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Depression, a highly prevalent and relapsing mental disorder, exacts profound
personal and socioeconomic tolls globally, warranting urgent scientific and
clinical attention. Emerging evidence from both preclinical models and human
clinical investigations has established the microbiota-gut-brain axis (MGBA) as a
critical determinant in depression pathogenesis. This intricate bidirectional
network integrates gut microbiota with central nervous system function,
influencing mental health through mechanisms previously underrecognized.
This review systematically synthesizes gut microbiota alterations associated
with depression and their impacts on neuroendocrine, neuroimmune, and
metabolic pathways. Advanced therapeutic strategies targeting the MGBA are
discussed, including probiotics, fecal microbiota transplantation, and artificial
intelligence-enabled microbiome interventions for depression management.
While challenges in standardization, mechanistic understanding, efficacy and
safety remain, MGBA-centered approaches offer a promising shift toward
microbiota-based diagnostics and personalized treatments for depression.
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Introduction

Depression, particularly major depressive disorder (MDD), is a
debilitating mental health condition marked by persistent low
mood, loss of interest in activities, cognitive impairments, and
suicidal tendencies, significantly impacting patients’ social
functioning and quality of life (1-3). In 2008, the World Health
Organization (WHO) identified MDD as the third leading cause of
global disease burden (4). The prevalence of MDD continues to rise,
with approximately 280 million individuals worldwide affected each
year, including 700,000 deaths by suicide (5). Notably, the COVID-
19 pandemic further exacerbated this issue, with increased social
isolation, economic stress, and health-related anxieties contributing
to a significant rise in depression rates, placing additional strain on
both societal and familial structures (6, 7). Despite the widespread
use of first-line antidepressants such as selective serotonin reuptake
inhibitors (e.g., fluoxetine, sertraline) and serotonin-
norepinephrine reuptake inhibitors (e.g., venlafaxine, duloxetine),
these medications often show delayed efficacy (typically 4-6 weeks)
and may cause adverse side effects including sexual dysfunction,
weight gain, and gastrointestinal disturbances. Evidence indicates
that over one-third of patients have a poor or minimal response to
these treatments (8), highlighting the incomplete understanding of
depression’s underlying pathophysiology and the urgent need for
alternative therapeutic targets.

The therapeutic challenge in treating MDD has sparked
growing interest in the microbiota-gut-brain axis (MGBA), a
potential mechanism for both understanding the disorder and
exploring new interventions. The MGBA concept evolved over
decades of research, from early discoveries of gut-brain hormonal
interactions to the current view of the gut microbiome as a key
regulator of neuropsychiatric health (9, 10). The human gut
microbiota, made up of trillions of microorganisms (11), acts as a
“second brain,” influencing the central nervous system (CNS)
through multiple pathway (12). Dysbiosis of gut microbiota refers
to significant changes in the quantity and function of gut
microbiota, which can significantly affect host physiology through
MGBA, contributing to disorders like Parkinson’s disease, autism,
bipolar disorder, and schizophrenia (13-15). In MDD, both clinical
and preclinical studies show microbial composition changes during
depressive states (16-18). Fecal microbiota transplantation (FMT)
from depressed individuals can induce depression-like behaviors in
animals (19-22), while certain probiotics have shown promise in
alleviating depressive symptoms (23-26). This growing body of
evidence emphasizes the potential of microbiota-based
interventions in managing MDD.

As research into the gut microbiota’s role in depression
expands, new potential targets and mechanisms are emerging.
Current studies have identified three key pathways through which
gut microbiota influence depression via the MGBA: immune
regulation (e.g., cytokine release) (27-29), endocrine modulation
(e.g., hypothalamic-pituitary-adrenal (HPA) axis activity) (30, 31),
and neural signaling (e.g., vagus nerve communication and
neurotransmitter regulation) (32, 33). This evolving MGBA
framework highlights the diagnostic and therapeutic potential of
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gut microbiota in managing depression, positioning microbiota-
targeted interventions as a promising avenue for antidepressant
development. This review explores the contributions of MGBA to
MDD pathogenesis, focusing on key regulatory nodes in the
immuno-neuro-endocrine network, and also discusses innovative
treatment strategies that utilize gut microbiota modulation,
showcasing their potential for next-generation depression therapies.

Gut dysbiosis and depression

Gut microbiota has emerged as a crucial factor in the
development and progression of depression, with increasing
evidence supporting its influence on mental health through
various mechanisms. Research in both preclinical and clinical
studies has shown that gut microbiota can modulate brain
function and behavior through MGBA. In preclinical studies, the
gut microbiota has been found to affect neurotransmitter
production, inflammation, and stress response systems, all of
which are involved in depression. Animal models have
demonstrated that altering the gut microbiota can lead to changes
in mood and behavior, mimicking symptoms of depression or
showing improvements with specific microbiota compositions.
Clinical studies have further reinforced these findings, showing
that individuals with depression often have an altered gut
microbiome compared to healthy controls. Additionally,
Moreover, interventions aimed at modifying the gut microbiota—
such as probiotics, prebiotics, or FMT—have shown promising
effects in alleviating depressive symptoms in some patients. These
studies suggest that gut microbiota may play a significant role in
depression and could offer new therapeutic avenues for managing
the condition.

Preclinical studies

The pivotal role of gut microbiota in the pathophysiology of
psychiatric disorders, such as MDD, has become increasingly
recognized (34-37). However, the precise mechanisms through
which the microbiota influences mental health remain unclear. As
outlined in in Table 1, a key focus of current research involves
investigating the dynamic interplay between changes in microbial
communities and psychiatric phenotypes through animal models.
This approach has become central in the field, seeking to elucidate
the underlying processes connecting gut microbiota to mental
health disorders.

A widely employed animal model in this research is the chronic
unpredictable mild stress (CUMS) model, which induces stress-
related behaviors by exposing animals to a series of unpredictable,
mild stressors, mimicking the symptoms of depression (35, 38-41).
In mice subjected to CUMS, significant alterations in the gut
microbiota occur, including an increase in Proteobacteria and
Verrucomicrobia, coupled with a decrease in beneficial bacteria
such as Bifidobacteriaceae and Lactobacillaceae. Notably, FMT from
CUMS mice to healthy recipients successfully replicates depressive
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TABLE 1 Changes in gut microbiota in different models of depression.
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Model Changed gut microbiota Main findings Ref
. Parasutterella and Akkermansia®, The gut microbiota can impact anxiety and depression-like behaviors in mice through the
CUMS mice . . . T . S (20)
Bifidobacteriaceae and Lactobacillaceae| microbiota-inflammation-brain axis.
Helicobacter, Bacteroides, and . s . . . . - .
. e Stressed animals’ gut microbiota can activate microglia in the hippocampal dentate gyrus.
CUMS mice Desulfovibriot, Modulating the microbiome or inhibiting microglial activation may effectively reduce stress (64)
ulati e microbiome or inhibiti icrogli ivati a ively reduce str
FMT mice Lactobacillus, Bifidobacterium, and . & & Y Y
. sensitivity.
Akkermansial
Bacilli, Bacteroidia, Mollicutes, and
. actiL a(,: er01. 12, Voflicutes, an Heat-sterilized Bifidobacterium breve can alter gut microbiota composition in CSDS mice,
CSDS mice Verrucomicrobiae classest, K i K i X (48)
. . preventing depression-like behaviors and IL-1f expression.
Erysipelotrichi class|
Chronic Bacteroidetes and Proteobacteria 1,
X o Firmicutes | Prevotella may influence the release of inflammatory factors through the production of short-
immobilization o X i i ! R . . (65)
stress mice Rumen Clostridium, anaerobic bacterial, chain fatty acids, potentially contributing to depression.
Prevotella, Desulfovibrio 1
Bifidobacterium, Lactobacillus, Maternal-infant separation stress disrupts gut microbiome composition, activates neuroimmune
MS mice Clostridium parvum, Clostridium responses in the hippocampus, and induces inflammatory factors, contributing to depression-like (53)
coccoides? behavior.
A Microbal diversity MS indu??s gut microbiota dysl?iosis, notably Téduf:ing L. réuteri abundal?ce. Suppl-ementil?g Witl:l
MS mice Lactobacillus reuteril L. reuteri improves neurobehavioral abnormalities in MS mice by enhancing intestinal amino acid | (55)
transport and restoring synaptic plasticity in the mPFC.
Lactic acid levels were positively
. correlated with Lactobacillus abundance, Altered gut microbiota composition, particularly Lactobacillus, significantly affects mice’s
LH mice . s e . . . (57)
Lactobacillus, Clostridioides cluster III, susceptibility and resistance to inescapable electric shock stress.
and Anaerofustist
LH rat Clostridiales] The microbiota distribution in LH rats significantly differed from control rats, contributing to the 58)
onset of IBS.
Corticost Microbial diversi
.or Jcosterone iero 1aA 1ver51Fyl . Corticosterone regulates ceramide levels by altering gut microbiota composition, inducing
-induced Lactobacillus vaginalis{ . . . i . (61)
. . . . mitochondrial dysfunction and contributing to depression onset.
depression unclassified Bifidobacterium?
Nonhuman The depressive-like monkeys had The gut microbiome is involved in depression-like behavior by regulating glycerophospholipid
e depressive-like monkeys ha e gut microbiome is involved in depression-like behavior by regulating glycerophospholipi
primate model P ¥ 8 P Y reg § gycerophospholip (63)

characteristic disturbances of Firmicutes. metabolism.

of depression

(The 1/] are shown as P<0.05).

CSDS, Chronic social defeat stress; CUMS, Chronic unpredictable mild stress; FMT, Fecal microbiota transplantation; IBS, Irritable bowel syndrome; LH, Learned helplessness; MS, Maternal

separation.

phenotypes (20), establishing a direct link between gut dysbiosis
and depression. Furthermore, these depressive-like behaviors can be
reversed by probiotic interventions, which operate through three
synergistic mechanisms: (1) enhancing serotoninergic
neurotransmission by promoting 5-HT synthesis and TPH
expression, (2) suppressing neuroinflammation via IDO
inhibition, and (3) normalizing hyperactivity of the HPA axis
(42). Similarly, microbial metabolites such as short-chain fatty
acids (SCFAs), including butyrate and propionate, have proven
effective in alleviating CUMS-induced behavioral deficits,
reinforcing the therapeutic potential of microbiota-targeted
strategies (43-45).

The chronic social defeat stress (CSDS) model is another
frequently used animal model to study depression, specifically
targeting psychological and social stressors that contribute to
depressive behaviors. In this model, mice are subjected to repeated
episodes of social subjugation by a dominant conspecific, inducing
severe psychological stress that leads to persistent behavioral changes.
These behaviors typically include social withdrawal and anhedonia,
both defining features of depression (46). Recent research has
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highlighted the connection between CSDS-induced depression-like
behaviors and alterations in the gut microbiota, offering valuable
insights into the underlying mechanisms. Mice exposed to CSDS
display significant gut microbiota dysbiosis, characterized by reduced
alpha diversity and a notable decline in Lactobacillus abundance (47).
Additionally, studies by Aika Kosuge et al. have identified shifts in the
abundance of bacterial classes, including an increase in Bacilli,
Bacteroidia, Mollicutes, and Verrucomicrobiae, which are linked to
metabolic and immune-modulatory functions. These microbial
changes may influence the stress response and contribute to
depressive symptoms. Conversely, the reduction in Erysipelotrichi,
a class associated with inflammation and metabolic disturbances,
further underscores the role of gut microbiota in modulating
depression-like behaviors (48). Therapeutic interventions targeting
specific bacterial strains have demonstrated efficacy in alleviating
depression-like behaviors in CSDS mice, suggesting that microbiota
modulation could serve as a promising therapeutic avenue for
depression treatment (49, 50).

The maternal separation (MS) model, which involves early
deprivation of pup-mother interactions, induces core depressive
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phenotypes such as anhedonia, reduced exploratory behavior, and
diminished interest during developmental maturation. This model
is widely used to simulate the long-term impact of early-life stress
on neurodevelopment and subsequent behavioral outcomes (51,
52). Emerging studies have shown that MS results in significant
changes in gut microbiota composition in mice (53, 54), which
appear to mediate the neuropsychiatric effects associated with early-
life stress. Notably, oral administration of multi-strain probiotic
formulations has demonstrated significant improvements in anxiety
and depressive symptoms in MS-exposed mice, suggesting that gut
microbiota dysbiosis plays a pivotal role in the pathophysiology of
MS-induced neuropsychiatric symptoms. This could be mediated
through gut-brain axis and neuroimmune signaling pathways (55,
56). The growing body of evidence emphasizes the profound impact
of early-life stressors on both the gut microbiome and brain,
opening new possibilities for therapeutic interventions aimed at
modulating the gut microbiota to alleviate mood and
anxiety disorders.

The learned helplessness (LH) model is a widely recognized
animal model for studying depression. It consists of two phases:
initially, animals are subjected to inescapable stress, followed by a
re-exposure to escapable stress, during which they demonstrate a
marked reduction in escape responses. Studies show that LH mice
experience a significant decrease in gut microbial diversity, with a
notable reduction in beneficial bacteria such as Lactobacillaceae
(57) and Clostridiales incertae sedis (58). This disruption in gut
microbiota is thought to contribute to the development of
depression-like behaviors. Interestingly, dietary supplementation
with prebiotics has been shown to increase Lactobacillus
abundance, helping to alleviate these behaviors in LH mice (59).
Additionally, compared to LH-resilient rats, LH-susceptible rats
exhibit a notable increase in certain bacterial genera in the gut,
including Asaccharobacter, Eisenbergiella, and Klebsiella (60).
Alongside the LH model, other methods such as drug treatments
and surgical interventions are also used to induce depression in
rodents. For example, corticosterone (CORT) is commonly
administered to mice to induce depression, which results in a
decrease in microbial diversity and an increase in Lactobacillus
vaginalis and unclassified Bifidobacterium species (61). A study by
Jiang et al. underscores the importance of gut microbiota in
reducing anxiety and depression-like behaviors in post-stroke
mice (62).

In addition to rodents, non-human primates are also used to
establish depression models due to their close similarities to
humans in terms of physiology, cognitive abilities, neuroanatomy,
social complexity, reproduction, and development. In female
cynomolgus monkeys, which naturally display depression-like
behaviors, characteristic dysbiosis of the Firmicutes phylum has
been observed (63). When healthy male cynomolgus monkeys of
varying ages are exposed to CUMS, significant differences in
microbial composition and gut-brain metabolic characteristics
emerge between adolescent and adult monkeys. Dysbiosis of
Clostridium and Haemophilus is observed only in adolescent
depressed monkeys, while it is absent in adults. These findings
strongly suggest that gut microbial dysbiosis is not just a
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consequence of depression but also plays a critical role in its
development. The connection between gut microbiota and mood
disorders underscores the potential of microbiome-based
therapeutic strategies aimed at modulating the gut-brain axis to
alleviate depression-like behaviors. Overall, these cross-species
studies emphasize the pivotal role of the gut microbiome in
influencing neuropsychiatric outcomes, making it a promising
target for future therapeutic approaches.

Clinical studies

As shown in Table 2, numerous clinical studies have highlighted
significant differences in the gut microbiota composition between
individuals with MDD and healthy controls, emphasizing the
critical role of the MGBA in the pathophysiology of depression
(28, 66-69). In healthy individuals, the gut microbiome is
predominantly composed of Firmicutes (79%), followed by
Bacteroidetes (17%), Actinobacteria (3%), Proteobacteria (0.9%),
and Verrucomicrobia (0.1%) (70). However, notable alterations in
microbiota have been reported in MDD patients, with increased
abundance of Enterobacteriaceae and Alistipes, alongside a
reduction in Faecalibacterium levels, which correlate with the
severity of depressive symptoms (71). Similarly, female MDD
patients exhibit an enrichment of Bacteroidetes, Proteobacteria,
and Fusobacteria, while healthy controls show higher levels of
Firmicutes and Actinobacteria (72). Subsequent meta-analyses
have confirmed these findings, showing consistently reduced
levels of Coprococcus and Faecalibacterium in MDD patients (73).
Furthermore, probiotic interventions have been shown to
significantly alleviate depressive symptoms, supporting the
therapeutic potential of microbiota modulation in treating
depression (74). Importantly, changes in the gut microbiota of
MDD patients are considered closely related to their somatic
symptoms (75). Notably, antidepressant treatment can induce
dynamic changes in the gut microbiota. In a longitudinal study
by Wang et al.,, untargeted metabolomics and metagenomic
sequencing were performed on blood and fecal samples collected
from 110 MDD patients at three timepoints (baseline, week 2, and
week 12) during escitalopram (ESC) treatment (76). The findings
showed that while the gut microbial composition did not change
significantly by week 2, notable alterations emerged by week 12,
with the most pronounced changes observed in spore-
forming bacteria.

In addition to shifts in microbial composition, the dynamic
evolution of the gut microbiota throughout the lifespan further
complicates the relationship between microbiota and depression
(77-80). Emerging evidence suggests that MDD patients across
various age groups may display distinct microbial profiles,
highlighting the importance of age-specific approaches in
microbiota-based therapies (81). Additionally, differences in gut
microbiota composition have been observed between male and
female MDD patients. Notably, the level of Bacteroides was
significantly reduced only in male MDD patients, while the level
of Actinobacteria was significantly elevated only in female MDD
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TABLE 2 Changes in gut microbiota of patients with MDD in clinical studies.

10.3389/fimmu.2025.1644160

Group Method Result Ref
MDD patients (n=46; Pyrosequencing was used to analyze the fecal samples of « Enterobacteriaceae and Alistipes?, Firmicutes| (71)
29 active-MDD and 17 patients. o Negative correlation was observed between
responded-MDD) Faecalibacterium and the severity of depressive symptoms
HC (n=30)
MDD patients (n=160) 16S rRNA gene sequencing was employed to analyze the « Bifidobacterium, Blautia, Haemophilus 1 (75)
HC (n=101) composition of fecal microbiota o Bacteroides, Faecalibacterium, Roseburia
ELISA was used to measure inflammatory cytokines o Bacteroides and Roseburia negatively correlated with the
hs-CRP, HAMD-24, the total and factor scores of SSS in all
participants
MDD patients with ESC Metabolomics analysis and metagenomic sequencing were o The use of ESC leads to a decrease in microbial (76)
treatment (n=110) conducted to examine the blood and fecal samples of two abundance and function
HC (n=166) groups of individuals at different time points. « Significant changes occurred in the gut microbiota after
12 weeks of treatment, with the most significant change
observed in spore forming bacteria
MDD patients (n=70; 25 young = Detection of feces using 16S rRNA gene sequencing o Firmicutes| and Bacteroidetest compared with young (81)
and 45 middle-aged MDD) HC
HC (n=71; 27 young and « Bacteroidetes| and Actinobacteria? compared with
44 middle-aged HC) middle-aged HCs
« Nine bacterial taxa at the genus level differ between
young and middle-aged MDD patients
MDD patients (n=44; 24 Detection of feces using 16s rRNA gene sequencing « Bacteroides was reduced in male MDD patients, while (82)
female and 20 male MDD) Actinobacteria was elevated in females
HC (n=44; 24 female and
20 male HC)
PPD patients (n=39) Serum sex hormone levels were measured by ELISA o Faecalibacterium, Phascolarctobacterium, Butyricicoccus, | (89)
HC (n=18) Fecal samples were collected for 16S rRNA gene sequencing and Lachnospiraceae, Enterobacteriaceae familytin PPD
patients
o Lachnospiraceae and Faecalibacterium were linked to
sex hormone levels
Patients with absent or mild Fecal samples were collected at late pregnancy and postpartum « Postpartum women with moderate to severe symptoms (90)
depressive symptoms (n=16) for 16S rRNA gene sequencing, and SCFAs were quantified showed a significant increase in Enterobacteriaceae
Patients with moderate using GC-MS. abundance
or severe depressive « No differences in SCFA concentrations were found
symptoms (n=18) between the two groups
MDD patients (n=49) Participants’ scores on the HAMD-17, IDS, HAMA, and GAD-7 | « Probiotics can significantly improve depressive and (92)

Probiotic group (n = 24) were assessed at various time intervals.

Placebo group (n =25)

anxiety symptoms in MDD patients

(The 1/] are shown as P<0.05).

ELISA, Enzyme-linked immunosorbent assay; GAD-7, Generalized Anxiety Disorder-7; GC-MS, Gas chromatography-mass spectrometry; HAMA, Hamilton Anxiety Scale; HAMD, Hamilton
Depression Scale Untargeted; HC, Healthy control; hs-CRP, High-sensitivity C-reactive protein; IDS, Inventory of Depressive Symptomatology; MDD, Major depressive disorder; PPD,

Postpartum depressive disorder; SCFAs, Short-chain fatty acids; SSS, Somatic Self-rating Scale.

patients (82). Alterations in the gut microbiota have also been
linked to specific physiological periods, such as pregnancy, which
can further impact the onset and progression of depression (83-85).
Postpartum depression (PPD), a common subtype of MDD
affecting around 10%-15% of women (86), not only negatively
affects maternal health and mother-infant bonding but also
carries long-term implications for child development (87, 88).
Recent studies have revealed significant differences in microbial
diversity and composition between PPD patients and healthy
postpartum women. For instance, Zhou et al. found partial
differences in microbial diversity between PPD patients and
controls, with certain bacterial taxa, such as Lachnospiraceae and
Faecalibacterium, correlating with fluctuations in sex hormone
levels (89). Additionally, an increased abundance of
Enterobacteriaceae has been observed in postpartum women
experiencing severe depressive symptoms (90).

Frontiers in Immunology

More strikingly, several clinical trials have validated the
effectiveness of probiotic supplementation in alleviating
depressive symptoms by modulating the gut microbiota (29, 91).
One randomized controlled trial (RCT) reported significant
reductions in depression scale scores following probiotic
supplementation (92). Additionally, numerous studies have
confirmed that specific probiotic strains can significantly improve
maternal mood, further supporting the therapeutic benefits of
microbiota-based interventions (93). Furthermore, studies have
shown that supplementation with the right probiotics can
effectively enhance maternal mood (93). Meanwhile, probiotics
have been found to improve verbal episodic memory and increase
serum levels of brain-derived neurotrophic factor (BDNF) in MDD
patients (25). In parallel, microbiota-based biomarkers are
increasingly being utilized to differentiate between depressed
individuals and healthy controls. Recent advancements in
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genomic sequencing, such as single-nucleotide-resolved amplicon
sequence variants (ASVs) of human gut microbiomes, have allowed
the identification of depression phenotypes in healthy cohorts,
emphasizing the value of gut microbiota profiling in clinical
diagnostics (94). These findings not only highlight the clinical
significance of microbiota dysbiosis as a potential biomarker
for depression but also underscore the promising therapeutic
potential of modulating the microbiota-gut-brain axis in
psychiatric treatments.

MGBA in depression pathogenesis

The relationship between gut microbiota and depression has
garnered increasing attention in recent years, as research efforts aim
to unravel the complex mechanisms that link these two entities and
identify potential therapeutic avenues. The gut-brain axis, a
bidirectional communication network between the gastrointestinal
tract and the central nervous system, is integral to maintaining
physiological homeostasis. Gut microbiota plays a central role in
this axis, influencing brain function through multiple signaling
pathways. As such, the MGBA hypothesis has gained prominence as
a potential framework for understanding the pathophysiology of
depression. Current research suggests that gut microbiota influence
the onset and progression of depressive disorders through three
primary mechanisms: neural signaling, endocrine modulation, and
immune regulation (Figure 1). These pathways contribute to
altering brain function and mood regulation, providing new
insights into the therapeutic potential of targeting the gut
microbiota in treating depression.

Neural signaling

In the MGBA, the neural signaling network plays a crucial role
in facilitating rapid communication between the gut and the brain.
This network integrates the enteric nervous system (ENS), the vagus
nerve, and spinal nerves, each of which contributes to the regulation
of gut-brain signaling pathways and the pathophysiology of
neuropsychiatric disorders, including depression (95). The ENS,
an intricate and expansive neural network embedded within the
gastrointestinal tract, not only regulates the gut environment but
also shares neurotransmitters with the CNS. Importantly, the ENS
has been implicated in depression-related alterations, contributing
to the development of mood disorders (96). In addition to its
regulatory role in intestinal functions, the ENS modulates gut
microbial composition, influences microbiota-derived metabolites,
adjusts neurotransmitter levels, and participates in immune
signaling (10, 97, 98). Moreover, the ENS is subject to modulation
by the gut microbiota, with its development, function, and renewal
being heavily influenced by microbial interactions (99).
Pathological disruptions in ENS function can exacerbate the
course of depression by disturbing key processes such as gut
secretion, immune responses, and intestinal barrier integrity (100).
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The vagus nerve is another critical component of the MGBA,
especially in the context of depression. It represents one of the most
direct pathways for microbial signals to reach the brain (101, 102).
Notably, early work by Bravo et al. (103) demonstrated that oral
administration of Lactobacillus rhamnosus alleviated stress-induced
depressive-like behaviors in mice, with this effect being blocked
following vagotomy, underscoring the vagus nerve’s central role in
microbial-mediated signaling (103). Subsequent studies have
provided further insights into the vagus nerve’s involvement in
depression. Zhang’s group found that lipopolysaccharide (LPS)-
induced depressive-like behaviors in mice were entirely abolished
following subdiaphragmatic vagotomy (SDV) (104). This work
revealed that LPS administration altered gut microbiota
composition, with a notable increase in the abundance of
Firmicutes and Bacteroidetes, changes that were not observed in
SDV mice, suggesting the critical role of the vagus nerve in
mediating microbial-induced alterations in the gut. Moreover, the
same research demonstrated that continuous administration of
Lactobacillus intestinalis and Lactobacillus reuteri for 14 days
induced behavioral despair, accompanied by elevated plasma IL-6
levels and reduced prefrontal cortex synaptic protein expression,
effects which were effectively blocked by SDV (105). In a RCT,
Morkl et al. (106) observed significant improvements in vagal nerve
function following probiotic treatment in patients with MDD,
which correlated with increased abundances of Christensenellales
and Akkermansia muciniphila (106). Together, these studies
emphasize the pivotal role of the vagus nerve in mediating the
gut-brain communication in depression.

Neurotransmitters serve as fundamental mediators of neural
communication, and their dysregulation is a key factor in the
pathogenesis of depression. Most contemporary antidepressant
therapies target the modulation of synaptic neurotransmitter
concentrations (107). Among these, serotonin (5-HT) deficiency
is strongly linked to mood disorders (108), with gut microbiota
exerting a significant influence on 5-HT levels, and gut microbiota
can influence emotional states by regulating 5-HT levels. Selective
serotonin reuptake inhibitors (SSRIs), which act on this system,
have become widely used for treating mood disorders (109, 110).
Notably, approximately 95% of the body’s 5-HT is synthesized in
the gut (111), highlighting the critical role of the intestinal
microbiota in regulating emotional states by modulating 5-HT
production. In seminal work by William et al,, germ-free (GF)
mice exhibited a 2.8-fold reduction in 5-HT levels compared to
conventionally raised controls, suggesting the essential role of the
microbiota in regulating serotonin levels (112). Moreover, Zhou
et al. demonstrated that FMT from healthy adolescent volunteers
significantly elevated 5-HT concentrations in the brain and colon of
adolescent mice subjected to chronic restraint stress (CRS),
indicating that the microbiota directly influences CNS
neurotransmitter levels (113). Several studies have also
demonstrated the antidepressant effects of probiotics such as
Bifidobacterium (114, 115) and Lactobacillus (116) strains
through the modulation of 5-HT levels, offering potential
therapeutic avenues for mood disorders. Additionally, oral
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administration of 5-HT not only alleviated depression-like
behaviors in mice but also reversed depression-induced
alterations in SCFAs concentrations and brain-derived
neurotrophic factor (BDNF) levels, while restoring gut microbiota
balance (117).

Beyond serotonin, the gut microbiota also influences the
synthesis of other neurotransmitters such as gamma-aminobutyric
acid (GABA), dopamine, and acetylcholine, all of which are integral
to emotional regulation. The genus Bacteroides, for instance, encodes
glutamate decarboxylase (GAD), a key enzyme involved in GABA
synthesis (118). Both Bifidobacterium and Lactobacillus strains have
also been shown to synthesize GABA (119), with the administration
of GABA-producing strains leading to depression-like behaviors in
animal models (120). Furthermore, research suggests that chronic
stress can reduce the abundance of urease-positive bacteria in the gut,
leading to lower peripheral ammonia levels. This disruption in
ammonia homeostasis decreases glutamine synthesis in astrocytes,
which in turn promotes GABAergic dysfunction (121). Furthermore,
the gut microbiota significantly influences dopamine metabolism, a
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neurotransmitter central to reward processing and mood regulation
(122). For instance, Enterococcus faecalis has been shown to alleviate
depressive symptoms in mice through dopaminergic pathways (123).
In a randomized, double-blind, placebo-controlled clinical trial,
treatment with Bifidobacterium breve BB05 reduced fecal levels of
acetylcholine (ACh), epinephrine (Epi), and norepinephrine (NE),
which was accompanied by improvements in both anxiety and
depressive symptoms (124). Thus, the gut microbiota profoundly
impacts the neural signaling pathways within MGBA, modulating
neurotransmitter synthesis and influencing brain-gut
communication, ultimately affecting the pathophysiology
of depression.

Endocrine modulation

The HPA axis is a central neuroendocrine system (125) that
plays a crucial role in regulating the body’s response to stress, and it
is intimately linked with the MGBA through bidirectional
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interactions (126, 127). Dysregulation of the HPA axis is frequently
observed in individuals with depression, characterized by elevated
secretion of corticotropin-releasing hormone (CRH) and
adrenocorticotropic hormone (ACTH), increased plasma cortisol
concentrations, and a disrupted negative feedback mechanism
(128). These alterations in HPA axis function are believed to
contribute to gastrointestinal inflammation, compromised gut
barrier integrity, and neuronal damage (129-132), ultimately
resulting in shifts in the gut microbiome composition.
Conversely, gut microbiota can exert significant influence on
HPA axis function. Dysbiosis has been shown to facilitate the
translocation of pro-inflammatory cytokines such as interleukin-
1B (IL-1B), IL-6, and tumor necrosis factor-o. (TNF-o) across the
blood-brain barrier, which in turn activates the HPA axis,
intensifying the stress response (30). Notably, the GABA signaling
pathway plays a critical role in the negative feedback regulation of
the HPA axis. It modulates the axis’s responsiveness to stress,
potentially alleviating HPA axis dysfunction (133). Numerous
studies have demonstrated that the gut microbiota can influence
GABA metabolism, further emphasizing its role in the regulation of
HPA axis activity (118, 134). For instance, Li et al. reported that
Bifidobacterium breve 207-1 modulates GABA and related
hormones in the context of the gut-brain axis, suggesting a
potential mechanistic link between microbiota and HPA axis
regulation (135).

In addition to GABA signaling, the gut microbiota can also
affect enteroendocrine cells via microbial metabolites like SCFAs
and secondary bile acids. SCFAs, which are produced through
bacterial fermentation of partially indigestible polysaccharides
such as dietary fiber and resistant starch, are among the most
crucial microbial metabolites (136). The primary SCFAs—acetate,
propionate, and butyrate—constitute over 95% of total SCFA
production, with other metabolites, such as lactic acid, present in
smaller amounts (137). These SCFAs exert a variety of physiological
effects within the gut, including regulation of redox balance,
maintenance of intestinal pH homeostasis, promotion of
hormone secretion, and involvement in epigenetic modifications
(138-141). Recent research has spotlighted the significant role of
SCFAs in neuropsychiatric disorders, particularly depression.
Studies have demonstrated that chronic stress leads to a marked
reduction in SCFA levels—such as acetate, propionate, and valerate
—in animal models. Moreover, a positive correlation has been
observed between the abundance of Allobaculum and acetic acid
levels in these models (142). Similarly, in post-stroke depression
models, decreased levels of butyrate, acetate, and valerate are linked
with alterations in lipid metabolism (143). Notably, the depletion of
butyrate, a metabolite known for its anti-inflammatory effects, has
been directly associated with the manifestation of depressive
symptoms (144). Additionally, research on rats exposed to blue
light during sleep revealed increased lactic acid levels in the
cerebrospinal fluid and lateral habenula, correlating with the
onset of depressive behaviors. Importantly, inhibiting lactic acid
production in these rats alleviated these depressive-like symptoms
(145). SCFAs may contribute to the pathophysiology of depression
through several mechanisms, including immunomodulation of
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Th17/Treg cells (146), activation of the TLR4/NF-xB
inflammatory pathway (147), regulation of acetyl-CoA synthetase
short-chain family member 2 (ACSS2) (148), and histone epigenetic
regulation (149). Emerging evidence suggests that SCFAs play a
crucial role in maintaining blood-brain barrier (BBB) integrity (150,
151), while BBB impairment has been implicated in depression
pathogenesis (152, 153). These findings underscore the pivotal role
of SCFAs in modulating the MGBA, suggesting that strategies
aimed at modulating SCFA production or signaling could hold
therapeutic potential for treating depression.

Furthermore, the gut microbiota significantly influences bile
acid metabolism, with specific bacteria, such as Clostridium and
Bacteroides, being capable of synthesizing secondary bile acids (96).
Clinical and animal studies have revealed a compelling relationship
between bile acids and depressive disorders. In a comparison of
serum and fecal samples from individuals with MDD and healthy
controls, researchers found significantly elevated levels of 2,3-
deoxycholic acid in MDD patients, while taurolithocholic acid
(TLCA), glycolithocholic acid (GLCA), and 3-sulfolithocholic acid
were found at lower concentrations (154). Notably, a positive
correlation was observed between the abundance of
Verrucomicrobium and the levels of TLCA and GLCA, further
illustrating the microbiota-bile acid axis in depression. Similarly,
increased dissociation of conjugated bile acids and enhanced
biosynthesis of secondary bile acids have been observed in CUMS
mice, with an increased abundance of Ruminococacae promoting
the biosynthesis of deoxycholic acid (DCA) (155). These findings
collectively highlight the intricate role of bile acid metabolism in the
pathophysiology of depression and suggest that modulation of the
bile acid microbiota could represent a novel avenue for
therapeutic intervention.

Gut microbiota plays a crucial role in the pathogenesis of
depression through the metabolism of tryptophan into indole and
its derivatives. Gut microbes, equipped with a variety of catalytic
enzymes, transform tryptophan into several indole metabolites,
including indole-3-propionic acid (IPA), indole-3-acetaldehyde
(TAld), indole-3-acetic acid (IAA), and indole-3-lactic acid (ILA)
(156). A growing body of evidence has linked these indole
metabolites to depression-related behavioral changes. For
example, Brydges et al. found that serum concentrations of
indoxyl sulfate (IS), an indole metabolite, are positively correlated
with the severity of depressive and anxiety symptoms (157).
Similarly, a prospective observational study revealed significantly
elevated urinary IS concentrations in women with recurrent
depressive episodes (158). Other indole derivatives have also been
implicated in depression’s pathophysiology. In one study, Qian
et al. showed that hippocampal ILA levels were significantly
reduced in a mouse model of depression. Supplementation with
Bifidobacteria not only increased ILA concentrations but also
alleviated neuroinflammation and improved depression-related
phenotypes by activating the aryl hydrocarbon receptor (AhR)
signaling pathway (159). Furthermore, other studies have shown
that reduced IAld levels are associated with worsened depressive
symptoms in obese patients (160). In animal models, indole-3-
carboxaldehyde (I3C) was found to mediate depressive behaviors

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1644160
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhu et al.

induced by chronic restraint stress. Both I3C supplementation and
administration of Lactobacillus reuteri, an 13C-producing strain,
were effective in ameliorating these behavioral deficits (161).

Immune regulation

Recent studies have increasingly highlighted the connection
between immune system activation and the onset of depression,
suggesting that inflammation plays a crucial role in its
pathophysiology (159, 162-164). Key pro-inflammatory cytokines
implicated in depression include IL-6, TNF-a, IL-1f, IL-10, IL-1ra,
transforming growth factor-f§, and C-reactive protein (CRP) (165,
166). The regulation of these cytokines occurs through a complex
immune signaling network that integrates both innate and adaptive
immune responses in the gut, brain, and systemic circulation,
thereby facilitating the interaction between immune functions, gut
microbiota, and depression (167-169).

One of the central mechanisms through which inflammation
influences depression is altered intestinal permeability, commonly
referred to as leaky gut syndrome (LGS) (170). LGS results from
dysbiosis of the gut microbiota, epithelial damage, and
compromised intestinal barrier function, which collectively
contribute to neuroinflammation—a critical driver in the
pathogenesis of depression (171). Furthermore, the compromised
gut barrier allows for the translocation of LPS-producing Gram-
negative bacteria, triggering immune responses that exacerbate
depression (172). The role of LPS in MDD has been well-
established (173), with LPS-induced inflammation models serving
as valuable tools for investigating the mechanisms underlying MDD
(174-176). Targeting the regulation of gut microbiota has emerged
as a promising strategy for mitigating LPS-induced depressive
symptoms. For example, Limosilactobacillus fermentum L18 has
been shown to restore intestinal epithelial permeability by
enhancing the expression of tight junction proteins such as
occludin and E-cadherin, which can improve gut-barrier integrity
(177). Similarly, Ramalho et al. demonstrated that administering
Lactococcus lactis in LPS-induced depressive mice improved related
behaviors by modulating oxidative stress and pro-inflammatory
cytokine levels in the hippocampus (178).

The concept of the gut microbiota-immune-glia axis has also
been introduced, offering a deeper understanding of the
bidirectional communication between the gut microbiota and glial
cells in the brain (169). Glial cells, including microglia (179, 180),
astrocytes (181), oligodendrocytes (182), and ependymal cells (183),
have been shown to play significant roles in the development of
depression. The gut microbiota influences the activation and
function of these glial cells through neural and chemical signaling
pathways. In particular, microglia exhibit dynamic shifts between
pro-inflammatory and anti-inflammatory states, and dysregulation
of this process is thought to contribute to the neuroinflammation
observed in depression (184, 185). For instance, rifaximin, a gut
microbiota-targeted treatment, has been found to alleviate
depressive behaviors in CUMS mice. This effect correlates with
shifts in the gut microbiota, particularly the relative abundance of
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Ruminococcaceae and Lachnospiraceae, which subsequently
influence brain microglia and peripheral cytokine levels (such as
TNF-o, IL-1B, IL-10) (186). Similarly, minocycline has
demonstrated antidepressant effects via its modulation of the gut
microbiota-microglia regulatory pathway (187). Collectively, these
findings suggest that targeting microglial activation through
modulation of the gut-brain axis may represent a promising
therapeutic strategy for depression (188, 189).

Immune cells, particularly macrophages, also play critical roles
in the pathophysiology of depression. Macrophages are central to
innate immune responses and activate adaptive immunity,
including the differentiation of T lymphocytes into pro-
inflammatory and anti-inflammatory subsets (190). Within the
context of depression, the balance between Th17 and Treg cells—
two distinct T cell subsets—has gained attention. Th17 and
Treg cells, which are influenced by the gut microbiota (191, 192),
have been implicated in regulating brain development,
neuroinflammation, and the activation of glial cells such as
microglia and astrocytes during periods of stress (184, 193, 194).
Increasing evidence suggests that an imbalance between Th17 and
Treg cells plays a role in depression (195-197). The dysregulated
ratio of Th17 to Treg cells may contribute to the chronic
inflammation observed in depressed individuals, and the
restoration of this balance could have therapeutic benefits.
Research by Westfall et al. revealed that metabolites from the gut
microbiota can modulate the Th17/Treg ratio, alleviating stress-
induced inflammatory responses and improving resilience against
anxiety and depressive behaviors (146). Notably, this gut
microbiota-mediated regulation of the Th17/Treg imbalance is
also thought to influence the efficacy of antidepressant treatments,
such as ketamine (198-200). Thus, modulating immune responses
and restoring balance within the immune system and gut
microbiota may provide valuable insights into novel approaches
for treating depression.

Therapeutic potential of gut
microbiota in depression treatment

MGBA axis plays a pivotal role in the regulation of neurological
function and mental health, with growing evidence supporting its
involvement in the pathophysiology and treatment of depression.
Unlike the static nature of human genetics, the gut microbiota is a
highly dynamic, evolving, and diverse ecosystem that is responsive
to various external influences. This plasticity presents an
opportunity for therapeutic intervention aimed at restoring
balance within the microbiota to improve mental health
outcomes. Recent research has highlighted the potential of
modulating the gut microbiota through various approaches, such
as dietary interventions, administration of probiotics, prebiotics,
synbiotics, and postbiotics, and the use of FMT. These strategies can
promote beneficial shifts in the gut microbiome, which, in turn, can
positively influence the gut-brain signaling pathways involved in
depression. By combining these microbiota-modulating strategies
with traditional antidepressant therapies, there is significant
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promise in enhancing the efficacy of depression treatment through
a more comprehensive approach that targets both the microbiome
and the CNS. The emerging therapeutic role of the gut microbiota
in depression underscores the importance of the gut-brain axis as a
critical modulator of mental health and provides a promising
avenue for the development of novel treatment strategies (Figure 2).

Interaction between gut microbiota and
antidepressants

Pharmacological intervention remains the cornerstone of
treatment for depression, with oral antidepressants being the
most prescribed modality. These pharmacological agents can have
both direct and indirect effects on the gut microbiota, influencing its
composition and function (201, 202). Antidepressants, such as
selective serotonin reuptake inhibitors (SSRIs), tricyclic
antidepressants (TCAs), and selective serotonin and
norepinephrine reuptake inhibitors (SNRIs), have been shown to
alter microbial diversity and composition in various ways (203-
207). For instance, SSRIs have been reported to increase the
abundance of Bacteroides, while TCAs are associated with
elevated levels of Clostridium in the gastrointestinal tract (208).
Additionally, norepinephrine reuptake inhibitors, such as
reboxetine (RBX), have been found to significantly reduce
Lactobacillus populations and decrease the Firmicutes/
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Bacteroidetes ratio, both of which are key indicators of microbial
dysbiosis (209). These alterations in gut microbiota may contribute
to the gastrointestinal side effects often observed with
antidepressant treatment, such as nausea, bloating, and altered
bowel movements (210).

Conversely, the gut microbiota can influence the
pharmacokinetics and pharmacodynamics of antidepressants. Gut
bacteria may modulate the metabolism of these drugs through
enzymatic mechanisms, which can impact both their therapeutic
efficacy and toxicity (211, 212). For example, Kliinemann et al.
demonstrated that intestinal bacteria, such as Streptococcus
salivarius and Escherichia coli 1AIl, can enhance the
bioaccumulation of the SNRI venlafaxine, potentially reducing its
bioavailability and therapeutic effectiveness (213). This highlights a
crucial interaction in which the microbiota could diminish the
expected clinical response to antidepressants. Furthermore,
treatment resistance in MDD has been linked to specific gut
microbial profiles (214). Patients who exhibit resistance to
standard antidepressant treatments often have elevated levels of
Proteobacteria, Tenericutes, and Peptostreptococcaceae, while the
presence of Thaumarchaeota, Yersinia, and Peptococcus may be
indicative of treatment failure (215). In the context of novel
therapeutic approaches, ketamine has emerged as a promising
alternative due to its higher efficacy and lower side-effect profile.
Recent studies suggest that the gut microbiota plays a role in
potentiating ketamine’s antidepressant effects, with specific taxa,
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Applications of gut microbiota in depression treatment. This diagram summarizes emerging gut microbiota modulation strategies for depression
treatment. Antidepressants, dietary interventions, and microbiota-based therapies (including probiotics, prebiotics, synbiotics, postbiotics, and fecal
microbiota transplantation) can influence gut microbial composition and function, potentially alleviating depressive symptoms. These strategies—
used individually or synergistically—have demonstrated substantial promise as adjunctive therapies for depression, offering novel pathways to

enhance treatment efficacy.
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such as Actinobacteria and Coriobacteria, being identified as
facilitators of its therapeutic action (216). Despite its potential,
antidepressant treatment, especially in the context of MDD, often
comes with a spectrum of adverse effects, including weight gain,
gastrointestinal disturbances, hormonal imbalances, blurred vision,
and an increased risk of cardiovascular events (210, 217-220).
Probiotics, as an adjunctive treatment, have shown promise in
alleviating some of these side effects, further emphasizing the
potential of microbiota-targeted therapies in depression
management (221).

It is important to note that the current body of research
primarily focuses on single drug-microbe interactions. However,
in clinical settings, many patients with MDD are prescribed a
combination of medications, which may lead to more complex
interactions with the gut microbiome. This polypharmacy approach
could result in a more intricate regulatory network within the
microbiota, potentially amplifying or mitigating the effects of
individual drugs. Although the precise mechanisms underlying
these interactions are still not fully understood, preliminary
evidence supports the potential of microbiota-modulated
antidepressant therapies. As our understanding of these complex
interactions evolves, microbiome-based adjunctive treatments are
expected to become an increasingly integral component of
depression therapy.

Dietary interventions in gut microbiota-
depression interactions

The composition and functionality of the gut microbiota are
highly responsive to dietary influences, which, in turn, can
significantly impact mental health outcomes, including depression
(222). A growing body of evidence supports the notion that dietary
interventions can play a crucial role in preventing and managing
depression by modulating the gut microbiota. Research has
consistently shown that healthy dietary patterns can enhance
mental well-being, while poor dietary choices can exacerbate
depressive symptoms (223). The Western diet, which is
emblematic of modern eating habits, is typically characterized by
high consumption of ultra-processed foods, red meat, refined
sugars, and trans fats, with a concomitant deficiency in fruits,
vegetables, and whole grains (224). This dietary pattern is
associated with several detrimental effects on gut microbiota,
including a reduction in microbial diversity, an increase in the
abundance of pathogenic bacteria, and the promotion of systemic
inflammation, all of which are linked to an elevated risk of
depression (225, 226). Specifically, an imbalance in gut microbial
populations caused by the Western diet may trigger
neuroinflammatory pathways that contribute to mood disorders.
In contrast, the Mediterranean diet has garnered significant
attention for its protective effects against depression (227). This
diet, rich in fruits, vegetables, whole grains, legumes, nuts, and olive
oil, with moderate intake of fish and poultry, has been shown to
reduce the incidence and severity of depressive symptoms (228).
The Mediterranean diet promotes a favorable gut microbiota
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composition by decreasing the prevalence of pathogenic bacteria
such as Escherichia coli and increasing the abundance of beneficial
species, including Bifidobacterium. These microbial shifts lead to
enhanced production of SCFAs, particularly butyrate, which has
been identified as a key player in mediating the positive effects of
this diet on gut and brain health (229). SCFAs have been shown to
reduce systemic inflammation and neuroinflammation, thereby
lowering the risk of depression (230, 231).

Additionally, diets from countries such as Norway and Japan,
which are rich in omega-3 polyunsaturated fatty acids, whole grains,
olive oil, soy products, and low-fat dairy, have been associated with
a decreased risk of depression (232-234). The inclusion of ®-3 fatty
acids, in particular, has been linked to beneficial changes in gut
microbiota composition and a reduction in neuroinflammation,
further supporting the idea that dietary patterns can modulate both
gut health and mental well-being. The rising popularity of
vegetarian diets has also spurred interest in their relationship with
depression. Vegetarianism, which emphasizes plant-based foods
such as vegetables, whole grains, legumes, nuts, seeds, and fruits
(235), has been suggested in some studies to offer protective effects
against depression (236). However, findings on the relationship
between vegetarianism and depression are mixed, with some studies
reporting a reduced risk of depressive symptoms, while others
suggest no significant effects or even potential risks due to
nutrient deficiencies (237, 238). These discrepancies underscore
the need for more research to elucidate the mechanisms underlying
the effects of vegetarian diets on mental health. The ketogenic diet,
characterized by high fat, moderate protein, and very low
carbohydrate intake, is another dietary intervention that has
attracted attention for its potential antidepressant effects.
Through its effects on neurotransmitter systems, particularly
glutamate and GABA transmission, as well as its ability to
modulate oxidative stress and inflammation, the ketogenic diet
has shown promise in treating depression (239-241). However,
the long-term sustainability of the ketogenic diet remains a concern
due to its potential to cause nutritional imbalances, particularly with
respect to carbohydrates and micronutrients, which could lead to
metabolic disruptions if followed over extended periods.

Taken together, there is substantial evidence supporting the role
of dietary patterns in shaping the gut microbiota and influencing
mental health, particularly in relation to depression. While various
diets, such as the Mediterranean, Norwegian, Japanese, and
vegetarian diets, have demonstrated benefits in modulating
depression risk, further studies are needed to clarify the
underlying mechanisms and optimize dietary interventions as
adjunctive treatments for mood disorders.

Microecologics in adjunctive depression
therapy

Microecologics encompass viable bacteria, non-viable bacteria,
and their metabolites, including probiotics, prebiotics, synbiotics,
and postbiotics. These agents have garnered attention for their
ability to modulate the gut microbiota, promote beneficial microbial
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growth, suppress pathogenic bacteria, and maintain intestinal
homeostasis. Recent studies have highlighted the potential of
microecologics in influencing gut-brain interactions to alleviate
depressive symptoms, positioning them as a promising adjunctive
therapeutic approach for depression.

Probiotics, a key group within microecologics, have gained
considerable recognition for their therapeutic potential in treating
various conditions, including depression. They exert their effects
primarily through the MGBA, influencing brain function by
reducing systemic inflammation, repairing the intestinal barrier,
and mitigating neuroinflammation (29). Several studies have
identified specific probiotic strains with antidepressant potential
(67). For example, Lactobacillus and Bifidobacterium species are
among the most used strains in clinical settings due to their
documented efficacy in modulating mood disorders (114, 242-
244). However, results remain inconsistent across studies, with
some reporting no significant improvement in depressive
symptoms following probiotic administration (245, 246). This
variability is likely due to factors such as strain specificity, multi-
strain synergism, and the overall dosage (247, 248). An umbrella
meta-analysis revealed that probiotic efficacy in treating depression
is contingent upon both the dosage and duration of the
intervention. Significant alleviation of depressive symptoms was
observed only when the probiotic dose exceeded 10x10° colony-
forming units (CFUs) and the intervention lasted for more than 8
weeks (249). Additionally, certain microorganisms, particularly
those difficult to culture, have demonstrated antidepressant
effects. Akkermansia spp., for instance, has been shown to
improve depressive behaviors in chronic stress models by
restoring the balance of depression-related molecules such as
corticosterone, dopamine, and BDNF (250). However, a gap
remains between preclinical findings and clinical application,
necessitating further research into the therapeutic potential of
probiotics for depression.

Prebiotics, defined as selectively fermented compounds that
confer health benefits, include substances such as
fructooligosaccharides (FOS), galactooligosaccharides (GOS),
inulin, and other soluble fibers (251). These compounds influence
the gut microbiota indirectly by promoting the growth of beneficial
bacteria. Evidence suggests that prebiotics may alleviate depressive
symptoms by modulating the gut microbiota. For example, long-
term administration of FOS and GOS has been shown to reduce
depressive and anxious behaviors in animal models by enhancing
acetate-producing bacteria (23). However, clinical evidence
regarding the efficacy of prebiotics in depression is mixed. In a
RCT involving 110 patients, a probiotic supplement significantly
improved depressive symptoms compared to a placebo, while a
prebiotic intervention had no substantial effect (252). This may be
due to the indirect nature of prebiotics’ action, which works by
modulating the gut microbiota rather than acting directly on the
host. As a result, prebiotics are often used in conjunction with
probiotics to optimize therapeutic outcomes. One study
demonstrated that a complex probiotic formulation containing
inulin was more effective than single supplements in improving
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psychological well-being and reducing inflammation in patients
with depression (253).

The synergy between probiotics and prebiotics has led to the
development of synbiotics, which combine both components to
enhance therapeutic efficacy. Synbiotics offer potential benefits in
treating depression by regulating gut microbiota composition and
their metabolic products, reducing pro-inflammatory cytokines,
and alleviating oxidative stress (254). A synbiotic formulation
containing Lactobacillus acidophilus, Lactobacillus casei,
Bifidobacterium species, and inulin has been shown to alleviate
depressive symptoms in overweight or obese individuals (255).
Similarly, a combination of probiotics (L. acidophilus T16,
Bifidobacterium BIA-6, B. lactis BIA-27, B. longum BIA-4) and
prebiotics improved depression severity and serum BDNF levels in
patients undergoing hemodialysis (256). While synbiotics hold
promise as a therapeutic intervention, their efficacy depends on
identifying the optimal combinations of probiotics and prebiotics,
highlighting the need for further research to refine formulations.

Postbiotics, comprising inactivated microbial cells and their
bioactive metabolites, have emerged as another avenue for
modulating gut-brain interactions. Postbiotics have been shown
to alleviate depressive-like behaviors by influencing the gut-brain
axis, offering a potential advantage over live probiotics in certain
populations (257). For example, a postbiotic formulation derived
from heat-inactivated Lactobacillus helveticus has been found to
reduce anxiety and depressive-like symptoms in animal models
while modulating dopamine and serotonin receptor expression in
the brain (258). Given the potential risks associated with live
bacterial administration, particularly in vulnerable populations
such as critically ill patients, postbiotics may represent a safer and
equally effective alternative for managing depression.

Collectively, microecologics, including probiotics, prebiotics,
synbiotics, and postbiotics, represent a promising frontier in
depression therapy. Although preclinical and early clinical studies
show promise, further research is essential to fully understand their
mechanisms of action and optimize their use for clinical
applications in the treatment of depression.

FMT for depression treatment

FMT represents an innovative therapeutic approach aimed at
restoring the gut microbiota by transferring functional microbiota
from a healthy donor’s feces into the recipient’s gastrointestinal
tract. This concept, though relatively modern in clinical application,
has ancient roots dating back to 4th-century China, where “Huang
Tang”, a fecal suspension, was utilized to treat conditions such as
severe diarrhea and food poisoning (259). By the Ming Dynasty, this
practice expanded to include a broader range of gastrointestinal
disorders, including constipation and abdominal pain (260). The
therapeutic potential of fecal matter was also recognized in 18th-
century Europe, particularly by Metchnikoff, who noted substantial
health improvements from incorporating fermented foods into his
diet (261). Over time, FMT evolved primarily as a treatment for
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various intestinal disorders, especially infectious conditions (262,
263), and its scope has since broadened to encompass non-
infectious diseases, such as Parkinson’s disease, melanoma, non-
alcoholic fatty liver disease, and type 2 diabetes (264-267).

Recent studies have increasingly focused on the role of FMT in
managing psychiatric conditions, particularly depression.
Depression, often associated with dysbiosis or an imbalance in
the gut microbiota, has been linked to altered gut-brain interactions.
The therapeutic potential of FMT in depression is under
investigation, with studies revealing a notable ability of fecal
microbiota to influence depressive phenotypes (268). Notably,
research has demonstrated that fecal microbiota from depressed
individuals or animal models can induce depression related
phenotypes in healthy recipients. For instance, in an animal
model, Flinders Resistant Line (FRL) rats exhibited marked
depressive-like behaviors following FMT from patients diagnosed
with MDD. This transfer of depressive symptoms was accompanied
by significant shifts in the microbiota, notably an increase in
Ruminococcaceae and Lachnospira, and a decrease in
Coprococcus, suggesting a direct link between specific microbial
taxa and depression-related phenotypes (269). In a similar vein,
FMT from rheumatoid arthritis patients has been shown to induce
depressive-like behaviors in mice, elevating pro-inflammatory
cytokines, such as IL-6 and TNF-o., thereby highlighting the role
of gut microbiota in modulating systemic inflammation and
immune responses, which may contribute to the development of
depression (270). In contrast, several studies have demonstrated the
potential of FMT to alleviate depression-related phenotypes. For
instance, in an animal model subjected to CUMS, FMT led to
significant improvements in depressive behaviors, alongside an
increase in Firmicutes abundance and a reduction in intestinal
and neuroinflammation (271). Clinical trials further support the
therapeutic potential of FMT in depression, particularly in patients
with comorbid irritable bowel syndrome, a condition frequently
associated with depression. These studies revealed that FMT
administration not only reduced depressive symptoms but also
promoted a shift in gut microbiota composition, including the
reduction of pathogenic bacteria such as Faecalibacterium,
Eubacterium, and Escherichia coli, which are often implicated in
gastrointestinal and mood disorders (272).

Despite the promising therapeutic effects, the clinical
application of FMT has been accompanied by reports of side
effects, including transient diarrhea, constipation, abdominal pain,
and low-grade fever (273). Moreover, the efficacy of EMT is
influenced by various factors, including fecal dosage, infusion
frequency, delivery route, and donor-recipient compatibility
(274). Recent advancements in personalized precision FMT have
introduced the potential of artificial intelligence (AI)-driven donor-
recipient matching, which can significantly optimize the treatment
process by tailoring the procedure to the unique microbiota profiles
of both the donor and recipient. Al-based algorithms can analyze
large-scale microbiome data to predict the most compatible donor-
recipient pairs, thereby enhancing the therapeutic outcomes and
minimizing adverse effects. These variables underscore the need for
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careful optimization of FMT protocols to maximize therapeutic
benefits while reducing the risk of side effects. As the understanding
of gut microbiota’s role in depression continues to expand, further
research is essential to refine FMT techniques, integrate AI-driven
precision matching, explore long-term effects, and determine the
optimal use of FMT in the treatment of depression. The
incorporation of Al-based typing and personalized microbiota-
based transplantation approaches holds promise for making FMT
a more reliable and effective treatment for patients suffering
from depression.

Conclusion & future perspectives

The gut microbiota has emerged as a central player in depression
pathogenesis, with compelling evidence linking microbial dysbiosis to
altered neuroimmune signaling, neurotransmitter metabolism, and
HPA axis regulation through the MGBA. Recent advances in multi-
omics technologies have identified specific microbial signatures (e.g.,
reduced Faecalibacterium and increased Enterobacteriaceae) and
their neuroactive metabolites (e.g., diminished SCFAs, elevated
LPS) as potential diagnostic biomarkers and therapeutic targets.
While traditional antidepressants remain the cornerstone of
treatment, emerging microbiome-based approaches, including
probiotics, prebiotics, postbiotics, and FMT, have shown promise
in alleviating depressive symptoms in both preclinical and clinical
studies. Furthermore, innovative interventions such as next-
generation probiotics engineered for targeted neuroactive
compound delivery, phage-based microbial modulation, and Al-
optimized FMT protocols, demonstrate transformative potential in
the management of depression. Despite the promising advancements,
several key challenges remain. First, the need to establish causal
mechanisms using humanized gnotobiotic models and cutting-edge
techniques like single-cell spatial metabolomics is crucial to
unraveling the precise relationships between the microbiome and
depression. Second, clinical translation is complicated by the
heterogeneity of microbiome profiles, necessitating the
development of standardized, multi-omics-defined microbial
consortia for consistent therapeutic outcomes. Third, there is a
pressing need to advance precision medicine approaches that
integrate microbiome-host interactions with individual genetic,
epigenetic, and lifestyle factors to ensure the most effective and
personalized treatments. The integration of synthetic biology,
including CRISPR-modified psychobiotics, nanotechnology (e.g.,
blood-brain barrier-penetrating microbial vesicles), and
computational psychiatry is on the horizon, and could usher in a
new era of microbiome-based depression therapies. Realizing the full
potential of these approaches will demand interdisciplinary
collaboration across fields like microbial genomics,
neuroimmunology, and computational sciences. By bridging
mechanistic insights with clinically actionable solutions, these
innovations hold the potential to revolutionize the treatment of
mental health disorders, offering a paradigm shift in the prevention
and management of depression.
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