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Through the targeted release of immunologically active cargo, milk-derived
exosomes (MDEs) are becoming increasingly important channels for maternal-
neonatal communication. This study summarizes available data, showing that the
bioactivity of MDEs varies and is significantly influenced by factors such as
species origin and lactation stage (colostrum versus mature milk). It is argued
that this functional variability presents both opportunities and challenges for
developing therapeutics and is crucial for understanding their role in shaping the
newborn’'s immune system. The composition of colostrum-derived MDEs differs
significantly from that in mature milk, although both are rich in
immunomodulatory microRNAs (such as miR-181a and miR-155) and proteins
that promote immune tolerance and gut barrier integrity. Furthermore, the
importance of careful source selection is highlighted by interspecies
differences in MDE cargo, such as the varying anti-inflammatory properties of
camel versus bovine exosomes. To address major challenges like standardization
and scalable production, the potential of MDEs as natural nano-carriers for
immunomodulatory therapy was critically evaluated. This review offers a
framework for future research in nutritional immunology, moving beyond a
simple component list to critically assess source-dependent functionality.
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1 Introduction

The evolutionarily conserved lipid-bound nanocarriers known
as extracellular vesicles (EVs), like exosomes, allow for intercellular
communication by delivering functional cargo to recipient cells,
such as proteins, DNA, and various RNA species (1, 2). This affects
a broad range of physiological and pathological processes, from
immune modulation to cancer metastasis (3, 4). These vesicles,
which contain a wide variety of bioactive compounds, are especially
plentiful and persistent in milk-derived exosomes (MDEs), which
have been recovered from bovine and human species (5). The
dynamic nature of MDESs’ payload, which is specifically adapted to
the neonate’s developmental requirements, is a crucial component.
For example, immunomodulatory microRNAs (like miR-181a and
miR-155) and proteins (such as lactadherin and immunoglobulins)
that are essential for training the developing immune system and
maintaining the integrity of the gut barrier are greatly abundant in
colostrum-derived MDEs (6). Higher quantities of proteins linked
to apoptosis and cell motility, on the other hand, indicate that the
profile of mature milk MDEs changes towards a cargo supporting
tissue maturation, metabolic regulation, and cellular homeostasis
(7). The complex biological role of MDEs is highlighted by this
functional plasticity, which is further varied by species-specific
adaptations (8). Their isolation, typically achieved through
methods such as ultracentrifugation (9), exposes 30-300 nm
nanoparticles that are well-suited for cellular absorption and
systemic dispersion, underscoring their immense potential as
nutritional immunomodulators (10) and natural therapeutic
agents (11). Although it is commonly known that MDEs include
a variety of biomolecular cargo, a comprehensive review of the
literature reveals a more complex story (12). MDEs’ immunological
effects vary greatly depending on their biological setting and are not
a general characteristic (13). The lactation stage, where colostrum
MDE:s are primed for immune education and mature milk MDEs
may support tissue growth and homeostasis, and the species of
origin, which confers unique functional characteristics on their
exosomal cargo, are two factors that stand out as being particularly
decisive (14). Therefore, using this functional plasticity as a
perspective, this review will critically evaluate the evidence
supporting MDEs as immunomodulatory drugs. In addition to
discussing the substantial translational challenges posed by their
intrinsic heterogeneity, the implications of this diversity for their
inherent role in infant health and their potential as therapeutic
vehicles are explored. Although the literature now in publication
thoroughly lists the various bio-molecular cargoes of MDEs, a
purely descriptive approach restricts their potential for
therapeutic use (15). This review goes beyond a synopsis to offer
a critical synthesis, suggesting that a framework of source-
dependent functional heterogeneity governs the bioactivity of
MDEs, which is not uniform. We have critically assessed the data,
which reveals that two key factors species-specificity and lactation
stage (colostrum vs. mature milk) create a range of MDE effects,
from tissue healing to strong immunomodulation.
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2 Role of milk-derived exosomes in
neonatal health

2.1 Exosome composition in mature milk
and colostrum

EVs derived from human milk mainly consist of proteins, lipids,
and DNA, which are typically released by cells (16). Research has
identified about 639 proteins and peptides within these EVs.
Additionally, both term and preterm human MDEs contain 395
different lipids. Notably, up to 50 of these lipids are involved in
regulating the activity of intestinal epithelial cells (17). The
composition of MDEs varies greatly between colostrum and
mature milk, as summarized in Table 1, with functional
implications discussed in Section 4.

Nucleic acids have attracted considerable interest among
exosome components due to their significant role in regulating
metabolic processes (21). Milk exosomes contain a wide variety of
nucleic acids, including deoxyribonucleic acid (DNA), mRNA,
miRNAs, circular RNAs, and long non-coding RNAs (IncRNAs).
In particular, milk is a rich source of miRNAs (22). Lipidomic
research of MDEs has identified several common lipids, such as
sphingomyelin, phosphatidylcholine, phosphatidylserine, and
phosphatidylethanolamine (19). Exosomes may affect the function

TABLE 1 Comparative composition of exosomes derived from colostrum
and mature milk.

Component = Mature Milk Colostrum MDEs References
Type MDEs
Lipids Greater diversity of = Higher levels of (17)
phospholipids sphingomyelin and
and glycerolipids phosphatidylserine
associated with (linked to immune
metabolism signaling)
IncRNAs Mature milk Stage-dependent (17)
contains more variation; colostrum
IncRNAs related to = MDEs enriched with
apoptosis and immune-modulatory
differentiation IncRNAs
miRNAs More stable Higher abundance of (18)
expression of immune-regulatory
growth/metabolic miRNAs (e.g., miR-
miRNAs 181a, miR-155, miR-
223)
Metabolites More metabolites Richer in bioactive (19)
involved in metabolites that
energy metabolism | support neonatal
and gut maturation = immune development
Proteins Higher levels of Enriched in immune- (20)

proteins linked to
apoptosis, cell
motility, metabolic
regulation

related proteins (e.g.,
immunoglobulins,
lactoferrin,
antimicrobial
peptides,
inflammatory
proteins)
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of the mammary gland. Comparing the proteome of highly purified
milk exosomes with that of whole milk can uncover the actual
protein content of these exosomes. Similar analyses can be
performed on EVs from other body fluids. Studying the proteome
of MDEs could provide insights into their potential medical uses,
such as biocompatible drug delivery systems or tools for
personalized therapy. Some of these applications are summarized
in Table 2.

2.2 Biological functions of MDEs in
neonatal health

One of the most important signaling particles that facilitates
cellular communication between mother and child is MDEs. These
exosomes play a key role in protecting newborns from conditions
such as inflammatory bowel disease, diabetes, and obesity. They also
boost the child’s immune system through the antibodies they
contain. Additionally, human breast milk includes other crucial
components, such as immune cells, soluble proteins like IgA,
cytokines, and antimicrobial peptides, all of which help defend
newborns against early illnesses (31). It also inhibits the
proliferation of various cell lines (32). The general exosome
cargos are shown in Figure 1. The cell-to-cell communication
mediated by exosomes is illustrated in Figure 2.

TABLE 2 Applications of MDEs for the treatment of several diseases.

10.3389/fimmu.2025.1645355

2.3 Potential applications of milk-derived
exosomes in pediatric medicine

Due to their diverse biomolecular cargo, MDE:s are rich in several
medically essential molecules, as detailed in Table 3. These exosomes
may help prevent the death of intestinal epithelial cells, offering a
promising therapeutic option for children with intestinal damage.
Since necrotizing enterocolitis (NEC) is a major cause of morbidity
and mortality in newborns, MDEs present a potential treatment to
reduce the incidence and severity of NEC in at-risk infants (39). Cow’s
milk exosomes have been shown to help prevent NEC in test mice by
enhancing goblet cell mucin expression, increasing the number of
goblet cells, and improving endoplasmic reticulum (ER) function (40).
Human breast milk is known to support blood clotting (41).

2.4 Applications of MDEs in wound healing

Bovine milk exosomes positively affect the three main types of
skin cells—keratinocytes, melanocytes, and fibroblasts—by
reducing UV-related aging and damage. They help prevent the
buildup of intracellular reactive oxygen species and UV-induced
oxidative stress in epidermal keratinocytes. As a result, bovine milk
exosomes have significant potential as a natural therapeutic agent
for reversing UV-related skin aging and damage (42).

MDEs  Study Model Major outcomes Molecular mechanism/exosomal References
origin cargo
Camel Breast cancer cells and Albino rats Anti-cancer activity and Antioxidant Delivery of pro-apoptotic proteins and miRNAs (23)
activity (increase Bax, caspase-3, decrease Bcl-2); reduces
oxidative stress
Yak IEC-6(intestinal epithelial cell line) create tolerance for hypoxia Regulation of HIF-1o. and VEGF pathways; (24)
delivery of growth-promoting miRNAs
Human Monocyte-derived dendritic cells Anti-HIV-1 miR-146a and miR-21 in exosomes modulate NF-  (25)
(MDDCs) and CD4+ T cells derived inflammatory-reduction capacity KB signaling and cytokine secretion
from intestinal organoids
Porcine Neonatal unbuckled piglet (IPEC-J2) in Intestinal cell proliferation miR-181a, miR-155, and miR-223 regulate T-cell (18, 26)
vitro jejunum Immunity and digestive tract development and intestinal gene expression
Blood T lymphocytes, cultured development in neonatal piglets
Bovine Mice, Attenuates Arthritis Growth of Exosomal TGF-f, miR-148a, and miR-320 (27)
Goblet cell rheumatoid necrotizing enterocolitis suppress proinflammatory cytokines; enhance
and immune response goblet cell mucin secretion
Buffalo Bioinformatics avoiding infections and inflammatory miR-26a, miR-30a target genes linked to (28)
diseases inflammation and infection pathways
Goat Mice inflammatory-decreasing qualities Exosomal miR-21, miR-146 regulate TLR4/NF-kB | (14)
signaling
Sheep Bioinformatics Immune response & inflammation Exosomal miRNAs predicted to target host (29)
during infection immune-related genes
Rat Intestinal epithelial cells Anti-Necrotizing miR-148a and TGF-B in exosomes reduce (30)

Enterocolitis

apoptosis and ER stress
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FIGURE 1

Graphical representation of MDEs and their general cargos component.

2.5 Challenges and limitations

Considering the promising applications of MDEs in neonatal
care, several issues need to be addressed. Standardization is difficult
due to the wide variation in MDE composition across species,
individuals, and lactation stages. Exosomal integrity and functional
biomolecules might be compromised by industrial processes like
pasteurization, which could diminish their therapeutic value in baby
formula. Additionally, there is a lack of robust clinical data in
humans, despite animal studies demonstrating benefits against
diseases such as intestinal inflammation (43).

3 Comparative analysis and functional
heterogeneity of milk-derived
exosomes

A review of the literature shows that the functional power of milk-
derived exosomes (MDEs) varies depending on their biological context,
especially the stage of lactation and the species they originate from (7).
Colostrum-derived MDEs are rich in immunomodulatory elements
(such as miR-181a, lactoferrin) that act as immune triggers for the
newborn, while MDEs from mature milk primarily support tissue
development and help maintain balance (44). Additionally,
comparisons across different species reveal a functional toolkit:
bovine MDEs excel at protecting the gut barrier (45), camel MDEs
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have potent anticancer effects (46), and goat MDEs are highly anti-
inflammatory (47). This diversity emphasizes that MDEs are a varied
group of biologics; therefore, a one-size-fits-all approach is ineftective.
Future studies and therapies should carefully select MDE sources based
on their specific functions to ensure effectiveness and consistency.

4 MDEs in cancer therapy

4.1 Overview of exosome-mediated
intercellular communication in cancer

Exosomes are involved in thrombosis, cancer cell growth,
extracellular matrix remodeling, and angiogenic stimulation.
Their high stability supports tumor environments, aiding the
development of metastatic niches (44). Exosome-mediated
communication allows the transfer of messages to various target
sites. Tumor-released exosomes can passively travel through the
bloodstream and bodily fluids, where they bind to the extracellular
matrix. Despite their widespread distribution, exosomes have a very
short half-life in circulation, with nearly 90% being eliminated
within five minutes of infusion (45). The in vivo biodistribution
of exosomes is affected by factors such as the target cells, delivery
method, and their origin. Recipient cells internalize exosomes
through receptor-mediated endocytosis, membrane fusion, or
other mechanisms. The ways in which MDEs influence specific
diseases are shown in Figure 3.
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Schematic representation of exosomes-mediated cell-to-cell communication channels: (1) Recipient cells are signaled by exosomes directly through
surface-bound ligand. (2) Activated receptors are delivered to recipient cells via exosomes. (3) Exosomes can transfer functional lipids, proteins, and

RNAs to recipient cells, which could epigenetically remodel cells.

4.2 Strategies for delivering exosomes to
cancer cells

Exosomes can enhance the invasive and metastatic abilities of
recipient cells, promote epithelial-mesenchymal transition (EMT),
and contribute to matrix remodeling and the formation of
metastases. They play a vital role in angiogenesis, highlighting
their significance in the progression of gastrointestinal cancers.
Tumor-derived exosomes utilize various mechanisms to stimulate
angiogenesis and support tumor growth (46, 47). Anti-cancer
therapeutic exosomes can target cancer cells or tissues either
passively or actively. Natural tropism allows for the passive
targeting of exosomes, while active targeting is achieved through
surface modifications of exosomal membranes using different
technical methods. Passive targeting is well-established;
nanoparticles smaller than 100 nm can be delivered to the tumor
parenchyma via the “enhanced permeability and retention” (EPR)
effect (48). Exosomes may have inherent tumor-targeting abilities
depending on their cell of origin. In active targeting, exosomes can
be directly engineered on their surface with various external
methods to specifically target and deliver anti-cancer therapies to
tumor cells. Additionally, exosomes can be indirectly engineered by
genetically modifying the cells from which they originate (49-51).

Frontiers in Immunology

4.3 Preclinical studies on the efficacy of
milk-derived exosomes in cancer therapy

Exosomes from tumor cells have been used to treat pleural
effusion and malignant ascites (52). Breast and lung cancers showed
better responses to chemotherapeutic drugs delivered through
exosomes from buffalo milk. The potential for future oral
chemotherapy could be increased by the ability of exosomes from
bovine milk to cross the gastrointestinal barrier (53). Exosomes
carrying chemotherapeutic drugs may accumulate excessively in
various tissues through passive targeting, which could pose risks to
the liver, kidneys, or heart, as summarized in Table 4. However,
milk-derived exosomes modified with folic acid enhance both the
effectiveness and safety of cancer drugs, especially in cancers with
high folic acid receptor expression (54).

4.4 Challenges and strategies in MDE-
based cancer therapy

Attaching anticancer medications to the surfaces of naturally

occurring, physiologically active structures such as proteins
significantly enhances the biological availability and effectiveness
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TABLE 3 List of common proteins derived from milk exosomes.

10.3389/fimmu.2025.1645355

Source of milk Most represented proteins Proteins Method for analysis of References

exosomes described  proteins

Cow Xanthine Butyrophilin oxidase 2107 Liquid Chromatography-MS/MS, (33)
Adipophilin Lactadherin Trypsinolysis

Human Tenascin, Serum albumin -casein, Lactoferrin, and xanthine 115 Liquid Chromatography-MS/MS, (34)
dehydrogenase Trypsinolysis
Ig polymer receptor

Cow Xanthine Butyrophilin dehydrogenase 2299 iTRAQ-LC-MS/MS, Trypsinolysis (35)
fatty acid synthase Lactadherin

Human Syntenic G-protein subunits CD9, CD63, CD81, Flotilin, 2698 Trypsinolysis, SDS-PAGE, and LC-MS/  (36)
Lactadherin, and Annexin proteins linked to Ras Rab MS

Horse Lacto globulin 08 SDS-PAGE, 2D electrophoresis, (37)
Lactadherin Actin Butyrophilin Lactoferrin MALDI-TOF-MS/MS, and

Trypsinolysis

Swine Albumin, Lacto transferrin, Ceruloplasmin, Thrombospondin, 571 Trypsinolysis, SDS-PAGE, and LC-MS/ | (38)

Complement C4, -Glucosidase MS

of the therapy (56). The development of exosomes as medicinal
agents faces several challenges. Collecting exosomes from clinical
models is impractical for large-scale pharmaceutical production,
and when administered systemically, the protein components of
exosomes are likely to provoke immune responses (57, 58). MDEs
were introduced into mouse models, and they did not cause
systemic toxicity or anaphylactic reactions (59). Non-loaded
camel milk exosomes notably inhibited breast cancer growth, as
shown by increased apoptotic markers, decreased oxidative stress,
and downregulation of several genes related to inflammatory
mechanisms and immune response activation (23). In a xenograft
model of non-small cell lung cancer, celastrol-loaded milk
exosomes showed significantly greater antitumor activity
compared to free celastrol. Delivering celastrol via milk exosomes
did not result in significant chronic toxicity (55). One challenge
with using milk exosomes for targeted drug delivery is their lack of
specificity for recipient cells. Whole milk exosomes are absorbed
from the gut and can be modified with ligands to improve their
retention in target tissues (60). Specific ligands can be incorporated
into milk exosome-based vectors to target tumor-specific receptors.
For example, the lipid membrane of milk exosomes can be modified
with hyaluronan molecules to enable targeted delivery of the
cytostatic drug doxorubicin to cells expressing the CD44 receptor.
Many cancer cells exhibit high levels of CD44 and its ligand,
hyaluronan (61). In vitro studies showed that bovine milk
exosomes activate CD69 on normal killer (NK) cells. This
activation may unintentionally boost inflammatory processes, as
NK cells and T lymphocytes produce increased levels of interferon
(IFN) when co-activated with milk exosomes and interleukins 2 and
12 (62). The use of milk exosomes for oral delivery of therapeutic
agents holds great potential, as it can significantly improve the
efficacy of anticancer drugs while reducing therapy-related
toxicity (54).
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5 Milk-derived exosomes in tissue
regeneration

Exosomes are among the most effective methods for wound
healing because of their biocompatibility, origin from healthy cells,
ability to modulate inflammatory responses, and capacity to
promote cell growth and migration (63). TGF-B3 and TGF-1 are
known to play vital roles in wound healing. MDEs have been
reported to inhibit cell migration in the intestinal epithelial cell
line IEC-18. MDEs are especially promising for treating various
types of scars and keloids, including those from skin injuries, acne,
abrasions, and surgical incisions (64). Bovine milk-derived
exosomes have shown beneficial effects in reducing ultraviolet-
induced skin aging and degeneration across three skin cell types:
keratinocytes, melanocytes, and fibroblasts. Milk exosomes can
inhibit the production of intracellular reactive oxygen species and
UV-induced damage in epidermal keratinocytes. They also decrease
melanin production in UV-stimulated melanocytes, potentially
addressing hyperpigmentation disorders. Furthermore, milk
exosomes have been shown to lower matrix metalloproteinase
expression in human endothelial cells, indicating their significant
potential as a natural therapy for reversing ultraviolet-induced skin
aging and damage (65). The effects of exosomes on wound healing
are shown in Figure 4.

6 Milk-derived exosomes in
immunomodulation

Many components in breast milk, including immunoglobulins,
oligosaccharides, glycoproteins, maternal cells, and probiotic
bacteria, have immunoregulatory properties that may influence
their overall effects. Exosomes in human breast milk interact with

frontiersin.org
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The Mechanism of MDEs has multiple effects on disease.

peripheral blood mononuclear cells (PBMCs) to boost IL-5
production while decreasing the synthesis of IL-2, IFN-y, and
TNF (66). Milk exosomes carry a significant amount of miRNA
with potential immunomodulatory effects (17). MiR-148a helps
regulate the functions of B and T lymphocytes and may also
contribute to the prevention of autoimmune and inflammatory
diseases. Recent studies show that mature bovine milk exosomes
and colostrum contain the highest concentrations of miRNAs
linked to the immune system, including miR-181a, miR-26a, and
miR-19 (67). Therefore, miRNA in milk exosomes from different
species supports the development of the fetus’s immune system.
MDEs can transfer genetic material from mother to child,
influencing the baby’s immune response, which is vital for
treating various disorders. This is most notably seen with camel-
derived milk exosomes (68). Camel milk proteins offer several
benefits, including immunomodulatory and antioxidant
properties. They are especially effective in regulating
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inflammatory responses and boosting immune reactions in
species treated with cyclophosphamide, as they help reduce
oxidative stress and enhance antioxidant defenses (22). Besides
immune cells, human breast milk contains soluble proteins,
including cytokines, IgA, antimicrobial peptides, and other
substances (69). Both mature human breast milk and animal milk
contain exosomes expressing tetraspanin proteins CD63 and CD81,
along with the MHC class II protein CD86 (54). MDEs can decrease
cytokine production by PBMCs stimulated by anti-CD3 and
promote the expansion of Foxp3+ CD4+/CD25+ T regulatory
cells. As a result, these exosomes can influence a child’s immune
system (66). Porcine milk exosomes from pig milk contain various
bundled miRNAs and play a vital role in piglet growth. These
components significantly impact the regulation of the immune
system and the development of the digestive tract in newborn
piglets (18). Although breastfeeding can transmit HIV-1 from
mother to child, the risk of transmission is less than 30%.
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TABLE 4 MDEs from different animals worked as a carrier for effective
drugs.

Model
system

Exosome
source

Therapeutic
cargo

Key findings

Camel MDEs | Breast Native (no drug) 54% tumor growth
cancer in reduction, increase
rats apoptosis, decrease
oxidative stress (23)
Bovine MDEs | Breast Doxorubicin 2.5x higher tumor drug
cancer accumulation vs free
xenograft drug (54)
(mouse)
Bovine MDEs | Lung cancer  Paclitaxel Approx. 3x higher
xenograft tumor inhibition,
(mouse) reduced systemic
toxicity (53)
Bovine MDEs = NSCLC Celastrol Significant tumor
xenograft suppression, no chronic
(mouse) toxicity (55)
Buffalo MDEs | Breast and Chemotherapeutics | Improved sensitivity to
lung cancer drugs (22)
(in vitro &
in vivo)

6.1 Clinical trials on the efficacy of MDEs in
immunomodulation

We examined the effects of Col-exo, a component of bovine
milk, on a murine model of ulcerative colitis induced by dextran
sodium sulfate (DSS). Col-exo effectively neutralized reactive
oxygen species and modulated immune cytokine production,
promoting the growth of colonic epithelial cells and macrophages
in an anti-inflammatory environment. Additionally, Col-exo can
pass through the digestive system intact, delivering bioactive
substances to the stomach, small intestine, and colon. Our results
suggest that oral administration of Col-exo can alleviate colitis
symptoms such as weight loss, intestinal bleeding, and prolonged
diarrhea by regulating duodenal inflammatory immune responses.
Overall, the robust structural and functional stability of bovine
colostrum-derived exosomes highlights their potential as a natural
treatment for wound healing (70). Human breast milk (HBM)
contains a diverse array of components, including a microbiome,
EVs, and miRNAs, in addition to its nutritional content and non-
nutritional proteins, such as hormones, growth factors, and
immunoregulatory proteins. Milk-derived exosomes have
demonstrated a wide range of physiological and therapeutic
effects on cancer, inflammation, and cell proliferation, primarily
due to the proteins and microRNAs they contain. Exosomal
miRNAs play a crucial role in immune regulation and tumor
development, as they are resistant to enzymatic digestion and
acidic conditions. Moreover, research explores the use of milk-
derived exosomes as drug delivery systems for siRNA and small
molecules targeting tumor sites (71). Exosomes derived from milk,
citrus pectin, and dietary omega-3 polyunsaturated fatty acids can
reduce inflammation at the intestinal barrier. Their molecular
actions primarily include enhancing the expression of tight
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junction proteins, promoting epithelial cell proliferation,
enriching the mucus layer, modulating immune responses, and
preventing inflammatory cell infiltration (72). The findings showed
that the bidirectional immunomodulatory effects of EVs from
various dairy products were similar to those of EVs from raw
milk. These effects included promoting normal macrophage
proliferation, increasing NO and cytokine levels, and inhibiting
the LPS-induced TLR4/NF-kB pathway, as well as reducing
inflammatory cytokine production. Notably, dairy-derived EVs
can alter the expression of miR-155, miR-223, and miR-181a,
which are crucial for the body’s response to infection (73).

6.2 Challenges and future direction in
milk-derived exosomes-based
immunomodulation

Due to the molecular complexity of MDEs, many obstacles
hinder their clinical translation as immunomodulatory drugs. The
primary challenge is the high heterogeneity in exosomal
formulations, where significant variations in cargo and bioactivity
result from species differences, individual donor variability, and
most notably, the stage of lactation (such as colostrum versus
mature milk) (74). Calculating dosage and validating efficacy are
further complicated by the difficulty in replicating therapeutic
effects from a single MDE source, due to a lack of standardized
composition (75). A major barrier to their use in baby formula or
biotherapeutics is that industrial processing steps, such as
pasteurization, can destroy sensitive immunomodulatory cargos,
including specific miRNAs and proteins, which are crucial for their
therapeutic effects and thereby compromise exosomal integrity (76).
Future research must focus on several key areas to overcome these
challenges and unlock the unique epigenetic and immunoregulatory
potential of MDEs. First, the field needs to establish strict, potency-
based quality control measures that go beyond simple particle
counting. This involves developing standardized assays to assess
the levels and integrity of important functional components, such as
immunomodulatory proteins or miRNAs (e.g., miR-148a) (77).
Second, standards for Good Manufacturing Practice (GMP)
tailored specifically for MDEs must be developed promptly. These
standards should ensure batch-to-batch consistency and reliable
therapeutic outcomes by considering critical factors, including
source species, lactation stage, and processing history (78). Lastly,
research should shift from descriptive to mechanistic studies that
establish direct links between specific MDE cargos and precise
immunological effects. By adopting this focused and standardized
approach, the field can unlock the substantial potential of MDEs as
next-generation, natural immunomodulators.

6.3 Clinical translation and future
challenges

Even with strong preclinical potential, numerous obstacles
remain to be overcome before MDEs can be utilized in clinical
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Schematic diagram showing milk-derived exosome isolation and its biological role in wound healing. Cancer susceptibility of gene 101 (TSG101),
cyclo-oxygenase (COX-2), and milk EXO isolation and its impact on wound healing

settings. Critical limitations include a significant lack of data from
human trials, unclear regulatory procedures for standardization,
and insufficient safety profiles regarding systemic and long-term
immunogenicity (79). To evaluate clinical viability, scalable
production that complies with Good Manufacturing Practices
(GMP) and a comprehensive cost-benefit analysis in comparison
to synthetic Nano carriers are also necessary. To fully utilize the
therapeutic promise of MDEs in human health, these translational
issues must be addressed (79).

7 Conclusion

Milk-derived exosomes (MDEs) are complex signaling vehicles
that play a crucial role in both newborn immunology and maternal-
offspring communication. They are much more than just
straightforward biomolecule carriers (80). A comprehensive
evaluation of the literature, however, shows that their biological
and therapeutic roles are significantly shaped by their origin rather
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than being general. Important factors influencing their activity
include the stage of lactation (colostrum MDEs serve as
immunological primers, while mature milk MDEs support tissue
homeostasis) (81) and the species of origin (each providing unique
functional profiles, ranging from the gut-protective effects of bovine
MDEs to the anti-inflammatory properties of camel and goat
MDEs) (82). This functional variability presents both
opportunities and challenges. Although it makes standardization
more difficult, it offers a wide range of tools for targeted therapy,
whether they are used to improve drug delivery in oncology,
promote wound healing, or mitigate necrotizing enter colitis (74).
Further research must extend beyond descriptive cataloguing to
fully realize this promise. The field urgently needs to conduct direct,
head-to-head comparative research and develop standardized,
potency-based characterization techniques that account for source
variability. The potential of MDEs as natural, efficient, and targeted
medicines in nutritional immunology and precision medicine may
be realized by accepting this nuanced view of them as a
physiologically diverse class of therapies.
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