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Cervical cancer remains a leading cause of cancer-related mortality in women,

particularly in low-resource settings, despite advances in treatmentmodalities. The

tumor immune microenvironment (TME) plays a pivotal role in cervical cancer

pathogenesis, progression, and therapeutic response, driven largely by persistent

HPV infection and subsequent immune evasion mechanisms. Clinical evidence

supports the efficacy of pembrolizumab in PD-L1–positive recurrent/metastatic

disease, while combinatorial strategies show promise in overcoming resistance.

However, challenges persist, including biomarker identification and management

of immune-related adverse events. This review elucidates the dynamic interplay

between HPV-mediated immune suppression and the TME, highlighting the roles

of tumor-associated macrophages (TAMs), regulatory T cells (Tregs), myeloid-

derived suppressor cells (MDSCs), and exhausted lymphocyte subsets in fostering

an immunosuppressive milieu. Overall, this review integrates current advances in

tumor immunology and immunotherapy, providing a comprehensive framework

for developing precision-based strategies to improve outcomes in cervical cancer.
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1 Introduction

Cervical cancer is the fourth deadliest cancer in females globally (1). Stage-dependent

management includes hysterectomy or fertility-sparing radical trachelectomy for stage I,

often followed by adjuvant radiotherapy and chemotherapy in high-risk cases (2, 3). Stage

II requires surgery with tailored adjuvant therapy, while stage III relies on cisplatin-based

chemoradiotherapy, occasionally combined with surgery. In stage IVA, treatment is largely

palliative, prioritizing symptom control and quality of life. Cisplatin-based chemotherapy

continues to play a pivotal role in both symptom management and palliative care (4, 5).

Although significant progress has been achieved in the treatment of cervical cancer, the

prognosis for patients with locally advanced, recurrent, or metastatic disease

remains suboptimal.
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Recent advances in tumor immunology have revealed critical

mechanisms of immune evasion by cancers, positioning

immunotherapy as a transformative approach for cervical cancer,

particularly in advanced stages (6). Unlike conventional treatments

(surgery, radiotherapy, chemotherapy), immunotherapy enhance

endogenous antitumor responses, offering new therapeutic

potential. This review summarizes how the cervical cancer

immune microenvironment drives pathogenesis, modulates

treatment resistance, and influences responses to radiotherapy/

chemotherapy, providing a framework for developing novel

combinatorial strategies.
2 Immune microenvironment in
cervical cancer

2.1 HPV and the immune
microenvironment in cervical cancer

The immune microenvironment of cervical cancer associated

with human papillomavirus (HPV) infection exhibits distinctive

characteristics (7). Following HPV infection, keratinocytes actively

modulate the local milieu, impeding the effective clearance of the

virus by immune cells while initiating signal transduction with the

host stroma. This interaction promotes a microenvironment

conducive to persistent infection, viral dissemination, and cervical

cancer progression (8). Evidence demonstrates that TAMs, such as

CD68+ or CD163+ TAMs, show a stepwise increase in expression

across cervical tissue, cervical intraepithelial neoplasia (CIN) grades

I to III, and invasive cervical cancer. Elevated CD163+ TAM counts

are correlated with advanced FIGO stages and lymph node

metastasis, positioning them as potential biomarkers for cervical

cancer progression and dissemination.

Mechanistically, TAMs activated by tumor cells adopt an

immunosuppressive phenotype characterized by impaired antigen

presentation, suppression of T cell proliferation, and pro-

angiogenic activity, all of which facilitate tumor invasion and

metastasis (9). Importantly, HPV oncoproteins E6 and E7 directly

contribute to the immunosuppressive phenotype of the tumor

microenvironment. E6 has been shown to promote PD-L1

expression via activation of the PI3K/Akt signaling pathway,

which stabilizes hypoxia-inducible factor 1-alpha (HIF-1a) and

enhances PD-L1 transcription (10). Concurrently, E7 activates the

STAT3 pathway, further driving PD-L1 upregulation and

promoting T cell exhaustion. These mechanisms enable HPV-

infected cells to evade immune detection and inhibit cytotoxic T

lymphocyte-mediated clearance.

Persistent HPV infection also impairs natural killer (NK) cell

function (11). Although CD8+ T lymphocyte infiltration is

prominent in cervical lesions, these cells fail to suppress

malignant proliferation, likely due to HPV-mediated attenuation

of immune surveillance and cytotoxic clearance, culminating in an

overall immunosuppressive tumor microenvironment (TME) (12).

Beyond immune checkpoint regulation, HPV oncoproteins also
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reprogrammetabolic pathways that modulate immune activity (13).

Specifically, E7 enhances the expression of indoleamine 2,3-

dioxygenase 1 (IDO1) through activation of NF-kB signaling,

leading to accelerated tryptophan catabolism and accumulation of

the immunosuppressive metabolite kynurenine. Tryptophan

depletion inhibits effector T cell proliferation, while kynurenine

promotes regulatory T cell expansion, collectively sustaining

immune tolerance (14). Interferon-g (IFN-g) signaling, which is

frequently upregulated in persistent HPV infections, cooperatively

interacts with the viral oncoproteins E6/E7 to further upregulate

IDO1 expression, thereby exacerbating immunosuppression within

the tumor microenvironment. These findings underscore the

importance of targeting HPV-induced immune modulation as a

therapeutic strategy to improve outcomes, particularly in recurrent

and metastatic cervical cancer (Figure 1).
2.2 Lymphocyte subsets and the cervical
cancer immune microenvironment

The immune infiltrate composition in cervical cancer

demonstrates significant prognostic and therapeutic implications.

Higher CD8+ tumor-infiltrating lymphocyte (TIL) density is

associated with pelvic lymph node metastasis, whereas recurrent

disease shows enrichment of CD8+ T cells, CD80+CD86+ and

CD163+CD206+ macrophages, and FOXP3+CD25+ Tregs (15).

Prognostically, elevated infiltration of CD3+, CD4+, CD8+ T cells

along with CD206+ macrophages and FOXP3+ Tregs correlates with

improved progression-free and overall survival in advanced cases

(16). In HPV-driven murine models, B cells exhibit dynamic

immunomodulatory functions - accumulating in draining lymph

nodes while downregulating MHC class II and CD86, yet

upregulating PD-L1 and CD39 to suppress T-cell responses and

facilitate tumor progression (17). Notably, combined PD-1

blockade and radiotherapy induces clonal expansion of antigen-

specific B cells, evidenced by BCR repertoire analysis showing

somatic hypermutation and shortened CDR3 regions (18). Single-

cell transcriptomics further reveals therapy-induced germinal

center B-cell formation, though without concomitant elevation of

IgG/IgM responses, suggesting their role as potential biomarkers

rather than effector mediators. NK cells also exhibit functionally

opposing roles in cervical cancer pathogenesis. On one hand, HPV-

encoded E6/E7 bind IL-18R to induce IFN-g, which is essential for

NK cell activation. Conversely, IDO-mediated tryptophan

catabolism generates immunosuppressive L-kynurenine that

suppresses NK proliferation and cytotoxicity (19).
2.3 Other immune cells and the cervical
cancer immune microenvironment

TAMs are pivotal immune modulators in the tumor

microenvironment (TME) and emerging immunotherapeutic

targets in cervical cancer (20). Functionally polarized into M1
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(anti-tumor) and M2 (pro-tumor) subsets, TAMs exhibit distinct

roles in disease progression (21). While CD68 serves as a general

TAM marker, CD163, CD23, and CD204 denote M2 polarization.

Clinical studies reveal that both CD68+ M1 and CD163+ M2 TAMs

correlate with lymph node metastasis, with CD163+ TAMs further

predicting advanced FIGO stage and poor prognosis (22). Myeloid-

derived suppressor cells (MDSCs) are another major component of

tumor-induced immunosuppression. Both circulating and tumor-

infiltrating MDSCs exhibit marked immunosuppressive activity and

correlate with cervical cancer stage and metastasis (23). MDSCs

comprise granulocytic (G-MDSCs) and monocytic (M-MDSCs)

subsets, where elevated G-MDSCs associate with tumor burden

and recurrence in early-stage disease, highlighting their biomarker

potential (24). Intriguingly, M-MDSCs may synergize with

mucosal-associated invariant T (MAIT) cells to facilitate tumor

progression (25). Tregs, defined by FOXP3 expression, further

shape an immunosuppressive TME. Immunohistochemical

analyses of HPV-infected cervical tumors demonstrate

upregulated Treg markers (CD25, FOXP3, CD4) and

immunosuppressive cytokines (IL-10, TGF-b) in patients with

high viral loads or severe infection (26). These findings implicate

Tregs in fostering a permissive TME for viral persistence and

oncogenesis (26).
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3 Association between the immune
microenvironment and
chemoradiotherapy in cervical cancer

Chemoradiotherapy in cervical cancer is intricately linked to the

TME, genetic factors, and RNA regulation (27). Radiotherapy, as a

primary curative or adjuvant treatment, activates antitumor

immunity by triggering DAMP release, inducing type I IFNs,

engaging the cGAS–STING axis, and enhancing MHC-I

expression. Nonetheless, it concurrently shapes immunosuppressive

microenvironment by upregulating PD-L1 and recruiting M2

macrophages and MDSCs (28). To address this duality, several

immunomodulatory strategies have been proposed to counteract

radiation-induced immunosuppression. For instance, the

combination of radiotherapy with immune checkpoint inhibitors

such as anti-PD-1/PD-L1 antibodies has shown synergistic effects in

reactivating exhausted T cells. Moreover, CSF1R blockade can

effectively deplete MDSCs and reprogram tumor-associated

macrophages toward a tumor-suppressive (M1-like) phenotype,

thereby enhancing antitumor immunity. STING agonists further

augment type I interferon responses while reducing myeloid-

derived suppressor cell accumulation, representing a promising
FIGURE 1

HPV and the immune microenvironment in cervical cancer.
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avenue for combinatorial therapy (10). These strategies are under

active investigation in preclinical and early clinical studies, offering

actionable paths to overcome TME-mediated radioresistance.

Mori et al. (29) found that radiotherapy enhances CD8+ T cell

infiltration and PD-L1 expression in tumors, suggesting CD8+ T

cells as potential biomarkers for radiotherapy response. Disease

progression often coincides with immune dysfunction, and

radiotherapy- induced myelosuppress ion may worsen

immunosuppression, impacting radio-immunotherapy efficacy.

Dynamic monitoring of hematologic toxicity, lymphocyte subsets,

and cytokines during treatment can guide immunomodulatory

interventions to restore immune function and improve outcomes

(30). Radiotherapy may also trigger abscopal effects, where localized

irradiation induces regression of distant tumors, likely mediated by

immune-driven inflammation and heightened immunogenicity

(31). In NACT responders, elevated CD4+, CD8+, CD20+, and

CD56+ immune markers in the TME suggest chemotherapy-

induced immune activation (32). Conversely, Herter et al. (33)

observed that chemoradiotherapy reduces T cell counts in tumors

and blood while increasing macrophage and neutrophil infiltration.

Understanding these immunomodulatory mechanisms is crucial for

optimizing combination therapies and enhancing treatment

sensitivity in cervical cancer patients.
4 Immune microenvironment and
immunotherapy in cervical cancer

4.1 Fundamental principles of
immunotherapy in cervical cancer

Persistent infection with high-risk human papillomavirus

(HPV) is the principal etiological factor in cervical carcinogenesis.

Although the immune system typically clears HPV-infected cells,

malignant transformation enables evasion of immune surveillance,

facilitating uncontrolled proliferation and metastatic spread (34).

Immunotherapeutic strategies aim to counteract this immune

suppression by selectively enhancing antitumor responses. Among

these, immune checkpoint inhibitors (ICIs) have emerged as a

breakthrough treatment, demonstrating significant clinical

potential in cervical cancer (35). ICIs function by disrupting

inhibitory signals mediated by immune checkpoint molecules,

which tumors co-opt to avoid immune detection. By blocking

these pathways, ICIs reinvigorate cytotoxic T-cell activity,

restoring their capacity to target and destroy malignant cells (35)

(Supplementary Table S1). Notably, pembrolizumab, a PD-1-

targeting monoclonal antibody, has become the first FDA-

approved ICI for advanced, recurrent, or metastatic cervical

cancer (36). Its mechanism involves preventing PD-1/PD-L1

interactions, thereby improving outcomes in PD-L1 positive

patients and establishing a new therapeutic paradigm (37).

Despite this progress, research continues to expand the scope of

immunotherapy. Investigations are underway to evaluate other

checkpoint targets, such as CTLA-4, and to optimize combination
Frontiers in Immunology 04
approaches integrating ICIs with conventional therapies (37, 38).

As understanding of immune regulation within the TME advances,

more precise immunomodulatory strategies are anticipated to

further improve treatment efficacy.
4.2 Impact of immunotherapy on the
immune microenvironment in cervical
cancer

Emerging clinical evidence reveals that immunotherapeutic

interventions significantly reshape the immune landscape of

cervical cancer. In a biomarker analysis of eight patients with

advanced/recurrent disease, PD-1 blockade induced robust

infiltration of effector lymphocytes (T cells, NK cells, and B cells)

within tumor tissue, with enhanced recruitment correlating with

treatment response (39). These findings are supported by clinical

trial data: the multicenter Phase II C-145–04 study achieved a 44%

objective response rate using TIL therapy in heavily pretreated

patients, demonstrating durable efficacy at median 3.5-month

follow-up (40). Furthermore, a Phase I trial (N=27) established

the safety and preliminary efficacy of adoptive TIL transfer

following chemoradiation in locally advanced disease (41).

Emerging targets like OX40 agonists—which augment CD8+/

CD4+ T cell proliferation and survival—are under investigation

(NCT03894618) to broaden therapeutic options (42). T cell

exhaustion remains a key resistance mechanism. LAG-3,

overexpressed in cervical cancer tissues, suppresses cytotoxic T

cell activity and amplifies Treg-mediated immunosuppression

(43). Additionally, co-expression of TIM-3 and PD-1 on tumor-

infiltrating lymphocytes shows strong association with Treg

accumulation and functional impairment of effector cells (44).

These insights underscore the potential of combinatorial

approaches targeting multiple immune checkpoints to restore T

cell competence and improve clinical outcomes.
5 Impact of immune pathway
regulation on the tumor
microenvironment of cervical cancer

The TME represents a complex and finely regulated ecosystem

comprising diverse cellular components, signaling molecules, and

structural elements (45). This milieu not only provides essential

support for tumor growth, invasion, and metastasis but also

critically determines the tumor’s response to therapeutic

interventions. Cervical cancer is characterized by a particularly

immunosuppressive TME, which enables tumor cells to evade

immune surveillance and cytotoxic attack (45). The cervical

cancer TME encompasses various immunosuppressive cells,

notably Tregs and MDSCs, which inhibit T cell activity through

the secretion of immunosuppressive cytokines such as transforming

growth factor-beta (TGF-b) and IDO (46). In addition, TILs may be

rendered dysfunctional or exhausted within this environment,
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further compromising anti-tumor immune responses (45, 46).

Beyond immune cells, stromal components such as fibroblasts

and endothelial cells contribute to tumor progression by

providing structural support and secreting pro-tumorigenic

factors, thereby promoting growth, angiogenesis, and metastatic

dissemination (47). These processes facilitate nutrient and oxygen

delivery while also generating conduits for cancer cell spread.

Immune checkpoint pathways play pivotal roles in shaping this

immunosuppressive microenvironment (46, 48, 49). Pathways such

as PD-1/PD-L1, CTLA-4, and LAG-3 suppress T cell function and

enable immune escape, ultimately accelerating tumor progression

and dissemination (48–50).
5.1 PD-1/PD-L1 pathway

The foundation of cervical cancer immunotherapy lies in

disrupting immune checkpoint pathways that enable HPV-

associated tumors to evade host defenses. The PD-1/PD-L1 axis

represents a critical immunoregulatory mechanism where PD-1, an

inhibitory receptor on T lymphocytes, interacts with its ligand PD-

L1 - a transmembrane protein expressed by tumor and immune

cells. This interaction transmits immunosuppressive signals that

attenuate T cell effector functions, creating an immune-privileged

tumor microenvironment (46, 48). In cervical cancer, PD-1/PD-L1

engagement exerts profound inhibitory effects on both CD8+

cytotoxic and CD4+ helper T cell populations. This suppression

manifests through multiple mechanisms: impaired cytotoxic

granule release, reduced proliferative capacity, and diminished

cytokine production, collectively compromising anti-tumor

immunity and facilitating malignant progression (51). The clinical

translation of these findings has yielded pembrolizumab, a

monoclonal antibody that sterically blocks PD-1/PD-L1 binding.

By preventing this immune checkpoint interaction, pembrolizumab

restores T cell-mediated tumor recognition and elimination,

demonstrating particular efficacy in advanced or recurrent PD-

L1-positive cervical cancer cases (46, 48). Current clinical evidence

confirms the therapeutic potential of PD-1/PD-L1 blockade, with

pembrolizumab emerging as a paradigm-shifting treatment.

However, ongoing research seeks to identify complementary

biomarkers beyond PD-L1 expression to optimize patient

selection and predict treatment response (48, 52). These

developments underscore the centrality of PD-1/PD-L1 inhibition

in cervical cancer immunotherapy and its capacity to reestablish

effective anti-tumor immune surveillance.
5.2 CTLA-4 pathway

CTLA-4 represents another critical immune checkpoint

pathway gaining attention in cervical cancer therapy. In contrast

to PD-1, which primarily functions within peripheral tissues,

CTLA-4 predominantly acts in lymphoid organs to suppress early

T cell activation and modulate the initiation of immune responses
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(38, 53). CTLA-4 exerts its immunosuppressive function by

competing with CD28 for binding to B7 ligands on antigen-

presenting cells, thereby attenuating T cell activation and

permitting immune escape (46). Inhibition of CTLA-4 has been

shown to restore T cell activity and enhance tumor cell recognition

and destruction, thus impeding tumor progression and metastasis

(54). CTLA-4 inhibitors, such as ipilimumab, have been developed

to block this checkpoint and potentiate anti-tumor immunity (55).

Although PD-1 inhibitors are currently first-line agents for cervical

cancer immunotherapy, CTLA-4 inhibitors remain under clinical

investigation. Ongoing trials are evaluating CTLA-4 blockade either

as monotherapy or in combination with other immunotherapeutics,

including PD-1 inhibitors (56). Preliminary data suggest that such

combinations may yield synergistic anti-tumor effects and

improved therapeutic efficacy (55, 57). Despite being in the

exploratory phase, CTLA-4 blockade holds significant promise as

a future strategy for cervical cancer immunotherapy.
5.3 Other immunoregulatory pathways

LAG-3 is another immune checkpoint molecule expressed on T

cells, with emerging therapeutic relevance in cervical cancer. Similar

to PD-1 and CTLA-4, LAG-3 contributes to T cell suppression

within the TME, although through distinct mechanisms (58).

Mechanistically, the persistent expression of HPV oncoproteins

such as E6 and E7 may upregulate LAG-3 expression via chronic

antigenic stimulation, further compounding immune exhaustion.

Evidence suggests that elevated LAG-3 expression in tumor-

infiltrating lymphocytes may correlate with impaired immune

responses in cervical cancer (59). Consequently, LAG-3 blockade

represents a potential approach to reinvigorate T cell function and

overcome immune suppression (50). While LAG-3-targeted

therapies remain in early development and have not yet gained

regulatory approval for cervical cancer, preclinical studies have

demonstrated promising therapeutic potential (58, 59). Further

investigations are needed to elucidate the precise role of LAG-3 in

cervical cancer progression and to validate the safety and efficacy of

LAG-3 inhibitors in clinical settings. Indoleamine 2,3-dioxygenase

(IDO) is an immunosuppressive enzyme that catabolizes

tryptophan, an essential amino acid for T cell proliferation and

function. Depletion of tryptophan within the TME suppresses T cell

activity and facilitates immune evasion. Elevated IDO levels in

cervical cancer patients are associated with poor prognosis and

contribute to immune suppression by impairing effector T cells and

enhancing Treg-mediated tolerance (60). Thus, elucidating the

mechanistic role of IDO in cervical cancer may offer critical

insights for designing more effective immunotherapeutic strategies.

Transforming growth factor-beta (TGF-b) is a multifunctional

cytokine with paradoxical roles in cervical cancer. During early

carcinogenesis, TGF-b exhibits tumor-suppressive properties by

inhibiting cell proliferation and promoting differentiation.

However, as the disease progresses, TGF-b signaling transitions

toward a pro-tumorigenic role, enhancing cell motility and
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invasiveness, thereby facilitating metastasis (61). TGF-b is also

implicated in the expansion and activation of Tregs, contributing

to a tolerogenic immune milieu. Increased TGF-b levels in HPV-

infected cervical tissues promote FOXP3+ Treg proliferation, which

suppresses effector T cell responses and facilitates immune escape.

Thus, HPV-associated TGF-b signaling not only fosters epithelial

transformation but also promotes an immunosuppressive

microenvironment that limits the efficacy of antitumor immunity

and immunotherapy. Moreover, TGF-b modulates the TME by

suppressing immune cell activation and promoting immune escape,

further exacerbating tumor progression. At advanced stages, TGF-b
promotes metastasis through multiple mechanisms. Deciphering

the context-dependent roles of TGF-b across cancer stages and

developing strategies to selectively target its pro-tumorigenic

functions—while preserving its tumor-suppressive activity—may

offer novel therapeutic opportunities for cervical cancer.
6 Conclusion

Cervical cancer, driven by persistent HPV infection, exemplifies

the critical role of the tumor immune microenvironment (TME) in

disease progress ion and therapeut ic res is tance . The

immunosuppressive TME, shaped by HPV oncoproteins E6 and

E7, is characterized by infiltrating TAMs, Tregs, MDSCs, and

exhausted lymphocytes, which collectively foster immune evasion

and limit treatment efficacy. Immune checkpoint pathways,

particularly PD-1/PD-L1, have emerged as pivotal therapeutic

targets, with pembrolizumab demonstrating clinical benefit in

advanced disease. However, response heterogeneity highlights the

need for biomarker-driven strategies and combinatorial approaches,

such as integrating ICIs with radiotherapy or adoptive cell therapy, to

overcome resistance and enhance antitumor immunity.

Advancing cervical cancer immunotherapy requires deeper

mechanistic insights into TME dynamics, including spatial

remodeling post-therapy and the role of novel targets like OX40 and

TIM-3. Clinical trials should prioritize adaptive designs to optimize

sequencing and safety of multimodal regimens, while addressing

disparities in resource-limited settings. By leveraging the TME as

both a therapeutic target and a modulator of response, these efforts

hold promise for improving outcomes, particularly in recurrent or

metastatic disease, and reducing the global burden of cervical cancer.
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