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Through the targeted release of immunologically active cargo, milk-derived

exosomes (MDEs) are becoming increasingly important channels for maternal-

neonatal communication. This study summarizes available data, showing that the

bioactivity of MDEs varies and is significantly influenced by factors such as

species origin and lactation stage (colostrum versus mature milk). It is argued

that this functional variability presents both opportunities and challenges for

developing therapeutics and is crucial for understanding their role in shaping the

newborn’s immune system. The composition of colostrum-derived MDEs differs

significantly from that in mature milk, although both are rich in

immunomodulatory microRNAs (such as miR-181a and miR-155) and proteins

that promote immune tolerance and gut barrier integrity. Furthermore, the

importance of careful source selection is highlighted by interspecies

differences in MDE cargo, such as the varying anti-inflammatory properties of

camel versus bovine exosomes. To address major challenges like standardization

and scalable production, the potential of MDEs as natural nano-carriers for

immunomodulatory therapy was critically evaluated. This review offers a

framework for future research in nutritional immunology, moving beyond a

simple component list to critically assess source-dependent functionality.
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1 Introduction

The evolutionarily conserved lipid-bound nanocarriers known

as extracellular vesicles (EVs), like exosomes, allow for intercellular

communication by delivering functional cargo to recipient cells,

such as proteins, DNA, and various RNA species (1, 2). This affects

a broad range of physiological and pathological processes, from

immune modulation to cancer metastasis (3, 4). These vesicles,

which contain a wide variety of bioactive compounds, are especially

plentiful and persistent in milk-derived exosomes (MDEs), which

have been recovered from bovine and human species (5). The

dynamic nature of MDEs’ payload, which is specifically adapted to

the neonate’s developmental requirements, is a crucial component.

For example, immunomodulatory microRNAs (like miR-181a and

miR-155) and proteins (such as lactadherin and immunoglobulins)

that are essential for training the developing immune system and

maintaining the integrity of the gut barrier are greatly abundant in

colostrum-derived MDEs (6). Higher quantities of proteins linked

to apoptosis and cell motility, on the other hand, indicate that the

profile of mature milk MDEs changes towards a cargo supporting

tissue maturation, metabolic regulation, and cellular homeostasis

(7). The complex biological role of MDEs is highlighted by this

functional plasticity, which is further varied by species-specific

adaptations (8). Their isolation, typically achieved through

methods such as ultracentrifugation (9), exposes 30–300 nm

nanoparticles that are well-suited for cellular absorption and

systemic dispersion, underscoring their immense potential as

nutritional immunomodulators (10) and natural therapeutic

agents (11). Although it is commonly known that MDEs include

a variety of biomolecular cargo, a comprehensive review of the

literature reveals a more complex story (12). MDEs’ immunological

effects vary greatly depending on their biological setting and are not

a general characteristic (13). The lactation stage, where colostrum

MDEs are primed for immune education and mature milk MDEs

may support tissue growth and homeostasis, and the species of

origin, which confers unique functional characteristics on their

exosomal cargo, are two factors that stand out as being particularly

decisive (14). Therefore, using this functional plasticity as a

perspective, this review will critically evaluate the evidence

supporting MDEs as immunomodulatory drugs. In addition to

discussing the substantial translational challenges posed by their

intrinsic heterogeneity, the implications of this diversity for their

inherent role in infant health and their potential as therapeutic

vehicles are explored. Although the literature now in publication

thoroughly lists the various bio-molecular cargoes of MDEs, a

purely descriptive approach restricts their potential for

therapeutic use (15). This review goes beyond a synopsis to offer

a critical synthesis, suggesting that a framework of source-

dependent functional heterogeneity governs the bioactivity of

MDEs, which is not uniform. We have critically assessed the data,

which reveals that two key factors species-specificity and lactation

stage (colostrum vs. mature milk) create a range of MDE effects,

from tissue healing to strong immunomodulation.
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2 Role of milk-derived exosomes in
neonatal health

2.1 Exosome composition in mature milk
and colostrum

EVs derived from human milk mainly consist of proteins, lipids,

and DNA, which are typically released by cells (16). Research has

identified about 639 proteins and peptides within these EVs.

Additionally, both term and preterm human MDEs contain 395

different lipids. Notably, up to 50 of these lipids are involved in

regulating the activity of intestinal epithelial cells (17). The

composition of MDEs varies greatly between colostrum and

mature milk, as summarized in Table 1, with functional

implications discussed in Section 4.

Nucleic acids have attracted considerable interest among

exosome components due to their significant role in regulating

metabolic processes (21). Milk exosomes contain a wide variety of

nucleic acids, including deoxyribonucleic acid (DNA), mRNA,

miRNAs, circular RNAs, and long non-coding RNAs (lncRNAs).

In particular, milk is a rich source of miRNAs (22). Lipidomic

research of MDEs has identified several common lipids, such as

sphingomyelin, phosphatidylcholine, phosphatidylserine, and

phosphatidylethanolamine (19). Exosomes may affect the function
TABLE 1 Comparative composition of exosomes derived from colostrum
and mature milk.

Component
Type

Mature Milk
MDEs

Colostrum MDEs References

Lipids Greater diversity of
phospholipids
and glycerolipids
associated with
metabolism

Higher levels of
sphingomyelin and
phosphatidylserine
(linked to immune
signaling)

(17)

lncRNAs Mature milk
contains more
lncRNAs related to
apoptosis and
differentiation

Stage-dependent
variation; colostrum
MDEs enriched with
immune-modulatory
lncRNAs

(17)

miRNAs More stable
expression of
growth/metabolic
miRNAs

Higher abundance of
immune-regulatory
miRNAs (e.g., miR-
181a, miR-155, miR-
223)

(18)

Metabolites More metabolites
involved in
energy metabolism
and gut maturation

Richer in bioactive
metabolites that
support neonatal
immune development

(19)

Proteins Higher levels of
proteins linked to
apoptosis, cell
motility, metabolic
regulation

Enriched in immune-
related proteins (e.g.,
immunoglobulins,
lactoferrin,
antimicrobial
peptides,
inflammatory
proteins)

(20)
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of the mammary gland. Comparing the proteome of highly purified

milk exosomes with that of whole milk can uncover the actual

protein content of these exosomes. Similar analyses can be

performed on EVs from other body fluids. Studying the proteome

of MDEs could provide insights into their potential medical uses,

such as biocompatible drug delivery systems or tools for

personalized therapy. Some of these applications are summarized

in Table 2.
2.2 Biological functions of MDEs in
neonatal health

One of the most important signaling particles that facilitates

cellular communication between mother and child is MDEs. These

exosomes play a key role in protecting newborns from conditions

such as inflammatory bowel disease, diabetes, and obesity. They also

boost the child’s immune system through the antibodies they

contain. Additionally, human breast milk includes other crucial

components, such as immune cells, soluble proteins like IgA,

cytokines, and antimicrobial peptides, all of which help defend

newborns against early illnesses (31). It also inhibits the

proliferation of various cell lines (32). The general exosome

cargos are shown in Figure 1. The cell-to-cell communication

mediated by exosomes is illustrated in Figure 2.
Frontiers in Immunology 03
2.3 Potential applications of milk-derived
exosomes in pediatric medicine

Due to their diverse biomolecular cargo, MDEs are rich in several

medically essential molecules, as detailed in Table 3. These exosomes

may help prevent the death of intestinal epithelial cells, offering a

promising therapeutic option for children with intestinal damage.

Since necrotizing enterocolitis (NEC) is a major cause of morbidity

and mortality in newborns, MDEs present a potential treatment to

reduce the incidence and severity of NEC in at-risk infants (39). Cow’s

milk exosomes have been shown to help prevent NEC in test mice by

enhancing goblet cell mucin expression, increasing the number of

goblet cells, and improving endoplasmic reticulum (ER) function (40).

Human breast milk is known to support blood clotting (41).
2.4 Applications of MDEs in wound healing

Bovine milk exosomes positively affect the three main types of

skin cells—keratinocytes, melanocytes, and fibroblasts—by

reducing UV-related aging and damage. They help prevent the

buildup of intracellular reactive oxygen species and UV-induced

oxidative stress in epidermal keratinocytes. As a result, bovine milk

exosomes have significant potential as a natural therapeutic agent

for reversing UV-related skin aging and damage (42).
TABLE 2 Applications of MDEs for the treatment of several diseases.

MDEs
origin

Study Model Major outcomes Molecular mechanism/exosomal
cargo

References

Camel Breast cancer cells and Albino rats Anti-cancer activity and Antioxidant
activity

Delivery of pro-apoptotic proteins and miRNAs
(increase Bax, caspase-3, decrease Bcl-2); reduces
oxidative stress

(23)

Yak IEC-6(intestinal epithelial cell line) create tolerance for hypoxia Regulation of HIF-1a and VEGF pathways;
delivery of growth-promoting miRNAs

(24)

Human Monocyte-derived dendritic cells
(MDDCs) and CD4+ T cells derived
from intestinal organoids

Anti-HIV-1
inflammatory-reduction capacity

miR-146a and miR-21 in exosomes modulate NF-
kB signaling and cytokine secretion

(25)

Porcine Neonatal unbuckled piglet (IPEC-J2) in
vitro jejunum
Blood T lymphocytes, cultured

Intestinal cell proliferation
Immunity and digestive tract
development in neonatal piglets

miR-181a, miR-155, and miR-223 regulate T-cell
development and intestinal gene expression

(18, 26)

Bovine Mice,
Goblet cell

Attenuates Arthritis Growth of
rheumatoid necrotizing enterocolitis
and immune response

Exosomal TGF-b, miR-148a, and miR-320
suppress proinflammatory cytokines; enhance
goblet cell mucin secretion

(27)

Buffalo Bioinformatics avoiding infections and inflammatory
diseases

miR-26a, miR-30a target genes linked to
inflammation and infection pathways

(28)

Goat Mice inflammatory-decreasing qualities Exosomal miR-21, miR-146 regulate TLR4/NF-kB
signaling

(14)

Sheep Bioinformatics Immune response & inflammation
during infection

Exosomal miRNAs predicted to target host
immune-related genes

(29)

Rat Intestinal epithelial cells Anti-Necrotizing
Enterocolitis

miR-148a and TGF-b in exosomes reduce
apoptosis and ER stress

(30)
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2.5 Challenges and limitations

Considering the promising applications of MDEs in neonatal

care, several issues need to be addressed. Standardization is difficult

due to the wide variation in MDE composition across species,

individuals, and lactation stages. Exosomal integrity and functional

biomolecules might be compromised by industrial processes like

pasteurization, which could diminish their therapeutic value in baby

formula. Additionally, there is a lack of robust clinical data in

humans, despite animal studies demonstrating benefits against

diseases such as intestinal inflammation (43).
3 Comparative analysis and functional
heterogeneity of milk-derived
exosomes

A review of the literature shows that the functional power of milk-

derived exosomes (MDEs) varies depending on their biological context,

especially the stage of lactation and the species they originate from (7).

Colostrum-derived MDEs are rich in immunomodulatory elements

(such as miR-181a, lactoferrin) that act as immune triggers for the

newborn, while MDEs from mature milk primarily support tissue

development and help maintain balance (44). Additionally,

comparisons across different species reveal a functional toolkit:

bovine MDEs excel at protecting the gut barrier (45), camel MDEs
Frontiers in Immunology 04
have potent anticancer effects (46), and goat MDEs are highly anti-

inflammatory (47). This diversity emphasizes that MDEs are a varied

group of biologics; therefore, a one-size-fits-all approach is ineffective.

Future studies and therapies should carefully select MDE sources based

on their specific functions to ensure effectiveness and consistency.
4 MDEs in cancer therapy

4.1 Overview of exosome-mediated
intercellular communication in cancer

Exosomes are involved in thrombosis, cancer cell growth,

extracellular matrix remodeling, and angiogenic stimulation.

Their high stability supports tumor environments, aiding the

development of metastatic niches (44). Exosome-mediated

communication allows the transfer of messages to various target

sites. Tumor-released exosomes can passively travel through the

bloodstream and bodily fluids, where they bind to the extracellular

matrix. Despite their widespread distribution, exosomes have a very

short half-life in circulation, with nearly 90% being eliminated

within five minutes of infusion (45). The in vivo biodistribution

of exosomes is affected by factors such as the target cells, delivery

method, and their origin. Recipient cells internalize exosomes

through receptor-mediated endocytosis, membrane fusion, or

other mechanisms. The ways in which MDEs influence specific

diseases are shown in Figure 3.
FIGURE 1

Graphical representation of MDEs and their general cargos component.
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4.2 Strategies for delivering exosomes to
cancer cells

Exosomes can enhance the invasive and metastatic abilities of

recipient cells, promote epithelial-mesenchymal transition (EMT),

and contribute to matrix remodeling and the formation of

metastases. They play a vital role in angiogenesis, highlighting

their significance in the progression of gastrointestinal cancers.

Tumor-derived exosomes utilize various mechanisms to stimulate

angiogenesis and support tumor growth (46, 47). Anti-cancer

therapeutic exosomes can target cancer cells or tissues either

passively or actively. Natural tropism allows for the passive

targeting of exosomes, while active targeting is achieved through

surface modifications of exosomal membranes using different

technical methods. Passive targeting is well-established;

nanoparticles smaller than 100 nm can be delivered to the tumor

parenchyma via the “enhanced permeability and retention” (EPR)

effect (48). Exosomes may have inherent tumor-targeting abilities

depending on their cell of origin. In active targeting, exosomes can

be directly engineered on their surface with various external

methods to specifically target and deliver anti-cancer therapies to

tumor cells. Additionally, exosomes can be indirectly engineered by

genetically modifying the cells from which they originate (49–51).
Frontiers in Immunology 05
4.3 Preclinical studies on the efficacy of
milk-derived exosomes in cancer therapy

Exosomes from tumor cells have been used to treat pleural

effusion and malignant ascites (52). Breast and lung cancers showed

better responses to chemotherapeutic drugs delivered through

exosomes from buffalo milk. The potential for future oral

chemotherapy could be increased by the ability of exosomes from

bovine milk to cross the gastrointestinal barrier (53). Exosomes

carrying chemotherapeutic drugs may accumulate excessively in

various tissues through passive targeting, which could pose risks to

the liver, kidneys, or heart, as summarized in Table 4. However,

milk-derived exosomes modified with folic acid enhance both the

effectiveness and safety of cancer drugs, especially in cancers with

high folic acid receptor expression (54).
4.4 Challenges and strategies in MDE-
based cancer therapy

Attaching anticancer medications to the surfaces of naturally

occurring, physiologically active structures such as proteins

significantly enhances the biological availability and effectiveness
FIGURE 2

Schematic representation of exosomes-mediated cell-to-cell communication channels: (1) Recipient cells are signaled by exosomes directly through
surface-bound ligand. (2) Activated receptors are delivered to recipient cells via exosomes. (3) Exosomes can transfer functional lipids, proteins, and
RNAs to recipient cells, which could epigenetically remodel cells.
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of the therapy (56). The development of exosomes as medicinal

agents faces several challenges. Collecting exosomes from clinical

models is impractical for large-scale pharmaceutical production,

and when administered systemically, the protein components of

exosomes are likely to provoke immune responses (57, 58). MDEs

were introduced into mouse models, and they did not cause

systemic toxicity or anaphylactic reactions (59). Non-loaded

camel milk exosomes notably inhibited breast cancer growth, as

shown by increased apoptotic markers, decreased oxidative stress,

and downregulation of several genes related to inflammatory

mechanisms and immune response activation (23). In a xenograft

model of non-small cell lung cancer, celastrol-loaded milk

exosomes showed significantly greater antitumor activity

compared to free celastrol. Delivering celastrol via milk exosomes

did not result in significant chronic toxicity (55). One challenge

with using milk exosomes for targeted drug delivery is their lack of

specificity for recipient cells. Whole milk exosomes are absorbed

from the gut and can be modified with ligands to improve their

retention in target tissues (60). Specific ligands can be incorporated

into milk exosome-based vectors to target tumor-specific receptors.

For example, the lipid membrane of milk exosomes can be modified

with hyaluronan molecules to enable targeted delivery of the

cytostatic drug doxorubicin to cells expressing the CD44 receptor.

Many cancer cells exhibit high levels of CD44 and its ligand,

hyaluronan (61). In vitro studies showed that bovine milk

exosomes activate CD69 on normal killer (NK) cells. This

activation may unintentionally boost inflammatory processes, as

NK cells and T lymphocytes produce increased levels of interferon

(IFN) when co-activated with milk exosomes and interleukins 2 and

12 (62). The use of milk exosomes for oral delivery of therapeutic

agents holds great potential, as it can significantly improve the

efficacy of anticancer drugs while reducing therapy-related

toxicity (54).
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5 Milk-derived exosomes in tissue
regeneration

Exosomes are among the most effective methods for wound

healing because of their biocompatibility, origin from healthy cells,

ability to modulate inflammatory responses, and capacity to

promote cell growth and migration (63). TGF-b3 and TGF-b1 are

known to play vital roles in wound healing. MDEs have been

reported to inhibit cell migration in the intestinal epithelial cell

line IEC-18. MDEs are especially promising for treating various

types of scars and keloids, including those from skin injuries, acne,

abrasions, and surgical incisions (64). Bovine milk-derived

exosomes have shown beneficial effects in reducing ultraviolet-

induced skin aging and degeneration across three skin cell types:

keratinocytes, melanocytes, and fibroblasts. Milk exosomes can

inhibit the production of intracellular reactive oxygen species and

UV-induced damage in epidermal keratinocytes. They also decrease

melanin production in UV-stimulated melanocytes, potentially

addressing hyperpigmentation disorders. Furthermore, milk

exosomes have been shown to lower matrix metalloproteinase

expression in human endothelial cells, indicating their significant

potential as a natural therapy for reversing ultraviolet-induced skin

aging and damage (65). The effects of exosomes on wound healing

are shown in Figure 4.
6 Milk-derived exosomes in
immunomodulation

Many components in breast milk, including immunoglobulins,

oligosaccharides, glycoproteins, maternal cells, and probiotic

bacteria, have immunoregulatory properties that may influence

their overall effects. Exosomes in human breast milk interact with
TABLE 3 List of common proteins derived from milk exosomes.

Source of milk
exosomes

Most represented proteins Proteins
described

Method for analysis of
proteins

References

Cow Xanthine Butyrophilin oxidase
Adipophilin Lactadherin

2107 Liquid Chromatography-MS/MS,
Trypsinolysis

(33)

Human Tenascin, Serum albumin -casein, Lactoferrin, and xanthine
dehydrogenase
Ig polymer receptor

115 Liquid Chromatography-MS/MS,
Trypsinolysis

(34)

Cow Xanthine Butyrophilin dehydrogenase
fatty acid synthase Lactadherin

2299 iTRAQ-LC-MS/MS, Trypsinolysis (35)

Human Syntenic G-protein subunits CD9, CD63, CD81, Flotilin,
Lactadherin, and Annexin proteins linked to Ras Rab

2698 Trypsinolysis, SDS-PAGE, and LC-MS/
MS

(36)

Horse Lacto globulin
Lactadherin Actin Butyrophilin Lactoferrin

08 SDS-PAGE, 2D electrophoresis,
MALDI-TOF-MS/MS, and
Trypsinolysis

(37)

Swine Albumin, Lacto transferrin, Ceruloplasmin, Thrombospondin,
Complement C4, -Glucosidase

571 Trypsinolysis, SDS-PAGE, and LC-MS/
MS

(38)
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peripheral blood mononuclear cells (PBMCs) to boost IL-5

production while decreasing the synthesis of IL-2, IFN-g, and
TNF (66). Milk exosomes carry a significant amount of miRNA

with potential immunomodulatory effects (17). MiR-148a helps

regulate the functions of B and T lymphocytes and may also

contribute to the prevention of autoimmune and inflammatory

diseases. Recent studies show that mature bovine milk exosomes

and colostrum contain the highest concentrations of miRNAs

linked to the immune system, including miR-181a, miR-26a, and

miR-19 (67). Therefore, miRNA in milk exosomes from different

species supports the development of the fetus’s immune system.

MDEs can transfer genetic material from mother to child,

influencing the baby’s immune response, which is vital for

treating various disorders. This is most notably seen with camel-

derived milk exosomes (68). Camel milk proteins offer several

benefits, including immunomodulatory and antioxidant

properties. They are especial ly effective in regulating
Frontiers in Immunology 07
inflammatory responses and boosting immune reactions in

species treated with cyclophosphamide, as they help reduce

oxidative stress and enhance antioxidant defenses (22). Besides

immune cells, human breast milk contains soluble proteins,

including cytokines, IgA, antimicrobial peptides, and other

substances (69). Both mature human breast milk and animal milk

contain exosomes expressing tetraspanin proteins CD63 and CD81,

along with the MHC class II protein CD86 (54). MDEs can decrease

cytokine production by PBMCs stimulated by anti-CD3 and

promote the expansion of Foxp3+ CD4+/CD25+ T regulatory

cells. As a result, these exosomes can influence a child’s immune

system (66). Porcine milk exosomes from pig milk contain various

bundled miRNAs and play a vital role in piglet growth. These

components significantly impact the regulation of the immune

system and the development of the digestive tract in newborn

piglets (18). Although breastfeeding can transmit HIV-1 from

mother to child, the risk of transmission is less than 30%.
FIGURE 3

The Mechanism of MDEs has multiple effects on disease.
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6.1 Clinical trials on the efficacy of MDEs in
immunomodulation

We examined the effects of Col-exo, a component of bovine

milk, on a murine model of ulcerative colitis induced by dextran

sodium sulfate (DSS). Col-exo effectively neutralized reactive

oxygen species and modulated immune cytokine production,

promoting the growth of colonic epithelial cells and macrophages

in an anti-inflammatory environment. Additionally, Col-exo can

pass through the digestive system intact, delivering bioactive

substances to the stomach, small intestine, and colon. Our results

suggest that oral administration of Col-exo can alleviate colitis

symptoms such as weight loss, intestinal bleeding, and prolonged

diarrhea by regulating duodenal inflammatory immune responses.

Overall, the robust structural and functional stability of bovine

colostrum-derived exosomes highlights their potential as a natural

treatment for wound healing (70). Human breast milk (HBM)

contains a diverse array of components, including a microbiome,

EVs, and miRNAs, in addition to its nutritional content and non-

nutritional proteins, such as hormones, growth factors, and

immunoregulatory proteins. Milk-derived exosomes have

demonstrated a wide range of physiological and therapeutic

effects on cancer, inflammation, and cell proliferation, primarily

due to the proteins and microRNAs they contain. Exosomal

miRNAs play a crucial role in immune regulation and tumor

development, as they are resistant to enzymatic digestion and

acidic conditions. Moreover, research explores the use of milk-

derived exosomes as drug delivery systems for siRNA and small

molecules targeting tumor sites (71). Exosomes derived from milk,

citrus pectin, and dietary omega-3 polyunsaturated fatty acids can

reduce inflammation at the intestinal barrier. Their molecular

actions primarily include enhancing the expression of tight
Frontiers in Immunology 08
junction proteins, promoting epithelial cell proliferation,

enriching the mucus layer, modulating immune responses, and

preventing inflammatory cell infiltration (72). The findings showed

that the bidirectional immunomodulatory effects of EVs from

various dairy products were similar to those of EVs from raw

milk. These effects included promoting normal macrophage

proliferation, increasing NO and cytokine levels, and inhibiting

the LPS-induced TLR4/NF-kB pathway, as well as reducing

inflammatory cytokine production. Notably, dairy-derived EVs

can alter the expression of miR-155, miR-223, and miR-181a,

which are crucial for the body’s response to infection (73).
6.2 Challenges and future direction in
milk-derived exosomes-based
immunomodulation

Due to the molecular complexity of MDEs, many obstacles

hinder their clinical translation as immunomodulatory drugs. The

primary challenge is the high heterogeneity in exosomal

formulations, where significant variations in cargo and bioactivity

result from species differences, individual donor variability, and

most notably, the stage of lactation (such as colostrum versus

mature milk) (74). Calculating dosage and validating efficacy are

further complicated by the difficulty in replicating therapeutic

effects from a single MDE source, due to a lack of standardized

composition (75). A major barrier to their use in baby formula or

biotherapeutics is that industrial processing steps, such as

pasteurization, can destroy sensitive immunomodulatory cargos,

including specific miRNAs and proteins, which are crucial for their

therapeutic effects and thereby compromise exosomal integrity (76).

Future research must focus on several key areas to overcome these

challenges and unlock the unique epigenetic and immunoregulatory

potential of MDEs. First, the field needs to establish strict, potency-

based quality control measures that go beyond simple particle

counting. This involves developing standardized assays to assess

the levels and integrity of important functional components, such as

immunomodulatory proteins or miRNAs (e.g., miR-148a) (77).

Second, standards for Good Manufacturing Practice (GMP)

tailored specifically for MDEs must be developed promptly. These

standards should ensure batch-to-batch consistency and reliable

therapeutic outcomes by considering critical factors, including

source species, lactation stage, and processing history (78). Lastly,

research should shift from descriptive to mechanistic studies that

establish direct links between specific MDE cargos and precise

immunological effects. By adopting this focused and standardized

approach, the field can unlock the substantial potential of MDEs as

next-generation, natural immunomodulators.
6.3 Clinical translation and future
challenges

Even with strong preclinical potential, numerous obstacles

remain to be overcome before MDEs can be utilized in clinical
TABLE 4 MDEs from different animals worked as a carrier for effective
drugs.

Exosome
source

Model
system

Therapeutic
cargo

Key findings

Camel MDEs Breast
cancer in
rats

Native (no drug) 54% tumor growth
reduction, increase
apoptosis, decrease
oxidative stress (23)

Bovine MDEs Breast
cancer
xenograft
(mouse)

Doxorubicin 2.5× higher tumor drug
accumulation vs free
drug (54)

Bovine MDEs Lung cancer
xenograft
(mouse)

Paclitaxel Approx. 3× higher
tumor inhibition,
reduced systemic
toxicity (53)

Bovine MDEs NSCLC
xenograft
(mouse)

Celastrol Significant tumor
suppression, no chronic
toxicity (55)

Buffalo MDEs Breast and
lung cancer
(in vitro &
in vivo)

Chemotherapeutics Improved sensitivity to
drugs (22)
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settings. Critical limitations include a significant lack of data from

human trials, unclear regulatory procedures for standardization,

and insufficient safety profiles regarding systemic and long-term

immunogenicity (79). To evaluate clinical viability, scalable

production that complies with Good Manufacturing Practices

(GMP) and a comprehensive cost-benefit analysis in comparison

to synthetic Nano carriers are also necessary. To fully utilize the

therapeutic promise of MDEs in human health, these translational

issues must be addressed (79).
7 Conclusion

Milk-derived exosomes (MDEs) are complex signaling vehicles

that play a crucial role in both newborn immunology and maternal-

offspring communication. They are much more than just

straightforward biomolecule carriers (80). A comprehensive

evaluation of the literature, however, shows that their biological

and therapeutic roles are significantly shaped by their origin rather
Frontiers in Immunology 09
than being general. Important factors influencing their activity

include the stage of lactation (colostrum MDEs serve as

immunological primers, while mature milk MDEs support tissue

homeostasis) (81) and the species of origin (each providing unique

functional profiles, ranging from the gut-protective effects of bovine

MDEs to the anti-inflammatory properties of camel and goat

MDEs) (82). This functional variability presents both

opportunities and challenges. Although it makes standardization

more difficult, it offers a wide range of tools for targeted therapy,

whether they are used to improve drug delivery in oncology,

promote wound healing, or mitigate necrotizing enter colitis (74).

Further research must extend beyond descriptive cataloguing to

fully realize this promise. The field urgently needs to conduct direct,

head-to-head comparative research and develop standardized,

potency-based characterization techniques that account for source

variability. The potential of MDEs as natural, efficient, and targeted

medicines in nutritional immunology and precision medicine may

be realized by accepting this nuanced view of them as a

physiologically diverse class of therapies.
FIGURE 4

Schematic diagram showing milk-derived exosome isolation and its biological role in wound healing. Cancer susceptibility of gene 101 (TSG101),
cyclo-oxygenase (COX-2), and milk EXO isolation and its impact on wound healing
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