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Psoriasis, a chronic immune-mediated inflammatory skin disorder affecting

approximately 2-3% of the global population, manifests in distinct forms

including plaque, pustular, and erythrodermic types. The pathogenesis involves

complex interactions between genetic susceptibility, epigenetic modifications,

and environmental triggers that disrupt immune homeostasis, particularly within

the skin’s epithelial immune microenvironment (EIME). This review examines the

fundamental mechanisms of psoriasis from a ‘bench’ perspective, encompassing

genetic triggers, immune cell contributions, cytokine cascades, and insights

derived from multi-omics studies. It also incorporates emerging areas such as

gut microbiota dysbiosis and neuro-immunological influences. Translational

research linking these discoveries to clinical application is discussed, covering

biomarker identification, comorbidity management, and the advancement of

novel therapies. At the ‘bedside’, we evaluate current conventional treatments,

targeted biologic agents (e.g., TNF-a, IL-17, and IL-23 inhibitors), and emerging

modalities including JAK inhibitors, epigenetic modulators, and stem cell

therapies. Challenges pertaining to efficacy, safety, and personalized medicine

are addressed, alongside future directions emphasizing multi-omics integration

and holistic immune targeting. Highlighting the critical role of the immune

microenvironment, this narrative review underscores the translational progress

driving towards improved patient outcomes.
KEYWORDS
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1 Introduction

Psoriasis is a chronic, immune-mediated dermatosis affecting approximately 125 million

people worldwide and is characterized by well-demarcated erythematous plaques

surmounted by silvery-white scales (1, 2). Disease initiation and perpetuation arise from a

complex interplay between polygenic risk variants—notably HLA-C*06:02 and PSORS

susceptibility loci—and dynamic epigenetic reprogramming triggered by environmental
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insults such as b-hemolytic streptococcal infection, psychological

stress, and visceral adiposity (3, 4). Within the epidermal immune

microenvironment, pathogenic circuits converge on the IL-23/IL-17

axis. Activated dermal dendritic cells secrete IL-23 that licenses

CD8+ Tc17 and gd T cells to produce IL-17A and IL-22, while

neutrophil extracellular traps amplify keratinocyte-derived IL-36

and the chemokine CCL20, thereby sustaining a self-propagating

inflammatory loop (5–7). Macrophages, natural killer cells, and B

cells further contribute cytokines and autoantibodies that reinforce

tissue remodeling and barrier dysfunction (7). This persistent

inflammatory tone extends beyond skin, engaging systemic

pathways—including neuro-immune crosstalk—that underlie

recognized comorbidities such as depression and cardiovascular

disease (8–11). Current therapeutic algorithms encompass topical

corticosteroids and vitamin D analogs, narrow-band UVB

phototherapy, conventional immunosuppressants (methotrexate,

cyclosporine), and increasingly, targeted biologics and small

molecules that inhibit TNF-a, IL-17A/F, IL-23p19, or intracellular
kinases (e.g., TYK2) (12–15). Despite substantial advances,

heterogeneous response rates, cumulative toxicities, secondary loss

of efficacy, and high economic burden remain important unmet

needs. This review employs a “bench-to-bedside” approach to

synthesize immunological insights with clinical progress, with the

goal of optimizing therapeutic strategies for psoriasis.
2 Pathogenesis of psoriasis: basic
mechanisms

2.1 Genetic and environmental triggers

Psoriasis is underpinned by a robust genetic framework, with

genome-wide association studies (GWAS) identifying over 80

susceptibility loci that drive immune dysregulation and disease

predisposition. Key among these is HLA-Cw6, strongly associated

with early-onset psoriasis within the PSORS1 region on

chromosome 6p21, alongside other PSORS loci and genes

regulating cytokine signaling, such as IL12B and IL23R, as well as

NF-kB pathway components like TNFAIP3 and NFKBIA, which

orchestrate inflammatory responses and epidermal proliferation (3,

16, 17). These genetic variants synergistically heighten

susceptibility, particularly in individuals with a familial history,

where heritability estimates approach 80% (18). Epigenetic

mechanisms amplify this genetic predisposition by modulating

gene expression without altering the DNA sequence. Aberrant

DNA methylation patterns in immune-related genes, histone

modifications that alter chromatin accessibility, and dysregulated

non-coding RNAs, including long non-coding RNAs (lncRNAs)

such as MEG3, significantly influence keratinocyte differentiation

and immune cell activation in psoriatic lesions (19–21). These

epigenetic alterations, which may be inherited or induced by

environmental factors, perpetuate chronic inflammation.

Environmental triggers are critical in unmasking genetic and

epigenetic vulnerabilities. Streptococcal infections, for instance,

precipitate guttate psoriasis through molecular mimicry, while
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obesity, smoking, excessive alcohol consumption, and

psychological stress activate innate immune pathways, leading to

elevated cytokine production, oxidative stress, and recurrent disease

flares (22–24). These factors disrupt epidermal homeostasis and

initiate inflammatory cascades within the skin immune

microenvironment, exacerbating psoriatic pathology.
2.2 The skin immune microenvironment

The skin immune microenvironment is a dynamic and finely

tuned ecosystem encompassing the epidermis and dermis. The

epidermis primarily comprises keratinocytes and Langerhans cells,

with the latter functioning as key antigen-presenting cells. In

contrast, the dermis harbors a diverse array of immune cells,

including dendritic cells, macrophages, and sensory nerves that

facilitate neuro-immune interactions and cytokine signaling (25, 26).

Under normal physiological conditions, this intricate network

maintains immune homeostasis through vigilant immune

surveillance and tolerance mechanisms, effectively preventing

unwarranted inflammation. In psoriasis, the pathogenesis is

multifaceted, with the cutaneous immune microenvironment playing

a pivotal role. This environment is intricately linked to the aberrant

activation of various immune cells, driving a complex inflammatory

cascade that perpetuates the disease (5, 6) (Figure 1).

In psoriasis, the delicate balance of the skin immune

microenvironment is profoundly disrupted, leading to aberrant

keratinocyte proliferation and differentiation. Under normal

conditions, keratinocytes arise from stem cells in the basal layer

of the epidermis, progressively maturing through the spinous and

granular layers to form the stratum corneum. In psoriatic lesions,

however, keratinocytes exhibit hyperproliferation and accelerated

differentiation, resulting in epidermal thickening (acanthosis) and

the formation of characteristic silvery scales (1). This dysregulation

is driven by an inflammatory microenvironment in which

keratinocytes secrete a plethora of pro-inflammatory mediators,

including IL-1a, IL-6, IL-8, TNF-a, IL-17F, IL-23, and calcitonin

gene-related peptide (CGRP). These mediators sustain

inflammation through autocrine and paracrine signaling loops

(5). Additionally, elevated reactive oxygen species (ROS) induce

oxidative stress and DNA damage, further amplifying inflammation

and cellular hyperproliferation. Compromised intercellular

junctions, arising from dysregulated adhesion molecule

expression, weaken the epidermal barrier, facilitating the

infiltration of inflammatory cells (2).

Clinically, psoriasis is characterized by keratinocyte

hype rpro l i f e r a t i on , ep ide rma l a can thos i s , abe r r an t

neovascularization, and chronic inflammation perpetuated by

immune cell infiltrates (8, 12). Activated keratinocytes exacerbate

this cascade by releasing chemokines, such as CCL20 and CXCL1,

which recruit T cells and neutrophils, and cytokines, including IL-

36 and IL-1b, which establish self-sustaining feedback loops with

immune cells (6).

Emerging technologies, including single-cell and spatial

transcriptomics, have illuminated these interactions. These
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approaches reveal spatially organized clusters of fibroblasts,

keratinocytes, and immune cells that maintain a pro-

inflammatory niche. This milieu features disrupted extracellular

matrix remodeling and increased vascular permeability, collectively

perpetuating the chronic inflammatory hallmark of psoriasis (27).
2.3 Key immune cells and their roles

2.3.1 Innate immune cells
Innate immune cells orchestrate the initial response in psoriasis

by detecting danger signals and amplifying inflammation to engage

adaptive immune components. This diverse cellular repertoire

includes dendritic cells (DCs), macrophages, neutrophils, natural

killer (NK) cells, mast cells, innate lymphoid cells (ILCs), and

myeloid-derived suppressor cells (MDSCs), which collectively

drive pro-inflammatory cytokine production and tissue

remodeling. As frontline defenders, these cells initiate early

inflammatory responses that bridge to adaptive immunity.

Dendritic cells, encompassing subsets such as slanDCs and

plasmacytoid DCs, sense microbial or self-antigens through Toll-

like receptors (TLRs), triggering the release of cytokines like IL-23,
Frontiers in Immunology 03
IL-12, and IFN-a, which activate T cells. Their increased presence

in psoriatic lesions correlates closely with disease severity and

plaque formation (28–30). Macrophages, polarized toward the

pro-inflammatory M1 phenotype, secrete TNF-a, IL-1b, IL-6, and
IL-23, promoting Th17 cell differentiation and intensifying dermal

inflammation (31, 32). Neutrophils, abundant in psoriatic lesions,

form neutrophil extracellular traps (NETs) and release IL-17,

exacerbating acute symptoms, particularly in pustular psoriasis

variants (33). Myeloid-derived suppressor cells (MDSCs)

accumulate within the inflammatory microenvironment,

producing IL-23 and IL-6 to skew the Th17/Treg balance toward

a pro-inflammatory state (34). Mast cells, through a process termed

MCETosis, release IL-17 and IL-33, while innate lymphoid cells

(ILCs), particularly ILC3 subsets, contribute IL-17 and IL-22 during

early inflammatory flares, linking innate responses to tissue

remodeling (35, 36).

2.3.1.1 Dendritic cells

Dendritic cells, pivotal antigen-presenting cells, orchestrate the

pathogenesis and therapeutic modulation of psoriasis by initiating

adaptive immune inflammatory responses (5). Originating primarily

from bone marrow hematopoietic precursor cells, DCs migrate to the
FIGURE 1

Immune response mechanisms in psoriasis. The immune response within the localized inflammatory microenvironment of psoriasis, termed the
“inflammazone” is illustrated. Keratinocytes play a pivotal role in initiating psoriasis by acquiring immune cell-like functions upon activation.
Stimulated by cytokines such as IL-17, IL-22, and IFN-g, keratinocytes trigger a cascade of inflammatory responses in the skin. This process recruits
mononuclear macrophages, neutrophils, and dendritic cells (DCs), which amplify inflammation through the secretion of cytokines, including IL-13,
IL-23, and TNF-a. Central to this inflammatory cascade are Th17, Th22, and Th1 cells, whose activation and persistence are driven by cytokines such
as IL-23, perpetuating the chronic inflammatory state characteristic of psoriasis.
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skin and differentiate into distinct subpopulations, including

Langerhans cells (LCs) in the epidermis and inflammatory DCs in

the dermis. Research demonstrates a significant enrichment of DCs in

psoriatic lesions, where they activate Th17 cells via IL-23, triggering

the release of pro-inflammatory cytokines such as IL-17A and

establishing a pathological immune cycle (6). DC subpopulations

exhibit functional heterogeneity in psoriasis (29, 37). Epidermal-

resident Langerhans cells display impaired migratory capacity in

non-lesional skin of patients (38), potentially contributing to early

inflammatory initiation through aberrant antigen presentation and

intercellular interactions (25). Semi-mature DCs, characterized by

elevated IL1B expression, form a pro-inflammatory network with T

cells through IL-1b ligand-receptor interactions (37, 39).

Plasmacytoid dendritic cells (pDCs) amplify inflammation via the

IL-36 signaling pathway and type I interferon responses (40, 41),

particularly during acute disease flares. Notably, the LL37-DNA/RNA

complex released by neutrophils specifically activates pDCs (30),

perpetuating a self-sustaining inflammatory loop.

2.3.1.2 Neutrophils

Neutrophils are pivotal in the pathogenesis of psoriasis,

primarily originating from the peripheral blood circulatory

system (42). In patients with psoriasis, CD10+ neutrophil

subpopulations are markedly elevated in peripheral blood,

including a subset resembling senescent neutrophils, which are

approximately three times more abundant than in healthy

individuals (42). These neutrophils exhibit distinct phenotypic

characteristics and functional heterogeneity. Notably, the CXCR4

+ neutrophil subpopulation is significantly increased in both the

blood and inflamed skin of patients, correlating positively with

disease severity (43). Upon activation, neutrophils propel the

autoinflammatory cycle by releasing granular stores of IL-26,

particularly prominent in pustular psoriasis. IL-26 stimulates

keratinocytes to express IL-1 family cytokines and chemokines,

further recruiting neutrophils to infiltrate the lesions (44).

Neutrophils also contribute to pathogenesis by forming

neutrophil extracellular traps (NETs), which release LL37-DNA

complexes that activate the TLR9 pathway (30, 45). NET formation

is regulated by the SHP2-ERK5 signaling pathway, driving local

infiltration of pro-inflammatory cytokines (e.g., TNF-a, IL-1b, IL-6,
IL-17A, and CXCL15) and exacerbating the vicious cycle between

keratinocytes and neutrophils (46). Neutrophil-derived IL-1b plays

a central role in the psoriasis model, promoting IL-17A production

through an estrogen receptor-dependent mechanism (47). Locally,

the co-localization of neutrophils with T cells in the skin induces IL-

17 and IFN-g production by T cells via NETs (42). Additionally, the

enhanced glycolytic metabolism and lactate-releasing properties of

CXCR4+ neutrophils promote vascular permeability and tissue

remodeling (43). Biologic therapies effectively reduce the number

of activated neutrophils in circulation, underscoring their critical

role in sustaining persistent inflammation (42).

2.3.1.3 Macrophages

In psoriasis pathogenesis, macrophages, primarily derived from

bone marrow monocytes, migrate via the circulatory system to sites
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of cutaneous inflammation. Within psoriatic lesions, these cells are

activated by local microenvironmental cues, such as IL-23, adopting

a distinct polarization state that diverges from both classical pro-

inflammatory M1 and anti-inflammatory M2 phenotypes (32). IL-

23-stimulated macrophages exhibit unique gene expression profiles

and secrete elevated levels of pro-inflammatory mediators,

including IFN-g, which significantly drive dermatitis progression

in psoriasis-like mouse models (32). During inflammation,

activated macrophages release key cytokines, such as TNF and IL-

12p40. Notably, increased expression of MCPIP3 in macrophages

enhances TNF and IL-12p40 production, directly exacerbating

cutaneous inflammatory responses (48). Concurrently,

macrophage efferocytosis in psoriatic lesions is markedly

impaired, hindering the clearance of apoptotic cells. This

dysfunction establishes a vicious cycle: impaired efferocytosis

activates platelets, which, in turn, suppress macrophage

phagocytic receptor expression, further amplifying inflammation

(49). Macrophages also engage in close interactions with

keratinocytes, promoting their hyperproliferation through

mediators like TNF and cytokines such as IL-25/IL-17E. These

factors further activate macrophages and other immune cells,

perpetuating a positive feedback loop of inflammatory signaling

(5, 50). Moreover, macrophage polarization can be modulated via

the TGR5 receptor pathway. For instance, the TGR5 agonist

sauchinone inhibits M1 polarization and mitigates imiquimod

(IMQ)-induced psoriasis-like dermatitis. This protective effect is

abolished in Tgr5 knockout mice, underscoring the critical role of

TGR5-mediated regulation of macrophage function in modulating

disease progression (51).
2.3.1.4 Natural killer cells

Natural killer cells, as key innate immune lymphocytes, play a

critical role in modulating inflammation within the psoriatic skin

microenvironment. Originating primarily from bone marrow

hematopoietic precursor cells, NK cells in psoriatic lesions coexist

with T-cell subpopulations, dendritic cells, melanocytes, and

keratinocytes across various skin layers, as revealed by

unsupervised clustering analyses. Their abundance is significantly

elevated in lesional skin compared to non-lesional and healthy skin

(6, 27). In the immunopathology of psoriasis, NK cells contribute to

a dysregulated interplay between innate and adaptive immunity.

They form a complex network with other immune cells, secreting

pro-inflammatory cytokines and exerting direct cytotoxic effects

that amplify local inflammatory responses (52, 53). However, in the

chronic inflammatory milieu of psoriasis, NK cell function is often

suppressed. An imbalance in surface receptor expression, such as

the upregulation of inhibitory receptors like KLRG1, diminishes

their capacity to eliminate aberrant keratinocytes (54). Additionally,

IL-25 (IL-17E) secreted by keratinocytes further activates NK cells

and other immune cells, perpetuating an inflammatory cycle (55).

Intraepidermal NK cells also engage in physical interactions with

Langerhans cells (LCs), collaboratively orchestrating T cell-

mediated inflammatory responses and exacerbating epidermal

hyperplasia (25). Collectively, NK cells in psoriasis drive a

chronic inflammatory cascade centered on IL-17 through
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cy t ok ine s e c r e t i on , i n t e r c e l l u l a r in t e r a c t i on s , and

functional impairments.

2.3.2 Adaptive immune cells
Adaptive immune cells drive the chronicity of psoriasis through

antigen-specific responses and immune memory, encompassing T

cell subsets (CD4+, CD8+, gd T, Th1, Th17, Th22, Th9, Treg, and

tissue-resident memory T cells [TRM]), B cells, and regulatory

mechanisms. These cells perpetuate inflammation through targeted

cytokine release and sustained effector functions. CD4+ T cells are

predominant, with Th1 cells producing IFN-g to bolster

antimicrobial responses, Th17 cells secreting IL-17A/F as central

pathogenic mediators, Th22 cells releasing IL-22 to promote

epidermal hyperplasia, and Th9 cells contributing IL-9 to amplify

inflammation (5, 6, 56). Concurrently, regulatory T cell (Treg)

dysfunction, driven by IL-6, leads to their conversion into pro-

inflammatory effectors, further exacerbating the inflammatory

milieu (6, 56).CD8+ T cells, particularly Tc17 and TRM subsets,

infiltrate the epidermis, releasing IL-17 and IFN-g to sustain local

inflammation and facilitate disease recurrence upon environmental

triggers (57, 58). gd T cells bridge innate and adaptive immunity,

rapidly producing IL-17, IL-22, and chemokines during early

disease stages to recruit effector cells and modulate keratinocyte

responses (59, 60). Although less extensively studied, B cells are

increased in psoriatic lesions and may contribute to humoral

pathology by producing autoantibodies or supporting T cell

activation, despite their primarily supportive role (61).

2.3.2.1 Th1 and Th17 cells

In psoriasis, Th1 and Th17 cells, as pivotal CD4+ T cell subsets,

play central roles in disease pathogenesis (Figure 1). Th1 cells,

driven by IL-12, differentiate to secrete interferon-gamma (IFN-g)
and TNF-a, which orchestrate a Th1-type immune response by

activating macrophages and enhancing antigen presentation (5).

Conversely, Th17 cells arise from CD4+ T cells under the influence

of TGF-b1 and IL-6, with their specific cytokine profile regulated by

the transcription factor RORgt (62). These two cell types synergize

in psoriasis, establishing a positive feedback loop that sustains

inflammation. Cytokines secreted by Th1 and Th17 cells,

including TNF-a, IFN-g, IL-2, IL-6, IL-22, and IL-23, serve as

potential disease biomarkers while directly promoting keratinocyte

hyperproliferation, neutrophil infiltration, and the maintenance of a

chronic inflammatory microenvironment (6, 8). The STAT3 gain-

of-function (GOF) mouse model demonstrates that Th1/Th17 cell

expansion, coupled with a reduction in skin regulatory T cell (Treg)

populations, disrupts immune homeostasis, driving chronic

inflammation (63).

2.3.2.2 gd T cells

The pathogenesis of psoriasis is intricately tied to aberrant gd T
cell activation. As non-classical T cells, gd T cells arise from thymic

development, migrating to peripheral tissues, or through local

proliferation to maintain tissue homeostasis (7). In psoriasis, they

contribute through two primary mechanisms: direct cytotoxicity

against epidermal cells via perforin and granzyme release, and
Frontiers in Immunology 05
amplification of inflammation through secretion of pro-

inflammatory cytokines, such as IFN-g, IL-17, and IL-22, across

multiple signaling pathways (5, 60). Under normal conditions,

epidermal gd T cells collaborate with Langerhans cells to uphold

skin barrier homeostasis, but in psoriasis, this balance is disrupted,

compromising immune surveillance (6, 25). In psoriasis-like mouse

models, gd T cells interact with cutaneous nerve fibers, with IL-17

production regulated by the sympathetic norepinephrine-b1-
adrenergic receptor axis; inhibiting this pathway significantly

attenuates inflammation (64). Metabolic dysregulation further

exacerbates disease progression: high-cholesterol diets generate

oxidized steroids that activate gd T cells via GPR183 receptors,

promoting IL-17 secretion and linking obesity to psoriasis

severity (65).
2.3.2.3 Regulatory cells

Dysfunction and phenotypic plasticity of regulatory T cells are

pivotal in the pathogenesis of psoriasis. Tregs are broadly classified

into thymic-derived natural Tregs (nTregs) and peripherally

induced Tregs (iTregs), both reliant on the transcription factor

FOXP3 to maintain their immunosuppressive functions (66, 67). In

psoriatic lesions, Treg numbers are diminished, and their

functionality is compromised, as evidenced by reduced FOXP3

expression and upregulated IL-17A production (68). Within the

inflammatory microenvironment, some Tregs undergo a

phenotypic shift, transforming into RORgt-expressing Foxp3+ IL-

17+ cells that lose immunosuppressive capacity and instead

promote keratinocyte hyperproliferation and neutrophil

infiltration through IL-17A secretion, perpetuating a vicious

inflammatory cycle (56, 68). In imiquimod (IMQ)-induced mouse

models, Treg recruitment to inflammatory sites is impaired, and

their clonal expansion is significantly diminished (68). Obesity, a

key risk factor, exacerbates inflammation by affecting skin specific

PPARg+ Treg subpopulations (69). These Tregs, which possess

anti-inflammatory properties, are reduced in abundance, triggering

cutaneous lipotoxicity, oxidative stress, and mitochondrial

dysfunction, thereby driving disease progression (69). Clinical

data reveal a markedly lower peripheral blood Treg-to-Th17 ratio

in psoriasis patients. Following umbilical cord mesenchymal stem

cell (MSC) transplantation, Treg recovery correlates positively with

reductions in Th17 and naive CD4+ T cell populations, as well as

the degree of clinical remission, highlighting the therapeutic

potential of modulating Treg function (70).

2.3.2.4 CD8+ T cells

CD8+ T cells are central drivers of psoriasis pathogenesis,

predominantly arising from skin-resident memory T cells

(TRMs). Notably, ab CD8+ T cell clones bearing psoriasis-

specific antigen receptors that produce IL-17 persist in clinically

resolved lesions, indicating their potential role as initiators of

disease recurrence (58). Single-cell RNA sequencing has identified

11 transcriptionally diverse CD8+ T cell subsets in psoriatic lesions,

with two Tc17 subsets significantly enriched. These subsets exhibit

distinct yet developmentally related metabolic profiles and express

the biomarker CXCL13, which correlates with disease severity (57,
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71). CD8+ T cells surpass IL-17A+ CD4+ T cells as the primary

source of IL-17A in lesions (3) and co-secrete IL-22, forming a

distinctive Tc17/22-like cytokine profile (72). High expression of

skin-homing receptors, such as CCR4 and cutaneous lymphocyte

antigen (CLA), enables these cells to localize to the epidermis, where

they continuously release pro-inflammatory mediators like IL-17A,

driving aberrant keratinocyte proliferation and inflammatory

mediator release (5, 72). A unique CD8+CCR10+ TRM

subpopulation, observed in the circulation of patients with

psoriatic arthritis, lacks cytotoxicity but exerts regulatory

functions, with upregulated genes like RORC and IFNAR1

highlighting pathological distinctions from plaque psoriasis (72).

Sustained CD8+ T cell activation relies on the CD69-LAT1-CD98

metabolic pathway and positive feedback from the IL-23/IL-17 axis

(6, 73). The resulting cytokine network, encompassing IL-17A, IL-

22, and IFN-g, not only disrupts the epidermal immune

microenvironment but also amplifies the inflammatory cascade by

interacting with fibroblasts through MMP2-mediated CD100

shedding, forming a self-reinforcing inflammatory loop (74). This

persistent immune response underscores CD8+ T cells as key

effectors in the chronicity and relapse of psoriasis (8).

2.3.2.5 Tissue-resident memory T cells

In psoriasis, TRM cells are critical pathogenic drivers due to their

formation of an “inflammatory memory” following antigen exposure

(58). Originating from infections or early inflammatory events, these

cells are seeded in the skin, particularly in the sub-epidermis and hair

follicle regions, following antigenic stimulation. This population

includes CD69+ CD103+ TRM cells, which rely on IL-23 signaling

for survival and function (57, 75). Th17-dominated TRM cells secrete

high levels of pro-inflammatory cytokines, driving keratinocyte

hyperproliferation and aberrant differentiation while inducing local

chemokine production (e.g., CCL20). This attracts additional immune

cells, such as dendritic cells and macrophages, to the lesion site,

perpetuating a self-reinforcing inflammatory microenvironment (5,

72). Mechanistically, TRM cells rapidly respond to local pathogens or

environmental triggers, such as fungal antigens, independently of

circulating T cell recruitment, amplifying pro-inflammatory signals

through cytokine release (5). Critically, these cells persist in the skin

even after treatment-induced lesion resolution, remaining latent and

capable of reactivating inflammation upon treatment cessation. This

explains the characteristic in situ recurrence of psoriatic lesions (58, 72).
2.4 Cytokine networks and signaling
pathways

2.4.1 IL-17A/F
IL-17A and IL-17F, members of the interleukin-17 family, are

pivotal in psoriasis pathogenesis (76). IL-17A, originally termed

CTLA-8, is primarily secreted by Th17 cells, with additional

contributions from CD8+ T cells, gd T cells, natural killer (NK)

cells, neutrophils, mast cells, and macrophages, underscoring their

critical roles in immune regulation (5, 77). These cytokines are

implicated in various inflammatory and autoimmune skin
Frontiers in Immunology 06
disorders, including psoriasis, atopic dermatitis, vitiligo, systemic

lupus erythematosus, and malignant melanoma (76). Encoded at

the same genetic locus (6p12), IL-17A and IL-17F share regulatory

mechanisms and can form heterodimers. While IL-17A has been

extensively studied for its role in autoimmunity, IL-17F, often

expressed at higher levels in psoriatic lesions, has been relatively

underappreciated (78). IL-17A is predominantly produced by IL-

23R+ Th17 cells, whereas IL-17F is more commonly expressed by

IL-23R- cells, such as mucosal-associated invariant T (MAIT) cells

(71, 79). This differential expression highlights the superior efficacy

of dual IL-17A/F inhibition over IL-17A-specific blockade (78). IL-

17A and IL-17F activate NF-kB and MAPK signaling pathways

through specific receptor complexes (IL-17RA/IL-17RC/IL-17RD),

with key mediators including CARMA2, ACT1, and TRAF6. This

signaling drives epidermal cells to overexpress inflammatory

mediators, promoting immune cell recruitment and activation

(80, 81). Notably, IL-17A induces keratinocytes to produce IL-23,

a critical driver of Th17 cell differentiation and maintenance.

Activated Th17 cells, in turn, secrete abundant IL-17A, IL-17F,

and other cytokines, forming a self-amplifying feedback loop:

keratinocyte-derived IL-23 sustains Th17 cell populations, while

IL-17 stimulates further production of inflammatory mediators and

IL-23, perpetuating chronic inflammation (6, 8). This cycle is a

cornerstone of persistent inflammation in psoriasis. In vitro studies,

often utilizing models like cultured keratinocytes, simplify IL-17

signaling analysis, primarily through the IL-17RA/IL-17RC

receptor complex. However, IL-17RA-deficient mouse models

reveal that psoriasis-like lesions persist, suggesting compensatory

roles for other receptors, such as IL-17RC or IL-17RD (80, 82).

While in vitro models enable precise variable control for drug

screening (5, 14, 83), they fail to fully replicate the complex in

vivo immune microenvironment, potentially underestimating

inflammation or reducing physiological relevance. In contrast, in

vivo models, such as imiquimod (IMQ)-induced psoriasis in mice,

demonstrate that IL-17A signaling ablation significantly reduces

skin inflammation, allowing direct assessment of disease

phenotypes and therapeutic efficacy (e.g., FXYD3 deletion

mitigates severity) (80, 84). However, interspecies differences limit

result generalizability, necessitating validation with larger sample

sizes. Advanced single-cell RNA sequencing of human psoriatic

lesions has identified IL-17A+IFN-g+ and IL-17F+IL-10- T cell

subsets as potentially pathogenic populations (71). Although this

approach resolves cellular heterogeneity, it struggles to dynamically

monitor signaling pathway activation.

2.4.2 IL-23
IL-23, a member of the IL-12 cytokine family, shares the p40

subunit with IL-12 but is distinguished by its unique p19 subunit,

which specifically binds the IL-23 receptor to activate downstream

signaling pathways (85). Primarily secreted by immune cells, such

as dendritic cells (including plasmacytoid DCs) and T cell subsets,

IL-23 is also produced by keratinocytes in psoriasis, though only

immune cell-derived IL-23 holds pathological significance (8). This

cytokine plays a central role in immune-mediated chronic

inflammatory diseases, including psoriasis, psoriatic arthritis,
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Crohn’s disease, and uveitis, exerting broad immunopathologic

effects (86). In psoriasis, IL-23 drives pathogenesis primarily

through the IL-23/IL-17 signaling axis (5, 8), while also

promoting neutrophil polarization via STAT3-RORgt and BATF

pathways, among other mechanisms (55, 87). These actions

enhance the secretion of pro-inflammatory mediators,

intensifying local inflammation. In mouse models, intradermal

IL-23 injection directly induces psoriasiform dermatitis,

recapitulating the chronic inflammatory features of human

psoriasis (88). However, IL-23 inhibition, while effective in

reducing pathogenic Th17/Tc17 cells, fails to fully capture the

clinical heterogeneity of patient populations, highlighting

limitations of these models (78, 83). In contrast, single-cell RNA

sequencing (scRNA-seq) studies of human psoriatic skin provide

high-resolution insights, confirming that IL-23 inhibition rapidly

downregulates JAK/STAT signaling and IL-23/Th17 pathway-

related gene expression in keratinocytes (71, 89). However, small

or heterogeneous sample sizes, such as studies analyzing only four

samples post-IL-17A blockade, may introduce bias and

underestimate the contributions of other IL-17 family members

(90). Current research often emphasizes the IL-23/IL-17 axis,

potentially overlooking other pathways, such as IL-1 or IL-36

signaling (91). IL-23 blockade reduces Th17/Tc17 cell frequency

but does not fully normalize all inflammatory mediators, indicating

that psoriasis involves complex, multifactorial networks, including

IL-25 and prostaglandin E (PGE) signaling (55, 92). Longitudinal

studies, such as early mechanistic analyses of IL-23 inhibitors, track

biomarker dynamics effectively but are limited by short-term

follow-ups (e.g., days post-treatment), which may miss long-term

relapse effects and underexplore IL-23’s protective roles in the

skin (89).
2.4.3 TNF-a
Tumor necrosis factor-alpha (TNF-a), a pleiotropic pro-

inflammatory cytokine of the TNF superfamily, is primarily secreted

by immune cells, including dendritic cells, macrophages, T cells, and

keratinocytes (5). It plays a critical role in the pathogenesis of various

autoimmune diseases, such as psoriasis, rheumatoid arthritis,

inflammatory bowel disease, Alzheimer’s disease, and multiple

sclerosis (93). In psoriasis, TNF-a binds to tumor necrosis factor

receptor 1 (TNFR1/TNFRSF1A) and receptor 2 (TNFR2), activating

downstream NF-kB and MAPK signaling pathways (94). NF-kB
signaling promotes the release of pro-inflammatory mediators, while

the MAPK pathway drives keratinocyte hyperproliferation (95).

Additionally, TNF-a enhances its own signaling by downregulating

phosphoglycerate dehydrogenase (PHGDH), which triggers

keratinocytes to release inflammatory mediators, such as IL-36g,
exacerbating skin barrier disruption (5). Notably, TNFR1 and

TNFR2 exert opposing effects in psoriasis. In imiquimod-induced

mouse models, TNFR1 knockout significantly reduces skin

inflammation (96), whereas TNFR2 deletion increases neutrophil

infiltration and IL-23 expression, worsening disease progression (97).

These divergent outcomes may stem from differences in model

induction (e.g., imiquimod stimulation versus knockout strategies) or

the timing of inflammatory stage assessments. TNF-a inhibitors can
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paradoxically induce eczema, with affected patients showing

upregulation of the TNF/IFN-g signaling pathway (98). However,

variations in risk among inhibitors (e.g., infliximab versus etanercept)

remain unclear, potentially overlooking drug-specific effects. Systematic

reviews of real-world cases provide insights into clinical characteristics

(e.g., age of onset, time to onset) and treatment responses in TNF-a
inhibitor-induced psoriasis (99, 100), but reliance on published cases

risks reporting bias. Prospective molecular studies, such as those

analyzing TNF-a response phosphorylation via flow cytometry, offer

dynamic data but are limited by small sample sizes (e.g., n=25), which

may compromise statistical robustness (101).

2.4.4 IL-36
IL-36, a member of the IL-1 cytokine family, is predominantly

secreted by keratinocytes in the skin, with additional contributions

from dendritic cells, macrophages, endothelial cells, and dermal

fibroblasts (102). This family comprises three pro-inflammatory

agonists (IL-36a, IL-36b, IL-36g) and one receptor antagonist (IL-

36Ra), which collectively play pivotal roles in inflammatory diseases

such as psoriasis (notably generalized pustular psoriasis [GPP] and

palmoplantar pustulosis [PPP]), atopic dermatitis, hidradenitis

suppurativa, Netherton’s syndrome, inflammatory bowel disease,

and idiopathic pulmonary fibrosis (103). IL-36 drives inflammatory

cascades by activating the IL-36R-mediated NF-kB signaling

pathway (104). Keratinocyte-derived IL-36g promotes chemokine

release, such as IL-8, facilitating neutrophil recruitment while

suppressing epidermal differentiation genes (e.g., keratinized

bridging granule proteins), leading to epidermal barrier

disruption and pustule formation (104, 105). Additionally, IL-36

forms a positive feedback loop with IL-23, amplifying inflammation

(106). In GPP, overactivation of IL-36 signaling is frequently linked

to IL36RN gene mutations, which impair IL-36Ra function,

resulting in unopposed IL-36R downstream signaling (107, 108).

Current research on IL-36 faces several limitations. Most studies

rely on imiquimod-induced mouse models to mimic plaque

psoriasis, which inadequately replicate the complexity of human

GPP, while in vitro keratinocyte models fail to capture immune

microenvironment interactions (91). The interplay between the IL-

23/IL-17 axis and IL-36 signaling varies: some studies emphasize

IL-23’s role in driving plaque-type lesions via Th17 cells, with IL-36

acting more directly on keratinocytes and neutrophils (109),

whereas emerging evidence suggests keratinocyte-derived IL-23

directly regulates IL-36, indicating underappreciated cell-specific

signaling differences (110). Therapeutically, anti-IL-36R antibodies

demonstrate significant efficacy in GPP (111, 112), but data on their

effectiveness in plaque psoriasis remain limited, fueling debate over

whether IL-36 plays a minor role in plaque phenotypes or exhibits

redundant effects with IL-17. Methodologically, most studies

broadly reference IL-36 without distinguishing subtypes (113) and

rely on knockout mouse models (113), often overlooking human

immune heterogeneity.

2.4.5 Other cytokines
Cytokines such as interferon-gamma (IFN-g), granulocyte-

macrophage colony-stimulating factor (GM-CSF), and
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phosphodiesterase-4 (PDE-4) play significant roles in the

pathogenesis of psoriasis, contributing to the complex

inflammatory network that sustains the disease. IFN-g, markedly

overexpressed in psoriatic lesions, is a key driver of Th1 immune

responses, promoting chemokine production that amplifies local

inflammation and facilitates immune cell infiltration (5). It

enhances the expression of pro-inflammatory mediators, such as

CXCL10, which recruit T cells and exacerbate cutaneous

inflammation (8). However, clinical trials targeting IFN-g alone

have shown limited efficacy (114), underscoring the multifactorial

nature of psoriasis, where single-molecule inhibition often fails to

achieve comprehensive symptom control due to redundant

inflammatory pathways.

GM-CSF, elevated in memory T cells within psoriatic lesions,

potentiates the inflammatory effects of the IL-23/Th17 axis by

activating neutrophils and macrophages (91, 115). Its role in

amplifying inflammation involves enhancing myeloid cell function

and promoting the release of pro-inflammatory cytokines, such as IL-

6 and TNF-a, which further perpetuate the inflammatory cascade

(116). However, GM-CSF expression depends on synergistic

interactions with multiple cytokines, suggesting it functions as a

cooperative rather than an independent driver of inflammation. This

interdependence may limit the therapeutic efficacy of GM-CSF-

targeted therapies, as blocking it alone may not disrupt the broader

inflammatory network (117). PDE-4, a member of the

phosphodiesterase family, is highly expressed in psoriatic skin and

contributes to inflammation by degrading cyclic adenosine

monophosphate (cAMP). This reduction in cAMP activates the

cAMP-PKA-CREB-SIRT1 signaling pathway, promoting the

production of inflammatory mediators, including IL-17 and IL-23

(117). In preclinical psoriasis models, PDE-4 inhibition significantly

reduces epidermal thickening and inflammatory markers,

demonstrating potent local anti-inflammatory effects (118).

Clinically, PDE-4 inhibitors, such as apremilast, have shown

efficacy in reducing plaque severity and improving patient

outcomes, though their benefits are often partial, indicating the

need for combination therapies to address the multifaceted

inflammatory milieu of psoriasis (119). These findings highlight the

complementary roles of IFN-g, GM-CSF, and PDE-4 in sustaining

psoriatic inflammation and the challenges of targeting individual

molecules within a complex cytokine network.
2.5 Insights from omics and experimental
models

Omics technologies have revolutionized psoriasis research by

unveiling complex immune interactions and identifying precise

therapeutic targets. Genomics and transcriptomics have

pinpointed critical hub genes, such as IL17A and IL1B, central to

the IL-23/IL-17 axis that drives T cell-mediated inflammation (3,

71). Proteomics reveals altered protein profiles, while single-cell

RNA sequencing (scRNA-seq) elucidates cellular heterogeneity,

uncovering dysregulated pathways in keratinocytes and T cells

(27, 120). These approaches have also identified biomarkers for
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disease stratification and therapeutic monitoring, advancing the

frontier of personalized medicine. Experimental models

complement these molecular insights. Imiquimod-induced mouse

models recapitulate psoriasis-like inflammation through TLR7

activation, triggering the IL-23/IL-17 axis (78). In vitro

keratinocyte cultures and skin organoids validate key therapeutic

targets, such as the IL-23/IL-17 pathway, facilitating robust

preclinical assessments (83, 121). Despite limitations in capturing

the chronicity of human psoriasis, these models effectively bridge

molecular discoveries to therapeutic innovation, driving the

development of treatments like secukinumab. The future

integration of multi-omics strategies with advanced models, such

as humanized mice, holds immense potential to refine precision

therapies for psoriasis, enhancing clinical outcomes.
3 Psoriasis and microbiota

Emerging research highlights a significant association between

psoriasis and the gut microbiota, revealing distinct compositional

and functional differences in the intestinal flora of patients

compared to healthy individuals. Psoriatic patients exhibit

reduced microbial species richness, with notable enrichment of

Streptococcus spp. and alterations in Prevotella spp., alongside

decreased community diversity (122, 123). These differences

persist independent of shared environmental factors, as confirmed

by studies controlling for cohabiting partners (122). Animal models

further demonstrate that gut dysbiosis directly exacerbates

psoriasis-like skin inflammation. For instance, transplanting

microbiota from mice with severe inflammation to those with

milder symptoms significantly worsens skin lesions, underscoring

a causal link (123).

This microbial influence is partly mediated through host-

microbiota metabolic interactions, with reduced short-chain fatty

acid (SCFA) production, such as butyrate and propionate, playing a

central role (124, 125). SCFAs, generated through microbial

fermentation of dietary fiber, modulate psoriasis severity via three

key pathways (Figure 2): 1) suppression of regulatory T cell (Treg)

differentiation, leading to overactivation of the IL-23/Th17 axis

(126); 2) disruption of intestinal barrier integrity, enabling

translocation of lipids, polysaccharides, and other metabolites that

trigger systemic inflammation (127); and 3) modulation of the gut-

brain axis, influencing neurotransmitter production and indirectly

regulating cutaneous immune responses (128). Given the pivotal

role of the gut microbiome in psoriasis, dietary interventions offer a

promising strategy to restore microbial balance and mitigate

inflammation. The Mediterranean diet, rich in fiber, fruits,

vegetables, and healthy fats, has been shown to enhance

microbiome diversity and improve clinical outcomes in psoriasis

(129). Beyond diet, targeted interventions such as prebiotics,

probiotics, and microbiota-modulating therapies hold significant

potential for both prevention and treatment by boosting SCFA

production and fostering a balanced microbiome (130, 131).

However, current evidence is largely derived from animal

models or small-scale observational studies, with a paucity of
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high-quality clinical trials validating these interventions in psoriasis

populations. Individual variability in microbiome responses to

dietary changes, coupled with differences across psoriasis subtypes

(e.g., plaque versus psoriatic arthritis), remains underexplored,

necessitating stratified analyses in future studies. The complex

interplay among diet, microbiota, and immunity warrants

investigation within a systems biology framework to fully

elucidate these relationships.

Emerging therapeutic strategies aim to disrupt this pathogenic

cycle through innovative approaches. These include fecal

microbiota transplantation to restore microbial equilibrium (132,

133), engineered microbes designed to enhance Treg cell

populations (134), and precision delivery of anti-inflammatory

metabolites via nanoparticle-loaded bacterial vesicles (135).

Nonetheless, the predominantly cross-sectional nature of existing

studies limits causal inferences. Robust longitudinal cohort studies
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are urgently needed to establish temporal associations and clarify

the roles of specific microbial strains and their metabolites in

psoriasis pathogenesis and progression.
4 Psoriasis and neuroimmunology

Neuroimmune interactions are pivotal in the pathogenesis of

psoriasis, a chronic inflammatory skin disorder (136, 137). The

nervous system engages in bidirectional communication with

immune cells through neurotransmitters and neuropeptides, such

as calcitonin gene-related peptide (CGRP) and substance P, directly

modulating cutaneous inflammation (Figure 3) (138, 139). Sensory

neuron-derived neurotransmitters stimulate immune cell receptors,

driving keratinocyte hyperproliferation and Th17 cell

differentiation while amplifying IL-17 production, thus
FIGURE 2

Gut-brain-skin axis in psoriasis pathogenesis. This figure illustrates the “gut-brain-skin axis” in psoriasis. In healthy conditions, the gut microbiota
supports intestinal barrier integrity by producing short-chain fatty acids (SCFAs), which maintain tight junctions and antimicrobial peptide/mucin
barriers. SCFAs also suppress pathogenic commensal bacteria and promote regulatory T cell (Treg) differentiation, fostering anti-inflammatory
homeostasis. In contrast, chronic stress activates the hypothalamic-pituitary-adrenal (HPA) axis, triggering the release of corticotropin-releasing
hormone (CRH), adrenocorticotropic hormone (ACTH), and stress hormones. This disrupts intestinal barrier function, promoting lipopolysaccharide
(LPS) translocation and the release of pro-inflammatory cytokines (e.g., IL-6, TNF-a). These mediators drive effector T cell (Teff) and macrophage
polarization, initiating systemic inflammation that exacerbates psoriatic skin lesions. This mechanism underscores the intricate interplay among
intestinal barrier dysfunction, neuroendocrine stress, and cutaneous inflammation in psoriasis.
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establishing a self-reinforcing neuroimmune feedback loop (5, 11).

This interplay is central to hallmark psoriatic features, including

epidermal thickening, neutrophil infiltration, and pruritus.

Neuroimmune dysregulation also underlies neurological

comorbidities associated with psoriasis (140, 141). Robust clinical

evidence, with nine of eleven studies confirming the link, indicates a

significantly increased risk of mild cognitive impairment and

dementia (91). Proposed mechanisms suggest that systemic

inflammation breaches the blood-brain barrier, with cytokines

such as IL-17 and TNF-a directly affecting neurons and glial

cells, triggering neuroinflammation and synaptic dysfunction

(142). Furthermore, the skin-brain axis posits that chronic

pruritus and aberrant neural signaling, induced by mechanical

stress, exacerbate systemic inflammation through activation of the

hypothalamic-pituitary-adrenal (HPA) axis (139, 142). However,

the precise contribution of this pathway in humans awaits

further validation.

At the molecular level, sensory neuron-specific acid-sensing ion

channel 3 (ASIC3) plays a critical role in mediating neurogenic

inflammation (136). Deletion of ASIC3 in preclinical models

reduces psoriasiform lesions, whereas CGRP supplementation

reinstates inflammation, highlighting the essential role of

neurotransmitter-immune cell crosstalk (136, 143). Fibroblast

subsets further enhance these interactions by facilitating synapse

formation with IL-17-producing gd T cells (91). These findings
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including neurotoxin-mediated signaling blockade and

neurotransmitter receptor modulation (136, 139, 144).

Psoriasis shares neuroimmune pathways with comorbidities

such as inflammatory bowel disease and depression (145, 146).

Although biologics effectively alleviate cutaneous inflammation,

their limited impact on neurological symptoms and pruritus

underscores the need for integrated therapies targeting both

immune and nervous systems (12, 15). Future investigations

employing single-cell multi-omics approaches will further dissect

the cutaneous neuroimmune microenvironment, identifying precise

therapeutic targets to address the complex, multifaceted pathology

of psoriasis.
5 Translational research: from bench
to bedside in psoriasis

Translational research in psoriasis converts mechanistic

discoveries into clinical advancements, emphasizing biomarker-

driven precision medicine. Cytokine profiles (e.g., IL-17, TNF-a),
T-cell subsets like Th17 frequencies, and genetic variants such as

HLA-C*06:02 enable precise evaluation of disease severity,

prediction of biologic response, and long-term monitoring (6,

147). Obtained from blood or skin biopsies, these biomarkers
FIGURE 3

Mechanisms of Th17 cells and neuropeptide CGRP in keratinocyte proliferation in psoriasis. The diagram illustrates the pivotal role of the nervous
system in psoriasis pathogenesis. Through the production of neuropeptides and neurotransmitters, coupled with systemic or localized changes in
chemical mediators and their receptors, the nervous system engages in dynamic interactions with immune cells and cytokines. These interactions
drive pathological keratinocyte hyperproliferation and sustain an inflammatory microenvironment, hallmark features of psoriasis.
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facilitate personalized treatment and early intervention. Psoriasis-

related systemic inflammation, originating in the skin

microenvironment , contr ibutes to comorbidit ies l ike

cardiovascular disease, metabolic syndrome, psoriatic arthritis,

and depression through shared TNF-a/IL-17 pathways that drive

atherosclerosis, insulin resistance, and neuroinflammation (148–

151). Preclinical efforts are advancing nano-therapeutics, with

nanoparticle-based delivery systems targeting multiple cytokines

and immune c e l l s w i t h i n t h e ep i d e rma l immune

microenvironment. These systems enhance drug penetration,

reduce off-target effects, and remodel inflammatory milieus,

improving outcomes in refractory cases (152, 153).

The IL-23/Th17 axis is central to psoriasis pathogenesis.

Monoclonal antibodies targeting IL-23p19 (e.g., guselkumab,

risankizumab, tildrakizumab) and IL-17 (e.g., secukinumab,

ixekizumab, brodalumab) demonstrate robust efficacy in clinical

trials (Supplementary Table 1; Figure 4) (154). The GUIDE trial

(NCT03895112) showed that guselkumab’s p19 subunit blockade

reshapes the skin’s immune milieu, maintaining efficacy with

extended dosing intervals (Q8W to Q16W) and promoting

microenvironmental homeostasis through early intervention

(155). Risankizumab exhibited consistent short- and long-term

efficacy with a favorable safety profile in Phase III trials (156).

Single-cell transcriptomics revealed CD8+ T-cell regression within 3

days of IL-23 blockade, alongside myeloid remodeling and IFN-g
downregulation by day 14 (157). However, IL-23 inhibitors do not

fully restore epidermal immune homeostasis despite reducing

Th17/Tc17 cell frequencies, suggesting a role for other factors,

such as IL-12, in maintaining barrier function (158).

Biosimilars, such as Amjevita and Imraldi, match adalimumab’s

efficacy in real-world studies, supporting their cost-effective

integration (159). Bimekizumab, a dual IL-17A/F inhibitor,

effectively suppresses neutrophil-associated gene modules but is

less effective at regulating epidermal metabolism genes compared to

IL-23 inhibitors (160, 161). Its Phase III trial confirmed concurrent

improvements in depressive symptoms (PHQ-9 scale), highlighting

skin-neuroimmune interactions (162). Newly approved

monoclonal antibodies, vunakizumab (IL-17) and xeligekimab

(IL-23), further expand therapeutic options (163, 164). Despite

these advances, 25–50% of patients exhibit biologic resistance,

underscoring the complexity of the immune microenvironment

and the need for individualized therapies (165).

Oral therapies are reshaping psoriasis management. Apremilast, a

PDE4 inhibitor, demonstrates efficacy across diverse psoriasis types,

including specialty sites (e.g., scalp, nails) and pediatric patients, with

mild, transient side effects (e.g., nausea, diarrhea, headache) and low

discontinuation rates (119, 166, 167). Its oral administration

eliminates the need for routine laboratory monitoring, enhancing

patient convenience and adherence, particularly for those with

comorbidities or in resource-limited settings (168). However,

optimizing long-term efficacy and minimizing discontinuation

remain priorities. TYK2 inhibitors, such as deucravacitinib (BMS-

986165) and zasocitinib, show significant efficacy in plaque psoriasis

in Phase II trials, with deucravacitinib achieving PASI 75 in 53–67%

of patients and a favorable safety profile (169, 170). Zasocitinib’s
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Phase IIb trial (NCT04999839) reported dose-dependent PASI 75

responses (44–68% at 5–30 mg), with Phase III ongoing (171). Long-

term safety data for TYK2 inhibitors are still needed to confirm their

role in routine care.

Tapinarof, a first-in-class, nonsteroidal, topical aryl

hydrocarbon receptor (AhR) agonist, represents a breakthrough

in topical psoriasis management. It exerts therapeutic effects by

downregulating pro-inflammatory cytokines (e.g., IL-17A, IL-17F),

promoting skin barrier restoration through upregulation of key

proteins like filaggrin and loricrin, and mitigating oxidative stress

via the nuclear factor erythroid-2-related factor 2 (NRF2) pathway

(172, 173). Its multifaceted mechanism addresses both

inflammation and barrier dysfunction, offering a promising

alternative for patients seeking non-systemic options.

Preclinical studies targeting epidermal Peli1 reduced IL-17A

production by skin-resident T17 cells, improving psoriasis-like

dermatitis (174). Delivery of STAT3 siRNA via dendritic

lipopeptide nanocarriers penetrated the skin barrier, reducing

epidermal thickness and restoring immune homeostasis in mouse

models, though translation to human applications requires further

validation due to differences between murine and human disease

(175). Machine learning-based mRNA prediction models, trained

on 1,145 samples, achieve >85% accuracy in forecasting drug

responses, but sample heterogeneity and computational

limitations hinder comprehensive biological representation (176).

Emerging targets, such as IL-21 for Th17/Treg modulation and

microbial influences on IL-23/IL-17 signaling, offer promising

avenues for overcoming resistance (177).
6 Challenges and future directions in
psoriasis immunotherapy

6.1 Limitations of current immunotherapy

Despite significant progress in psoriasis immunotherapy,

substantial challenges persist across multiple domains.

Approximately 25–50% of patients exhibit suboptimal responses

or complete resistance to IL-17/IL-23-targeted biologics (178),

reflecting an incomplete understanding of the disease’s complex

immunopathological landscape. High relapse rates following

treatment discontinuation necessitate lifelong adherence, raising

long-term safety concerns (179). Immunosuppression-related

complications, such as fungal infections affecting ~12.3% of

biologic users, indicate disruptions in cutaneous microbial

homeostasis (179). Additionally, immune checkpoint inhibitor

(ICI) therapy in oncology patients increases psoriasis risk (hazard

ratio 2.43) through aberrant T-cell modulation (180).

Metabolic comorbidities significantly impair therapeutic

efficacy. In obese or dyslipidemic patients, free fatty acid-induced

neutrophil extracellular traps (NETs) amplify gd T17-driven IL-17

inflammation, reducing the effectiveness of IL-17A inhibitors (181).

The limited capacity of IL-23 inhibitors to modulate IL-17F-

expressing T17 subsets contributes to resistance (182). Genetic

studies reveal that known genome-wide association study
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(GWAS) risk loci account for only a portion of heritability,

suggesting undiscovered regulatory genes influence treatment

outcomes (183). Current therapies often focus on adaptive

immunity, overlooking innate immune dysregulation, such as

Gasdermin E-mediated keratinocyte pyroptosis and FGF12-driven

cell cycle abnormalities, which exert lymphocyte-independent

pathogenic effects unaddressed by biologics (184, 185). Economic

barriers further complicate access, with high-efficacy agents like

xeligekimab [achieving 74.4% PASI90 responses (164)] often

exceeding insurance coverage limits. The absence of predictive

biomarkers for IL-17/IL-23 inhibitors leads to trial-and-error

prescribing, underscoring the need for more tailored approaches.
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6.2 Therapeutic advancements and future
directions

Complementing the IL-23/IL-17 axis, the STING pathway

amplifies inflammation by activating dendritic cells to produce IL-

17 and IFN-g (186). Recent discoveries highlight neuroimmune

interactions, with ASIC3 channels exacerbating inflammation via

neurogenic pathways (143) and sympathetic CaMKII-g+ nerves

driving pathogenesis through norepinephrine release (139).

Therapeutic innovations, such as risankizumab’s selective

modulation of pathogenic type 17 T-cell subsets (187) and STING

inhibition to reduce IL-17A production (186), are expanding
FIGURE 4

Pathophysiology and drug targets of psoriasis. The pathophysiology of psoriasis is driven by dysregulated, self-perpetuating activation of the adaptive
immune system, characterized by a complex interplay of inflammatory pathways. This figure employs a dual-axis format (“inflammatory cascade -
targeted intervention”) to integrate and illustrate the core pathological mechanisms of psoriasis alongside corresponding therapeutic strategies.
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treatment options. Novel strategies leverage advanced delivery

systems and cellular therapies. Dendritic lipopeptide-based

transdermal siRNA delivery offers non-invasive interventions (188),

while engineered mesenchymal stem cell (MSC)-derived extracellular

vesicles address metabolic and immunological imbalances (189).

Molecular studies identify BTK and MMP-9 as regulators of

NLRP3 inflammasome responses (190) and MMP2-high fibroblasts

as modulators of CD8+ T-cell residency via CD100 interactions

(191), broadening therapeutic horizons beyond traditional biologics.

Insights into comorbidities reveal that saturated fatty acids

exacerbate NETosis in obesity-associated psoriasis (181), while

disrupting macrophage-platelet feedback loops enhances

efferocytosis (49). These findings highlight the limitations of

current biologics in addressing systemic effects, advocating for

combinatorial therapies. Notably, keratinocyte ferroptosis drives

systemic inflammation, with inhibitors like liproxstatin-1 showing

efficacy comparable to IL-12/IL-23/TNF-a biologics (192).

Fibroblasts sustain inflammatory niches through metalloproteinase-

mediated interactions with TRM cells (193).

TRM-targeted therapies, such as STAT3 inhibitors delivered via

skin-penetrating dendritic lipopeptide nanoparticles, demonstrate

promising efficacy (194). Emerging modalities include MSC-derived

extracellular vesicles (195) and nanomaterial-based co-delivery

systems integrating immune checkpoint inhibitors with cytokine

modulators (196, 197). Biosimilars like SB17 improve accessibility by

matching ustekinumab’s efficacy (198), though cardiovascular risks

associated with biologics support on-demand regimens (199, 200).

These advancements address neuroimmune dynamics (144, 201),

metabolic perturbations (202, 203), and innovative delivery

mechanisms (195, 204), advancing precision medicine.
7 Conclusion

The future of psoriasis management will center on integrating

precision-driven, innovative, and individualized therapeutic

strategies. Despite significant challenges—such as biologic

resistance, high relapse rates, economic barriers, and the intricate

interplay of innate and adaptive immune dysregulation alongside

comorbidities—emerging solutions are promising. Novel therapies

targeting pathways like STING and neuroimmune interactions,

coupled with advanced delivery systems, including nanoparticle-

based siRNA and MSC-derived extracellular vesicles, pave the way

for more effective interventions. Combinatorial approaches,

supported by predictive biomarkers and personalized treatment

frameworks, will enhance therapeutic precision, optimize patient

outcomes, and alleviate healthcare burdens in psoriasis management.
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ACT1 NF-kB Activator 1
Frontiers in Immunol
ACTH Adrenocorticotropic Hormone
AhR Aryl Hydrocarbon Receptor
ASIC3 Acid-Sensing Ion Channel 3
BATF Basic Leucine Zipper ATF-Like Transcription Factor
BTK Bruton’s Tyrosine Kinase
cAMP Cyclic Adenosine Monophosphate
CARMA2 Caspase Recruitment Domain Family Member 2
CCL Chemokine (C-C motif) Ligand
CCR Chemokine Receptor
CD Cluster of Differentiation
CGRP Calcitonin Gene-Related Peptide
CLA Cutaneous Lymphocyte Antigen
CREB cAMP Response Element-Binding Protein
CRH Corticotropin-Releasing Hormone
CXCL Chemokine (C-X-C motif) Ligand
CXCR4 C-X-C Chemokine Receptor Type 4
DCs Dendritic Cells
EIME Epithelial Immune Microenvironment
FOXP3 Forkhead Box P3
FXYD3 FXYD Domain Containing Ion Transport Regulator 3
GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor
GPP Generalized Pustular Psoriasis
GPR183 G Protein-Coupled Receptor 183
GWAS Genome-Wide Association Studies
HLA-C06:02 Human Leukocyte Antigen C06:02
HPA Hypothalamic-Pituitary-Adrenal
ICI Immune Checkpoint Inhibitor
IL Interleukin
IL36RN Interleukin 36 Receptor Antagonist
ILCs Innate Lymphoid Cells
IMQ Imiquimod
JAK Janus Kinase
KLRG1 Killer Cell Lectin-Like Receptor G1
LCs Langerhans Cells
lncRNAs Long Non-Coding RNAs
LPS Lipopolysaccharide
MAIT Mucosal-Associated Invariant T
MCPIP3 Monocyte Chemoattractant Protein-Induced Protein 3
MDSCs Myeloid-Derived Suppressor Cells
ogy 19
MEG3 Maternally Expressed Gene 3
MMP Matrix Metalloproteinase
MSC Mesenchymal Stem Cell
NETs Neutrophil Extracellular Traps
NF-kB Nuclear Factor kappa-light-chain-enhancer of Activated

B Cells
NFKBIA Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in

B-Cells Inhibitor, Alpha
NLRP3 NOD-Like Receptor Pyrin Domain-Containing 3
NRF2 Nuclear Factor Erythroid-2-Related Factor 2
PASI Psoriasis Area and Severity Index
PDE-4 Phosphodiesterase-4
Peli1 Pellino E3 Ubiquitin Protein Ligase 1
PGE Prostaglandin E
PHGDH Phosphoglycerate Dehydrogenase
PHQ-9 Patient Health Questionnaire-9
PKA Protein Kinase A
PPARg Peroxisome Proliferator-Activated Receptor Gamma
PPP Palmoplantar Pustulosis
PSORS Psoriasis Susceptibility Loci
RORgt Retinoic Acid-Related Orphan Receptor Gamma t
ROS Reactive Oxygen Species
scRNA-seq Single-Cell RNA Sequencing
SIRT1 Sirtuin 1
slanDCs 6-Sulfo LacNAc Dendritic Cells
STAT3 Signal Transducer and Activator of Transcription 3
STING Stimulator of Interferon Genes
TGR5 Takeda G Protein-Coupled Receptor 5
Th T-helper
TLRs Toll-Like Receptors
TNF-a Tumor Necrosis Factor-alpha
TNFAIP3 Tumor Necrosis Factor Alpha-Induced Protein 3
TNFR1 Tumor Necrosis Factor Receptor 1
TNFR2 Tumor Necrosis Factor Receptor 2
TRAF6 TNF Receptor-Associated Factor 6
Treg Regulatory T Cell
TRM Tissue-Resident Memory T Cell
TYK2 Tyrosine Kinase 2
UC-MSC Umbilical Cord Mesenchymal Stem Cells
UVB Ultraviolet B
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