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Therapeutic frontiers in
viral myocarditis: targeting
inflammation, viruses, oxidative
stress, and myocardial repair
Jingyao Xu1,2, Xuanjia Chen1,2, Xia Guan1,2, Haiying Zhang1,2,
Yan Liu1,2* and Min Zhang1,2*

1Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of
Education, School of Pharmacy, Hainan Medical University, Haikou, China, 2Hainan Provincial Key
Laboratory of Research and Development on Tropical Herbs, Hainan Medical University,
Haikou, China
Viral myocarditis (VMC) is a life-threatening inflammatory cardiomyopathy with a

global incidence rate of 10–22 per 100,000 people. It is the most common

clinical manifestation of myocardial inflammation. Myocardial cell injury and

fibrosis are the pathological characteristics of VMC. Coxsackievirus B3 (CVB3),

parvovirus B19 (PVB19), Severe Acute Respiratory Syndrome coronavirus 2

(SARS-CoV-2), and adenovirus (AdV) are the main causes that induce viral

myocarditis. Among them, CVB3 has become the main pathogen, accounting

for more than 50% of the confirmed cases of VMC. The clinical manifestations of

this disease are extensive, ranging from asymptomatic carriers to sudden cardiac

death caused by acute decompensated heart failure and arrhythmia. Current

therapeutic strategies for VMC focus on four key approaches: (1) Anti-

inflammatory interventions targeting inflammatory cells and mediators; (2)

Antiviral therapies employing gene editing, viral protease inhibitors, and RNA

polymerase inhibitors; (3) Myocardial protection through tissue repair promotion

and nutritional support; (4) Oxidative stress mitigation using antioxidants. This

article will systematically summarize the progress of VMCmanagement in recent

years and provide personal insights for VMC management.
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1 Introduction

Myocarditis accounts for approximately 20% of adolescent mortality (1) and is classified

as the third most prevalent etiology of cardiovascular death in young athletes (6% incidence),

surpassed only by coronary artery anomalies (17%) and hypertrophic cardiomyopathy (36%)

(2, 3). The disease manifests with marked clinical heterogeneity (4), ranging from mild

presentations (chest pain, palpitations, low-grade fever, exertional dyspnea) to fulminant

cardiogenic shock (hypotension, peripheral hypoperfusion) or lethal arrhythmias (sustained
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ventricular tachycardia/fibrillation), with reported mortality rates of

10%-20% (5). A subset of patients reports prodromal upper

respiratory or gastrointestinal infections 1–3 weeks preceding

symptom onset (6), while those with localized inflammatory foci

may remain clinically silent. Pathogenetically, myocarditis arises from

diverse infectious (viral, bacterial, rickettsial) and non-infectious

triggers (pharmacotoxic agents, giant cell myocarditis, sarcoidosis),

with CVB3 infection representing the predominant etiology across all

demographic groups. By diagnostic criteria, myocarditis constitutes a

non-ischemic inflammatory cardiomyopathy characterized by

lymphocyt ic infi l trat ion and myocardial necros is on

histopathology (7).

Given this significant disease burden and etiological complexity,

establishing a definitive viral myocarditis diagnosis becomes

clinically imperative yet methodologically challenging. The

pronounced clinical heterogeneity-spanning subclinical

presentations to fulminant cardiogenic shock-necessitates

correlating epidemiological patterns with precision diagnostic

frameworks. Consequently, contemporary guidelines mandate

systematic integration of histopathological evidence and

multimodal assessment to address diagnostic ambiguities inherent

in VMC’s variable manifestations, particularly given CVB3’s

predominance across demographic strata.

VMC clinical diagnosis requires a comprehensive multimodal

approach (Figure 1). This process begins with evaluating

characteristic symptoms- such as chest pain, arrhythmias, or heart

failure manifestations-alongside elevated serum biomarkers, including

cardiac troponin I/T (cTnI/cTnT) and N-terminal pro-B-type

natriuretic peptide (NT-proBNP). Subsequent non-invasive imaging

assessments involve cardiac magnetic resonance (CMR) with T1/T2

mapping and late gadolinium enhancement (LGE) sequences to

characterize myocardial inflammation, edema, and necrosis, while

echocardiography quantifies functional impairment through left

ventricular ejection fraction (LVEF) depression and wall motion

abnormalities. Ischemic etiology must then be excluded via coronary

angiography, supplemented by endomyocardial biopsy (EMB)

demonstrating lymphocytic infiltrates with viral genome detection

via polymerase chain reaction (PCR) or in situ hybridization in

refractory cases. Definitive diagnosis ultimately adheres to modified

Lake Louise Criteria and WHF/ESC consensus guidelines, integrating

histopathological, immunological, and functional evidence while

rigorously excluding alternative cardiomyopathies.

VMC is pathologically defined by focal or diffuse myocardial

inflammation (8), marked by significant infiltration of inflammatory

cells-predominantly myeloid cells and T lymphocytes-into cardiac

tissue (9). Sustained myocardial inflammation drives structural

remodeling through fibrotic deposition and hypertrophic

adaptations, progressively replacing functional myocardium with

collagenous tissue. This pathological cascade ultimately impairs

systolic or diastolic function and precipitates arrhythmogenesis.

Furthermore, chronic systemic inflammation secondary to

myocarditis accelerates atherosclerotic progression, elevating

predisposition to lethal ischemic complications (10).

Current therapeutic paradigms prioritize four core strategies:

(1) implementation of targeted antiviral interventions,
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(2) prescription of structured physical rest to reduce myocardial

stress, (3) application of standardized heart failure management

protocols, and (4) modulation of cytokine-mediated inflammatory

responses within cardiac tissue. Notably, modulating the

pathological inflammatory cascade remains a critical therapeutic

priority requiring advanced intervention strategies.

Despite notable advances in VMC management, current

therapeutic paradigms remain predominantly confined to anti-

inflammatory interventions with suboptimal efficacy. Given

myocardial inflammation’s centrality in VMC pathology,

conventional strategies persistently target inflammatory cascades

through two complementary approaches: (1) modulating specific

immune cell populations to enhance anti-inflammatory precision,

and (2) sustaining immunomodulation to remodel the

inflammatory microenvironment. While this represents a strategic

shift from direct antiviral action toward host immune regulation,

such anti-inflammatory-centric frameworks exhibit inherent

limitations. Consequently, achieving improved clinical outcomes

necessitates innovative targeting beyond inflammation-particularly

through emerging gene therapies, mesenchymal stem cell

applications, and redox-modulating strategies. This review

critically synthesizes recent advances in VMC classification and

therapeutics, with focused analysis on CVB3-induced myocarditis

pathogenesis and intervention gaps.
2 Classification of VMC

VMC is mediated by diverse etiological agents, among which

four viral pathogens have been identified as predominant

contributors: CVB3, PVB19, SARS-CoV-2, and AdV. This review

focuses on these four viral and delineates their distinct mechanisms

of host invasion (Figure 2).
2.1 Coxsackievirus B3

The predominant etiological agent of VMC is recognized as CV

(11), with enterovirus CVB3 identified as the most prevalent subtype

during the 1980s-1990s. Viral entry into cardiomyocytes occurs

through binding to the constitutively expressed transmembrane

receptor coxsackie-adenovirus receptor (CAR) (12), facilitated by the

decay-accelerating factor (DAF or CD55) co-receptor. This interaction

initiates direct myocardial injury and cytoskeletal disruption (13),

subsequently provoking persistent immune dysregulation post-viral

clearance. Notably, the CVB3/28 strain demonstrates exclusive

CAR-dependent infectivity (14), while the CVB3 Variant PD exhibits

replication capability in DAF/CAR-deficient cells, with potential

involvement of alternative adhesion molecules such as heparan

sulfate proteoglycans (15). Current research delineates three principal

mechanisms underlying CVB3-induced tissue pathology: direct viral

cytotoxicity (16), infection-triggered inflammatory cascades, and their

synergistic amplification of myocardial damage (17). The resolution

mechanisms for CVB3-induced cardiac inflammatory cascades remain

a critical unresolved question in pathogenesis research.
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2.2 Parvovirus B19

PVB19 has been established as an additional causative agent of

myocarditis alongside CVB3 (18). While typically manifesting as a

mild, self-limiting condition, PVB19 infection demonstrates

significant potential for triggering severe systemic sepsis and

hematological complications. The virus can provoke acute cardiac

infection during high-titer viremia (19) and establish persistent

myocardial reservoirs with reactivation potential (20). Classified as

a vasotropic pathogen, PVB19 primarily targets myocardial vascular

endothelial cells and erythroid progenitor cells without directly

infiltrating cardiomyocytes (21). Notably, endothelial cell infection

may initiate secondary cardiomyocyte apoptosis through indirect
Frontiers in Immunology 03
mechanisms (22). Following acute symptom resolution, the virus

transitions to a latent phase. The clinical implications of persistent

PVB19 myocardial reservoirs remain controversial, requiring

further investigation to clarify their prognostic significance (23).
2.3 Severe Acute Respiratory Syndrome
Coronavirus 2

The Coronaviridae family members Middle East Respiratory

Syndrome Coronavirus (MERS-CoV), Severe Acute Respiratory

Syndrome Coronavirus (SARS-CoV), and SARS-CoV-2 all

demonstrate cardiac involvement with documented myocarditis
FIGURE 1

The clinical symptoms and diagnosis of VMC. (By Biorender). (A) The manifestations that occur when a virus invades the human body and the symptoms
that may appear after invading the heart. The patient underwent (B) a physical examination, (C) laboratory examinations, and (D) imaging examinations.
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development (24). The pathogenic mechanism involves three key

elements: viral tropism for angiotensin-converting enzyme 2

(ACE2) receptors, cytokine-mediated myocardial injury, and

autoimmune responses targeting cardiac antigens (25). SARS-

CoV-2-induced myocarditis represents a severe cardiovascular

complication of COVID-19, presenting with heterogeneous

clinical manifestations ranging from chest discomfort and

exertional dyspnea to cardiac arrhythmias and syncopal episodes

(26). Notably, this complication exhibits pan-demographic

susceptibility and may demonstrate prolonged latency, potentially

extending therapeutic timelines. These characteristics underscore

the critical need for optimized early detection protocols and

targeted intervention strategies requiring urgent optimization

through comprehensive clinical research.
2.4 Adenovirus

AdV represents a cardiotropic pathogen (27), classified as a

non-enveloped dsDNA virus with approximately 50 characterized

serotypes. These variants demonstrate clinical heterogeneity

ranging from self-limiting respiratory infections to fatal systemic

manifestations (28). Notably, human AdV serotypes 2 and 5 are

predominantly associated with acute myocarditis and inflammatory

cardiomyopathy development (29, 30). Viral entry into

cardiomyocytes occurs through CAR binding (12), inducing
Frontiers in Immunology 04
myocardial injury and cytoskeletal disruption. This structural

degradation initiates persistent immune activation persisting post-

viral clearance (13). The sustained cardiac immune activation

presents a significant therapeutic challenge, necessitating further

investigation into targeted resolution mechanisms.
3 The treatment of VMC induced by
CVB3

CVB3 has emerged as the primary etiological agent of VMC.

Effective clinical management hinges on early intervention and targeted

mitigation of inflammatory cascades. Recent advancements in

preclinical model research and clinical evidence accumulation have

facilitated significant therapeutic progress, enabling systematic

development and evaluation of multiple innovative strategies. Current

experimental therapies encompass several targeted approaches:

inflammatory cell modulation therapy, inflammatory mediator

regulation therapy, genetic intervention strategies, stem cell-based

regenerative therapies, and redox homeostasis restoration protocols.
3.1 Inflammatory cell intervention

Inflammatory cell modulation therapy represents a therapeutic

strategy that targets inflammation-associated pathologies through
FIGURE 2

Four different viruses cause the occurrence of myocarditis. (By Biorender). (A) CVB3 binds to the Coxsackievirus-adenovirus receptor (CAR) in
cardiomyocytes (CM) to promote viral internalization and binds to the Decay acceleration factor (DAF) on the cell surface to initiate viral adhesion.
Viruses replicate within host cells to form replication complexes. (B) Adenovirus promotes viral internalization by binding to CAR on the surface of
CM through the head domain of its fiber protein, and can also enter CM through endocytosis. Viral DNA replicates within cells and assembles in the
nucleus. (C) Human infection with SARS-CoV-2 induces COVID-19, leading to myocarditis as a complication. (D) PVB19 promotes viral adhesion to
the cell membrane by recognizing and binding to the P antigen (globoside) on the surface of endothelial progenitor cells. The a5b1 integrin, while
the Ku80 protein acts as a coreceptor, enhancing the binding efficiency of the virus to host cells. The non-structural protein NS1 has helicase
activity and can promote the replication of viral DNA.
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precise regulation of inflammatory cell dynamics, including population

control, functional modification, and activity modulation. The

therapeutic paradigm focuses on three critical cellular processes:

targeted modulation of inflammatory cell infiltration patterns,

activation states, and polarization phenotypes (including

macrophages, T lymphocytes, and neutrophils). This approach

achieves therapeutic effects through three primary mechanisms:

suppression of pathological inflammation, alleviation of clinical

manifestations, and facilitation of regenerative tissue remodeling.

Macrophage M1/M2 polarization equilibrium critically governs

tissue homeostasis, with polarization dynamics being intrinsically

linked to cellular metabolic profiles (Figure 3). M1 macrophages

undergo profound metabolic reprogramming (31), while M2

counterparts predominantly utilize oxidative phosphorylation

(OXPHOS) pathways (32). Experimental evidence demonstrates

that both microrNA-155 (miR-155) silencing and miR-30a-5p

silencing exert convergent therapeutic effects through enhanced

M2 polarization. Notably, miR-30a-5p operates via SOCS1-

mediated mechanisms to attenuate viral myocarditis (33–35).

miR-155−/− mice exhibit elevated anti-inflammatory cytokines

with concomitant pro-inflammatory cytokine suppression post-

CVB3 challenge. M2-derived exosomes (M2-EXO) demonstrate

cardioprotective efficacy in CVB3-induced VMC through lncRNA

AK083884/PKM2 axis-mediated metabolic reprogramming,

modulating HIF-1a transcriptional activity via PKM2-HIF-1a
complex formation (36, 37).These findings collectively establish

macrophage polarization modulation as a pivotal therapeutic

paradigm in myocarditis management, with targeted polarization

strategies representing promising clinical interventions.

Beyond macrophage polarization-mediated anti-inflammatory

effects, T-cell-mediated immunity demonstrates a synergistic
Frontiers in Immunology 05
therapeutic potential. The activation of macrophages initiates the

inflammatory cascade. Infiltrating pro-inflammatory macrophages

demonstrate synergistic interaction with CD8+ effector T

lymphocytes (38), with T-cells directly exacerbating myocardial

injury via IFN-g secretion, which induces cardiomyocyte apoptosis

and disease progression through Spleen focus-forming virus (SFFV)

proviral integration oncogene 1 (SPI1) transcription factor

upregulation (39).

Study shows thrombospondin-2 (TSP-2) exerts critical

cardioprotective effects in CVB3-induced myocarditis through

immunomodulation of regulatory T lymphocytes (Tregs) (40). TSP-2

deficiency markedly elevates murine mortality, exacerbates myocardial

inflammation, tissue necrosis, and collagen deposition, induces

substantial infiltration of CD3+, CD4+ and CD8+ T lymphocytes

within cardiac tissue. Meanwhile, TSP-2 overexpression activates

Treg populations, attenuates lymphocyte infiltration, reduces necrotic

lesions, and enhances cardiac functional recovery via interacting with

CD47 (41). These findings elucidate the TSP-2/Treg axis as a central

immunoregulatory mechanism, revealing therapeutic potential for

both TSP-2 gene augmentation or Treg amplification strategies to

mitigate myocardial injury and improve clinical outcomes through

restoration of immunoregulatory homeostasis (42).

Neutrophil activation and extracellular trap (NET) formation

exhibit marked elevation during VMC acute phase pathogenesis

(43). Experimental evidence demonstrates that lymphocyte antigen

6 complex locus G (anti-Ly6G) antibody-mediated neutrophil

depletion attenuates myocardial necrosis and leukocyte

infiltration while suppressing monocyte recruitment and pro-

inflammatory macrophage differentiation. Furthermore, genetic

ablation of peptidylarginine deiminase 4-dependent (PAD4-

dependent) NET generation substantially mitigates cardiac injury
FIGURE 3

Influencing factors of M1/M2 polarization in macrophages. (By Biorender). Therapeutic suppression of miR-30a-5p and miR-155 has been shown to
facilitate M2 macrophage polarization, thereby mitigating viral myocarditis-induced cardiac injury. Exosomes derived from M2-polarized macrophages
(M2-Exo) demonstrate cardioprotective effects through dual mechanisms: modulation of the pyruvate kinase M2-hypoxia-inducible factor 1-alpha
(PKM2-HIF-1a) complex activity and concomitant downregulation of M1 phenotypic surface markers and pro-inflammatory cytokine expression.
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and reduces myocardial myeloid cell infiltration, particularly

monocyte and macrophage populations. These collective findings

establish neutrophil activity suppression and NET response

inhibition as viable therapeutic approaches to ameliorate disease

pathology and myocardial inflammation (44).

Macrophages, T lymphocytes, and neutrophils collectively exert

critical immunomodulatory functions in VMC pathogenesis. These

immunocytes coordinate through synergistic interactions to

maintain immune homeostas is , at tenuate myocardia l

inflammation, and preserve cardiac functional integrity. Targeting

immunocyte modulation therapies require comprehensive

investigation to optimize their therapeutic potential and establish

standardized protocols for clinical VMC management.
3.2 Inflammatory mediator modulation
therapy

Modulating inflammatory mediators is a therapeutic strategy

that targets key signaling molecules involved in the inflammatory

response. This approach aims to optimize the inflammatory

response, minimize tissue damage, and facilitate tissue repair and

functional recovery by regulating components such as cytokines,

metabolites, and the extracellular matrix (Figure 4). This

therapeutic strategy demonstrates significant potential for

application across various inflammatory diseases, including

cardiovascular diseases, autoimmune diseases, neurodegenerative
Frontiers in Immunology 06
disorders, and tumor-associated inflammation. The administration

of drugs such as immunoglobulins and glucocorticoids can

effectively suppress excessive immune responses, thereby reducing

myocardial cell damage (45).

Inflammasome inhibition diminishes inflammatory mediator

production and release, thereby modulating inflammatory cascades.

Current research confirms that the NLRP3 inflammasome exhibits

marked upregulation in cardiomyocytes and infiltrating cardiac

macrophages during VMC (46). This molecular complex acts as a

cytoplasmic sensor that recognizes both exogenous pathogens and

endogenous damage-associated molecular patterns. Subsequently, it

initiates Caspase-1-dependent proteolytic cascades, which drive the

maturation of interleukin-1b (IL-1b) and IL-18. These cascades

further orchestrate pyroptotic cell death pathways (47). CVB3

structural proteins VP1 and VP2 serve as crucial NLRP3

activation triggers. Pharmacological inhibition using MCC950

significantly mitigates macrophage/T-cell infiltration (48),

attenuates inflammation, and preserves cardiac function.

Furthermore, either calpain enzymatic inhibition or upregulation

of muscle-specific membrane repair protein MG53 effectively

suppresses NLRP3 inflammasome activation (49, 50),

ameliorating inflammatory responses and pyroptosis. Conversely,

MG53 knockdown exacerbates both inflammation and pyroptotic

cell death (51). Emerging evidence suggests that modulating

mitochondrial quality control mechanisms and its crosstalk with

inflammatory signaling pathways offers novel therapeutic avenues

for myocarditis management.
FIGURE 4

Cardiac injury was reduced by regulating inflammatory mediators in VMC. (By Biorender). MCC950 alleviates damage by inhibiting the binding of
NLRP3 to Apoptosis-associated speck-like protein containing a CARD (ASC); The IgG of IVIG binds to FcgR on the surface of immune cells such as
macrophages and neutrophils through the Fc segment, inhibiting excessive inflammatory responses and reducing the release of inflammatory
mediators; Parkin/BNIP3 alleviates apoptosis by activating mitochondrial autophagy; EET inhibits the activation of NF-kB, reduces the expression of
inflammatory cytokines, and promotes the interaction between GSK3b and TBK1. Coordinate type I interferon signal transduction to improve cardiac
function and alleviate inflammatory responses; BBR can inhibit viral replication and suppress the JNK/p38 pathway and inflammatory factors.
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Parkin, an E3 ubiquitin ligase, plays a pivotal role in mitophagy

regulation. In CVB3-induced VMC murine models, Parkin/BNIP3-

mediated mitophagy is initiated but autophagic flux remains impaired,

with disrupted autophagosome-lysosome fusion (52–54). Parkin

silencing increases mortality and worsens cardiac dysfunction in

CVB3-infected mice. This impairment disrupts mitophagic clearance,

leading to accumulated damaged mitochondria and enhanced

apoptosis (55). Additionally, Parkin deficiency dysregulates both

mitophagy and inflammatory responses in neonatal rat

cardiomyocytes. Mechanistically, Parkin preserves cardiac function

and modulates inflammation during acute VMC through

coordinated regulation of mitophagy and NF-kB signaling. Notably,

Parkin deficiency may compromise viral defense and autoimmune

myocarditis protection via interleukin-1 receptor accessory protein

(IL1RAP) pathway. IL1RAP inhibition using mCAN10 monoclonal

antibody substantially attenuates myocardial pathology severity,

suppresses inflammatory infiltration, and downregulates IL-1

signaling/chemokine expression (56). Beyond IL1RAP targeting,

exogenous anti-inflammatory agents such as epoxyeicosatrienoic

acids (EETs) broaden therapeutic options by concurrently

modulating NF-kB and type I interferon pathways in

myocarditis management.

EETs, bioactive metabolites derived from arachidonic acid

through cytochrome P450 (CYP) epoxygenases (57), demonstrate

potent anti-inflammatory activity (58, 59). EETs undergo rapid

conversion to relatively inactive dihydroxyeicosatrienoic acids

(DHETs) via soluble epoxide hydrolase (sEH). sEH inhibitors

exhibit therapeutic efficacy through endogenous EETs stabilization.

EETs suppress inflammatory cytokine expression by inhibiting NF-

kB nuclear translocation and preserve cardiac function in VMC

through type I interferon pathway modulation (60–62). Specifically,

EETs facilitatemolecular interplay between glycogen synthase kinase-

3b (GSK3b) and TANK-binding kinase 1 (TBK1), potentiating

interferon-b biosynthesis to coordinate type I interferon signaling

for enhanced cardiac functional recovery and inflammation

resolution (63). Beyond synthetic EET analogs, natural

pharmacological agents like berberine offer multi-target therapeutic

approaches for myocarditis through concurrent modulation of viral

replication mechanisms and inflammatory signaling cascades.

Berberine (BBR), a bioactive isoquinoline alkaloid isolated from

Coptis chinensis, exhibits multifaceted anti-inflammatory properties.

Experimental evidence demonstrates that BBR’s potent inhibition of

CVB3 proliferation in HeLa cells while mitigating virus-induced

cytopathic effects. Mechanistically, BBR suppresses c-Jun N-terminal

kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK)

activation through reduced phosphorylation, consequently attenuating

viral VP1 protein synthesis and double-stranded RNA production (64,

65). In murine CVB3 infection models, BBR administration

significantly enhances survival rates, ameliorates myocardial

pathology, preserves cardiac function, and reduces viral titers while

suppressing pro-inflammatory cytokine release and macrophage

infiltration. These findings establish BBR as a novel therapeutic

framework for CVB3-induced myocarditis through dual mechanisms

of viral replication inhibition and inflammatory response modulation.

Unlike dual-targeting phytochemicals that modulate both viral and
Frontiers in Immunology 07
inflammatory pathways, biopharmaceutical agents (e.g.,

immunoglobulins) employ polypharmacology approaches. These

interventions orchestrate immune cell polarization and facilitate

crosstalk coordination between antiviral and inflammatory signaling

networks. Consequently, they establish integrated therapeutic

paradigms by modulating synergistic immune-inflammatory

axis interactions.

Immunoglobulin treatment demonstrates enhanced survival rates

in fulminant myocarditis mice (100% vs. 40%), improves cardiac

functional parameters, attenuates myocardial inflammation, and

balances cytokine profiles by suppressing pro-inflammatory

mediators (IL-1b, IL-6, TNF-a) while promoting anti-inflammatory

IL-10 expression (66). Single-cell RNA sequencing reveals

immunoglobulin’s dual regulatory effects on cardiac immunity:

restoring immune cell homeostasis through suppression of excessive

innate immune activation, decreasing monocyte and neutrophil

infiltration, and enhancing macrophage antigen presentation capacity

to optimize antiviral responses. Mechanistically, immunoglobulins

coordinate inflammatory regulation through three key pathways:

modulating chemotaxis via CCL signaling, optimizing antigen

presentation through MHC-I regulation, and fine-tuning antiviral

responses via Bone marrow stromal cell antigen 2 (BST2) signaling

(67). These findings substantiate immunoglobulin’s therapeutic

potential for myocarditis via comprehensive immunomodulation.

They demonstrate concurrent improvements in cardiac function and

clinical outcomes, while also proposing novel mechanistic insights.

These insights provide a foundation for clinical translation.

Beyond immunoglobulins, IVIG demonstrates therapeutic

efficacy in VMC through triple mechanisms: viral neutralization,

immunomodulation, and anti-inflammatory action. IVIG delivers

broad-spectrum antiviral antibodies that directly neutralize viral

particles to prevent cardiomyocyte injury. It concurrently

suppresses pathological inflammation by downregulating pro-

inflammatory mediator release and normalizing dysregulated

immune pathways (68, 69). IVIG reduces mortality, suppresses

viral load, and restores immune homeostasis via IFN-g/Spi1. Unlike
IVIG’s multi-targeted immune-antiviral synergy, adrenal

corticosteroids (e.g., prednisone) primarily exert single-target anti-

inflammatory effects through glucocorticoid receptor activation.

Adrenal corticosteroids, including prednisone and

methylprednisolone, serve as cornerstone therapies for VMC owing

to their potent anti-inflammatory effects. These agents effectively

modulate hyperactive immune responses by suppressing

inflammatory cell infiltration and limiting the production of pro-

inflammatory mediators. However, clinical application requires

cautious risk-benefit evaluation due to their dual-edged nature:

immunosuppression may compromise host defense mechanisms

while inadvertently exacerbating viral proliferation. Modern

therapeutic approaches targeting inflammatory mediators have

transitioned from isolated anti-inflammatory interventions to

integrated strategies addressing virus-immune-metabolic crosstalk.

Future advancements require precision-targeted interventions that

transition therapeutic goals from symptom management to reversal

of pathological remodeling. This shift demands innovations in

spatiotemporal target identification and Artificial intelligence-driven
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drug development. Concurrently, immunophenotype-guided clinical

stratification will enable achievable translation of these therapies.
3.3 Gene therapy

GT introduces a novel therapeutic paradigm for VMC through

modulating of immune response and inflammatory injury.

Concurrently, targeted molecular interventions that disrupt viral

replication cycles establish precise antiviral therapeutic avenues.

As a core enzymatic component of enteroviral replication, RNA

helicase represents a strategic therapeutic target, with its

pharmacological inhibition of which demonstrates potent

blockade of CVB3 pathogenicity. Enterovirus-2C inhibitor (E2CI)

targeting the enteroviral 2C protein through specific binding to

effectively suppress ATPase activity and disrupt viral genomic RNA

replication (70–72). Mechanistically, E2CI exhibits robust antiviral

efficacy in vitro, achieving significant suppression of CVB3

proliferation in both HeLa cells (EC50 = 0.32 mM) and primary

human cardiomyocytes while maintaining favorable host cell

compatibility (CC50 > 50 mM) (73). Translational studies in

CVB3-infected murine models confirm therapeutic superiority,

with E2CI-treated cohorts demonstrating significantly enhanced

survival rates (92% vs. 71%, p < 0.05) accompanied by multimodal

cardioprotection: accelerated viral clearance, attenuated myocardial

pathology, and preserved cardiac functional parameters. These

findings underscore the therapeutic value of viral replication

pathway interruption while highlighting complementary

intervention opportunities through coordinated modulation of

host inflammatory cascades in viral myocarditis management.

Long non-coding RNAs (lncRNAs) constitute a distinct class of

non-protein-coding transcripts exceeding 200 nucleotides in length.

Experimental evidence demonstrates that long non-coding

guanylate-binding protein 9 (lncGBP9) silencing suppresses NF-

kB pathway activation, leading to reduced secretion of key pro-

inflammatory cytokines (TNF-a, IL-6, IL-1b). In vitro validation

reveals that lncGBP9 depletion in HL-1 cardiomyocytes

significantly enhances cellular viability (p < 0.01) with

concomitant decreases in apoptotic indices (p < 0.05), while

effectively attenuating both cytokine storm and NF-kB nuclear

translocation. These results mechanistically position lncGBP9 as a

regulator of inflammatory-apoptotic crosstalk through NF-kB
pathway inhibition, suggesting its therapeutic potential for VMC

intervention (74). Building upon lncRNA-mediated inflammatory

modulation mechanisms, subsequent investigations delineated

miRNA’s dual regulatory capacity in balancing viral replication

and host defense optimization, constructing a multi-dimensional

molecular network of non-coding RNA synergistic intervention

in VMC.

MicroRNAs (miRNAs) are endogenous small RNA molecules

widely present in eukaryotic organisms that regulate post-

transcriptional gene expression by binding to target mRNAs. In

CVB3-induced myocarditis, specific miRNAs modulate both viral

replication and host immune responses through targeted gene and

pathway interactions. For instance, miR-203, miR-590-5p, and
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miR-126 enhance viral replication (74–76), whereas miR-221 and

miR-222 demonstrate cardioprotective effects (77). miR-22-3p

exhibits dual functionality during CVB3 infection: it suppresses

viral RNA translation while paradoxically facilitating late-stage viral

replication, with its downregulation of protocadherin-1 (PCDH1)

further promoting viral propagation (78). The upregulated

maternally expressed gene 3 (MEG3) acts as a competing

endogenous RNA (ceRNA) for miR-21, thereby enhancing viral

replication. The MEG3/miR-223/TRAF6/NF-kB signaling pathway

emerges as a promising therapeutic target for VMC (79).

Additionally, miR-30d improves cardiac outcomes in ischemic

cardiomyopathy by reducing cardiomyocyte apoptosis through

targeting MAP4K4 in heart muscle cells and ITGA5 in cardiac

fibroblasts (80).

Current GT target distinct pathological mechanisms, ranging

from direct-acting antiviral approaches (e.g., RNA helicase

inhibition) to host microenvironment modulation through non-

coding RNA regulation. The synergistic application of these

interventions enables comprehensive disease management

targeting both symptomatic relief and pathogenic resolution.

Future advancements require overcoming technical challenges

such as precision drug delivery and real-time therapeutic

modulation. This wil l faci l i tate the establ ishment of

multidimensional gene therapy platforms and accelerate

translation from preclinical research to clinical applications.
3.4 Mesenchymal stem cells therapy

MSCs exhibit multidimensional therapeutic potential in VMC

management. In both CVB3-induced and autoimmune myocarditis

models, MSCs administered via intramuscular or intravenous

routes significantly mitigate disease progression. This therapeutic

effect manifests as reduced myocardial tissue damage, improved

cardiac systolic function, and decreased inflammatory cell

infiltration (81). These therapeutic effects primarily stem from

MSC-mediated paracrine immunoregulation, involving two

synergistic mechanisms: nitric oxide (NO)-dependent viral

replication suppression and interferon-gamma (IFN-g)-associated
preactivation inhibition. This dual action effectively blocks CVB3-

induced cardiomyocyte apoptosis, oxidative stress, and viral

biosynthesis/release (82). MSCs administration downregulates

proinflammatory cytokines (e.g., TNF-a, IL-6) while modulating

cardiac monocyte activation patterns enhancing anti-apoptotic

signaling pathways (83). MSCs simultaneously target virus-host

interactions and fine-tune innate immune responses, thereby

demonstrating myocardial protective capabilities. These dual

actions establish a scientific foundation for developing precision

stem cell-based therapies against viral myocarditis (VMC).
3.5 Antioxidant therapy

Oxidative stress (OS) represents a pathophysiological condition

resulting from disrupted redox equilibrium between pro-oxidant and
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antioxidant systems, marked by reactive oxygen species (ROS)

overproduction due to impaired peroxide metabolism (84). This

redox imbalance initiates pathological cascades involving

neutrophilic inflammation, dysregulated protease activity, and

oxidative intermediate deposition, all of which exacerbate cellular

damage. Study confirms OS serves not only as a fundamental

mechanism of biological aging but also constitutes a critical

pathological driver across multiple disease states (85). Antioxidants

counteracting this process maintains redox homeostasis by

scavenging free radicals and neutralizing their cytotoxic effects,

thereby playing essential regulatory roles in oxidative balance

(86, 87).

In the management of OS associated with VMC, antioxidant

therapy plays a critical role, particularly in modulating inflammatory

responses and preserving cellular function. Penfluridol (PF)

demonstrates both anti-inflammatory and antioxidant properties in

lipopolysaccharide (LPS)-activated macrophages. Specifically, PF

suppresses NLRP3 inflammasome activation, consequently

decreasing secretion of pro-inflammatory cytokines including TNF-

a and IL-6 (88). Concurrently, through activation of the Nrf2/HO-1

signaling pathway, PF enhances superoxide dismutase (SOD) activity

while reducing malondialdehyde (MDA) levels, effectively alleviating

OS (89). These combined mechanisms substantially attenuate LPS-

induced macrophage injury.

Beyond revealing PF’s dual-axis modulation of NLRP3/Nrf2

pathways in regulating inflammatory-oxidative equilibrium, the

study demonstrated that sulfhydryl-containing antioxidants

possessed distinct cardioprotective mechanisms with extended

therapeutic promise in VMC. In CVB3-infected murine

models, the thiol-based antioxidants captopril and N-

(2-mercaptopropionyl)glycine (MPG) significantly improved

survival rates, reduced myocardial injury markers (including

cellular infiltration, necrosis, and calcification), and suppressed

infection-induced upregulation of myocardial manganese

superoxide dismutase (Mn-SOD) and copper-zinc superoxide

dismutase (Cu/Zn-SOD) mRNA expression (90).

Antioxidants mitigate myocardial injury through scavenging

ROS and modulating inflammatory/OS pathways. These findings

establish a comprehensive experimental foundation for developing

targeted therapeutic strategies against VMC with OS regulation as

the core mechanism.
4 The treatment of VMC induced by
other viruses

4.1 Coronavirus induced-myocarditis

The pathological mechanisms underlying COVID-19-

associated VMC caused by SARS-CoV-2 remain incompletely

understood. Evidence indicates that glucocorticoids combined

with IVIG demonstrate clinical utility in such cases. While the

use of glucocorticoids in VMC caused by CVB3 remains

controversial, they may exert a myocardial-protective effect

through combined immunosuppressive, anti-inflammatory, and
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anti-shock mechanisms (91). IVIG, with its dual antiviral and

anti-inflammatory properties, has been shown to significantly

improve outcomes in VMC when administered early and in

adequate doses. The European Society of Cardiology (ESC)

guidelines explicitly recommend evaluating a glucocorticoid-IVIG

combination therapy strategy in high-risk patients (92).

A representative case study documented a male patient with

SARS-CoV-2-induced VMC complicated by cardiogenic shock and

pulmonary infection. Following treatment with methylprednisolone

pulse therapy combined with IVIG, the patient demonstrated

marked symptomatic improvement along with complete

restoration of cardiac architecture and systolic function.

Concurrently, myocardial injury biomarkers (troponin I and B-

type natriuretic peptide) returned to normal levels (91). This clinical

evidence provides compelling support for the critical importance of

early combined immunomodulatory therapy in managing

coronavirus-related myocarditis.

Given the absence of clinically approved SARS-CoV-2-specific

vaccines and targeted antiviral therapies (93), the development of

protease inhibitors targeting the viral main protease (Mpro) has

emerged as a critical priority in antiviral research. FRET-based

screening platforms have identified potent Mpro inhibitors

including boceprevir and GC-376, which exhibit significant

antiviral activity with IC50 values ranging from single-digit to

submicromolar concentrations. These compounds demonstrated

efficacy in cellular infection models, with EC50 values ranging

from 0.49 to 3.37 mM. Structural characterization via X-ray

crystallography (2.15 Å resolution) revealed GC-376’s unique R/S

dual-conformation binding mode within the protease active site.

This finding provides a structural framework for rational lead

compound optimization (94). Therapeutically, these protease

inhibitors may serve as monotherapies or combine with RNA

polymerase inhibitors such as remdesivir, enhancing therapeutic

outcomes through multitarget synergistic effects while mitigating

resistance development risks.

Emerging research demonstrates that N5-methylcytidine (m5C)

RNAmodifications serve as key regulatorymechanisms in SARS-CoV-

2 pathogenesis. This evolutionarily conserved epigenetic modification

orchestrates multiple pathophysiological processes including

embryonic development, tumor progression, and viral infection

through modulating RNA stability, nucleocytoplasmic trafficking,

and translational efficiency (95, 96). Within COVID-19-induced

myocardial injury, m5C methylation drives disease progression via a

tripartite pathogenic mechanism: (1) controlling viral genomic stability,

(2) fine-tuning cytokine storm magnitude, and (3) mediating ACE2/

angiotensin axis signaling. Crucially, experimental data confirm that

hyperactivated m5C methyltransferases induce innate immune

dysregulation and potentiate cardiomyocyte damage (97).

Despite notable advancements in current studies, several pivotal

scientific challenges remain to be addressed: First, the relationship

between the therapeutic time window and dose-response dynamics

of glucocorticoid administration. Second, optimizing the

pharmacokinetic profiles of Mpro inhibitors for clinical

translation. Third, elucidating the precise regulatory mechanisms

underlying the m5C methylation network in myocardial tissue. The
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development of multi-omics analytical platforms and organoid-

based models will serve as crucial breakthroughs for unraveling

SARS-CoV-2-induced myocarditis mechanisms and advancing

novel therapeutic approaches.
4.2 Adenovirus induced-myocarditis

Adenoviral myocarditis exhibits significant clinical

heterogeneity. Early manifestations often mimic upper

respiratory or gastrointestinal infections, yet rapid progression

to fulminant heart failure remains a critical concern. Current

clinical management relies primarily on supportive interventions:

strict bed rest (≥3 months acutely), high-dose vitamin C for free

radical scavenging, glucocorticoid/immunoglobulin therapy to

counter hyperactive immunity (98), and mechanical circulatory

support (e.g., ECMO) in severe cases. Antiviral agents such as

ribavirin and interferon demonstrate limited efficacy due to

narrow therapeutic windows and target non-specificity. Notably,

these therapeutic constraints stem from insufficient mechanistic

understanding of early viral cytopathic effects-particularly

AdV serotype 5 (Ad5)-mediated disruption of cardiac

electrophysiological homeostasis.

Preclinical breakthroughs reveal AdV serotype 5 (Ad5)

pathogenesis mechanisms. Mechanistic studies establish that Ad5

suppresses GJA1 transcription via b-catenin-dependent pathways,
consequently downregulating connexin 43 (Cx43) protein. The

early viral protein E4orf1 induces b-catenin phosphorylation,

effectively inhibiting Cx43 gene transcription. During initial Ad5

infection, Cx43 phosphorylation triggers electrophysiological

abnormalities. Super-resolution imaging confirms dissociation of

the Cx43/ZO-1 complex initiates gap junction remodeling in

infected cardiomyocytes (99), ultimately provoking arrhythmias

through impaired intercellular communication.

Existing therapies lack precision targeting. Future strategies

should integrate multi-omic subtyping to develop combinatorial

approaches, coupled with immunophenotype-guided individualized

interventions. Key translational bottlenecks involve enhancing

cardiac-targeted delivery efficiency and validating long-term safety

in large-animal models.
4.3 PVB19-induced myocarditis

PVB19-induced myocarditis demonstrates marked clinical

heterogeneity. This condition can progress rapidly to fulminant

heart failure or cardiogenic shock, particularly in pediatric and

adolescent populations where case fatality reaches 50-80%. Clinical

management centers on supportive interventions: strict bed rest,

mechanical circulatory support (e.g., ECMO/IABP), and respiratory

assistance. Some clinical studies have shown complete clinical

recovery after ECMO support combined with intravenous IVIG,

but the efficacy of intravenous IVIG for patients with high viral load

is still controversial (100).
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Future strategies require multi-omic subtyping integration to

develop individualized combination approaches. Concurrent

optimization of IVIG timing and dosing regimens is essential.

Critical translational barriers include enhancing cardiac-targeted

delivery efficiency and validating long-term therapeutic outcomes in

large-animal models.
5 Future and prospect

Although significant advances have been made in recent years

in understanding the pathophysiology and treatment of

myocarditis, further research remains critical. Treatment of

myocarditis requires a thorough evaluation of the patient’s

etiology, underlying pathophysiological mechanisms, and

clinical manifestations.

Future research should prioritize the following strategic directions:

(1) conduct comprehensive investigations into dynamic immune cell

subset interactions (particularly CD8+ T lymphocytes and neutrophils)

across disease progression phases; (2) design spatiotemporal-specific

modulation strategies leveraging non-coding RNAs (microRNAs,

lncRNAs); (3) enhance clinical translation of pathogen-specific

vaccines and broad-spectrum antivirals including Mpro inhibitors;

(4) innovate multimodal combination therapies (e.g., CRISPR-based

editing coupled with stem cell engineering) to concurrently suppress

viral proliferation and immune dysregulation; (5) implement multi-

omics integration (single-cell transcriptomics, metabolic profiling) with

organoid platforms to decode virus-host interface networks and

enable precision subclassification with personalized regimens.

Concurrently, longitudinal outcome optimization requires focused

management of chronic inflammatory cascades and fibrotic

transitions, aiming to transcend symptomatic palliation toward

definitive disease modification.
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