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Renal cell carcinoma (RCC) is a highly vascularized and immunogenic

malignancy with a complex tumor microenvironment (TME) that shapes

disease progression and therapeutic resistance. Despite advances in immune

checkpoint inhibitors (ICIs) and targeted therapies, clinical responses

remain heterogeneous, underscoring the need for a deeper understanding

of RCC immunobiology. This review comprehensively examines the

immunosuppressive TME of RCC, emphasizing the roles of cytotoxic and

immunosuppressive immune cells, carcinoma-associated fibroblasts (CAFs),

abnormal vasculature, and extracellular matrix (ECM) remodeling in fostering

immune evasion. This review summarized emerging biomarkers—including PD-

L1 expression, tumor mutational burden (TMB), gene mutations, and immune-

based subtypes—that may predict ICI response. Furthermore, we evaluate

current immunotherapeutic strategies, such as ICIs, combination therapies,

and novel approaches targeting immunosuppressive cells and metabolic

pathways. While combination therapies have improved outcomes, challenges

like toxicity and resistance persist, necessitating biomarker-driven patient

stratification and optimized treatment sequencing. Future directions should

focus on deciphering TME heterogeneity and developing precision

immunotherapy strategies to enhance clinical efficacy in RCC.
KEYWORDS
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1 Introduction

Renal cell carcinoma (RCC), a lethal genitourinary tumor

originating from renal tubular epithelial cells, ranks among the

top fifteen cancers globally (1). It exhibits a 30–40% mortality rate,

with higher prevalence in males. Risk factors include obesity,

hypertension, smoking, and chronic kidney disease (2). Early-

stage RCC is often asymptomatic; however, advances in CT, MRI,

PET-CT, and genetic testing have improved detection, with over

60% of cases diagnosed incidentally. While early-stage patients

benefit from surgery, 30% present with metastasis at diagnosis.

Post-surgical recurrence occurs in 30–40% of advanced cases, and

50% develop distant metastases, leading to poor prognosis (3, 4).

Clear cell RCC (ccRCC) is the most common subtype and

dominates metastatic RCC (mRCC) pathology. Due to RCC’s

resistance to radiation/chemotherapy, targeted therapy has been

the first-line treatment, though drug resistance remains inevitable

(5, 6). Immune checkpoint inhibitors (ICI) show efficacy, but only a

subset of patients show response, potentially due to the

immunosuppressive tumor microenvironment (TME) (7, 8). RCC

TME features extensive immune infiltration, vascularity, and

fibrosis, enabling immunotherapy but also influencing treatment

resistance via complex interactions (9, 10). Recent therapeutic

strategies for advanced RCC have evolved from targeted therapy

to combined targeted/immunotherapy approaches (11, 12). This

review discusses RCC TME crosstalk, clinical immunotherapy

progress, and emerging TME-based biomarkers/therapeutic targets.
2 Characteristics of the TME in renal
cell carcinoma

2.1 Cytotoxic immune cells

CD8+ T cells infiltrating the RCC TME frequently exhibit high

expression of inhibitory checkpoint receptors—including

programmed death-1 (PD-1), cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4), and T cell immunoglobulin and mucin

domain-containing protein 3 (Tim-3)—alongside low levels of

proliferative markers such as Ki-67, suggesting a state of

dysfunction and exhaustion (13, 14). In a meta-analysis of 124

studies, Fridman et al. (15) reported that, unlike in most solid

tumors, CD8+ T cell infiltration in RCC correlates with poorer

prognosis. While the underlying mechanism remains unclear, one

hypothesis is that prolonged exposure to immunosuppressive cells

and factors within the RCC TME impairs CD8+ T cells’ ability to

recognize antigens, proliferate, and secrete interleukin-2 (IL-2),

ultimately abrogating their cytotoxic functions (16). Recent

mechanistic studies indicate that chronic antigen stimulation

activates NFAT in the absence of AP−1, which drives the

transcription of TOX and WNK1, committing CD8+ T cells to an

exhausted phenotype (17–19). In RCC, tumor-derived PD-L1 binds

PD-1 on CD8+ T cells, recruiting SLC11A1 and inactivating ZAP70

and PI3K/AKT signaling, while CTLA−4 competes for B7 ligands

on APCs to prevent costimulation (20–24). Additionally, Tim−3–
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Galectin−9 interactions promote Batf expression, further enforcing

the exhausted transcriptional program (25). These events converge

to reduce granzyme B production, IFN-g secretion, and proliferative
capacity. Single-cell RNA-seq studies in melanoma and RCC now

reveal distinct subsets of exhausted T cells, characterized by high

expression of PD−1, TOX, and CXCL13, suggesting specialized

niches where these exhausted cells localize (26, 27). Therefore, the

functional status of CD8+ T cells is pivotal in determining both

patient prognosis and the efficacy of immunotherapies. Recent

advances in single-cell RNA sequencing (scRNA-seq) have

enabled detailed profiling of exhausted CD8+ T cells, and this

technology has already been applied successfully in melanoma

studies (28). Implementing scRNA-seq to characterize RCC-

specific TME features may help elucidate the long-observed

inverse association between CD8+ T cell infiltration and clinical

outcomes in RCC (29).
2.2 Natural killer cells and
immunosuppressive cells

NK cells are another major cytotoxic population capable of

mediating anti-tumor immunity through perforin and interferon-g
(IFN-g) release without prior sensitization (30). Remark et al. (31)

demonstrated a positive correlation between NK cell infiltration and

favorable prognosis in RCC. However, soluble cytokines,

membrane-bound ligands, and TGF-b-enriched exosomes derived

from tumor cells and immunosuppressive cells can inhibit NK cell

degranulation and cytotoxicity (32–34). In addition to soluble TGF

−b, RCC-derived exosomes carry TGF−b and immunomodulatory

miRNAs (miR−23a, miR−146a), which are internalized by NK cells

and lead to the downregulation of activating receptors such as

NKG2D, NKp30, and NKp44 (35–38). This receptor loss reduces

their ability to recognize and lyse tumor cells. Furthermore, CAFs

secrete abundant prostaglandin E2 (PGE2), which acts on EP2/EP4

receptors expressed by NK cells (39, 40). Engagement of these

receptors triggers the cAMP–PKA–CREB signaling cascade,

suppressing the transcription of genes involved in cytotoxic

granule formation and IFN−g production (41–43). The net effect

is impaired NK cell proliferation, decreased granule exocytosis, and

weakened target cell killing capacity (44). These mechanisms,

combined with other immunosuppressive metabolites

(adenosine), synergistically dampen NK cell cytotoxicity within

the RCC TME (45). Mechanistically, TGF−b binds TGFbRII on

NK cells, activating SMAD2/3, which downregulates NKG2D and

perforin expression; tumor-derived adenosine acts via A2A

receptors to activate PKA signaling, suppressing NK metabolism

and granule release (46–48). As a result, the functional capacity of

tumor-infiltrating NK cells is often compromised. Therefore,

strategies aimed at restoring NK cell activity are critical for

enhancing the efficacy of ICIs in RCC (49).

Regulatory T cells (Tregs), a CD4+ T cell subset with

immunosuppressive function, are essential for immune

homeostasis but promote immune evasion in the RCC TME (50).

Tumor and stromal cells secrete IL-10, IL-23, TGF-b, adenosine,
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and adhesion molecules to recruit Tregs, which suppress CD8+ T

cells via TGF-b, IL-10, and IL-35 (51, 52). Although associated with

poor prognosis, the precise role of Tregs in RCC remains unclear

and requires further elucidation (53). Tumor-associated

macrophages (TAMs), the dominant myeloid population in RCC,

polarize into pro-inflammatory M1 and immunosuppressive M2

phenotypes (54). Elevated M2 or M2/M1 ratios correlate with poor

outcomes (55). CSF1/CSF1R and IL−4/STAT6 signaling are major

inducers of M2 polarization (56, 57). M2 TAMs secrete IL-10,

CCL17/22, and VEGF, while activating PI3K/AKT and STAT3

pathways in tumor cells, which promotes proliferation and

immune evasion (58–60). RCC-derived M-CSF promotes M2

polarization, comprising up to 20.9% of immune cells (61). M2-

TAMs inhibit CD8+ T cell cytotoxicity, recruit suppressive cells, and

remodel the ECM via MMPs, aiding invasion and metastasis (62).

Chevrier et al. identified 17 TAM states, linking CD38+M5 TAMs to

T cell exhaustion and Tregs, while high M11/M13 and low M5

TAM levels predicted shorter progression-free survival, suggesting

therapeutic potential in TAM modulation. Myeloid-derived

suppressor cells (MDSCs) inhibit CD8+ T cells through PD-L1

expression, ARG1-mediated amino acid depletion, and ADAM17-

dependent T ce l l t r a ffick ing . MDSCs a l so promote

immunosuppressive ECM remodeling via MMPs and iNOS (63,

64). ARG1 depletes arginine, limiting TCR z-chain expression;

iNOS-derived NO leads to nitration of TCR complexes, impairing

signal transduction, while NF-kB signaling within MDSCs

maintains their suppressive function (65–67). Tie2-expressing

monocytes (TEMs) facilitate angiogenesis and RCC progression

(68). Neutrophil proteases also remodel the ECM via PAD4-

mediated chromatin decondensation, promote invasion, induce T

cell exclusion/exhaustion, and contribute to TKI resistance and

poor prognosis in RCC (69).
2.3 Carcinoma-associated fibroblasts

CAFs, the most abundant stromal cell type in RCC, are central

to tumor growth, metastasis, drug resistance, and immune evasion

(70, 71). Under hypoxia and oxidative stress, tumor cells secrete

TGF-b, IL-6, and platelet-derived growth factor (PDGF), activating

CAF precursors, which upregulate fibroblast activation protein

(FAP) (72). Activated CAFs stimulate pro-inflammatory signaling

pathways such as STAT3 and NF-kB, and secrete hepatocyte

growth factor (HGF), epidermal growth factor (EGF), and IL-6 to

recruit Treg and activate immunosuppressive cells (73–75).

Through secretion of TGF−b and ARG2, CAFs induce M2

polarization of TAMs and expansion of Tregs, while CXCL12

produced by CAFs engages CXCR4 on T cells, forming a

“chemokine barrier” that excludes CD8+ T cells from tumor nests

(76, 77). CAFs can also directly inhibit cytotoxic immune cells via

TGF-b and ARG2 secretion (78). As “architects” of the TME, CAFs

produce ECM components and facilitate tumor progression and

metastasis (79, 80). The immunosuppressive nature of CAFs

underlies the poor responsiveness of fibrotic tumors to therapy,

yet their ubiquity offers multiple therapeutic targets (81, 82).
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Although anti-CAF therapies have shown promise in breast and

pancreatic cancers, CAF heterogeneity across tumor types

necessitates further investigation into RCC-specific CAF-targeting

strategies (83).
2.4 Vascular endothelial cells

RCC is among the most vascularized tumors, a feature strongly

associated with early biallelic inactivation of the tumor suppressor

gene von Hippel–Lindau (VHL) (84). VHL negatively regulates

hypoxia-inducible factor (HIF), and its loss leads to HIF

accumulation and subsequent overproduction of vascular

endothelial growth factor (VEGF), promoting tumor angiogenesis

(85). VEGF binds VEGFR2 on endothelial cells, activating PI3K–

AKT and MAPK/ERK pathways to promote angiogenesis. The

resulting abnormal vessels express FasL and downregulate

adhesion molecules (ICAM-1, VCAM-1), creating a physical and

biochemical barrier to immune (86–88). Abnormal vasculature

impairs perfusion, leading to hypoxia, acidosis, and reduced drug

penetration. These conditions further induce immunosuppressive

factors such as TGF-b, VEGF, and adenosine, and downregulate

endothelial adhesion molecules, impeding immune cell adhesion,

trafficking, and infiltration (89). While microvascular density serves

as a prognostic indicator in cancers such as oral cancer, its

prognostic value in RCC remains controversial due to variability

in vascular morphology and differentiation (90, 91). Moreover,

endothelial cells in RCC express high levels of indoleamine 2,3-

dioxygenase (IDO) under IFN-g stimulation, triggering tryptophan

catabolism via the kynurenine pathway. Kynurenine activates aryl

hydrocarbon receptor (AHR) in T cells, inducing FOXP3

express ion and generat ing Tregs , further promoting

immunosuppression (92).
2.5 Extracellular matrix and soluble factors

RCC progression involves extensive ECM deposition, providing

structural support, biomechanical signaling, and regulation of cell

behavior (93). The ECM, primarily secreted by CAFs, consists of

collagens, laminins, glycoproteins, fibronectin, proteoglycans, and

polysaccharides (94). Matrix remodeling is mediated by enzymes

such as MMP2/9 and lysyl oxidase (LOX), which are activated by

TGF−b and hypoxia (HIF−1a). These pathways stiffen the ECM

and impair immune cell infiltration (95–97). TAMs, MDSCs, and

CAFs secrete transglutaminases and lysyl oxidase, remodeling the

ECM to induce collagen rearrangement, matrix stiffening, and

reduced permeability, forming a barrier against cytotoxic immune

infiltration (98). ECM remodeling also causes mechanical stress,

impairing vascular function and promoting immune suppression

(99). The remodeled ECM harbors abundant soluble mediators that

facilitate bidirectional communication between tumor epithelial

and stromal compartments, thereby promoting RCC invasion and

metastasis (100, 101). Hypoxia and necrosis in rapidly growing

tumors trigger the release of CSF-1, G-CSF, TGF-b, and
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chemokines (CCL2/3/4/7), recruiting myeloid cells (102–105).

These cells, in turn, secrete VEGF, EGF, HGF, PDGF, CXCL12,

and IL-8 to sustain tumor growth, angiogenesis, and immune

infiltration (106, 107). In addition to amino acid depletion via

iNOS and arginase-1, metabolic reprogramming driven by HIF

signaling profoundly affects the immunosuppressive milieu (108,

109). RCC cells preferentially undergo aerobic glycolysis, resulting

in excess lactate production and extracellular acidification (110).

Elevated lactate concentrations reduce the glycolytic capacity of

CD8+ T cells, suppress mTOR signaling, and promote a state of

metabolic exhaustion (111). Lactate also enhances histone

lactylation, which epigenetically upregulates PD−1 expression,

thereby intensifying T cell dysfunction in synergy with PD−1/PD

−L1 signaling (112, 113). Moreover, lactate accumulation favors the

expansion of Tregs and M2-polarized macrophages, creating a

positive feedback loop that reinforces immune evasion (114, 115).

These mechanisms intersect with IDO- and arginase-mediated

nutrient depletion, collectively dampening T cell activation and

effector function within the RCC TME. Depletion of specific soluble

factors also plays a critical role in immune evasion. Tumor cells

consume large quantities of glucose and glutamine, the latter being

essential for T-bet expression and CD4+ T cell differentiation (116).

Enzymes such as iNOS and ARG1 frommyeloid cells and CAFs and

IDO from endothelial cells deplete essential amino acids and
Frontiers in Immunology 04
generate toxic metabolites, directly impairing T cell function

(117) (Table 1).
3 Biomarkers for immunotherapy

3.1 PD-L1 expression and tumor-infiltrating
lymphocytes

Numerous clinical trials in RCC have reported that only a small

subset of patients can achieve complete response and tolerate long-

term immunotherapy, while the majority experience disease

progression (118, 119). Therefore, the identification of reliable

biomarkers capable of predicting immunotherapeutic response is

critical for selecting patients most likely to benefit from such

treatments (120, 121). Tumor PD-L1 expression is the most

widely used biomarker for predicting responses to PD-1/PD-L1

blockade therapy and one of the earliest predictive indicators

studied in RCC (122). Although high PD-L1 expression in RCC

tissues has been associated with poor prognosis, PD-L1 alone is

insufficient to predict therapeutic efficacy (123). Stenzel et al. (124)

demonstrated that tumor tissues from patients with ccRCC who

responded favorably to ICIs exhibited significantly higher CD8+ T

cell infiltration and PD-L1 positivity compared to non-responders.
TABLE 1 Immunosuppressive components of the RCC tumor microenvironment and their roles in immune evasion.

Component Features Immune Mechanisms Clinical Impact
Therapeutic
Targets

Cytotoxic CD8+

T cells

High PD-1, CTLA-4, Tim-3
expression; low Ki-67;
exhausted phenotype

Impaired antigen recognition,
proliferation, and IL-2 secretion due
to chronic
immunosuppressive signals

Meta-analysis shows infiltration
correlates with poor prognosis; functional
status determines
immunotherapy response

PD-1/CTLA-4 blockade,
scRNA-seq-guided
reinvigoration strategies

NK cells
Mediate cytotoxicity via perforin/
IFN-g; inhibited by TGF-b,
exosomes, and soluble ligands

Degranulation and cytotoxicity
suppressed by TME-derived factors

Infiltration associated with favorable
prognosis, but function
often compromised

Cytokine priming (IL-
15), TGF-b inhibition,
exosome blockade

Tregs
CD4+ subset recruited via IL-10,
TGF-b, adenosine; suppress via IL-
10/IL-35/TGF-b

Direct inhibition of CD8+ T cells;
promotion of T cell exhaustion

High infiltration linked to poor
prognosis, but role in RCC
remains controversial

Depletion (anti-CD25),
TGF-b/IL-10
pathway inhibition

M2-TAMs
Dominant myeloid population (up
to 20.9% of immune cells);
polarized by M-CSF

ECM remodeling (MMPs), CD8+ T
cell inhibition, recruitment of
suppressive cells (Tregs, MDSCs)

High M2/M1 ratio correlates with poor
outcomes; CD38+M5 subset linked to T
cell exhaustion

CSF-1R inhibition,
repolarization to M1
(TLR agonists)

MDSCs
Express PD-L1, ARG1, iNOS;
secrete MMPs

Amino acid depletion (ARG1), T cell
trafficking inhibition (ADAM17),
ECM remodeling

Promote TKI resistance; correlate with
advanced disease

Entinostat (ARG1/iNOS
suppression), CXCR4
antagonists (AMD3100)

CAFs
Activated by TGF-b/IL-6/PDGF;
secrete HGF, EGF, IL-6,
ECM components

Direct T cell suppression (TGF-b,
ARG2); ECM stiffening; recruitment
of immunosuppressive cells

Fibrosis associated with therapy
resistance; FAP expression
predicts invasiveness

FAP-targeted therapies
(CAR-T, vaccines),
STAT3/NF-
kB inhibition

Abnormal
Vasculature

Driven by VHL-HIF-VEGF axis;
dysfunctional perfusion

Hypoxia-induced TGF-b/VEGF/
adenosine; impaired immune cell
adhesion/trafficking

Microvascular density prognostic value
debated; IDO+ endothelial cells promote
immune evasion

VEGF inhibitors
(axitinib), IDO
blockade (epacadostat)

ECM
Remodeling

Collagens, fibronectin,
proteoglycans stiffened by LOX/
transglutaminases (from CAFs/
TAMs/MDSCs)

Physical barrier to immune
infiltration; mechanical stress
impairs vascular function

Correlates with advanced stage
and metastasis

LOX/MMP inhibitors,
mechanotherapy (YAP/
TAK1 targeting)
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ICIs can reinvigorate pre-existing Th1 cells within the TME,

enabling cytotoxic responses against tumor cells (125, 126). This

seemingly paradoxical relationship between PD-L1 expression,

poor prognosis, and ICI responsiveness may reflect both the

spatial heterogeneity of PD-L1 expression in tumor cells and its

dynamic regulation: inducible PD-L1 upregulation by IFN−g
released during an active anti-tumor immune response versus

constitutive PD-L1 expression driven by HIF−1a in hypoxic

regions (127). These mechanisms highlight that PD-L1 expression

must be interpreted in the context of the tumor microenvironment

and cellular localization (128, 129). Therefore, patients with this

immune phenotype are more likely to benefit from ICI therapy.
3.2 Gene mutations

TMB and microsatellite instability (MSI) are well-established

predictive biomarkers for ICI efficacy across several malignancies

(130, 131). It is generally accepted that tumor-specific neoantigens

generated by somatic mutations facilitate immune infiltration, a

prerequisite for ICI responsiveness (132, 133). Despite the high

immune infiltration in RCC, TMB levels are significantly lower

compared to other immunogenic tumors such as lung

adenocarcinoma and melanoma (134). A pan-cancer analysis of

19 malignancies by Turajlic et al. (135) using The Cancer Genome

Atlas (TCGA) data revealed that RCC harbors the highest

frequency and count of insertion or deletion (indel) mutations—

over twice the average observed in other cancers. Further RNA

sequencing of 329 RCC samples confirmed that indel mutations are

associated with heightened immunogenicity, suggesting that indels

may serve as superior predictive biomarkers compared to TMB in

RCC. Over 90% of sporadic ccRCC cases involve chromosomal

translocations at 3p, leading to frequent mutations in VHL,

PBRM1, BAP1, and SETD2. Consequently, RCC is considered a

disease defined by genomic rearrangements (136). Messai et al.

(137) reported a positive correlation between VHL mutations and

PD-L1 expression in ccRCC, which may influence patient responses

to immunotherapy. In a prospective study, Miao et al. (138)

performed whole-exome sequencing on tumor tissues from 35

untreated mRCC patients and found that loss-of-function

mutat ions in PBRM1 were associated with enhanced

responsiveness to ICIs, a finding subsequently validated in

independent cohorts. A retrospective analysis of the CheckMate

025 trial further demonstrated that PBRM1-mutant RCC patients

experienced significantly prolonged progression-free survival (PFS)

and overall survival (OS) following anti-PD-1 therapy (139).

Mechanistically, loss of PBRM1 disrupts the SWI/SNF chromatin

remodeling complex, leading to changes in nucleosome positioning

and transcriptional accessibility of interferon-stimulated genes

(140). This epigenetic reprogramming can activate the STING–

type I interferon pathway, increasing tumor immunogenicity and

chemokine production (CXCL10, CCL5), thereby enhancing

dendritic cell recruitment and T cell priming (141, 142).

Additionally, PBRM1 deficiency has been associated with

increased expression of MHC II molecules and components of
Frontiers in Immunology 05
the antigen-processing machinery, potentially improving tumor

antigen presentation and amplifying CD8+ T cell responses

(143, 144).
3.3 Emerging biomarkers

Clark et al. (136) utilized xCell to analyze the immune and

stromal components of 103 ccRCC samples, integrating

transcriptomic and proteomic data to classify ccRCC into four

distinct subtypes: CD8+ inflamed tumors, CD8− inflamed tumors,

VEGF-high immune desert tumors, and metabolically active

immune desert tumors. CD8+ inflamed tumors are characterized

by extensive CD8+ T cell infiltration and elevated expression of

inhibitory receptors such as PD-1, PD-L1, and CTLA-4, conferring

poor prognosis but high potential for immunotherapy response.

CD8− inflamed tumors exhibit infiltration by CAFs and innate

immune cells such as TAMs. VEGF-high immune desert tumors

display pronounced vascularization due to elevated VEGF

expression. Metabolically active immune desert tumors, with the

lowest immune and stromal scores, exhibit upregulated expression

of metabolic enzymes such as pyruvate kinase M (PKM) and

peroxiredoxin-4 (PRDX4), along with activation of MYC and

mTOR signaling pathways, indicative of tumor metabolic

reprogramming. The Lung Immune Prognostic Index (LIPI) has

recently emerged as a novel biomarker for immunotherapy, offering

a valuable tool for risk stratification and personalized treatment

decision-making across various malignancies. Initially applied in

non-small cell lung cancer, melanoma, small cell lung cancer, head

and neck squamous cell carcinoma, and bladder cancer, LIPI has

also shown prognostic relevance in advanced RCC (145). Low-

density lipoprotein receptor-related protein 6 (LRP6), a co-receptor

in the Wnt/b-catenin signaling pathway involved in cell

proliferation, inflammation, and transformation, has been

correlated with drug sensitivity in clear cell RCC, suggesting its

potential as a therapeutic target (146). Additionally, modulation of

carcinoembryonic antigen-related cell adhesion molecule 1

(CEACAM1) signaling has been proposed as a novel approach in

cancer immunotherapy. CEACAM1 expression is associated with

disease progression, prognosis, and immune cell infiltration in clear

cell RCC, highlighting its promise as both a predictive biomarker

and a therapeutic target (147).
4 Immunotherapy

4.1 Immune checkpoint inhibitors

Preclinical studies have delineated the biological roles of PD-1,

PD-L1, and CTLA-4, enabling clinical trials of ICIs for advanced

RCC (148–150). CTLA-4, expressed on activated T cells, binds B7

molecules on antigen-presenting cells (APCs), inhibiting T cell

activation (151). Ipilimumab, an anti-CTLA-4 antibody, restores

T cell function by blocking CD80/CD86 interactions but has limited

clinical utility due to a narrow therapeutic window (152). PD-1,
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another inhibitory checkpoint, binds PD-L1/PD-L2 on tumor cells,

suppressing T cell activity. Nivolumab, a PD-1 inhibitor, showed

superior OS and objective response rate (ORR) versus everolimus in

the CheckMate-025 trial, leading to FDA approval for mRCC (150).

Beyond PD-1/CTLA-4, other checkpoints like TIM-3, LAG-3, KIRs,

and TIGIT modulate T cell function via distinct mechanisms,

potentially compromising immunotherapy efficacy (153).

Targeting these pathways is under clinical investigation in RCC

(154). To enhance immunotherapy efficacy, clinical trials have

investigated combining anti-PD-1/PD-L1 antibodies with anti-

CTLA-4 antibodies or TKIs as first-line RCC treatments,

demonstrating superior outcomes to TKI monotherapy (44).

While both PD-1 and CTLA-4 inhibit T cell activation, CTLA-4

acts early in T cell priming, whereas PD-1 suppresses CD8+ T cell

effector function in the TME (155). Dual blockade synergistically

boosts CD8+ T cell activation and accumulation (156). The

CheckMate-214 trial showed ipilimumab-nivolumab improved

PFS, ORR, and OS in intermediate-/high-risk RCC versus

sunitinib, leading to its approval for these patients (157).

In breast cancer models, ICIs activate CD8+ T cells, inducing

tumor ves s e l norma l i za t ion , wh ich a l l ev i a t e s TME

immunosuppression, enhancing T cell infiltration and cytotoxicity

—a positive feedback loop underpinning ICI combinations (158).

The KEYNOTE-426 trial reported pembrolizumab-axitinib

outperformed sunitinib across risk groups and PD-L1 levels

(159), while JAVELIN Renal-101 showed avelumab-axitinib

improved PFS by 6.6 months versus axitinib alone (160). These

results led to FDA approval of both ICI-TKI regimens. The CLEAR

study revealed lenvatinib-pembrolizumab provided durable survival

benefits over sunitinib (160). Despite their frontline status,

combination therapies are not universally effective and may cause

severe toxicity. In KEYNOTE-426, pembrolizumab-axitinib

frequently induced diarrhea, hypertension, and hepatic toxicity,

with 30.5% discontinuing at least one drug due to adverse events

(159). Biomarker-driven patient stratification is crucial to mitigate

toxicity and costs, alongside deeper investigation of drug

interactions to guide monotherapy or sequential approaches

when appropriate.
4.2 Targeting immunosuppressive cells

Current therapeutic strategies targeting immunosuppressive

cells in the RCC TME can be broadly categorized into three types

(161). The first strategy involves depleting immunosuppressive cells

to restore CD8+ T cell infiltration and enhance anti-tumor

immunity. Fibroblast activation protein (FAP), a surface marker

broadly expressed by CAFs in epithelial tumors, is a strong

predictor of tumor invasiveness. Agents that inhibit FAP activity,

anti-FAP antibodies, FAP-targeted vaccines, and CAR-T cell

therapy have shown efficacy in depleting CAFs in preclinical

models of malignancies such as mesothelioma (162). The second

strategy aims to normalize immunosuppressive cells by inducing

CAF quiescence, promoting MDSC maturation, or repolarizing
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M2-type TAMs. In murine RCC models, entinostat suppressed

the immunosuppressive activity of MDSCs by inhibiting ARG1 and

iNOS, thereby enhancing CD8+ T cell infiltration (16). The

combination of entinostat with atezolizumab and bevacizumab is

currently being tested in clinical trials for advanced RCC

(NCT03024437). The third strategy focuses on modulating

downstream pathways of immunosuppressive cells. The CXCR4–

CXCL12 axis plays a critical role in the recruitment of MDSCs and

Tregs to the RCC TME. The CXCR4 antagonist AMD3100 has been

shown to impair the immunosuppressive function of these cells and

improve anti-tumor immune responses (163). Given the frequent

occurrence of mutations in metabolism-related genes, RCC is also

considered a metabolic disease. Metabolic reprogramming in RCC

involves aerobic glycolysis, fatty acid metabolism, and the

utilization of tryptophan, glutamine, and arginine, enabling tumor

cells to adapt to hypoxia and nutrient depletion while evading

immune surveillance (164). IDO contributes to local tryptophan

depletion in the TME via the kynurenine pathway, leading to T cell

exhaustion and apoptosis. Thus, IDO inhibition can relieve local

immune suppression and enhance T cell activity (165). A phase I/II

clinical trial is currently evaluating the combination of the IDO

inhibitor epacadostat with the anti-PD-1 antibody pembrolizumab

in various solid tumors, including RCC, with promising results

previously reported in melanoma (166–168). Inhibitors of HIF-a
and glutaminase have also entered clinical trials for RCC (169,

170) (Figure 1).
4.3 Clinical strategies to overcome
resistance and manage toxicity

The clinical application of immunotherapy in RCC is constrained

by tumor heterogeneity, acquired resistance, and treatment-related

toxicity, and overcoming these challenges requires an integrated

approach (171). Recent progress emphasizes adaptive and

biomarker-driven trial designs which stratify patients according to

PD−L1 expression, PBRM1 mutation status, or immune subtype to

achieve precision therapy (172–174). Another key strategy is

sequencing therapy rather than administering agents concurrently;

for example, initiating treatment with TKIs to normalize aberrant

vasculature and subsequently introducing ICIs can enhance immune

cell infiltration while reducing overlapping toxicities (175). Efforts to

counteract resistance also include the incorporation of novel agents

such as TAM-reprogramming compounds, selective HIF−2a
inhibitors, and metabolic modulators into combination regimens to

disrupt pro-tumorigenic pathways (176, 177). Equally important is

the proactive management of immune-related adverse events, which

relies on early recognition, multidisciplinary collaboration, and the

use of standardized treatment algorithms with corticosteroids or

selective immunosuppressants to preserve antitumor activity (178,

179). Together, these strategies are shaping current and future clinical

trials and provide clinicians with practical guidance to optimize

therapeutic outcomes while minimizing toxicity in patients

with RCC.
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5 Conclusion

The immunosuppressive TME of RCC remains a major barrier to

durable therapeutic responses, despite significant progress in

immunotherapy. The interplay between cytotoxic immune cells and

immunosuppressive components creates a permissive niche for tumor

progression. While ICIs and combination therapies have revolutionized

treatment, their efficacy is limited by intrinsic and acquired resistance,

as well as toxicity. Biomarkers such as PD-L1, TMB, and PBRM1

mutations offer predictive insights but lack universal applicability,

highlighting the need for multi-parametric profiling. Emerging

strategies, including TAM repolarization, CAF depletion, metabolic

modulation, and targeting novel immune checkpoints, hold promise

but require further validation in clinical trials.

Looking ahead, advanced technologies will be pivotal in

overcoming these limitations. Single-cell multi-omics and spatial

transcriptomics enable high-resolution mapping of cellular states,

lineage trajectories, and intercellular communication within the

RCC TME, providing insights that bulk analyses cannot capture.

These approaches will help to identify novel cellular subsets,

spatially restricted immunosuppressive niches, and potential

therapeutic targets. Additionally, artificial intelligence and

machine learning are increasingly being applied to integrate

multi-dimensional datasets, including genomics, transcriptomics,
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imaging, and clinical data, to develop predictive models for patient

stratification and to discover novel biomarkers. Together, these

emerging technologies hold great promise for bridging existing

knowledge gaps, enabling real-time monitoring of TME evolution,

and guiding the development of precision immunotherapies

tailored to individual RCC patients. Moving forward, integrating

these innovations with multi-omics profiling and optimizing

treatment sequencing will be critical to overcoming resistance and

improving outcomes. Ultimately, a precision medicine approach,

guided by TME dynamics and predictive biomarkers, will be

essential to unlocking the full potential of immunotherapy in RCC.
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