRC).

Additionally, IHC staining from the HPA database showed a

significant increase in ZDHHC5 protein expression across eight

tumor types compared to normal tissues (Supplementary Figure
FIGURE 5

Independent prognostic value and assessment of predictive efficacy of risk models. (A) Univariate Cox regression analysis in the TCGA dataset;
(B) Multivariate Cox regression analysis in the TCGA dataset; (C) Univariate Cox regression analysis in the GEO dataset; (D) Multivariate Cox
regression analysis in the GEO dataset; (E) In the TCGA dataset, a nomogram constructed based on age, gender, risk score, and staging;
(F) Calibration curve of the nomogram; (G) ROC curve of the nomogram. ***p < 0.001.
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S3). These findings highlight the markedly elevated expression of

ZDHHC5 in various cancers, suggesting its potential involvement

in cancer progression.
ZDHHC5 expression, survival, and
enrichment analysis in pan-cancer analysis

The association between ZDHHC5 expression and OS, disease-

free survival (DFS), progression-free survival (PFS), and disease-
Frontiers in Immunology 12
specific survival (DSS) was investigated across various tumor types.

Elevated ZDHHC5 expression was associated with reduced OS in

adrenocortical carcinoma (ACC), PAAD, LUAD, uveal melanoma

(UVM), LGG, and GBM (Figure 9A). In ACC and PAAD, high

ZDHHC5 expression was also correlated with shorter DFS

(Figure 9B). Furthermore, increased ZDHHC5 expression was

associated with worse DSS outcomes in ACC, GBM, PAAD,

UVM, and LGG (Figure 9C). High expression levels of ZDHHC5

were also inversely correlated with PFS in ACC, LGG, UVM, and

PAAD (Figure 9D). Conversely, elevated ZDHHC5 expression in
FIGURE 6

Correlation analysis of risk scores with immune infiltration characteristics, molecular typing, and TMB. (A) Demonstrating the differences in the
proportions of different immune cell infiltrates in the two risk groups; (B) Comparison of immune-related functional scores assessed based on the
ssGSEA method among different risk groups; (C) Distribution of TCGA patients among immune subtypes and the differences in their proportions in
the two risk groups; (D) TME expression in the high-risk and low-risk groups; (E) KM survival curves for groups with different TMB expression levels;
(F) KM curves for survival analysis based on combined grouping of risk score and TMB. *p < 0.05; **p < 0.01; ***p < 0.001.
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KIRC was positively associated with both OS and PFS (Figures 9A,

D), and similarly, it correlated positively with DSS in KIRC, THCA,

and thymoma (THYM) (Figure 9C). KM survival analysis further

confirmed that patients with high ZDHHC5 expression had worse

OS in PAAD, LUAD, LGG, UVM, and ACC (Supplementary Figure

S4A), and poorer DFS in PAAD and ACC (Supplementary Figure

S4B). Additionally, high ZDHHC5 expression was correlated with

reduced DSS and PFS in PAAD, LGG, ACC, and UVM

(Supplementary Figures S4C, D), while it was positively associated

with OS and PFS in THCA and KIRC, respectively (Supplementary

Figures S4A, D). The diagnostic utility of ZDHHC5 was also

evaluated using TCGA and GTEx datasets (Supplementary

Figures S5, S6). In TCGA, 12 tumor types had AUC values

exceeding 0.7 (Figure 9E). In the GTEx dataset, 19 tumor types

showed AUC values above 0.7, with PAAD, CHOL, STAD, and
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READ exhibiting AUC values greater than 0.9 (Figure 9E). These

findings underscore the strong diagnostic potential of ZDHHC5

across a broad range of tumors. Moreover, the heterogeneous

expression patterns and prognostic implications of ZDHHC5 in

different cancers highlight its biological significance and potential

clinical relevance as a biomarker for personalized cancer therapy.

GSEA and GO functional analyses demonstrated a significant

association between ZDHHC5 and various immune-related

functions in HNSC, COAD, uterine carcinosarcoma (UCS),

LUSC, THCA, and STAD. However, enrichment patterns varied

across tumor types. For example, STAD and THCA exhibited

opposite enrichment trends, with negative enrichment observed

in STAD and positive enrichment in THCA (Supplementary Figure

S7A). These functions included detection of chemical stimuli,

natural killer cell activation involved in immune responses, and
FIGURE 7

Results of drug sensitivity analysis between the two risk groups.
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regulation of defense responses to bacterial and fungal pathogens.

GSEA, based on KEGG pathways, identified a positive correlation

between ZDHHC5 and several immune-related signaling pathways

in UCS, LIHC, UVM, LGG, LUSC, THYM, and GBM

(Supplementary Figure S7B). These pathways included antigen

processing and presentation, T-cell receptor signaling, toll-like

receptor signaling, the intestinal immune network for IgA

production, cytokine–cytokine receptor interactions, and natural

killer cell-mediated cytotoxicity signaling pathway. These results

further highlight the potential role of ZDHHC5 in regulating tumor

immunity and provide a theoretical foundation for future research

in cancer immunotherapy.
ZDHHC5 and its association with immune
infiltration, immune modulators, immune
checkpoints, SNV-derived neoantigens,
MSI, and TMB across cancers

Tumor immune cell infiltration is a key component of the

tumor microenvironment (TME) and plays a critical role in

determining tumor prognosis (25, 26). Accordingly, the

association between ZDHHC5 expression and immune cell

infiltration was investigated. Figure 10 illustrates the positive

correlation between ZDHHC5 expression and various immune-

infiltrating cell types, including macrophages, neutrophils, cancer-

associated fibroblasts, endothelial cells, mast cells, and

monocytes. In most tumor types, ZDHHC5 expression was
Frontiers in Immunology 14
favorably associated with immune cell infiltration. However, in

THYM, ZDHHC5 expression was negatively correlated with CD4+

and CD8+ T cells. In addition, Figure 10 also presents the

relationships between ZDHHC5 expression and immune,

microenvironmental, and stromal scores across multiple cancer

types. These findings further highlight the complex role of

ZDHHC5 in modulating the tumor immune microenvironment

and suggest potential mechanisms through which it may influence

tumor progression.

The correlation between ZDHHC5 and common ICP genes was

also investigated. In most tumor types, a strong connection was

observed between ICP genes and ZDHHC5 expression

(Supplementary Figure S8A). However, in THCA, skin cutaneous

melanoma (SKCM), ESCA, CESC, HNSC, and LUSC, most ICP

genes exhibited an inverse relationship with ZDHHC5 expression.

According to data from the TISIDB database, ZDHHC5 expression

across cancers was associated with immunostimulators,

immunoinhibitors, and major histocompatibility complex (MHC)

genes. Specifically, in GBM, mesothelioma (MESO), ovarian cancer

(OV), UVM, testicular germ cell tumors (TGCT), sarcoma (SARC),

UCS, and LGG, ZDHHC5 expression was positively correlated with

immunostimulators, while negative correlations were observed in

BLCA, ESCA, breast invasive carcinoma (BRCA), COAD, and

LUSC (Supplementary Figure S8B). In addition, ZDHHC5

expression showed a positive association with immunoinhibitors

in GBM, LGG, OV, TGCT, UCS, and SARC, whereas negative

associations were observed in COAD, BRCA, LUSC, and PAAD

(Supplementary Figure S8C). ZDHHC5 was also associated with
FIGURE 8

ZDHHC5 expression and activity across various cancer types. (A) ZDHHC5 expression in tumor tissues; (B) Expression of ZDHHC5 in tumor and
normal samples; (C) ZDHHC5 activity in tumor tissues; (D) ZDHHC5 activity in tumor and normal samples. *p < 0.05; **p < 0.01; ***p < 0.001.
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MHC gene expression in ACC, CHOL, GBM, LGG, KIRC, OV,

SARC, TGCT, THCA, UCS, and UVM. Conversely, negative

correlations were identified in BRCA, BLCA, COAD, CESC,

ESCA, LIHC, READ, LUSC, HNSC, LUAD, KIRP, and prostate

adenocarcinoma (PRAD) (Supplementary Figure S8D). These
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findings further underscore the complexity and tumor-specific

variability of ZDHHC5 in immune regulation.

SNVs are among the most common and widespread changes in

the genome (27). Supplementary Figure S8E illustrates the levels of

SNVs neoantigens in pan-cancer cells. TMB, which represents the
FIGURE 9

Forest plots and AUC values between ZDHHC5 and survival across multiple cancers. (A) The connection between ZDHHC5 and OS; (B) The
connection between ZDHHC5 and DFS; (C) The connection between ZDHHC5 and DSS; (D) The connection between ZDHHC5 and PFS; (E) AUC
values based on TCGA and GTEx databases across various types of cancer.
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total somatic mutation load in tumor cells (28), is a promising

marker for assessing the response to immunotherapy (29). Our

study demonstrated a favorable correlation between ZDHHC5 and

TMB in UCEC, ACC, THYM, SARC, STAD, LUAD, LGG, and

PAAD (Supplementary Figure S8F). Previous studies have

established that MSI correlates with tumor prognosis (30). As
Frontiers in Immunology 16
shown in Supplementary Figure S8G, ZDHHC5 was strongly

associated with MSI in UVM, KICH, KIRC, and UCEC, and

inversely associated with MSI in ACC, BRCA, THCA, SKCM,

HNSC, and diffuse large B-cell lymphoma (DLBC). These

findings form the foundation for further investigation of its

mechanism of action and potential clinical applications.
FIGURE 10

Relationship between various immune cell infiltrations and ZDHHC5 in different tumors.
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ZDHHC5 expression, clinical
characterization, and enrichment analysis
in LUAD

Given the significantly elevated expression of ZDHHC5 in

LUAD and its strong associations with patient prognosis, the

tumor immune microenvironment, and various ICP genes, a

detailed investigation into its specific role in LUAD was

conducted, considering the high incidence and clinical relevance

of this cancer. ZDHHC5 expression was observed to be markedly

elevated in LUAD samples (n = 541) compared to normal lung

tissues (n = 59) (Figure 11A). Paired sample analysis further

confirmed these results (Figure 11B). KM survival analysis

indicated that patients with low ZDHHC5 expression had

significantly longer OS than those with high expression (p =

0.024) (Figure 11C). Co-expression analysis identified genes

strongly correlated with ZDHHC5 (|correlation coefficient| > 0.7,

p < 0.001). The six most positively correlated genes were OSBP,

MARK2, TMEM127, GANAB, RELA, and PATL1, all with

correlation coefficients greater than 0.7 (Figure 11D). The five

most negatively correlated genes included RNU4ATAC, RNU4-2,

DTNB-AS1, H2AC20, and RNU1-67P (Figure 11E). Cox regression

analysis validated that ZDHHC5 expression and clinical stage were

independent prognostic factors in LUAD (Figures 11F, G). A total

of 364 DEGs were detected between the high and low ZDHHC5

expression groups (Supplementary Table S2). Of these, 306 genes

were upregulated in the high-expression group, while 58 genes

showed increased expression in the low-expression group.

Heatmaps of the top 50 DEGs in each group were generated to

visualize these differences (Figure 11H). These results not only

enhance our understanding of the role of ZDHHC5 in LUAD but

also offer valuable insights for the development of future

therapeutic strategies.

GO, KEGG, and GSEA enrichment analyses were performed to

explore the potential regulatory mechanisms of ZDHHC5 DEGs.

GO and KEGG analyses revealed significant associations of DEGs

with 206 GO terms and 13 KEGG pathways (Supplementary Tables

S3, S4). GO analysis alone revealed that the DEGs were

predominantly involved in various biological processes, including

fi lament organization, keratinization, and keratinocyte

differentiation intermediates. Cellular components were enriched

in desmosomes, connexin complexes, and cornified envelopes. For

molecular functions, DEGs were enriched in structural constituents

of the skin epidermis, voltage-gated monoatomic ion channel

activity, and voltage-gated monoatomic cation channel activity

(Supplementary Figure S9A). The most notable KEGG pathways

included neuroactive ligand-receptor interactions, human

papillomavirus infection, and the PI3K-Akt signaling pathway

(Supplementary Figure S9B). GSEA demonstrated significant

enrichment of cell cycle checkpoint functions in the ZDHHC5

high-expression group, suggesting a role for ZDHHC5 in regulating

cell cycle pathways (Supplementary Figures S9C, D). Thus, a more

comprehensive understanding of the molecular mechanisms of

ZDHHC5 in LUAD can be obtained, providing a theoretical

foundation for the development of future therapeutic strategies.
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Correlations between ZDHHC5, immune
infiltration, and drug sensitivity in LUAD

Further analyses of the TME were conducted. The ZDHHC5

low-expression group exhibited notably higher estimated and

immune scores than the ZDHHC5 high-expression group

(Figure 12A). Furthermore, we observed substantial disparities in

the proportions of immune cells between the two groups, with eight

out of 22 immune cell types showing notable differences

(Figure 12B). Further correlation analyses revealed an association

between ZDHHC5 expression and various immune cell types.

ZDHHC5 showed a positive association with macrophages M0 (r

= 0.13, p = 0.004), T cells CD4 memory resting (r = 0.21, p < 0.001),

monocytes (r = 0.1, p = 0.027), macrophages M2 (r = 0.13, p =

0.007), macrophages M1 (r = 0.11, p = 0.025), and NK cells resting

(r = 0.1, p = 0.032), while showing negative correlations with T cells

follicular helper (r = -0.1, p = 0.033), T cells CD8 (r = -0.11, p =

0.021), T cells gamma delta (r = -0.2, p < 0.001), and plasma cells (r

= -0.26, p < 0.001) (Figures 12C, D). Furthermore, we identified 13

ICP genes associated with ZDHHC5 (p < 0.001); CD276 had the

highest correlation coefficient (COR = 0.49). Importantly, all ICP

genes positively correlated with ZDHHC5 expression (Figure 12E).

Finally, our analysis of ZDHHC5 expression and its association

with immunotherapy demonstrated that patients with low

ZDHHC5 expression showed improved efficacy across treatments

with programmed death 1 (PD1) inhibitors alone, cytotoxic T-

lymphocyte-associated protein 4 (CTLA4) inhibitors, or a

combination of PD1 and CTLA4 inhibitors (Figure 12F). These

observations indicate the significant role of ZDHHC5 in

modulating immune cell infiltration, affecting responses to

immunotherapy, and suggest potential clinical therapeutic avenues.

LUAD samples were classified into high and low expression

groups based on ZDHHC5 levels to examine its correlation with drug

sensitivity (Supplementary Figure S10). Analysis revealed that

patients with low ZDHHC5 expression exhibited significantly

reduced IC50 values for various drugs, including vorinostat,

venetoclax, sabutoclax, ribociclib, PRIMA-1MET, obatoclax

mesylate, niraparib, nilotinib, mitoxantrone, linsitinib, entinostat,

doramapimod, dabrafenib, afuresertib, and leflunomide, suggesting

enhanced sensitivity. Conversely, the high ZDHHC5 expression

group demonstrated markedly lower IC50 values for cediranib,

indicating increased drug sensitivity. These findings indicate that

ZDHHC5 may have a pivotal role in modulating drug resistance,

offering insights for developing personalized treatment approaches.

Future research should delve into the molecular mechanisms by

which ZDHHC5 influences drug metabolism and response, aiming to

enhance the treatment outcomes and prognostic precision for LUAD.
ZDHHC5 may promote the proliferation
and metastasis of LUAD cells via the PI3K/
AKT pathway

Further experiments validated the overall function of ZDHHC5

in LUAD patients. According to data from the Cancer Cell Line
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Encyclopedia database, ZDHHC5 expression was relatively high in

the H1299 and HCC827 cell lines (Supplementary Figure S11). As a

key palmitoylation-related protein, ZDHHC5 has been studied in

various cancer types, indicating its functional significance. It is

hypothesized that the role of ZDHHC5 is not limited to LUAD.
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Therefore, both the LUAD cell line HCC827 and the NSCLC cell

line H1299 were used for experimental validation. Our findings

revealed that ZDHHC5 expression was significantly elevated in

H1299 and HCC827 cells compared to normal lung epithelial

BEAS-2B cells (Supplementary Figure S12A). The efficiency of
FIGURE 11

ZDHHC5 expression and clinical characterization in LUAD. (A) ZDHHC5 expression levels in LUAD versus normal samples; (B) ZDHHC5 expression
levels in paired LUAD versus normal samples; (C) Connection between ZDHHC5 and OS; (D) Co-expression circle plot depicting the relationship
between ZDHHC5 and 11 genes; (E) The six genes with the strongest positive correlation with ZDHHC5; (F) Univariate Cox regression analysis;
(G) Multivariate Cox regression analysis; (H) The top 50 DEGs in the high and low ZDHHC5 expression groups. ***p < 0.001.
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ZDHHC5 knockdown was assessed via qRT-PCR and Western

blotting, which demonstrated that both siRNA-2 and siRNA-3

effectively reduced ZDHHC5 mRNA and protein levels in both

cell lines (Supplementary Figures S12B, C). Colony formation and
Frontiers in Immunology 19
CCK-8 assays showed that ZDHHC5 knockdown significantly

inhibited the proliferative capacity of H1299 and HCC827 cells

(Figures 13A, D). In addition, the invasion and migration abilities of

cells following ZDHHC5 knockdown were evaluated using
FIGURE 12

Correlations between ZDHHC5 and immune infiltration in LUAD. (A) Connection between ZDHHC5 and TME; (B) Effect of high and low ZDHHC5
expression on immune cell infiltration; (C) Connection graph between ZDHHC5 and immune cells; (D) Lollipop plot between ZDHHC5 and immune
cells; (E) Correlation between ZDHHC5 and ICP genes; (F) Correlation between ZDHHC5 and immunotherapy. *p < 0.05; **p < 0.01; ***p < 0.001.
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Transwell and wound healing assays. The results revealed that the

migration and invasion abilities of tumor cells were significantly

reduced after ZDHHC5 knockdown (Figures 13B, C).

Additionally, HCC827 cells were transfected with an

overexpression plasmid (OE-ZDHHC5) and a control plasmid

(vector) to overexpress ZDHHC5 (due to its low baseline

expression in this cell line). Transfection efficiency was validated

by qRT-PCR (Supplementary Figure S12D) and Western blotting

(Supplementary Figure S12E). Colony formation assays showed

that the number of colonies in the OE-ZDHHC5 group was

significantly higher than in the vector group (Figure 13E).

Moreover, wound healing assays indicated that the migration

ability of OE-ZDHHC5 cells was significantly enhanced

compared to the control group 24 hours after scratching

(Figure 13F). These results suggest that overexpression of

ZDHHC5 significantly enhances the proliferation and migration

abilities of the HCC827 cell line.

Disruption of the PI3K/AKT signaling pathway plays a critical

role in regulating cell growth (31, 32). KEGG analysis demonstrated

significant enrichment of ZDHHC5 within the PI3K/AKT pathway.

To assess the impact of ZDHHC5, PI3K/AKT and its phosphorylated

forms (p-AKT/p-PI3K) were analyzed by Western blotting following

ZDHHC5 knockdown. The results indicated that ZDHHC5

knockdown substantially reduced the phosphorylation levels of

AKT and PI3K (Figure 14A). To further investigate the

relationship between ZDHHC5 and lung adenocarcinoma (LUAD)

development in vivo, HCC827 cells were transfected with

shZDHHC5 lentivirus, with shZDHHC5–3 showing the highest

knockdown efficiency. These cells were then used for subsequent

experiments (Supplementary Figures S12F, G). Transfected cells were

injected into nude mice to establish xenograft tumor models. The

results revealed that ZDHHC5 knockdown significantly reduced

tumor volume and weight in the mice (Figures 14B–D). Western

blot analysis further confirmed that ZDHHC5 knockdown markedly

decreased the expression levels of p-AKT and p-PI3K in the tumor

tissues (Figure 14E). Additionally, the expression of the cell

proliferation marker Ki67 was significantly downregulated

following ZDHHC5 knockdown (Figures 14F, G). In summary,

ZDHHC5 knockdown may inhibit LUAD cell proliferation and

metastasis by suppressing the PI3K/AKT signaling pathway.
Discussion

LUAD, a common subtype of NSCLC, is characterized by high

invasiveness and poor prognosis (33–35). As the incidence of

LUAD continues to rise, it has become a significant public health

challenge (36). Consequently, it is crucial to identify new

therapeutic targets and prognostic biomarkers. Recent advances

in molecular biology have highlighted the critical role of

palmitoylation in cancer progression (18, 37). This study,

therefore, aims to investigate the role of palmitoylation-related

genes in LUAD and propose a prognostic prediction model based

on these genes, with the goal of providing scientific guidance for

clinical decision-making.
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This study thoroughly examined the genomic variations,

expression profiles, and their impact on patient prognosis of

palmitoylation-related genes in LUAD, elucidating the role of

these genes in LUAD. A multi-dimensional research strategy was

employed, beginning with the identification of distinct gene

expression subpopulations through consensus clustering analysis.

This was followed by the construction of a prognostic risk model

based on SHAP analysis to assess the contribution of each gene.

Additionally, the connections between risk scores, immune

infiltration characteristics, TMB, and drug sensitivity were

explored. In particular, the key gene ZDHHC5 was the focus of

the model. Its expression in various cancers, along with its

associations with prognosis, immune cell infiltration, ICP genes,

immune regulatory factors, MSI, TMB, and drug sensitivity were

analyzed. Functional enrichment analysis delved deeper into the

link between ZDHHC5, LUAD prognosis, and immune response.

Experimental validation suggests that ZDHHC5 may promote

LUAD cell proliferation, invasion, and migration through the

PI3K/AKT pathway. In conclusion, through experimental

validation and multi-omics analysis, the multifaceted roles of

ZDHHC5 in cancer were revealed. These findings not only

enhance the accuracy of diagnostic markers but also provide a

theoretical basis for targeted therapy.

The palmitoleic acid-modified gene prognostic model

developed in this study demonstrated significant advantages in

immune microenvironment and prognostic stratification. The

model accurately distinguished between low-risk and high-risk

groups, with the low-risk group enriched in memory quiescent

mast cells, B cells, and plasma cells, accompanied by enhanced B cell

activation and type II interferon response. In contrast, the high-risk

group was enriched in quiescent NK cells and M0/M1

macrophages, and exhibited high expression of MHC-I molecules.

This analysis overcomes the limitations of traditional mutation/

metabolic models, which only quantify cell abundance, and

provides a more in-depth understanding of immune

microenvironment characteristics. Additionally, risk scores

significantly differentiated survival rates across all subgroups

stratified by gender, age, and stage. Univariate and multivariate

Cox regression analyses indicated that the HR for risk scores was

the highest, outperforming the traditional TNM staging system,

with patients in the high-risk group and high TMB exhibiting the

poorest survival outcomes. By integrating risk scores with clinical

variables, a nomogram was constructed, improving the AUC values

for 1-, 3-, and 5-year OS to 0.747, 0.716, and 0.696, respectively,

thereby providing a direct tool for personalized treatment. This

model addresses the limitations of existing tools by linking

palmitoleic acid gene expression with the functional state of the

immune microenvironment, resolving the inability to dynamically

elucidate immune suppression mechanisms and the differing

prognoses among patients at the same stage. These findings

further highlight its significant potential for clinical translation.

The risk model based on a five-gene signature has shown

considerable potential for clinical applications. The predictive

model developed integrates gene expression data and survival

information, effectively predicting patient prognosis and
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providing a scientific foundation for the formulation of

personalized treatment strategies. In clinical practice, qRT-PCR

and NGS detection panels are essential tools for gene detection.

qRT-PCR technology is sensitive, simple, cost-effective, and suitable

for routine clinical testing, providing rapid results (38). In contrast,
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NGS technology offers higher throughput and greater accuracy (39).

Although NGS incurs higher equipment and operational costs, it

delivers more comprehensive information, particularly in precision

medicine and personalized treatment, by identifying genes

associated with tumor progression. From a cost-effectiveness
FIGURE 13

Impact of ZDHHC5 knockdown and overexpression in H1299 and HCC827 cells. (A) Colony formation assay to verify proliferation ability; (B) Wound
healing assay to verify migration ability; (C) Transwell assay to verify migration and invasion ability; (D) CCK-8 assay to verify proliferation ability; (E)
Colony formation assay shows more colonies in OE-ZDHHC5 group; (F) Wound healing assay indicates higher migration rate in OE-ZDHHC5 group
at 24 hours. **p < 0.01; ***p < 0.001; ****p < 0.0001.
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standpoint, while qRT-PCR has advantages in cost, NGS holds

greater potential when high-throughput, multi-gene simultaneous

detection is required. As technology progresses and equipment

costs decline, the feasibility and accessibility of NGS in clinical

settings will continue to improve. By combining the strengths of

qRT-PCR and NGS, particularly in cancer screening and risk

prediction, more personalized and precise diagnostic and

treatment strategies can be achieved.

The immune microenvironment plays an integral role in the

progression of LUAD (40, 41). By analyzing the differences in

immune infiltration between two palmitoylation-related groups,

significant variations in immune infiltration characteristics were

observed. The group B exhibited higher proportions of monocytes,

CD4 memory resting T cells, and CD8 T cells, suggesting that

patients in this group may have stronger antitumor immune
Frontiers in Immunology 22
responses, which could help explain their better prognosis. In

contrast, group A was characterized by elevated levels of naïve B

cells and activated CD4 memory T cells, potentially reflecting

weaker immune responses that may promote tumor progression.

Differential expression of HLA genes further revealed immune

escape mechanisms (42, 43), with multiple HLA genes associated

with enhanced antigen presentation being upregulated in group B,

thereby promoting T cell-mediated cytotoxicity. The analysis of

somatic mutations in this study revealed the genomic characteristics

of LUAD and their association with the expression of

palmitoylation-related genes. Notably, compared to the better-

prognosed group B, group A exhibited higher mutation

frequencies and was characterized by elevated TP53 mutation

levels. This difference in mutation frequency suggests that

mutational burden may play an essential role in tumor
FIGURE 14

The effect of ZDHHC5 knockdown on tumor growth and the PI3K/AKT signaling pathway. (A) ZDHHC5 knockdown reduces the phosphorylation
levels of AKT and PI3K; (B) HCC827 mouse xenograft tumor image; (C) Comparison of tumor weights between NC and shZDHHC5 groups;
(D) Tumor growth curve; (E) Western blot results from HCC827 mouse model showing that shZDHHC5 inhibits the AKT/PI3K signaling pathway;
(F) Immunohistochemical staining of ZDHHC5 and Ki67. Scale bars, 100 µm; (G) Comparison of ZDHHC5 and Ki67 immunohistochemical scores.
**p < 0.01; ***p < 0.001.
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progression and patient prognosis (44). The higher mutation rate in

group A may indicate that these tumors exhibit a more aggressive

phenotype, which could lead to increased genomic instability and

alterations in cellular pathways, thereby promoting tumorigenesis.

Furthermore, the correlation between somatic mutations and

immune cell infiltration highlights the complex interplay between

the TME and host immune responses. group B exhibited higher

levels of CD8 T cells and other immune cell infiltration, which are

often associated with enhanced antitumor immunity. In contrast,

group A was characterized by elevated levels of naïve B cells and

activated CD4 T cells, which may reflect reduced immune response

efficiency, further emphasizing the potential influence of somatic

mutations on immune escape mechanisms.

A prognostic risk model constructed using genes associated with

palmitoylation-related pathways revealed significant differences in

sensitivity to multiple chemotherapy drugs between low-risk and

high-risk groups, highlighting the potential for developing

personalized treatment strategies based on individual risk profiles.

Specifically, the low-risk group exhibited lower IC50 values for

ribociclib, selumetinib, and axitinib, indicating greater sensitivity to

these targeted therapies. This suggests that patients with a better

prognosis may benefit from more aggressive treatment regimens

incorporating these drugs. In contrast, the high-risk group

demonstrated higher IC50 values for several traditional

chemotherapy drugs (such as 5-fluorouracil, talazoparib, and

osimertinib), suggesting potential resistance to these agents. The

observed resistance in the high-risk group emphasizes the need to

explore alternative treatment strategies, including combination

therapy or novel drugs, to overcome existing resistance

mechanisms. Overall, the correlation between risk scores and drug

sensitivity underscores the importance of personalized medicine in

the treatment of LUAD. By integrating genomic sequencing and risk

stratification, clinicians can optimize treatment regimens, improve

outcomes, and reduce unnecessary toxic side effects.

Differential expression of palmitoylation-related genes, particularly

ZDHHC5, ZDHHC12, LYPLA1, and PPT2, underscores the potential

roles of these genes in the pathogenesis and prognosis of LUAD.

ZDHHC5, identified as the key gene in our risk model, will be

discussed in detail later. ZDHHC12 has been shown to be involved in

tumor progression. Studies have demonstrated that ZDHHC12-

mediated claudin-3 palmitoylation plays a decisive role in OV

progression (45). Research on LYPLA1 indicates that its inhibition can

suppress the proliferation and migration of NSCLC cells (46). Although

PPT2 has received limited attention in LUAD research, previous studies

have shown its use in constructing an OV prognosis model based on

genes related to mitochondrial metabolism (47). In summary, the

expression patterns and functional significance of ZDHHC5,

ZDHHC12, and PPT2 in LUAD not only enhance our understanding

of the molecular mechanisms underlying this malignancy but also

provide new avenues for developing targeted therapies to improve

patient outcomes. Future studies should focus on elucidating the

precise mechanisms by which these genes regulate tumor behavior

and assess their potential as therapeutic targets for LUAD.

ZDHHC5, a member of the ZDHHC protein family (15), plays a

crucial role in protein palmitoylation, directly affecting protein
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stability, localization, and interactions (45, 48). However, its role

varies across cancer types. In gliomas and pancreatic cancer,

ZDHHC5 promotes tumorigenesis and progression by regulating

oncogenes and tumor suppressor genes (13, 49). This study found

that ZDHHC5 overexpression enhances tumor cell proliferation and

metastasis by activating PI3K/AKT and other pathways associated with

tumor progression, driving malignant transformation. Additionally,

ZDHHC5 is critical in cancer immune escape. As a key enzyme

regulating PD-L1 stability, ZDHHC5 enhances PD-L1 stability via

palmitoylation, promoting PD-L1-mediated immune suppression,

which may exacerbate tumor growth and metastasis, leading to poor

prognosis (50). In KIRC, ZDHHC5’s role differs significantly from

other tumors. High ZDHHC5 expression is associated with better

prognosis, showing significant positive effects on OS and PFS.

ZDHHC5 may improve the tumor microenvironment and regulate

fatty acid metabolism, leading to better prognosis. KIRC, a tumor with

high immune infiltration (51), may benefit from ZDHHC5’s role in

immune cell infiltration and function. As a regulator of fatty acid

metabolism, ZDHHC5 may inhibit lipid accumulation in KIRC by

modulating fatty acid uptake, distribution, oxidation, and storage,

further improving prognosis. In summary, the opposite prognostic

effects of ZDHHC5 in KIRC and LUAD are likely related to its distinct

mechanisms in different tumor microenvironments, the signaling

pathways it regulates, and the unique functions of its fatty acid

palmitoylation targets. These findings provide important directions

for future research.

Tumor-infiltrating immune cells significantly influence cancer

treatment efficacy and patient prognosis (52, 53). Limited studies

have investigated ZDHHC5 and immune infiltration in cancer;

therefore, our research offers a novel perspective on the role of

ZDHHC5 in the TME. Our research highlighted a meaningful

relationship between ZDHHC5 and immune cell infiltration in

various types of cancer. Specifically, ZDHHC5 expression positively

correlated with macrophage and neutrophil infiltration, both of

which are critical in the TME for promoting angiogenesis,

inflammation, and tumor progression (54–56). Conversely, in

THYM, ZDHHC5 expression negatively correlated with CD4+

and CD8+ T cells, which are crucial for anti-tumor immunity

(57–59). The positive correlation between ZDHHC5 and

macrophages and neutrophils suggests that ZDHHC5 may foster

a tumor-promoting microenvironment by regulating cytokine

production and immune cell recruitment. This hypothesis is

consistent with our GSEA results, which indicate that ZDHHC5

participates in immune-related pathways, including cytokine-

cytokine receptor interactions, and antigen processing and

presentation. These findings imply that high ZDHHC5 expression

facilitates immune evasion mechanisms, thereby driving tumor

growth and progression. Additionally, the negative correlation

between ZDHHC5 and CD4+ and CD8+ T cells in THYM

suggests the potential immunosuppressive role of ZDHHC5 in

certain cancers. CD4+ and CD8+ T cells are pivotal in

orchestrating an effective antitumor response (60, 61), and their

reduced infiltration into tumors with high ZDHHC5 expression

may indicate impaired immune surveillance, potentially leading to

resistance to T cell-mediated immunotherapy. Previous studies
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have shown that MSI and TMB have a substantial effect on the

response and prognosis of patients with cancer undergoing

immunotherapy (62, 63). Our results highlighted that ZDHHC5

expression exhibited a significant relationship with MSI and TMB

in various tumors, and further in vivo experiments are required to

confirm the impact of ZDHHC5 on TMB. ICP gene expression can

influence the efficacy of immunotherapy in different cancers (64–

67). Our study uncovered that most ICP genes were positively

related to ZDHHC5 in most tumors. We further investigated the

correlation between ZDHHC5 and immune modulators, including

immunostimulators, immunoinhibitors, and MHCs, and found that

ZDHHC5 strongly correlated with multiple immune modulators in

different cancers. In conclusion, our results showed the varied role

of ZDHHC5 in regulating the TME. Understanding the impact of

ZDHHC5 on immunity may pave the way for new targeted

therapies to modulate the immune environment in cancers.

The clinical translational potential of ZDHHC5 as a therapeutic

target is increasingly recognized. Numerous studies have highlighted

its critical role in tumors and metabolic diseases, particularly in the

regulation of cancer cell proliferation, immune evasion, and various

cellular physiological processes. Several compounds have been

identified as potential inhibitors of ZDHHC5-mediated

palmitoylation, demonstrating promising therapeutic prospects. For

instance, docosahexaenoic acid (DHA) inhibits ZDHHC5 activity,

promotes PD-L1 degradation, and exerts immune-enhancing effects

(68). The LXR agonist T0901317 exhibits anti-proliferative effects in

breast cancer cell models (69). Lomitapide has shown anti-tumor

effects in pancreatic cancer animal models (13). Although 2-

bromopalmitate (2-BP) has been used in preclinical studies as a

broad-spectrum inhibitor to suppress tumorigenesis, its lack of

specificity limits its clinical applicability (70–72). These findings

provide a foundation for the development of selective ZDHHC5

small-molecule inhibitors. Innovative delivery strategies also present

new opportunities for ZDHHC5-targeted therapy. Targeted delivery

systems, such as antibody-drug conjugates or nanoparticles, can

direct drugs precisely to tumor tissues while minimizing off-target

effects on normal tissues. However, off-target effects remain a

challenge in ZDHHC5-targeted therapy. Due to the high

conservation of the DHHC motif among ZDHHC family members,

achieving selectivity for a single isoenzyme through competitive

inhibition is difficult, leading to off-target effects with broad-

spectrum inhibitors like 2-BP (73). ZDHHC5 plays significant roles

in the central nervous system, fatty acid metabolism, tumorigenesis,

and cardiac function (50). Therefore, inhibiting ZDHHC5 may have

adverse effects on cardiac and neural tissues. To mitigate off-target

effects, future strategies may focus on targeting substrate recruitment

sites, employing PROTAC degradation technology, utilizing targeted

delivery systems, and exploring combination therapies. These

approaches hold promise for improving treatment specificity and

efficacy while minimizing side effects. Future research should

prioritize the development of highly specific, low-toxicity inhibitors

and assess their pharmacokinetics, pharmacodynamics, and safety to

facilitate their clinical application.

Through in vitro and in vivo experiments, we found that

ZDHHC5 may promote LUAD proliferation and metastasis via
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the PI3K/AKT pathway. The underlying mechanism may be as

follows: First, the regulation of ZDHHC5 is closely associated with

palmitoylation, which plays a crucial role in the activation, stability,

and function of PI3K, AKT, and related molecules such as EGFR

and mTOR. Specifically, PI3K, AKT, and other key molecules,

including EGFR and mTOR, can be regulated by palmitoylation,

thereby influencing the activity of the PI3K/AKT pathway and

cellular biological behavior. Palmitoylation of AKT is particularly

critical for its function and subcellular localization. AKT undergoes

S-palmitoylation at the Cys344 residue, a modification that

facilitates its translocation from the cytoplasm to the plasma

membrane, a necessary step for its activation. Mutations at

Cys344 lead to reduced phosphorylation at key sites (e.g., T308

and T450), impairing AKT function in processes such as autophagy

(74). Thus, AKT palmitoylation plays a pivotal role in maintaining

its functional stability and activity in cellular signaling. Although

there is currently no direct evidence indicating that PI3K itself

undergoes palmitoylation, existing literature suggests that

palmitoylation may regulate AKT signaling through indirect

mechanisms (75) . For instance , ZDHHC22-mediated

palmitoylation of mTOR reduces AKT signaling in breast cancer

cells. Therefore, although further validation is needed to confirm

whether PI3K is directly modified by palmitoylation, it is reasonable

to speculate that PI3K may also be regulated by palmitoylation

through indirect mechanisms. Moreover, palmitoylation of

molecules such as EGFR and mTOR is critical for the regulation

of the PI3K/AKT pathway. Palmitoylation of EGFR promotes the

recruitment of PI3K, thereby activating the downstream AKT

signaling pathway. Studies have shown that ZDHHC20 regulates

the activation of the PI3K/AKT signal by palmitoylating EGFR and

its subunits (76). When EGFR palmitoylation is inhibited, PI3K

recruitment decreases, leading to a significant reduction in AKT

phosphorylation and affecting cell proliferation. Palmitoylation of

mTOR, mediated by ZDHHC22, reduces AKT signaling in breast

cancer cells (77), further suggesting that mTOR palmitoylation may

influence AKT activation. Additionally, palmitoylation of PCSK9

also plays a role in regulating the PI3K/AKT pathway. In liver

cancer, palmitoylation of PCSK9 enhances its binding to PTEN,

leading to PTEN degradation and relieving its inhibitory effect on

AKT signaling (78). This mechanism suggests that ZDHHC5 may

further impact AKT signaling by regulating the interaction between

PCSK9 and PTEN. In summary, ZDHHC5 may precisely regulate

the activation of the PI3K/AKT signaling pathway by

palmitoylating key molecules such as AKT, EGFR, and mTOR,

thereby influencing tumor cell proliferation and metastasis.

Additionally, ZDHHC5’s regulation of the interaction between

PCSK9 and PTEN may further impact AKT signaling. However,

the specific mechanisms require further experimental validation.

Although this study provides a comprehensive analysis, several

limitations should be noted. First, reliance on publicly available

datasets introduces potential batch effects and variability due to

differences in data collection and processing methods. Second, while

the sample size is large, it may still be insufficient to fully capture the

diversity of cancer types and patient responses. Third, the study lacks

experimental validation of the underlying mechanisms. Finally,
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although the relationship between ZDHHC5 and various clinical and

molecular characteristics was explored, its precise role in cancer

progression and prognosis remains unclear. Future research will

involve patient recruitment from multiple clinical centers, with

samples collected from diverse geographical locations and

population backgrounds, to further investigate the association

between ZDHHC5 expression and treatment response. Additionally,

our findings will be validated using humanized models, such as PDX

mice and organoids, as well as additional LUAD cell lines. Mechanistic

studies will incorporate CO-IP and mass spectrometry to identify the

palmitoylation substrates of ZDHHC5 in LUAD cells, with particular

attention to whether key molecules in the PI3K/AKT pathway

undergo palmitoylation. We will also explore how ZDHHC5

regulates the PI3K/AKT pathway through this mechanism. These

experiments aim to address the current limitations and further

strengthen the generalizability of our findings.
Conclusions

In brief, our findings underscore the essential role of

palmitoylation-related genes, particularly ZDHHC5, in the

pathogenesis and prognosis LUAD. The differential expression

and genomic variations of these genes suggest their potential as

biomarkers for patient risk stratification and treatment guidance.

Consensus clustering analysis revealed significant immune-related

differences between subgroups, indicating that alterations in the

immune microenvironment may influence tumor behavior and

patient prognosis. Furthermore, a robust prognostic model

constructed using SHAP analysis emphasizes the importance of

ZDHHC5 and its associated genes in predicting survival probability.

Our correlation analysis further elucidated the complex

relationships between risk scores, immune infiltration, TMB, and

drug sensitivity, suggesting that ZDHHC5 may serve not only as a

prognostic marker but also as a potential therapeutic target. In

conclusion, these findings offer new insights into the biology of

LUAD and may inform future clinical strategies.
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