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Current strategies for armoring
chimeric antigen receptor T-cells
to overcome barriers of the solid
tumor microenvironment
Dorothy D. Yang, William Macmorland and James N. Arnold*

School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
Chimeric antigen receptor (CAR) T-cell therapy is a transformative

immunotherapeutic approach, yet its application in solid tumors is hindered by

the immunosuppressive tumor microenvironment (TME). The TME restricts T-cell

trafficking, impairs effector functions, and promotes exhaustion through soluble

factors, metabolic stress, and suppressive cell populations. Recent efforts to

enhance CAR T-cell efficacy have focused on armoring strategies that

‘reprogram’ and ‘boost’ T-cell responses within the TME. These include

engineered expression of dominant-negative receptors or cytokine-releasing

constructs (such as IL-12 and IL-18) to reshape the local immune milieu and

improve T-cell effector function, synthetic Notch receptors for inducible gene

expression, and chemokine receptor knock-ins to improve tumor infiltration.

Additional approaches aim to modulate intrinsic metabolic pathways to improve

CAR T-cell persistence under hypoxic or nutrient-deprived conditions. Armoring

strategies that recruit bystander or endogenous immune cells also activate broader

anti-tumor immunity that prevents antigen escape and may induce more durable

anti-tumor responses. This review highlights themolecular and cellularmechanisms

by which current armoring strategies enhance CAR T-cell functions in solid tumors,

offering a perspective on improving immune cell engineering for overcoming the

hurdles encountered in deploying these therapies against solid cancers.
KEYWORDS

chimeric antigen receptor, armored, T-cells, immunotherapy, solid tumors,
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Introduction

Chimeric antigen receptor (CAR) T-cell therapy has transformed the treatment of

hematological malignancies, with seven CAR T-cell therapies approved by the US Food and

Drug Administration for indications including relapsed or refractory B-cell lymphomas

and multiple myeloma (1–3). This technology provides a method by which a patient’s T-

cells are genetically engineered to express CARs that recognize tumor-associated antigens

(TAAs). Upon antigen engagement, CARs trigger T-cell activation and cytotoxicity, leading

to the targeted elimination of malignant cells (4, 5). In hematological cancers, CAR T-cells
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have demonstrated potent immune responses and potential for

achieving long-term disease remission (2). However, CAR T-cell

therapy has not yet achieved comparable clinical success in solid

tumors. The immunosuppressive tumor microenvironment (TME),

tumor antigen heterogeneity, and limited T-cell infiltration pose

major barriers to efficacy (1, 4, 6, 7). Continued innovation in CAR

design and function is therefore essential to overcome these

challenges and expand the therapeutic impact of CAR T-cell

therapies to solid malignancies.

The basic structure of a CAR comprises an extracellular

antigen-binding domain that recognizes TAAs, a transmembrane

domain, and an intracellular activation signaling domain. The

extracellular domain most commonly consists of a single-chain

variable fragment (scFv) that binds to the target antigen (1). The

intracellular domain, derived from CD3z, delivers a pseudo-T-cell
receptor (TCR) activation signal upon CAR engagement, initiating

downstream killing pathways (4, 5).

Innovative generations of CAR designs have been developed to

enhance the functionality and clinical benefits observed from the

original design (Figure 1). Second generation CARs include a co-

stimulatory domain (CsD), consisting most commonly of either 4-

1BB or CD28, which has been demonstrated to improve CAR T-cell

persistence, cytokine production, and potency (4, 8). Third

generation CARs combine two co-stimulatory domains for a

more potent response (4, 9). Subsequent generations have focused

on further augmenting effector functions or persistence, for instance

by co-expressing a biological payload such as a cytokine or

chemokine alongside the CAR (4, 9, 10). These innovations are

the focus of this review.

The primary distinction between solid and hematological cancers

lies in the presence of a TME which can limit T-cell infiltration and
Frontiers in Immunology 02
functionality (Figure 2). Consequently, CAR T-cells face numerous

obstacles that hinder successful clinical outcomes (6, 10, 11). One

major challenge is the inefficient homing of T-cells to the tumor,

which can result from reduced expression of chemokine ligands for

effector T-cells, including CXCL9, CXCL10, and CXCL11, in the

TME, impairing T-cell infiltration (12–14). Additionally, the

movement of T-cells from blood vessels to the tumor site is

hindered by the downregulation of extravasation mediators,

including vascular cell adhesion molecule-1 (VCAM-1) and

intercellular adhesion molecule-1 (ICAM-1) (15–17). T-cells that

successfully cross these barriers into the TME are then confronted by

a collagen-rich stromal network formed by cancer-associated

fibroblasts (CAFs), which can obstruct T-cell access to tumor cells

(18). CAFs, along with immune cells such as regulatory T-cells

(Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-

associated macrophages (TAMs), contribute further to the hostile

environment by releasing immunosuppressive cytokines including

interleukin (IL)-4, IL-10, and transforming growth factor (TGF)-b,
which reduce T-cell function (6, 19). Upregulated expression of

immune checkpoint proteins, such as PD-L1 and CTLA-4, on

tumor cells and immune cells within the TME also activate

immune-inhibitory signaling axes which curtail CAR T-cell activity

and induce functional exhaustion (6, 19). Lastly, TAA heterogeneity,

arising from genomic instability and clonal evolution, can represent a

mechanism of antigen escape, as tumor cells alter antigen expression

to evade immune recognition (20). This antigen variability further

diminishes the anti-tumor efficacy of CAR T-cells, as not all tumor

cells can be targeted and eliminated. Therefore, it is evident that to

achieve clinical success in the treatment of solid cancers, CAR T-cells

will need to be engineered to be capable of efficiently bypassing all of

these obstacles within the solid TME.

One strategy to overcome the barriers of the solid TME is to

‘armor’ CAR T-cells, typically by co-expressing a biological payload

alongside the CAR that counteracts the immunosuppressive features

of the TME (10, 11). A wide range of armoring approaches have been

developed, many with pleiotropic effects that could fall into multiple

functional categories. For the purposes of this review, we define

armoring as the incorporation of a transgenic payload into CAR T-

cells to enhance their anti-tumor activity. We broadly categorize

armoring strategies into those that: 1) exploit cytokine signaling, 2)

neutralize immune-inhibitory signals in the TME, 3) modulate

metabolic pathways, 4) address antigen heterogeneity or antigen

escape, and 5) improve CAR T-cell homing to tumors. As a

comprehensive review of all armoring approaches is beyond the

scope of this article, we particularly focus on recent or novel advances

that have shown promising preclinical outcomes or have progressed

to clinical evaluation (Table 1, Supplementary Table S1).
Exploiting cytokine signaling to
enhance CAR T-cell potency and
rewire the TME

T-cells Redirected for Universal Cytokine Killing (TRUCKs)

represent some of the earliest examples of armored CAR T-cells
FIGURE 1

Generations of CAR technology. CARs have evolved from the original
design of the first generation, with each subsequent generation
incorporating new features to enhance CAR-elicited T-cell effector
functions. First generation CARs comprise an extracellular domain with
an antigen-specific scFv, a transmembrane domain, and an intracellular
signaling domain derived from CD3z. Second generation CARs add a
co-stimulatory domain (CsD), most commonly 4-1BB or CD28, while
third generation CARs include two co-stimulatory domains. Armored
CAR T-cells introduce co-expression of a biological payload that
augments effector functions or persistence. For example, as illustrated
here, TRUCKs are a type of armored CAR T-cell co-expressing a pro-
inflammatory cytokine payload whose expression may be regulated by
an NFAT-responsive promoter, linking release of the cytokine to CAR
signaling. This figure was created using BioRender.com.
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(21–23). This term typically refers to CAR T-cells engineered to

secrete pro-inflammatory cytokines that enhance anti-tumor

activity by promoting CAR T-cell survival and effector functions,

or by modulating the immunosuppressive TME (11, 24). More

recently, novel armoring strategies have expanded beyond this

classical definition, exploring alternative methods of inducing

cytokine signaling within CAR T-cells, or incorporating cytokines

that provide functional benefits unrelated to traditional

inflammatory pathways (Figure 3).
Common g-chain cytokines

The common g-chain (gc) family of cytokines comprise IL-2, -4,

-7, -9, -15, and -21, which all signal through receptors containing a

shared gc subunit, and play crucial roles in lymphocyte

proliferation, differentiation, and homeostasis (25). As such, this
Frontiers in Immunology 03
family of cytokines has received significant attention as potential

armoring payloads for CAR T-cells.

Among these, IL-15 has emerged as a particularly promising

candidate. IL-15-armored CAR T-cells have been demonstrated to

exhibit enhanced proliferation, improved anti-tumor efficacy,

sustained killing upon repeated tumor challenges in vitro and in

vivo, prolonged survival in tumor-bearing mice, and promotion of

central memory or stem cell memory-like phenotypes (26–30). In

one study using a syngeneic melanoma mouse model, IL-15-

armored CAR T-cells not only improved intrinsic T-cell function

but also beneficially remodeled the TME, enhancing natural killer

(NK) cell activation and reducing immunosuppressive ‘M2’

macrophage abundance (29). Another study found that CAR T-

cells modified to fuse IL-15 to the scFv portion of the CAR could

deplete immunosuppressive MDSCs in murine glioblastoma

models, based on the observation that MDSCs in these models as

well as human glioblastoma samples express the a subunit of the IL-
FIGURE 2

Barriers to CAR T-cell therapy in the solid TME. The solid TME poses multiple barriers to CAR T-cell infiltration and functionality which significantly impact
anti-tumor efficacy. (A) Downregulation of chemokine ligands by the tumor can lead to inefficient trafficking of CAR T-cells to tumor sites, and
downregulation of adhesion molecules such as VCAM-1 and ICAM-1 limits the migration of CAR T-cells from blood vessels into the tumor. CAR T-cells that
do arrive at the tumor site are confronted by the stroma and ECM that surround solid tumors, limiting their infiltration into the tumor. (B) Immune and
stromal cells within the TME, including CAFs, Tregs, MDSCs, and TAMs, can release immunosuppressive cytokines which reduce the function of CAR T-cells.
Other immunosuppressive molecules, such as adenosine, also accumulate within the metabolically stressful milieu of the TME. (C) Inhibitory immune
checkpoint molecules expressed by tumor and immune cells can activate immunosuppressive signaling axes within the CAR T-cells, inducing exhaustion/
suppressing effector functions. (D) Target antigen heterogeneity allows some tumor cells to evade CAR T-cell killing, resulting in antigen escape and lack of
tumor control. This figure was created using BioRender.com.
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15 receptor. This MDSC depletion was associated with reduced

tumor growth and improved survival of the mice (31).

Despite these encouraging findings, concerns have been raised

about the clinical translation of IL-15 armoring due to toxicities

observed in trials of recombinant human IL-15, as well as some

studies of IL-15-armored CAR T-cells in mice, including cytokine

release syndrome (CRS), thrombocytopenia, and liver toxicity (32–

36). To address safety concerns, several groups have developed

regulatory mechanisms to try to prevent these toxicities. For

example, Chen et al. incorporated an inducible caspase-9 (iC9)

suicide gene into their IL-15-armored CAR construct. They

demonstrated that administration of a chemical inducer of

dimerization (CID) drug, which causes the iC9 protein to

dimerize and activate apoptosis, enabled rapid elimination of the

CAR T-cells (26).

IL-15-armored CAR T-cells, including those with the iC9

suicide gene, have now been evaluated in phase I trials. In one

study, 4 out of 12 patients with glypican-3 (GPC3)-positive solid

tumors achieved a partial response following treatment with IL-15-

armored GPC3-targeting CAR T-cells, whereas none of the patients

treated with unarmored CAR T-cells experienced an objective

response (37). Notably, IL-15-CAR T-cell treatment was

associated with a higher incidence of CRS that necessitated

intervention with IL-1 or IL-6 blockade. In three patients with

refractory CRS, activation of the iC9 switch successfully reduced

circulating CAR T-cells and alleviated symptoms. Interestingly, this

trial also reported an increase in effector memory and a decrease in

central memory T-cell subsets among IL-15-armored CAR T-cells

(37), an observation that contrasts with prior preclinical findings.

Another approach to circumvent the toxicities associated with

constitutive IL-15 expression is to place IL-15 expression

downstream of antigen-dependent T-cell activation. Ma et al.

engineered CAR T-cells with IL-15 expression controlled by the

interferon (IFN)-g gene promoter, which activated upon TCR

signaling. This antigen-dependent expression system led to

selective IL-15 expression following tumor recognition and

improved tumor control in a xenograft mouse model of gastric

cancer (28).

The combination of two gc cytokines, IL-15 and IL-21, has also

been tested in the preclinical setting, based on their known

synergistic effects on cytotoxic lymphocytes (38, 39). CAR T-cells

armored with both cytokines demonstrated superior anti-tumor

activity in in vivo models compared to unarmored or single

cytokine-armored CAR T-cells , and showed enhanced
TABLE 1 Examples of armored CAR T-cells in clinical trials.

Armoring strategy
Phase of trial,
target antigen,
tumor types

Clinical trial
identifier
and references

IL-15 Phase I, GPC3,
hepatocellular carcinoma

NCT02905188 (37)

Phase I, GPC3, pediatric
solid tumors

NCT02932956 (37)

Phase I, GPC3, pediatric
solid tumors

NCT04377932 (37)

Phase I, GPC3,
solid tumors

NCT05103631 (37)

Phase I, GD2,
neuroblastoma,
osteosarcoma

NCT03721068

IL-15 + IL-21
Phase I, GPC3, pediatric
solid tumors

NCT04715191

IL-12 Phase I, MUC16ecto,
high-grade serous
ovarian cancer

NCT02498912 (48)

Phase I, EGFR,
colorectal cancer

NCT03542799

IL-18 Phase I, GD2,
neuroblastoma, breast
cancer, Ewing
sarcoma, osteosarcoma

EU CT 2022–501725–
21–00

IL-7 receptor Phase I, GD2, pediatric
brain tumors

NCT04099797 (69)

Phase I, GD2,
neuroblastoma and
other solid tumors

NCT03635632

dnTGF-bRII Phase I, PSMA,
prostate cancer

NCT03089203 (87)

Phase I, PSMA,
prostate cancer

NCT04227275 (88, 89)

Phase I, claudin18.2,
gastrointestinal
adenocarcinomas

NCT05981235

anti-PD-1/PD-L1 Phase I, mesothelin,
solid tumors

NCT04503980 (104)

Phase I, mesothelin,
solid tumors

NCT05089266 (104)

Phase I/II, mesothelin,
solid tumors

NCT03615313 (104)

Bispecific T-cell engagers
Phase I,
EGFRvIII, glioblastoma

NCT05660369 (154)

CXCR1/CXCR2
Phase I,
CD70, glioblastoma

NCT05353530

CXCR5
Phase I, EGFR, non-
small cell lung cancer

NCT05060796

CCL19 + IL-7
Phase I, GPC3,
solid tumors

NCT04405778 (198)

(Continued)
TABLE 1 Continued

Armoring strategy
Phase of trial,
target antigen,
tumor types

Clinical trial
identifier
and references

CCL19 + IL-7

Phase I, GPC3 or
mesothelin,
hepatocellular
carcinoma, pancreatic
cancer, ovarian cancer

NCT03198546 (199)
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proliferation, increased frequencies of stem cell memory and central

memory populations (40), and reduced exhaustion following

repeated antigen stimulation (41).
IL-12 family of cytokines

The IL-12 family comprises heterodimeric cytokines with

pleiotropic roles in immune regulation. Among these, IL-12 and

IL-23, members of the family which are considered to have

predominantly pro-inflammatory effects (42), have garnered

particular interest as potential armoring payloads for CAR T-cells.

IL-12 consists of two subunits, a p35 and a p40, and is primarily

produced by antigen-presenting cells (APCs) (42). It promotes IFN-

g secretion from T-cells and NK cells, which in turn can further

stimulate IL-12 release by macrophages and other APCs (42, 43). As

an armoring payload, IL-12 has been demonstrated to enhance

CAR T-cell effector functions and reprogram endogenous immune

cells in the TME toward a pro-inflammatory, anti-tumor state (23,

42, 44). Although early efforts to armor CAR T-cells with IL-12

showed improved anti-tumor activity, constitutive or systemic

expression of IL-12 has been associated with significant toxicities

(45–48). In a phase I trial of an IL-12-secreting CAR T-cell therapy,

two-thirds of patients who also received lymphodepleting

chemotherapy developed dose-limiting hemophagocytic

lymphohistiocytosis or macrophage activation-like syndrome (48).
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More recent efforts to develop IL-12-armored CAR T-cells have

therefore also endeavored to improve their safety profile by

restricting IL-12 expression to the TME. One solution has been to

bind IL-12 to the membrane of CAR T-cells (49, 50), which Hu et al.

combined with fusing the IL-12 to a peptide targeting cell surface

vimentin, a protein overexpressed by various solid tumors (49).

These studies demonstrated that, compared to unarmored CAR T-

cells, membrane-bound IL-12-CAR T-cells released more IFN-g,
and demonstrated superior anti-tumor efficacy in murine models of

solid tumors, including large established tumors, without inducing

systemic toxicity. These effects were accompanied by changes in

immune cell populations in the TME, including enhanced dendritic

cell (DC) maturation (49, 50). Lee et al. confirmed these findings in

a model of ovarian cancer peritoneal metastasis, where systemic IL-

12 administration caused toxicity, but membrane-bound IL-12-

armored CAR T-cells did not (50).

Hombach et al. inserted IL-12 into the extracellular domain of

the CAR. This configuration modulated CAR T-cells toward an NK

cell-like phenotype, enabling them to kill both antigen-positive and

antigen-negative tumor cells. This was demonstrated both in vitro

and in a mouse model of CEA-negative ovarian cancer, where IL-

12-armored CAR T-cells were effective, while conventional

unarmored CEA-targeted CAR T-cells were not (51).

Other methods of achieving tumor-restricted IL-12 expression

include: fusing IL-12 to a collagen-binding domain to localize it to

exposed collagen in tumor vasculature and stroma (52); fusing it to

a tumor-specific scFv (53); and placing IL-12 expression under

control of a nuclear factor of activated T-cells (NFAT)-responsive

promoter to link cytokine secretion to CAR activation (54, 55).

IL-23 is a heterodimeric cytokine that shares the same p40

subunit as IL-12, but pairs this with a p19 subunit. Ma et al.

discovered that due to upregulation of p19 expression in T-cells

upon activation, transducing T-cells with the p40 subunit was

sufficient to induce IL-23 secretion from T-cells. They

demonstrated that IL-23-secreting CAR T-cells exhibited

improved tumor killing and reduced functional exhaustion

compared to unarmored CAR T-cells in syngeneic mouse models

of solid tumors. Notably, IL-23 acted via autocrine signaling to

enhance CAR T-cell function. When compared to other armoring

strategies, IL-23-armored CAR T-cells did not induce weight loss in

immunodeficient mice, suggesting a superior safety profile relative

to IL-15 and IL-18-armoring (56).

In contrast, another study found that PSMA-targeted CAR T-cells

engineered to co-express an IL-23-targeting monoclonal antibody

(mAb) led to eradication of prostate cancer in a murine model,

suggesting that IL-23 blockade, not supplementation, may be

beneficial in some contexts (57). These findings illustrate that the

benefits of armoring can be context-dependent, influenced by tumor

type, the immune microenvironment, and the preclinical model being

used. Moreover, IL-23 is a multifaceted cytokine with reported pro-

tumoral and anti-tumor effects, which may reflect differences in

cytokine concentration (56, 58). These observations underscore the

importance of considering not only the CAR T-cell dose, but also the

‘dose’ of the armoring payload when evaluating therapeutic efficacy

and safety, which are critical factors for clinical translation.
FIGURE 3

Strategies for exploiting cytokine signaling. Harnessing cytokine
signaling pathways can induce beneficial effects by modulating the
TME, the CAR T-cells themselves, or both. Cytokines can be
secreted as soluble factors from CAR T-cells into the TME. Selected
examples of other methods of regulating cytokine expression are
illustrated here, including cytokines tethered to the CAR T-cell
membrane or fused to tumor-selective peptides, modified cytokine
receptors that signal constitutively but do not respond to native
extracellular cytokine, and synthetic gene circuits. TF, transcription
factor. This figure was created using BioRender.com.
frontiersin.org
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Other cytokines

Engineered IL-2 and IL-33
Although IL-2 is the prototypical T-cell growth factor and the

first member of the gc family of cytokines to be discovered (25), its

use as a payload has not gained significant traction due mainly to

concerns about systemic toxicity. One group found that armoring

CAR T-cells with superkine IL-2 (Super2), a variant of IL-2 that

binds to the IL-2 receptor with higher affinity than the wild-type

cytokine, and IL-33 significantly enhanced anti-tumor activity in

vivo compared to armoring with either cytokine alone, without

evidence of toxicity in the immunocompetent mouse models used

(59). The rationale for armoring with IL-33 arose from studies that

found that IL-33 activates intratumoral group 2 innate lymphoid

cells (ILC2s) which can contribute to tissue-specific tumor

immunity (59–61). The synergistic improvement in anti-tumor

activity induced by Super2 and IL-33 armoring was independent

of IFN-g or perforin-mediated cytotoxicity. Instead, the

combination appeared to function primarily by harnessing an

endogenous immune response. This included increased tumor

infiltration of endogenous T-cells and a shift toward pro-

inflammatory ‘M1’ macrophage polarization, highlighting a

potential strategy to remodel the TME and enhance CAR T-cell

efficacy through immune orchestration rather than direct cytotoxic

mechanisms (59).

IL-18
Like IL-12, IL-18 is a pro-inflammatory IFN-g inducer, and has

been found to have beneficial effects as an armoring payload. These

include enhancing the proliferation and survival of CAR T-cells and

modulating the TME to recruit and polarize endogenous immune

cells to support the anti-tumor response (62–64). Jaspers et al.

compared murine IL-18-armored, IL-12-armored and unarmored

CAR T-cells in a syngeneic mouse metastatic model of small cell

lung cancer. They found that only IL-18-armored CAR T-cell

treatment induced tumor shrinkage, which was associated with

improved survival. Moreover, phenotypic analysis of CAR T-cells

post-injection into tumor-bearing mice revealed increased memory

marker and reduced exhaustion marker expression by IL-18-

secreting CAR T-cells compared to unarmored CAR T-cells (64).

As with other pro-inflammatory cytokine payloads, concerns

about potential toxicities that may result from constitutive IL-18

signaling have led to efforts to regulate its expression (63, 65). Hull

et al. demonstrated that constitutive expression of murine IL-18 by

CAR T-cells induced lethal toxicity in mice, with postmortem blood

analysis indicating CRS (65). To regulate IL-18 activity, they

modified the cleavage site within pro-IL-18, the biologically

inactive precursor, to one recognized by granzyme B, a cytotoxic

protease released by T-cells. This design restricted IL-18 activation

to the context of CAR T-cell activation and granzyme B release.

They confirmed that this strategy enhanced CAR T-cell anti-tumor

activity both in vitro and in vivo, without inducing significant

toxicity in the same mouse model (65). Other strategies to link

IL-18 expression to CAR T-cell activation have also been explored,

including NFAT-responsive promoter systems, one of which is
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being evaluated in a first-in-human phase I trial against GD2-

positive tumors (63, 66).

Lange et al. took a different approach by engineering a chimeric

cytokine receptor consisting of the extracellular domain of the

granulocyte-macrophage colony-stimulating factor (GM-CSF)

receptor fused to the transmembrane and intracellular domains of

the IL-18 receptor. Since GM-CSF is secreted by CAR T-cells upon

antigen engagement, its binding to this chimeric receptor triggered

activation-dependent IL-18 signaling within the CAR T-cells. This

system was shown to induce tumor regression in two tumor

xenograft models in which unarmored CAR T-cells were

ineffective (67).
Modifying cytokine receptors

Apart from engineering CAR T-cells to secrete or express

cytokines, another strategy to exploit cytokine signaling is to

modify the cytokine receptors. This approach has been applied

particularly to cytokines of the gc family and circumvents the off-

target effects that can result from transgenic cytokine expression,

which may activate signaling on bystander cells in addition to the

CAR T-cells themselves. Shum et al. developed a constitutively

signaling IL-7 receptor, termed C7R, which activated the IL-7

signaling axis in CAR T-cells but was unresponsive to

extracellular IL-7. They demonstrated that C7R-expressing CAR

T-cells were more resilient to repeated tumor challenges, and

capable of controlling or clearing tumors in several in vivo

models (68). A phase I clinical trial of C7R-CAR T-cells

demonstrated tolerability, with mostly grade 1 inflammation-

associated toxicities, apart from one case of grade 4 CRS, and

reported partial responses in 2 out of 7 patients with diffuse midline

glioma (69). Another approach to harnessing IL-7 signaling has

been to incorporate a portion of the IL-7 receptor-a intracellular

domain into the CAR structure itself, which was demonstrated to

enhance T-cell proliferation and improve tumor control (70, 71).

An additional strategy to avoid off-target effects is the design of

mutated, or orthogonal, cytokine and receptor pairs that interact

exclusively with each other, and not with their native counterparts.

This concept was first demonstrated using an orthogonal IL-2 and

IL-2 receptor pair (72). Following on from this, Kalbasi et al.

engineered T-cells to express a synthetic cytokine receptor ‘o9R’,

which combines the extracellular domain of the orthogonal IL-2

receptor with the intracellular domain of the IL-9 receptor. Upon

stimulation with orthogonal IL-2, o9R signaling induced features

consistent with a stem cell memory phenotype in the T-cells, an

attribute potentially beneficial for CAR T-cell therapy. CAR T-cells

expressing o9R and receiving orthogonal IL-2 also exhibited greater

anti-tumor activity in syngeneic mouse models compared to CAR

T-cells expressing the orthogonal IL-2 receptor (73).

More recently, Bell et al. replaced the extracellular domains of

several heterodimeric cytokine receptors, including those of gc
cytokines, and IL-10 and IL-12 receptors, with heterodimerizing

leucine zipper motifs. This modification led to constitutive signaling

through these receptors. CAR T-cells expressing these leucine
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zipper-modified cytokine receptors showed improved cytotoxicity

in response to multiple tumor challenges in vitro, and CAR T-cells

with a modified IL-2 receptor demonstrated superior anti-tumor

activity in vivo in mouse xenograft models of lung cancer and

sarcoma (74).
Synthetic cytokine circuits

Designing synthetic circuits to restrict cytokine production

specifically within the tumor is another strategy aimed at

preventing systemic cytokine release and thereby reducing

toxicity. Synthetic Notch (synNotch) receptors have been a

pioneering example of synthetic gene circuits in the CAR field.

These receptors consist of a synthetic antigen-recognizing

extracellular domain, a transmembrane domain derived from the

Notch signaling receptor, and a synthetic intracellular transcription

factor. When the extracellular domain binds its cognate antigen, the

synNotch receptor undergoes transmembrane cleavage, releasing

the transcription factor to activate expression of chosen target genes

placed downstream of a synthetic promoter (75). While the

downstream payload can, in principle, be any gene of interest,

synNotch-controlled cytokine release provides a compelling

example of the utility of this system. Allen et al. demonstrated

that CAR T-cells co-expressing a synNotch receptor designed to

drive IL-2 production were able to eradicate solid tumors without

inducing significant toxicity (76).
Combating immune-inhibitory signals
in the TME

CAR T-cells face numerous immunosuppressive signals within

the TME, which can lead to functional exhaustion and diminished

effector activity, ultimately resulting in reduced or lost therapeutic

efficacy. To address this, armoring CAR T-cells with payloads that

block or counteract these immune-inhibitory signals represents a

promising strategy to enhance their anti-tumor potential (Figure 4).
TGF-b

Although TGF-b is a cytokine with pleiotropic effects, it has drawn
particular interest in the CAR T-cell field for its tumor-promoting and

immune-inhibitory roles in the TME of many solid tumors, especially

its suppression of T-cell effector functions (77, 78). Kloss et al. aimed to

counteract this by armoring CAR T-cells with a ‘dominant-negative’

TGF-b receptor II (dnTGF-bRII), a truncated receptor lacking the

intracellular signaling domain, which acts as a decoy to sequester TGF-

b and prevent signaling in both CAR T-cells and neighboring immune

cells. These dnTGF-bRII-armored CAR T-cells were resistant to TGF-

b-induced suppression and exhibited enhanced proliferation and

improved anti-tumor efficacy in a xenograft mouse model of prostate

cancer (79). Enhanced efficacy with dnTGF-bRII armoring has since

been reported in preclinical models of prostate cancer (80), ovarian
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cancer (81, 82), pancreatic cancer (83, 84), esophagogastric cancers

(84), and glioblastoma (85). Notably, Tran et al. showed that their

ROR1-targeting CAR T-cells induced TGF-b expression in tumor cells

that did not initially overexpress this cytokine, but that this was

mitigated by dnTGF-bRII armoring, which restored anti-tumor

activity (83). A further advanced version of this strategy replaces the

intracellular domain of TGF-bRII with that of another receptor, such as
IL-15 receptor-a, thereby simultaneously blocking TGF-b and

inducing IL-15 signaling. This dual-function receptor, named TB15,

was shown to enhance CAR T-cell function beyond dnTGF-bRII or IL-
15 armoring alone (86).

A dnTGF-bRII-armored PSMA-targeting CAR T-cell has since

been evaluated in a phase I trial against metastatic castration-resistant

prostate cancer. Grade 2 or higher CRS occurred in 5 out of 13 patients

and was mostly manageable with immunosuppressive therapy,

although one patient developed grade 4 CRS and concurrent sepsis

and subsequently died. Four patients experienced ≥30% reductions in

prostate-specific antigen levels, although the best radiographic response

was stable disease (87). In a second phase I trial, two of nine patients

experienced fatal immune-mediated toxicities, leading to early trial

termination (88, 89). Retrospective analyses could not conclusively

explain these severe toxicities, although the investigators speculated

that modifying the co-stimulatory domain by replacing 4-1BB might

help mitigate cytokine release without impairing efficacy (89). These

findings underscore the gap between promising preclinical outcomes

and complex clinical realities, possibly due to the widespread use of

immunodeficient mouse models, which fail to fully capture human

immune responses and associated toxicities.

An alternative strategy for blocking TGF-b signaling involves

engineering CAR T-cells with an extracellular TGF-b-binding scFv.
One group found that this approach paradoxically converted TGF-

b into a stimulatory signal that enhanced CAR T-cell proliferation

and activated immunostimulatory pathways (90). This group

subsequently developed a bispecific CAR, targeting both IL-

13Ra2 and TGF-b, which improved survival in glioblastoma

mouse models (91). Other approaches for inhibiting TGF-b
signaling include SMAD7-expressing CAR T-cells (92, 93), and

knockout of the endogenous TGF-bRII in CAR T-cells using

CRISPR/Cas9 technology (94), both of which improved anti-

tumor efficacy in vivo.
PD-1/PDL-1

A major factor limiting CAR T-cell efficacy within the TME is

exhaustion, which can involve multiple signaling pathways,

including activation of immune checkpoints that suppress CAR

T-cell proliferation, cytotoxicity and other effector functions

(95, 96).

PD-1, a cell surface receptor on T-cells, is one such inhibitory

immune checkpoint; its sustained expression or upregulation is

widely regarded as a hallmark of exhaustion (97). An armoring

strategy that has gained significant interest involves engineering

CAR T-cells that secrete anti-PD-1 scFvs, thereby blocking the PD-

1/PD-L1 axis within the TME (95). This approach has been
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demonstrated to enhance CD107a expression (a marker of

degranulation), as well as secretion of effector molecules, such as

IFN-g and granzyme B, by both CAR T-cells and endogenous

tumor-specific T-cells, suggesting a broader restoration of anti-

tumor immunity (98–100). Anti-PD-1 scFv-secreting CAR T-cells

have demonstrated improved anti-tumor activity in preclinical in

vivo models of non-small cell lung cancer (NSCLC) (98), breast

cancer (101), ovarian cancer (99), and hepatocellular carcinoma

(HCC) (100). Similarly, CAR T-cells that secrete antibodies that

block PD-L1, the ligand for PD-1, have demonstrated enhanced

efficacy in models of pancreatic cancer (102) and renal cell

carcinoma (RCC) (103). In a humanized RCC mouse model,

Wang et al. reported that tumors treated with anti-PD-L1

antibody-secreting CAR T-cells exhibited increased endogenous

T-cell infiltration and a reduction in M2-like macrophages,

indicating TME modulation by the secreted payload (103). Based

on such promising preclinical results, several anti-PD-1 or anti-PD-

L1-armored CAR T-cells have entered phase I clinical trials. One

report described CAR T-cells with IFN-g-induced secretion of anti-

PD-1 nanobodies achieving partial responses in 6 out of 11 patients

with mesothelin and PD-L1-positive mesotheliomas, as well as one

complete response, and toxicities that were manageable with

supportive care (104). Further reports from early phase clinical

studies are awaited.

Combinations of PD-1 or PD-L1 blockade with additional

mechanisms to enhance CAR T-cell function or modulate the
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TME have also been explored. For example, one group armored

CAR T-cells to secrete a bispecific scFv targeting both PD-1 and

TREM2 (105), an immunoglobulin receptor expressed on

immunosuppressive TAMs and MDSCs (105, 106). These dual-

targeting CAR T-cells outperformed those secreting scFvs against

either PD-1 or TREM2 alone in vivo, and were associated with

decreased M2 macrophages and MDSCs, and increased proportion

of CD8+ T-cells (105). Another strategy combined PD-1 and TGF-b
pathway inhibition via secretion of a bifunctional ‘trap’, a fusion of

an anti-PD-1 scFv with the TGF-bRII ectodomain. In a xenograft

model of prostate cancer, these dual-inhibition CAR T-cells

suppressed tumor growth more effectively than unarmored or

anti-PD-1-only armored CAR T-cells (107).
CD47

Another immune checkpoint, often referred to as the ‘don’t eat

me’ signal, involves CD47, a molecule frequently overexpressed on

tumor cells. CD47 binds to the signal regulatory protein a (SIRPa)
receptor on APCs, thereby inhibiting their phagocytic function

(108). One strategy to counter this has been to engineer CAR T-cells

to secrete a fusion protein, SIRPa-Fc, which blocks CD47. Chen

et al. provided in vitro evidence that SIRPa-Fc enhanced

macrophage phagocytic activity. In vivo, SIRPa-Fc-armored CAR

T-cells exhibited improved anti-tumor efficacy and prolonged
FIGURE 4

Strategies for combating immune-inhibitory signals in the TME. (A) TGF-b released within the TME can suppress CAR T-cell functions. Armoring a CAR T-cell
with a ‘dominant-negative’ TGF-b receptor II (dnTGF-bRII), which features a truncated intracellular domain, prevents downstream signaling, thereby shielding
the CAR T-cells from TGF-b-induced suppression. Alternatively, this intracellular domain can be replaced with that of a different receptor, such as IL-15
receptor-a, resulting in a chimeric receptor (TB15) which induces IL-15 signaling. (B) Binding of PD-L1 expressed on the surface of tumor cells to the PD-1
receptor on CAR T-cells suppresses CAR T-cell proliferation and effector functions. One method of preventing this is by engineering the CAR T-cells to
secrete scFvs which neutralize PD-1 both on the CAR-T cells themselves and on adjacent cells, thereby blocking this inhibitory pathway. (C) CD47 expressed
on the surface of tumor cells provide a ‘don’t eat me’ signal to APCs, protecting the tumor cells from phagocytosis. A strategy to overcome this is to
engineer CAR T-cells to secrete molecules, such as a SIRPa-Fc fusion protein, that block CD47. (D) Adenosine (Ado) produced by breakdown of excess ATP
within the TME can limit CAR T-cell functions by signaling through A2AR. Armoring CAR T-cells to release the enzyme adenosine deaminase (ADA) results in
the catabolism of adenosine to inosine (Ino), thereby reducing the immunosuppressive effect of adenosine. This figure was created using BioRender.com.
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survival across several mouse models of solid tumors. This

armoring also modulated immune cell phenotypes, promoting a

T-cell central memory phenotype and increasing M1 macrophages

and CD11c+ DCs in the TME (109).

Alternative strategies to target this axis have also been reported.

Martins et al. armored CAR T-cells with a signal regulatory protein

g (SIRPg)-related protein that binds to CD47 with high affinity,

while Xie et al. engineered CAR T-cells to secrete CD47-specific

nanobodies. In both cases, blocking the CD47 checkpoint enhanced

CAR T-cell function and anti-tumor activity, including in models

with tumor antigen heterogeneity (110, 111).

Interestingly, another group observed that concomitantly

administering an anti-CD47 mAb with CAR T-cells depleted the

CAR T-cells themselves secondary to macrophage-mediated

phagocytosis, revealing a significant potential shortcoming of

utilizing CD47 blockade as an armoring strategy (112). This issue

was overcome by engineering CAR T-cells to co-express a variant of

CD47 (CD47E) that retained SIRPa interaction but was resistant to

blockade by anti-CD47 antibodies. Co-administering CD47E-CAR

T-cells and a CD47-blocking mAb thereby protected the CAR T-

cells from macrophage-mediated phagocytosis, whilst unleashing

phagocytosis against tumor cells. In multiple in vivo models,

CD47E-CAR T-cells administered alongside a CD47-blocking

mAb exhibited increased persistence, enhanced macrophage

infiltration into the TME, and improved anti-tumor activity (112).
Adenosine

The solid TME is characterized by hypoxia, metabolic stress,

and high cellular turnover, which leads to the accumulation of

extracellular adenosine triphosphate (ATP). This ATP is converted

to adenosine by CD39 and CD73, enzymes which are expressed on

tumor cells and immunosuppressive cells within the TME.

Activation of adenosine receptor 2A (A2AR) by adenosine

represents another immune checkpoint that impairs anti-tumor

immune responses, including limiting CAR T-cell effector functions

(113–116).

Adenosine deaminase (ADA) is an enzyme that catabolizes

adenosine into inosine, thereby preventing accumulation of

adenosine. Qu et al. found that armoring CAR T-cells to secrete

ADA increased the resistance of CAR T-cells to exhaustion,

promoted intratumoral CAR T-cell expansion, and improved

tumor control (117). Similarly, Hu et al. explored the benefits of

armoring CAR T-cells with ADA, hypothesizing that this strategy

would not only relieve adenosine-mediated immunosuppression,

but also provide inosine as an alternative fuel to support CAR T-cell

proliferation and function. To avoid supplying inosine to tumor

cells, they engineered ADA-secreting CAR T-cells with the secreted

ADA anchored to the CAR T-cell. This strategy resulted in

enhanced CAR T-cell proliferation, higher inosine concentrations,

greater T-cell infiltration into the TME, and improved anti-tumor

activity (118).

Other strategies to combat adenosine-induced immunosuppression

have also been explored, including knocking-down or deleting A2AR
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expression in CAR T-cells using short hairpin RNA (shRNA) (119)

or CRISPR/Cas9 technology (120, 121). These approaches have been

demonstrated to enhance CAR T-cell effector functions. As gene

editing technologies like CRISPR/Cas9 continue to improve in safety

and efficacy, the concept of armoring CAR T-cells may evolve

beyond supplying one or two transgenic payloads to include more

complex modifications to the CAR T-cell genome (122, 123).
Tumor stroma: CAFs and the ECM

Apart from immune-inhibitory signals from tumor and

immune cells, the activities of other stromal cells in the TME,

such as CAFs, can also contribute to the suppression of CAR T-cell

effector functions. CAFs secrete soluble factors, including

immunosuppressive cytokines, and play a key role in producing

the collagen-rich extracellular matrix (ECM) which create a

physical barrier to CAR T-cell infiltration (18, 19, 124). One

strategy to counteract CAFs is to target fibroblast activation

protein (FAP), a pan-CAF marker, which some groups have

achieved by engineering FAP-targeting CAR T-cells (125–127).

One study found that treating pancreatic tumors, characterized by

their dense desmoplastic stroma, in mice with FAP-targeting CAR

T-cells reduced the integrity of the desmoplastic matrix, thereby

making the tumors more susceptible to infiltration by CAR T-cells

targeted against mesothelin, a TAA (126). Wehrli et al. also aimed

to address CAF-associated immunosuppression by armoring

mesothelin-targeting CAR T-cells to secrete a bispecific molecule

targeting both CD3 and FAP, thereby inducing CAR-mediated

killing of antigen-expressing tumor cells and engaging T-cells to

kill CAFs. These armored CAR T-cells were shown to be effective

against multiple models of pancreatic cancer (128). Notably, the

FAP-targeted scFv used in this study did not cross-react with

murine FAP, a challenge that the authors navigated by using

several preclinical models, including patient-derived organoids

with patient-matched CAFs, to characterize the armored CAR T-

cells (128). This highlights one challenge that affects the study of

armored CAR T-cells, which is that of potential cross-species

barriers between the armoring payload and host cells in

preclinical mouse models.

Another approach to combating the tumor stroma is to target

the ECM, which is composed of macromolecules including

collagens, proteoglycans, and glycoproteins (129). One strategy is

to armor CAR T-cells with enzymes that degrade ECM

components. Both heparanase-expressing CAR T-cells (130) and

hyaluronidase-expressing CAR T-cells (131) have demonstrated

increased tumor infiltration and enhanced anti-tumor activity,

including when hyaluronidase and IL-7 armoring were combined

(132). Moreover, Zheng et al. engineered CAR T-cells to express a

synNotch receptor that drives the expression of three ECM-

degrading enzymes, matrix metalloproteinase (MMP) 9, MMP12,

and heparanase. They demonstrated that these synNotch CAR T-

cells were more resistant to exhaustion and apoptosis after tumor

challenge and exhibited enhanced tumor infiltration and anti-

tumor activity in vivo (133).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1643941
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2025.1643941
Optimizing CAR T-cell fitness by
modulating metabolic pathways

Exploration of cellular metabolism and its pathways to identify

novel targets for treating cancer has intensified over the past decade,

although much remains to be elucidated in this complex field (134–

136). Numerous groups have demonstrated that modulating CAR

T-cell metabolism to overcome metabolic suppression in the TME

can improve CAR T-cell survival and effector functions. Many of

these strategies overlap with those designed to overcome immune

suppression in the TME, as promoting immunostimulatory or

blocking immune-inhibitory signals is often inextricably linked to

the metabolic fitness of CAR T-cells. However, we review novel

approaches for metabolic armoring separately here to facilitate

discussion (Figure 5).

The solid tumor TME is an environment of intense competition

for nutrients, with the tumor cells typically prevailing. Glucose

uptake and glycolysis in tumor cells are enhanced, whilst other

cells in the TME, including immune cells, experience metabolic

starvation and dysfunction (137, 138). Modulating glucose
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metabolism in CAR T-cells is therefore an appealing strategy.

There are 14 human glucose transporters (GLUTs) that mediate

glucose transport into cells, with GLUT1 being the most widely

expressed across cell types, and GLUT3 being a high-affinity isoform

expressed primarily in neurons (139). Shi et al. reported the benefits

of overexpressing GLUT1 in CAR T-cells, including increased

proliferative capacity and persistence in low-glucose conditions,

increased proportions of stem cell-like memory T-cells after

repeated tumor challenge, upregulation of genes involved in

glycolysis and oxidative phosphorylation, and improved anti-

tumor activity in vitro and in vivo in models of both leukemia and

solid tumors, including RCC and glioblastoma. They did not observe

the same with GLUT3 overexpression in CAR T-cells against

leukemia models, although testing of GLUT3 armoring in solid

tumor models was not reported (140). In contrast, Hu et al. observed

that GLUT3-armored CAR T-cells demonstrated increased uptake of

the glucose analog 2NBDG, greater release of effector cytokines, and

enhanced tumor cell killing in vitro compared to GLUT1-armored

CAR T-cells. Moreover, GLUT3-CAR T-cells demonstrated superior

anti-tumor activity compared to unarmored CAR T-cells in both

xenogeneic and syngeneic mouse models of solid tumors, including

pancreatic, esophageal, and lung cancer (141). The seemingly

disparate results regarding the relative benefits of GLUT1 versus

GLUT3 overexpression may not actually be conflicting, but stem

from the use of different tumor models or variations in CAR T-cell

types. Regardless, the heterogeneity of solid tumors and of their

preclinical models means that specific armoring strategies may not

be universally beneficial across all solid tumor types.

Lipid metabolism has also been targeted to enhance CAR T-cell

effector functions. The fatty acid-binding protein 5 (FABP5)-fatty acid

b oxidation (FAO) axis in T-cells has emerged as a potential

therapeutic target due to FABP5’s role in facilitating the transport of

exogenous fatty acids to the mitochondria for FAO and energy

generation. Hwang et al. identified transgelin 2 (TAGLN2), a

cytoskeletal actin-binding protein, as a key FABP5-binding partner

required for FABP5 localization to the plasmamembrane for fatty acid

uptake. They discovered that TAGLN2 expression was downregulated

in T-cells from cancer patients, due to tumor-induced endoplasmic

reticulum (ER) stress responses. By overexpressing TAGLN2 in CAR

T-cells to circumvent stress responses and maintain CAR T-cell

fitness, they demonstrated that TAGLN2-armored CAR T-cells

improved control of metastatic disease progression and survival of

mouse models of ovarian cancer (142).

Amino acid metabolism has also been implicated in tumorigenesis

and homeostasis, with proline being one amino acid that plays diverse

roles within the TME (143, 144). Using a CRISPR activation screen to

identify genes that could enhance the effector functions of CD8+ T-

cells, Ye et al. identified proline dehydrogenase 2 (PRODH2) as a

promising enzyme target. Overexpression of PRODH2 in CAR T-cells

led to increased proliferative capacity, upregulation of CAR T-cell

effector molecules, including IFN-g and granzyme B, and

downregulation of apoptosis. PRODH2-armored CAR T-cells also

demonstrated higher mitochondrial mass, were shifted toward

oxidative phosphorylation metabolism, and exhibited enhanced anti-

tumor efficacy in a xenograft mouse model of breast cancer (145).
FIGURE 5

Strategies for modulating metabolic pathways. Different metabolic
pathways may be modified in CAR T-cells to optimize their
metabolic fitness. Metabolic armoring strategies that have been
studied are illustrated here, with transgenic payloads (in blue)
including glucose transporter (GLUT) 1 or GLUT3, transgelin 2
(TAGLN2), proline dehydrogenase 2 (PRODH2), IL-10, and PPARg
coactivator 1-a (PGC-1a) having been demonstrated to induce
beneficial modulation of metabolic pathways including glycolysis,
oxidative phosphorylation, and fatty acid oxidation, increased
mitochondrial biogenesis, and associated improvement of CAR T-
cell effector functions. This figure was created using BioRender.com.
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Cytokine signaling, the manifold benefits of which were

discussed earlier, can also contribute to CAR T-cell armoring by

improving their metabolic fitness. One recent study focused

particularly on the metabolic benefits of armoring with IL-10

(146), traditionally considered to be an anti-inflammatory

cytokine but also now recognized for its complex roles in cancer

immunity (147, 148). Zhao et al. demonstrated that IL-10-armored

CAR T-cells exhibited decreased mitochondrial dysfunction,

enhanced oxidative phosphorylation, and a stem cell-like memory

phenotype, as well as increased proliferative capacity and

cytotoxicity. Furthermore, these CAR T-cells showed enhanced

tumor control in various solid tumor mouse models, including

rejection of tumor rechallenges in long-term survivors (146).

Finally, Lontos et al. addressed mitochondrial dysfunction in

exhausted CAR T-cells by targeting PPARg coactivator 1-a (PGC-

1a), a master regulator of mitochondrial biogenesis. By

overexpressing an inhibition-resistant variant of PGC-1a in CAR

T-cells, they demonstrated that these CAR T-cells had increased

effector cytokine expression, higher expression of stem cell-like

memory markers, and enhanced anti-tumor activity (149).

Taken together, these studies highlight the potential benefits of

modifying various metabolic pathways in CAR T-cells. Whether

these benefits will translate into clinical success is an exciting area

for future research.
Overcoming antigen heterogeneity
and antigen escape

Another variable that can impact CAR T-cell efficacy against

solid tumors is the expression of antigen on tumor cells. A key

challenge is the scarcity of bona fide TAAs that are entirely absent

on healthy tissues and uniformly expressed across all tumor cells

(150, 151). Additionally, antigen-negative tumor cells may become

predominant through selective pressure, as CAR T-cells eliminate

antigen-positive tumor cells. Tumors may develop mechanisms to

downregulate the expression of the targeted antigen, resulting in a

phenomenon known as ‘antigen escape’ in which CAR T-cells lose

the ability to recognize and kill tumor cells (10, 150). One potential

way to circumvent this issue is through recruitment of endogenous

immune responses, particularly those mediated by innate immune

cells that are not restricted to a single tumor antigen. This was

previously discussed in the context of rewiring of the TME by

cytokines such as IL-12, as well as the strategy of blocking CD47 to

promote macrophage-mediated phagocytosis of tumor cells.

Additional armoring strategies aimed at addressing antigen

heterogeneity and escape are discussed below (Figure 6).
Bispecific immune cell engagers

Bispecific T-cell engagers (BiTEs) are fusion proteins specific

for two targets, one of which is an anti-CD3 scFv that engages T-

cells, thereby enabling T-cell-mediated killing of cells expressing the
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second target (152). While BiTEs are being developed as standalone

immunotherapeutics, engineering CAR T-cells to secrete BiTEs has

also emerged as a strategy to overcome antigen heterogeneity. For

example, Choi et al. engineered EGFRvIII-targeting CAR T-cells

that secreted BiTEs against EGFR, and demonstrated in vitro that

these armored CAR T-cells could recruit bystander T-cells to kill

tumor cells. In orthotopic mouse models of glioblastoma with

heterogeneous or negative EGFRvIII expression, these BiTE-

armored CAR T-cells induced tumor regression (153). This

strategy has since been tested in a first-in-human trial involving

intraventricular delivery to three patients with recurrent

glioblastoma, where it led to rapid tumor shrinkage. However, for

two of the patients, the response was transient, underscoring the

need for further optimization to enhance durability (154).
FIGURE 6

Strategies for overcoming tumor antigen heterogeneity and therapy
escape mechanisms. (A) CAR T-cells secreting bispecific T-cell engagers
(BiTEs) can both induce CAR-mediated tumor killing, and recruit
bystander T-cells to kill tumor cells that do not express the CAR
antigen. (B) Recruitment of endogenous innate immune cells, such as
DCs, macrophages, and NK cells, activates their antigen-presenting,
phagocytic, and cytotoxic capabilities to induce CAR antigen-
independent tumor killing, as well as recruit the endogenous adaptive
immune system, resulting in epitope spreading and broad anti-tumor
immunity. (C) Restriction of trogocytosis can prevent the transfer of
antigens from tumor cells to CAR T-cells, thereby preventing CAR T-cell
fratricide and loss of efficacy. One mechanism that contributes to
trogocytosis is upregulation of the transcription factor ATF3 by tumor
exposure, which in turn suppresses the enzyme cholesterol 25-
hydroxylase (CH25H). Overexpressing CH25H in CAR T-cells overcomes
this issue, thereby reducing trogocytosis-mediated loss of antigen from
tumor cells. This figure was created using BioRender.com.
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Similar strategies have been explored in other tumor types.

These include: Muc16-targeting CAR T-cells armored with BiTEs

against a peptide derived from the intracellular TAA Wilms tumor

1 (WT1), which demonstrated improved efficacy in ovarian cancer

models with lowMuc16 expression (155); and GPC3-targeting CAR

T-cells that secrete BiTEs against B7-H3, which showed enhanced

cytotoxicity against HCC cell lines with heterogeneous expression

of GPC3 and B7-H3, although this was demonstrated only in

vitro (156).

The repertoire of bispecific molecules that can be secreted by

CAR T-cells continues to expand. Based on their findings of

abundant CD16a-expressing innate immune cell infiltration in

high-risk neuroblastoma TMEs, Pascual-Pasto et al. decided to

engineer anti-glypican-2 (GPC2) CAR T-cells that secreted a

bispecific innate immune cell engager (BiCE) targeting GD2 and

CD16a, the latter serving to engage CD16a+ innate immune cells,

including NK cells. They demonstrated that BiCE-armored CAR T-

cells exhibited CAR-mediated cytotoxicity against GPC2-positive

tumor cells and harnessed bystander NK cell activity against GD2-

positive cells. This dual activity led to enhanced intratumoral NK

cell retention and improved anti-tumor efficacy in patient-derived

xenograft models of neuroblastoma in mice (157).
Targeting PRRs to activate endogenous
innate immunity

Damage-associated molecular patterns (DAMPs) and

pathogen-associated molecular patterns (PAMPs) are molecular

motifs recognized by pattern recognition receptors (PRRs), which

can activate innate immune responses in an antigen-independent

manner (158). As such, they offer a potential strategy for

circumventing tumor antigen heterogeneity.

Toll-like receptors (TLRs) are an important class of PRRs, each

receptor recognizing distinct PAMPs in a specific subcellular

compartment (158). TLR5, for example, recognizes flagellin, a

protein subunit of bacterial flagella. Flagellin can initiate pro-

inflammatory signaling pathways via TLR5, which is expressed on

several innate immune cell types including macrophages and DCs,

and has therefore attracted attention for its potential use as a

vaccine adjuvant (159). Several groups have also explored its use

as an armoring payload in CAR T-cells. More recently, Niu et al.

engineered CAR T-cells that secreted flagellin under the control of

an NFAT-responsive promoter. While flagellin armoring did not

enhance the cytotoxicity of CAR T-cells in vitro, it significantly

prolonged tumor control and survival in immunocompetent mouse

models of solid tumors, suggesting that its benefit lies in activating

endogenous immune responses. Supporting this, the authors

observed increased intratumoral abundance of CD86+

macrophages (indicative of M1 macrophage polarization) and

CD103+ DCs (associated with DC activation). Additionally, in a

model of antigen-heterogeneous melanoma, flagellin-armored CAR

T-cells suppressed tumor growth more effectively than their

unarmored counterparts (160).
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Another bacterial protein explored as a CAR T-cell armoring

payload is neutrophil-activating protein (NAP) from the bacterium

Helicobacter pylori, which has been shown to exert various

immunomodulatory effects. These include acting as a neutrophil

chemoattractant and promoting IL-12 and IL-23 expression via

TLR2 on neutrophils and monocytes, thereby supporting Th1

responses (161, 162). Jin et al. demonstrated that armoring CAR

T-cells with NFAT promoter-inducible NAP improved anti-tumor

activity in multiple syngeneic tumor models, including those with

antigen-heterogeneity. NAP-armored CAR T-cells increased tumor

infiltration of neutrophils, M1 macrophages and NK cells, and

promoted ‘epitope spreading’ among endogenous CD8+ T-cells,

that is, activation of CD8+ T-cells recognizing antigens other than

the CAR-targeted TAA, suggesting robust bystander immune

activation (163).

Beyond protein-based PRR agonists, nucleic acid-sensing

pathways have also been leveraged. The cytosolic PRR RIG-I is

activated by RNA and induces type I IFNs, which play broad roles

in innate and adaptive immunity (164). Johnson et al. engineered

CAR T-cells to secrete RN7SL1, a non-coding RNA that activates

RIG-I, via extracellular vesicles that are preferentially taken up by

immune rather than tumor cells. They found that delivery of

RN7SL1 by the CAR T-cells promoted pro-inflammatory features

and restricted immunosuppressive features among endogenous

myeloid cells, and promoted the development of endogenous

CD8+ T-cells with an effector memory-like phenotype. When

combined with immune checkpoint blockade, RN7SL1-CAR T-

cel ls eradicated antigen-heterogeneous melanomas in

immunocompetent mice and prevented tumor outgrowth upon

rechallenge with antigen-negative tumor cells, suggesting the

generation of CAR antigen-independent memory (165).

Finally, PRR agonists as immune adjuvants have been combined

with CAR T-cells secreting immune cell growth factors as another

method of harnessing the endogenous immune system. Lai et al.

armored CAR T-cells with Fms-like tyrosine kinase 3 ligand (Flt3L),

a hematopoietic growth factor that is essential for steady-state DC

development (166, 167), and demonstrated associated intratumoral

expansion of conventional type 1 DCs, which play an important role

in cross-presenting antigens to and activating cytotoxic CD8+ T-cell

responses. When combined with poly(I:C), an immunostimulatory

TLR3 agonist, Flt3L-secreting CAR T-cells significantly suppressed

tumor growth in both antigen-homogeneous and heterogeneous

tumor models. Treated mice also rejected antigen-negative tumor

rechallenges, again indicating induction of epitope spreading and a

durable anti-tumor immune response (168).
Modulating trogocytosis

Trogocytosis is a phenomenon that has received increased

attention in recent years within the field of immunology. It refers

to the transfer of fragments of cell membrane, along with associated

proteins and other molecules, between cells that are in direct

contact with each other (169). Trogocytosis has been observed
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between tumor cells and CAR T-cells, leading to the transfer of

TAAs from the tumor cells to the CAR T-cells. This can contribute

to antigen escape and even CAR T-cell fratricide, where CAR T-

cells inadvertently recognize and kill one another (170). In some

cases, CAR molecules themselves can be transferred from CAR T-

cells to tumor cells, further reducing anti-tumor efficacy (171). Lu

et al. identified cholesterol metabolism as a key pathway involved in

trogocytosis, potentially due to cholesterol’s role in modulating the

biophysical properties of lipid membranes. They found that ATF3, a

stress-responsive transcription factor, is upregulated in cytotoxic T

lymphocytes (CTLs) exposed to tumor-derived signals. ATF3

suppresses expression of the enzyme cholesterol 25-hydroxylase

(CH25H), which in turn promotes trogocytosis between CTLs and

tumor cells, leading to T-cell dysfunction and tumor progression.

By armoring CAR T-cells to co-express CH25H, they were able to

reduce the extent of trogocytosis, preserve antigen expression on

tumor cells, and enhance CAR T-cell infiltration and anti-tumor

efficacy (172). Of note, other recent work has also examined how

incorporation of different CAR transmembrane domains affect the

probability of trogocytosis occurring, and how this can be used to

modulate the effects of CAR T-cell therapy (173).
Improving CAR T-cell homing to
tumors

Enhancing the ability of CAR T-cells to efficiently home to

tumors represents another important challenge to overcome.

Systemically administered CAR T-cells can become sequestered at

non-tumor-bearing tissues, and a lack of chemotactic cues can allow

tumor cells to evade recognition and elimination by circulating

CAR T-cells (174, 175). One strategy to address these limitations

involves armoring CAR T-cells with chemokines or chemokine

receptors selected to improve trafficking of CAR T-cells to tumor

sites (Figure 7).
Chemokine/chemokine receptor axes

CXCL8, also known as IL-8, is a chemokine associated with

poor prognosis in numerous solid tumor types and with the

recruitment of immunosuppressive immune cells to the TME.

Several groups have sought to target this by armoring CAR T-

cells with CXCR1 or CXCR2, both of which are CXCL8 receptors,

with the aim of exploiting tumor CXCL8 expression to improve

CAR T-cell migration to tumors (12, 176, 177). Notably, CXCL8

expression has been shown to be upregulated by irradiation of some

tumors, suggesting the benefits of combining radiotherapy with

CAR T-cell therapy in specific contexts (176, 177). CXCR1/CXCR2-

armoring has been demonstrated to improve CAR T-cell

infiltration, persistence, and tumor control in vivo across several

studies (176–180). However, findings by Talbot et al. suggested that

the benefits of CXCR2-armoring were context-dependent, as this

did not enhance tumor control in a rapidly growing primary

orthotopic xenograft model of osteosarcoma, but did confer
Frontiers in Immunology 13
benefits in a metastatic model (179). Interestingly, multiple

groups have reported potentially improved safety profiles of

CXCR-armored CAR T-cells compared to unarmored

counterparts, possibly due to more targeted trafficking to tumors

and thus fewer off-tumor toxicities (178, 179). On the other hand,

one group found that while CXCR2 armoring enhanced trafficking

into the TME, CAR T-cell persistence, and therefore anti-tumor

efficacy, remained limited by the immunosuppressive TME. They

demonstrated that co-armoring with the pro-inflammatory

cytokines IL-15 or IL-18 could overcome this limitation, resulting

in significantly improved in vivo anti-tumor activity (181).

Lesch et al. found CXCL16 to be highly expressed by both

tumor and myeloid stromal cells in murine pancreatic cancer

models and human specimens. Armoring CAR T-cells with

CXCR6, the receptor for CXCL16, led to increased anti-tumor

efficacy and prolonged the survival of treated mice (182). They

also noted elevated expression of very late antigen-4 (VLA-4), an

integrin that facilitates transendothelial migration of lymphocytes,

in CXCR6-transduced T-cells, suggesting that harnessing the

CXCL16-CXCR6 axis may offer multiple benefits for improving

CAR T-cell trafficking. Talbot et al., who also tested CXCR6-

armored CAR T-cells against osteosarcoma, found similar benefits

in a metastatic xenograft model, and again reported an improved

safety profile compared to unarmored CAR T-cells (179).
FIGURE 7

Exploiting chemokine/chemokine receptor signaling to improve CAR T-
cell homing to tumors. (A) Armoring CAR T-cells with specific
chemokine receptors, for example CXCR1/2, CXCR6, CCR2b, and
CXCR5, can improve homing towards tumors that express the cognate
chemokine ligand. (B) CAR T-cells can be engineered to secrete
chemokines that recruit endogenous immune cells to support the anti-
tumor response. For instance, illustrated here is a dual IL-7 and CCL19/
21-armored CAR T-cell, which recruits T-cells and DCs expressing
CCR7, the cognate receptor for CC19 and CCL21, to the TME. This
figure was created using BioRender.com.
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The CCL2-CCR2 axis has also drawn attention, as some solid

tumors, including pleural mesothelioma and NSCLC, can secrete

high levels of CCL2 (183, 184). CAR T-cells transduced with

CCR2b, the dominant isoform of CCR2, showed improved tumor

infiltration and tumor control in mouse models, including

successfully crossing the blood-brain barrier to control brain

metastases from NSCLC (183–185). On a similar theme, Li et al.

armored CAR T-cells with CXCR5, the receptor for CXCL13, based

on the expression of CXCL13 in a high proportion of NSCLC

samples. These CAR T-cells exhibited enhanced migration toward

CXCL13-positive targets and improved in vivo anti-tumor activity

(186). Moreover, the combination of chemokine receptor (including

CCR2b and CXCR5) and IL-7 armoring has been demonstrated to

boost CAR T-cell expansion and anti-tumor activity in

immunodeficient mouse tumor models (187, 188).

Tian et al. identified the CCL4/CCL5-CCR5 axis as one that is

significantly correlated with CD8+ T-cell infiltration in solid

tumors. They engineered CAR T-cells to express both CCR5 and

IL-12, which enhanced T-cell trafficking and reversed TAM-

induced immunosuppression (189). Conversely, the CCL1-CCR8

axis has been identified as having a role in the recruitment of

immunosuppressive Tregs into the TME. Cadilha et al. armored

CAR T-cells with both CCR8, to drive recruitment of CAR T-cells

into the TME, and dnTGF-bRII, reasoning that this would

counteract any Treg-mediated immunosuppression. They

demonstrated that these dual-armored CAR T-cells significantly

improved tumor control and survival in vivo (190).

Finally, chemokine armoring has also been found to be

beneficial for recruiting other immune cells to the TME. Dual

armoring with IL-7 and CCL19 has received particular focus, as

these cytokines are essential for organizing the T-cell zone in

lymphoid organs, and for recruiting T-cells and DCs expressing

CCR7, the receptor for CCL19 (191, 192). Adachi et al. applied this

mechanism to facilitate T-cell and DC recruitment to tumors (193),

a strategy that has since also been studied by other groups. IL-7 and

CCL19 dual armoring has been found to result in enhanced

proliferation of the CAR T-cells, reduced expression of

exhaustion markers, development of a central memory

phenotype, remodeling of the TME, and improved in vivo control

of tumors and survival in preclinical mouse models, including

survival superior to armoring with either cytokine alone (193–

196). Similar findings have been reported with dual armoring with

IL-7 and CCL21, another CCR7 ligand, which also promoted T-cell

and DC recruitment, increased central memory phenotype T-cells,

and improved tumor control in an antigen-heterogeneous tumor

model (197). Early phase clinical trials of dual IL-7 and CCL19-

armored CAR T-cell have reported preliminary evidence of anti-

tumor activity and no grade >2 toxicities (198, 199), although

further studies will be needed to confirm clinical benefit.

Taken together, this wide assortment of studies have

demonstrated the utility of exploiting chemokine signaling

pathways to improve recruitment of CAR T-cells and other

immune cells to solid tumors. However, the benefits of individual

strategies are likely to be context-dependent and must be tailored

according to the chemokine/chemokine receptor expression profile
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of the specific tumor being targeted. While chemokine receptor

armoring alone has yielded enhanced anti-tumor effects in some

instances, other studies suggest that additional payloads, such as

pro-inflammatory cytokines, may be necessary to overcome the

immunosuppressive TME and fully realize therapeutic potential.
LIGHT

An armoring payload that potentially provides the benefits of

both chemokine and pro-inflammatory signaling is LIGHT, also

known as tumor necrosis factor superfamily member 14

(TNFSF14). Using RNA sequencing data from The Cancer

Genome Atlas (TCGA) database, Zhang et al. identified a strong

correlation between LIGHT expression and gene signatures of

tertiary lymphoid structures (TLS) (200), structures in tumors

that play key roles in recruiting immune cells and shaping

immune responses (201). They demonstrated that CAR T-cells

armored with LIGHT upregulated expression of chemokines

CCL19, CCL21, and CXCL13 in both stromal cells and tumor

cells, enhancing the ability of the stromal cells to recruit T-cells in

migration assays. In vivo, LIGHT-armored CAR T-cells improved

tumor infiltration, accelerated tumor regression, and prolonged

survival in mice compared to their unarmored counterparts (200).

Separately, another group characterized the benefits of LIGHT-

armoring from the perspective of overcoming tumor antigen

heterogeneity (202). LIGHT binds to two receptors: lymphotoxin-

b receptor (LTbR), which is broadly expressed on non-lymphoid

cells, and herpesvirus entry mediator (HVEM), expressed on

various immune cells. LIGHT–HVEM signaling has been shown

to promote pro-inflammatory responses, including induction of

Th1-type immunity and enhancement of NK and CD8+ T-cell

activity (203, 204). In contrast, LIGHT–LTbR interactions can

induce apoptosis in LTbR-expressing tumor cells, suggesting a

mechanism for direct, antigen-independent tumor cell killing

(205). Cai et al. demonstrated that LIGHT-armoring enhanced

CAR T-cell proliferation and cytotoxic function in vitro,

including against tumor cell lines with heterogeneous antigen

expression. In vivo, LIGHT-armored CAR T-cells showed

increased tumor infiltration and improved tumor control in

immunodeficient mouse models, with no detectable toxicities

observed in immunocompetent mice (202).
Discussion and future perspectives

CAR T-cells must surmount multiple barriers in order to

effectively eradicate tumor cells, likely accounting for the limited

clinical efficacy observed thus far in the treatment of solid tumors.

Armoring CAR T-cells with a biological payload, such as molecules

that enhance effector function, counteract immunosuppression

within the TME, or recruit endogenous immune cells to support

the anti-tumor response, has shown promise in numerous

preclinical studies, often outperforming unarmored CAR T-cells

in specific settings. However, the reproducibility and durability of
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these responses in the clinical setting remain uncertain. To date, no

armored CAR T-cell product has progressed beyond early phase

clinical trials, and only limited data from completed or ongoing

phase I trials are available. Notably, some strategies, such as IL-12,

IL-15 and dnTGF-bRII-armoring, have produced toxicity in phase I

trials that were not fully anticipated by preclinical data,

underscoring one of the major limitations in this field: the lack of

a fully predictive preclinical model.

The large majority of CAR T-cell in vivo studies in mice thus far

have been carried out in immunodeficient mice, predominantly

NSG mice which lack T-cells, B-cells, and NK cells (206). While

these models enable the study of human CAR T-cells, which may be

perceived as a translational advantage, they fail to recapitulate key

immune-mediated toxicities seen in the clinical setting. This is

particularly problematic for armored CAR T-cells, where cross-

species incompatibilities may prevent interaction of the payload

with murine immune components. For instance, human IL-12, one

of the most extensively studied cytokine payloads, does not cross-

react with murine cells (207). Syngeneic immunocompetent mouse

models do provide a method of investigating armored CAR T-cell

therapy in organisms that have an intact immune system, and

eliminate cross-species barriers. However, these models are not

invulnerable to uncertainty or criticism either, given the biological

differences between mice and humans. Humanized mouse models,

or immunodeficient mice reconstituted with a humanized immune

system, have been gaining attention, but difficulties remain in

navigating the mismatch of the murine and human systems to

establish stable models (206). Alternative platforms, such as canine

(208), zebrafish (209), and patient-derived tumor organoid models

(128, 210), offer additional insights, but are not widely adopted or

accessible. As such, mouse models will likely remain the

cornerstone of preclinical CAR T-cell evaluation in the near term.

It will continue to be necessary to test armored CAR T-cells in

multiple preclinical models to assess different aspects of safety and

efficacy. Other challenges highlighted previously in this review,

including the pleiotropic effects of different armoring payloads

and the heterogeneity of solid tumors, also need to be navigated

by judicious selection of a range of preclinical assays and models.

Another layer of complexity arises in defining what constitutes a

“beneficial” effect of armoring on CAR T-cell phenotype and

function. Many studies highlight increased proliferation, reduced

expression of exhaustion markers, and enhanced effector molecule

release as positive outcomes. Likewise, the enrichment of memory

T-cell subsets, particularly central memory or stem cell-like

memory subsets, is generally viewed as being beneficial, due to

evidence from studies that demonstrated that these T-cells exhibit

superior persistence and induce superior anti-tumor immunity

compared to effector memory T-cells (211, 212). However, other

studies have conversely found that more differentiated or effector

memory-like T-cells could potentially have particular benefits for

the therapy of solid tumors, as opposed to hematological

malignancies (213–215). Ultimately, only clinical trials in human

patients will be able to determine whether the effects on T-cell

phenotype induced by armoring payloads in preclinical studies

translate to durable benefits for patients with cancer.
Frontiers in Immunology 15
As armoring strategies for enhancing the potency of CAR T-cells

continue to advance, it is of paramount importance that progress is

similarly made in developing mechanisms to ensure the safety of

these therapies. As illustrated by a number of studies we have

discussed, armoring strategies have evolved to become more

refined in regulating expression of the payload, which is important

for avoiding off-tumor effects. For example, harnessing the intrinsic

biological effects of cytokine signaling is attractive as an armoring

approach, but constitutive or uncontrolled cytokine signaling can

cause severe toxicities. To address this, researchers have developed a

range of expression control strategies, each with their strengths and

pitfalls, including tethering cytokines to CAR T-cell membranes,

targeting cytokines to tumors via tumor-selective peptides, designing

chimeric cytokine receptors, and engineering synthetic promoters

and gene circuits responsive to specific intracellular or

environmental signals, such as the NFAT-activated promoter

system and the synNotch receptor system. The NFAT-activated

promoter approach has been widely employed as a means to link

payload expression to CAR activation, but has also been found to

allow ‘leaky’, or non-tumor-restricted, expression of the payload. For

example, a first-in-human trial of tumor-infiltrating lymphocytes

(TILs) armored with NFAT-inducible IL-12 was terminated early

due to severe toxicities secondary to the secreted IL-12, peak serum

levels of which were unpredictable and varied widely, including

reaching potentially lethal levels (47). This highlights a limitation of

inducible expression systems where the stimulus is CAR or TCR

activation, rather than a bona fide tumor-specific stimulus. Efforts to

reduce the leakiness of the NFAT promoter system have included

utilizing affinity-tuned CARs. One group found that the threshold of

CAR target antigen density for NFAT activation was inversely

correlated with CAR affinity, such that restriction of NFAT

activation to antigen-high tumors was more stringent with low-

affinity CARs (216). Another recent study aimed to develop a tumor-

inducible expression system by screening for endogenous genes that

are differentially upregulated by CAR T-cells in the tumor compared

to a non-tumor site, and identified NR4A2 and RGS16 as the two

most promising candidates. Placing transgene expression under

control of these two endogenous promoters through a CRISPR

knock-in approach resulted in stringent tumor-restricted

expression, and CAR T-cells armored in this manner with tumor-

restricted IL-12 or IL-2 exhibited greater anti-tumor efficacy (217).

Alternative approaches for linking transgene expression to a TME-

intrinsic stimulus include hypoxia-induced expression, which

exploits the hypoxic microenvironment of solid tumors (151, 218–

220), and synNotch receptor systems, which utilize TAAs or other

targets within the TME to induce transgene expression (75, 76, 133,

221). Nonetheless, many switchable technologies have been shown

to be prone to leakiness which can result in off-tumor effects.

Therefore, tailoring of different armored CAR T-cell therapies not

just to tumor types, but to carefully profiled patient and disease-

specific characteristics, is likely to become more important as a

personalized approach to maximize safety and efficacy.

Finally, apart from engineering inducible expression systems to

optimize tumor-restricted expression of the armoring payload,

other strategies for improving the safety of armored CAR T-cells
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have been explored. One approach is to incorporate a module that

blocks IL-1 or IL-6 signaling, key mediators of CRS, as the armoring

payload itself (222). To avoid systemic immunosuppression, these

neutralizing payloads, such as an IL-6 receptor a-blocking
antibody, have been regulated using an NFAT promoter-based

approach (54), or have been engineered as a chimeric cytokine

receptor composed of the extracellular domains of the IL-6 receptor

and the intracellular domains of a mutated IL-7 receptor, thereby

combining IL-6 sequestration with constitutive IL-7 signaling (223).

An alternative approach to alleviating toxicity is to incorporate

suicide genes into CAR T-cells, which act as killing switches that

rapidly eliminate the CAR T-cells when activated by the appropriate

drug. Examples of suicide genes include iC9, which was previously

discussed in the context of IL-15 armoring, as well as antibody-

dependent cell-mediated cytotoxicity and complement-dependent

cytotoxicity switches, where administration of a mAb such as

rituximab selectively eliminates CAR T-cells co-expressing

epitopes from the corresponding antigen, in this case CD20 (224,

225). As armoring strategies become more advanced, however,

involving more complex transgenes and genome engineering,

remote approaches for modulating CAR T-cell function that do

not require incorporation of another transgene are also appealing.

For example, dasatinib is a tyrosine kinase inhibitor that reversibly

inhibits CAR signaling, effectively suppressing CAR T-cell functions

but allowing these functions to resume when the dasatinib is

discontinued (224, 226, 227). This provides a further advantage

compared to suicide switches, which permanently eliminate CAR

T-cells, potentially impacting anti-tumor activity. Taken together,

the range of safety mechanisms that have been developed thus far

each offer different benefits, and the selection of the best approach

will depend on the desired characteristics and outcomes for the

specific CAR T-cell therapy.

Looking ahead, given the myriad barriers to effective CAR T-cell

therapy, strategies to refine and combine armoring payload

expression are likely to become ever more advanced. A recent

example of a combination approach is the study by Erler et al. which

described the generation of a multi-armored allogeneic CAR T-cell

engineered using TALEN-mediated genome editing technology to

achieve knockout of TGF-bRII and PD-1, and knock-in of

activation-induced IL-12 (228). Although a comprehensive review

of CAR T-cell engineering strategies was beyond the scope of this

review, the field is clearly moving toward increasingly sophisticated

designs. Future directions will likely involve combining multiple

payloads, broadening the scope of payloads beyond secreted

proteins, and leveraging advanced genome engineering and

synthetic biology tools to tightly regulate CAR T-cell activity.

Furthermore, new insights into TME-driven transcriptional and

epigenetic reprogramming will continue to inform the rational

selection of payloads for the design of next-generation CAR T-cells.

In summary, while armoring strategies have demonstrated

significant promise in preclinical models, translation into effective

and safe therapies for solid tumors will require a concerted focus on

improving preclinical models, refining expression control and safety

mechanisms, and deepening our understanding of CAR T-cell
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biology in the context of solid tumor immunology. The next

decade will likely see the emergence of highly engineered, multi-

functional CAR T-cells capable of addressing the complex

challenges of solid tumors in the clinical setting.
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