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machine learning strategies
identifies immune related
candidate biomarkers in
inflammation-associated
hypertrophic cardiomyopathy
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Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laboratory of Tumor Molecular
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Background: Hypertrophic cardiomyopathy (HCM) is a common inherited heart
disease frequently leading to heart failure. Although sarcomeric gene mutations
are known, they only account for a subset of cases. The role of immune
dysregulation in HCM progression has gained increasing attention,
necessitating the exploration of immune-related biomarkers and therapeutic
targets. This study integrates Mendelian randomization (MR), transcriptomics,
machine learning, and experimental validation to investigate the immune
mechanisms underlying HCM.

Methods: We analyzed three transcriptomic datasets from the GEO database
(210 healthy controls, 152 HCM patients) and identified differentially expressed
genes (DEGs) using the R package limma. MR analysis was performed on 19,942
expression quantitative trait loci (eQTLs) and HCM cases using the
TwoSampleMR package. Machine learning (10 algorithms) was employed to
construct diagnostic models, and SHAP analysis was applied to assess key
gene contributions. Functional enrichment was performed with clusterProfiler,
diagnostic performance was evaluated via ROC curves, and immune cell
infiltration was analyzed using CIBERSORT. A competing endogenous RNA
(ceRNA) network was constructed, and drug targets were predicted via the
DGldb database. Key gene expression was validated by qPCR.

Results: We identified 472 DEGs and 205 HCM-associated loci, narrowing down
to seven key genes: RNF165, SNCA, SRGN, MARCO, STEAP4, SIGLECY, and TKT.
These genes were enriched in immune-related pathways (e.g., cytokine activity,
leukocyte migration, JAK-STAT signaling). The Random Forest model exhibited
the highest diagnostic performance (AUC: 0.939), with SHAP analysis revealing
MARCO as the top contributor. Gene expression was associated with immune
cell infiltration: HCM samples showed increased CD4+ T cells and MO
macrophages but decreased M2 macrophages and neutrophils. The ceRNA
network comprised 5 mRNAs, 40 miRNAs, and 152 IncRNAs. SRGN and SNCA
were identified as potential targets for heparin and 33 other drugs, respectively.
qRT-PCR performed on a small number of myocardial samples supported
expression trends of the identified genes, in line with transcriptomic analysis.
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Conclusion: This study reveals immune-related mechanistic biomarkers and
potential therapeutic targets in HCM, highlighting the role of immune
dysregulation in disease progression. Machine learning and SHAP analysis
improved diagnostic model interpretability, providing a basis for future
development of non-invasive diagnostic tools.

hypertrophic cardiomyopathy, multi-approach, machine learning, biomarkers,

immune infiltration

1 Introduction

Hypertrophic cardiomyopathy (HCM), a heterogeneous
monogenic cardiac disorder studied for over five decades, is
recognized as a leading cause of arrhythmic sudden death, heart
failure, and atrial fibrillation (with thromboembolic stroke) (1).
Epidemiologic studies across diverse populations—including the
United States, Europe, Japan, China, and East Africa—have
established HCM as the most prevalent inherited
cardiomyopathy, affecting at least 1 in 500 individuals (0.2%) in
the general population (2-4). Extrapolated estimates suggest
approximately 600,000 affected individuals in the United States
and 120,000 in the United Kingdom, though these figures likely
underestimate disease burden due to undiagnosed familial cases.
The molecular pathogenesis of HCM is driven by over 1,400
mutations in 11 or more genes encoding sarcomeric proteins.
Despite its status as the most common cause of sudden cardiac
death in young individuals (including trained athletes) and its
association with functional disability from heart failure or stroke,
most affected individuals remain undiagnosed due to asymptomatic
presentations, with many experiencing preserved life expectancy
and minimal symptoms. Clinical diagnosis relies on imaging
evidence of unexplained left ventricular hypertrophy (LVH) by
echocardiography or cardiovascular magnetic resonance (CMR).
Notably, an emerging subgroup harbors pathogenic mutations
without LVH, whose natural history remains undefined. Over
decades of research, HCM has evolved from a rare, untreatable
entity to a common genetic condition with management strategies
capable of restoring quality of life and extending survival (5).

Classically defined as a monogenic disorder with autosomal
dominant inheritance, HCM exhibits marked temporal and
phenotypic heterogeneity. However, prevailing research has
predominantly focused on sarcomeric gene mutations and their
impact on cardiomyocyte contractility, despite these variants being
identified in only a minority of patients. The Hypertrophic
Cardiomyopathy Registry (HCMR) delineated two distinct
cohorts: genotype-positive patients with confirmed sarcomere
mutations and genotype-negative individuals (6). Significant
differences in morphological features, fibrosis burden, and
dynamic obstruction on CMR underscore the necessity to

Frontiers in Immunology

integrate clinical and imaging phenotypes with circulating
biomarkers that reflect disease activity. Such biomarkers hold
promise for improving diagnosis, guiding therapy, and predicting
outcomes. Disappointingly, genome-wide sequencing studies have
largely failed to identify novel pathogenic mutations beyond
sarcomeric genes, instead yielding variants of uncertain
significance (VUS), highlighting the limitations of a purely
monogenic framework.

In the post-genomic era, critical challenges persist in optimizing
patient selection for genetic testing and enhancing diagnostic yield.
The Mayo Clinic HCM Genotype Predictor Score, widely used in
clinical practice, estimates pretest probability of a pathogenic
variant by incorporating echocardiographic LV characteristics,
age at diagnosis, and family history. Yet, even with this algorithm,
the overall positivity rate of genetic testing remains modest at 34%
(7). This gap underscores the likelihood of polygenic contributions
to HCM pathogenesis, necessitating collaborative efforts among
clinicians, geneticists, and molecular biologists to unravel
multifactorial mechanisms. A seminal review by Chou et al. (8)
advances this paradigm by proposing an integrative model that
extends beyond sarcomere-centric pathophysiology. Their work
elucidates how calcium dysregulation, impaired autophagy, and
metabolic perturbations intrinsically drive cardiomyocyte
hypertrophy. Complementary to genomic and transcriptomic
approaches, proteomic and phosphoproteomic analyses (9, 10)
offer unique insights into post-translational modifications that
may underlie phenotypic diversity. The application of machine
learning (ML) and artificial intelligence (AI) in genomic disease
diagnosis offers new possibilities for addressing complex challenges
in HCM diagnosis. These technologies can integrate large-scale
genomic, transcriptomic, and phenotypic data to identify polygenic
interactions and nonlinear patterns that are difficult to detect using
conventional methods. By developing predictive models, machine
learning algorithms can significantly improve the detection
efficiency of pathogenic variants, compensating for limitations in
diagnostic yield seen in traditional scoring systems.

Although hypertrophic cardiomyopathy (HCM) has
traditionally been classified as a non-inflammatory
cardiomyopathy, growing transcriptomic and histopathologic
evidence indicates that immune cell infiltration, cytokine
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imbalance, and maladaptive inflammatory responses may
contribute to disease progression, myocardial fibrosis, and
arrhythmogenic remodeling (11, 12). Specifically, pro-
inflammatory signaling pathways such as NF-kB and interferon
responses have been implicated in cardiomyocyte stress, while
altered expression of immune-related genes involved in
macrophage activation, T-cell signaling, and antigen presentation
has been observed in hypertrophied myocardium (13, 14).
Accumulation of macrophages and interactions between
fibroblasts and immune cells may drive interstitial fibrosis and
increased myocardial stiffness, both characteristic features of
advancing HCM (15). In addition, studies utilizing single-cell
RNA sequencing and immune deconvolution algorithms such as
CIBERSORT have revealed shifts in immune cell composition,
including increased infiltration of M2 macrophages and
regulatory T cells, suggesting a potential immunoregulatory role
in cardiac remodeling (16). Although HCM is classically described
as a monogenic disorder, pathogenic variants are identifiable in only
40-60% of patients (17), highlighting the presence of additional
molecular contributors. Emerging evidence suggests that chronic
low-grade inflammation and myocardial fibrosis coexist in HCM
and may contribute to disease progression independently of
sarcomere gene mutations (18, 19). Recent single-cell and spatial
transcriptomic studies have revealed complex immune cell
heterogeneity and inflammatory signaling within cardiac tissues
(20, 21), underscoring the need to elucidate immune mechanisms in
cardiomyopathies. These findings support the rationale for an
integrated transcriptomic and immunogenomic analysis to
identify immune-related biomarkers and potential therapeutic
targets in HCM.

Building upon these findings, our study employs GWAS
analysis integrated with transcriptomic profiling and experimental
validation to identify high-risk molecular markers for HCM. To
further enhance diagnostic accuracy and deepen understanding of
molecular mechanisms, we incorporated machine learning methods
and SHAP analysis to evaluate the diagnostic potential of key genes
and their role in HCM immune regulation. To date, few studies
have systematically integrated transcriptomics, causal inference,
and machine learning to explore immune mechanisms in HCM
(22). Our work provides a novel framework by combining
Mendelian randomization, multi-dataset transcriptome
integration, SHAP-interpretable machine learning models, and
ceRNA/drug-target network analysis. This strategy not only
identifies immune-related genes associated with HCM but also
reveals potential regulatory and therapeutic pathways, offering
new insights into the immunogenomic landscape of this disease.
Recent evidence suggests that immune cell infiltration,
inflammatory signaling, and interactions between immune cells
and cardiac fibroblasts may promote myocardial fibrosis and
structural remodeling (23). By incorporating immunogenomic
features into our analysis, we aim to improve interpretation of
genotype-phenotype heterogeneity and reveal molecular
mechanisms beyond the traditional sarcomere model. Ultimately,
this approach is expected to improve risk stratification for HCM
patients and guide precision treatment strategies.

Frontiers in Immunology

10.3389/fimmu.2025.1645382

2 Materials and methods

2.1 Raw data

We obtained three transcriptome datasets from the GEO database,
GSE141910 (left ventricular samples from 166 healthy controls and 28
HCM), GSE160997 (left ventricular samples from 5 healthy controls
and 18 HCM), and GSE36961 (left ventricular samples from 39
healthy controls and 106 HCM). Only samples explicitly labeled as
hypertrophic cardiomyopathy (HCM) were included in our study.
Samples from other cardiomyopathy subtypes, such as dilated or
restrictive cardiomyopathy, were excluded during the data curation
and preprocessing stage to ensure cohort purity (see Supplementary
Table SI). We used the “sva” package (https://bioconductor.org/
packages/release/bioc/html/sva.html) to merge and normalize the
three datasets, then performed differentially expressed gene
analysis between HCM and control samples using the limma
package (https://bioconductor.org/packages/release/bioc/html/
limma.html) of R software (Version 4.3.1). The screening
thresholds for differentially expressed genes were defined as an
absolute value of log2 fold change [logFC| > 0.5 and a false discovery
rate (FDR) < 0.05.

To ensure cross-platform comparability, raw expression
matrices were preprocessed using platform-specific normalization
methods. For RNA-seq datasets, raw counts were transformed into
TPM values and log2-transformed. For the microarray dataset
(GSE36961), we applied robust multi-array average (RMA)
normalization. The normalized matrices were then merged, and
the “ComBat” function from the sva package was used to correct for
batch effects across datasets, which is widely used and validated for
cross-platform integration. Principal component analysis (PCA)
was performed before and after correction to visually confirm the
reduction of batch-related variance.

2.2 Screening of expression quantitative
trait locus exposure data and HCM
outcome data

The function “extract_instruments” in the R package
“TwoSampleMR” (https://github.com/MRCIEU/TwoSampleMR)
were utilized to summarize SNPs data of 19942 eQTLs from the
GWAS database. The filtering criteria for SNPs were as follows: p <
5e-08, clump_r2 = 0.001, clump_Kb =10000. The HCM outcome
data for this study consisted of a total of 24,199,797 SNPs obtained
from 507 HCM samples and 489,220 control samples from
European with the GWAS ID: ebi-a-GCST90018861.

2.3 Two-sample GWAS analysis between
exposure data and outcome data

The MR analysis followed three basic assumptions, Specifically,

to be used as an instrumental variable for a risk factor, a genetic
variant or variants must satisfy (1): be reliably associated with the
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risk factor under study (association hypothesis) (2); no association
with any known or unknown confounders (independence
assumption) (3); affecting the outcome only through the risk
factor and not through any other direct causal pathway
(excluding limiting assumptions). We applied five complementary
two-sample MR Methods: inverse variance weighting (IVW), MR-
Egger, weighted median (WM), weighted modal, and simple modal
methods using the R package TwoSampleMR for exposure data
eQTL and outcome data HCM. We employed the IVW method
with a significance threshold of p<0.05 and Mendelian analysis
pleiotropy with p values >0.05 as significance thresholds to screen
for criteria in order to identify candidate eQTLs.

2.4 Screening key biomarkers

The MR Analysis results were subjected to IVW<0.05 screening
to identify the eQTLs associated with HCM. Subsequently, the
intersection of selected eQTLs and DEGs were plotted using the R
package VennDiagram to obtain the key genes.

2.5 GO and KEGG enrichment analysis of
DEGs between healthy control and HCM

The clusterProfiler and org.Hs.eg.db packages were utilized to
conduct functional enrichment analysis on the DEGs (https://
bioconductor.org/packages/release/data/annotation/html/
org.Hs.eg.db.html), followed by visualization of the results using the
ggplot2 and ggpubr packages. The adjust p-value “qvalueFilter”
<0.05 was employed for screening GO and KEGG pathways, and
only the top 10 GO and KEGG pathways were presented.

2.6 Expression levels of key genes and
receiver operating characteristic curve
analysis

The Wilcoxon test was employed to examine disparities in key
genes between healthy individuals and those with HCM, followed
by the generation of box plots for visualization. The “pROC”
package was employed to generate ROC curves and calculate the
area under the curve (AUC), assessing the diagnostic value of single
key gene expression levels in HCM.

2.7 Machine learning and SHAP-based
feature interpretation

To evaluate the ability of multiple key genes to discriminate
HCM, we employed ten mainstream machine learning algorithms
using the caret package (https://cran.r-project.org/package=caret)
based on the merged cohort dataset. The algorithms included
Partial Least Squares (PLS), Random Forest (RF), Decision Tree
(DTS), Support Vector Machine (SVM), Logistic Regression, K-
Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost),
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Gradient Boosting Machine (GBM), Artificial Neural Network
(NeuralNet), Generalized Linear Model Boosting (glmBoost).
These algorithms were used to construct diagnostic prediction
models. Using the createDataPartition function, we randomly
sampled 70% of the merged cohort as the training set, with the
remaining 30% assigned as the test set. ROC curves were generated
based on predicted probabilities, and the AUC was calculated using
the pROC package to evaluate the classification performance of
each machine learning model.

Among all machine learning models, the one with the highest
AUC was selected as the optimal model and used for subsequent
feature interpretation analysis. The permshap function was applied
to compute SHapley Additive exPlanations (SHAP) values,
quantifying the contribution of each feature gene to the model’s
output. SHAP values quantify the contribution of each feature
(gene) to the model’s prediction in a game-theoretic manner. A
positive SHAP value indicates that the gene expression increases the
model’s predicted probability of HCM, whereas a negative value
indicates a protective or lowering effect on the predicted risk. The
shapviz package was utilized to generate SHAP bar plots, bee swarm
plots, and waterfall plots for representative samples, visualizing the
relative importance and directional impact of key feature genes.

2.8 Analysis of key genes expression levels
and immune cell infiltration in HCM
patients

The CIBERSORT method ((https://cibersort.stanford.edu/))
was employed to calculate the relative proportions of 22 immune
cell types in each HCM sample, followed by Spearman correlation
analysis to investigate the associations between key genes and
individual immune cell populations.

2.9 Construction of the HCM ceRNA
network

We utilized key genes to predict the target miRNAs from databases
including miRanda, miRDB, miRWalk, and TargetScan. Only those
miRNAs predicted by all four databases were considered as potential
target candidates of the key genes. After obtaining the final potential
miRNAs, we utilized the spongeScan database for predicting miRNA-
IncRNA targets. Subsequently, we constructed a ceRNA network
comprising mRNA-miRNA-IncRNA interactions, and visualized the
network using Cytoscape software (Version 3.10.1).

2.10 Potential drug target prediction of
HCM key genes

The Drug-Gene Interaction database (DGIdb) website (https://
www.dgidb.org/) was utilized for the prediction of potential drug
targets associated with key genes, followed by visualization of the
gene-drug targets using Cytoscape software.
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2.11 mRNA expression levels in HCM and
normal samples were measured using PCR
assay

To validate the expression levels of the key genes identified in
our study, we performed quantitative real-time PCR (qRT-PCR) on
peripheral blood mononuclear cell (PBMC) samples collected from
patients with HCM and healthy controls. Total RNA was extracted
from the samples using the TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. The RNA
concentration and purity were measured using a NanoDrop ND-
1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). High-quality RNA samples with an A260/A280 ratio
between 1.8 and 2.0 were selected for subsequent experiments.The
RNA samples were reverse-transcribed into ¢cDNA using the
PrimeScript RT reagent Kit (Takara Bio, Kusatsu, Japan). The
reverse transcription reaction was performed in a 20 pL reaction
volume containing 1 pg of total RNA, 1uL of PrimeScript RT
Enzyme MixI, 4uL of 5xPrimeScript Buffer, 1uL of RT Primer Mix,
and 1pL of gDNA Eraser. The reaction was carried out at 37 °C for
15 minutes, followed by 85 °C for 5 seconds to inactivate the
enzyme. Quantitative real-time PCR was performed using the SYBR
Premix Ex Taq II kit (Takara Bio) on a CFX96 Real-Time PCR
Detection System (Bio-Rad Laboratories, Hercules, CA, USA). The
reaction mixture (20 pL) contained 10pL of 2xSYBR Premix Ex Taq
II, 0.4 pL of forward primer (10 uM), 0.4 uL of reverse primer (10
uM), 2 pL of cDNA template, and 7.2 pL of ddH20O. The thermal
cycling conditions were as follows: initial denaturation at 95 °C for
30 seconds, followed by 40 cycles of 95 °C for 5 seconds and 60 °C
for 30 seconds. A melting curve analysis was performed to confirm
the specificity of the PCR products. The relative expression levels of
the target genes were calculated using the 2°AACt method, with
GAPDH as the internal reference gene (Table 1).

2.12 Statistical analysis

All statistical analyses were performed using R software (version
4.3.1). Differential expression analysis between HCM and normal
samples was conducted using the limma package. The Wilcoxon
test was applied to assess expression differences of key genes.
Mendelian randomization analysis was carried out using multiple

TABLE 1 Primer sequences for qRT-PCR valizdation of key genes.

10.3389/fimmu.2025.1645382

complementary methods, including inverse variance weighting,
MR-Egger, weighted median, weighted modal, and simple modal.
A p value less than 0.05 was considered statistically significant.
Correlations between gene expression and immune cell infiltration
were evaluated using Spearman correlation analysis. Receiver
operating characteristic curves were plotted to assess diagnostic
performance, and area under the curve values were calculated. All
visualizations were generated using ggplot2 and related packages.

3 Results

3.1 Differential expression analysis and
GWAS analysis between healthy control
and HCM

Following normalization and batch correction, PCA demonstrated
effective mixing of samples from different datasets, supporting
successful platform harmonization (Figures 1A, B). A total of 472
DEGs were identified (Figures 1C, D). We conducted GWAS analysis
individually on 19,942 eQTLs and HCM cases (GWAS ID: ebi-a-
GCST90018861). A total of 5,430 eQTLs (Supplementary Table S2)
containing 25,472 SNPs (Supplementary Table S3) were identified
based on the SNP screening criteria. The IVW method p<0.05 and
heterogeneity analysis p>0.05 (Supplementary Table S4) were
employed to select a total of 205 eQTLs (Supplementary Table S5)
for subsequent analysis.

3.2 Acquisition and expression levels and
chromosomal localization analysis of key
genes in HCM

Through integrative analysis of 472 DEGs and 205 eQTLs, two
genes were found to be significantly upregulated and five genes
significantly downregulated in HCM patients compared with
control samples. Moreover, this elevated gene expression was
associated with an increased incidence of HCM (MR_OR>1)
(Figure 2A); Additionally, a set of 5 genes exhibited low expression
levels in HCM (logFC<0), which was associated with an elevated risk
of developing HCM (MR_OR<1) (Figure 2B). The highly expressed

Forward primer sequence (5'->3’)

Reverse primer sequence (5'->3')

RNF165 CACAGATGGTCGTCCATGAAA CTTCGCTTCTTATACTTGTGGGG
SNCA TGGTGAGCGAAACAGAAGCC CCATAGCAACCTGCGTAATGAA
SRGN AGGTTATCCTACGCGGAGAG GTCTTTGGAAAAAGGTCAGTCCT
MARCO CAGCGGGTAGACAACTTCACT TTGCTCCATCTCGTCCCATAG
STEAP4 GGCTTTGGGAATACTTGGGTT TGGACAAATCGGAACTCTCTCC
SIGLECY CCACATACCAAGAATTGCACCC ACAGAGAGCCGGTGATGTTTAT
TKT TCCACACCATGCGCTACAAG CAAGTCGGAGCTGATCTTCCT
GAPDH ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA
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genes, Ring Finger Protein 165 (RNF165) and Synuclein Alpha
(SNCA), are located on chromosomes 18 and 4 respectively; The
lowly expressed genes, Serglycin (SRGN), Macrophage Receptor with
Collagenous Structure (MARCO), Six Transmembrane Epithelial
Antigen of the Prostate 4 (STEAP4), Sialic Acid Binding Ig Like
Lectin 9 (SIGLECY), and Transketolase (TKT) located on
chromosomes10, 2, 8, 19, and 3 respectively (Figures 2C, D). The
results of the MR analysis for the seven core genes were subsequently
presented using a forest plot to illustrate the outcomes obtained from
both IVW and WM methods (Figure 2E).

3.3 Results of GO and KEGG enrichment
analysis of DEGs in HCM

The results of the GO functional enrichment analysis indicated that
receptor ligand activity, glycosaminoglycan binding, sulfur compound
binding, G protein—coupled receptor binding, cytokine activity,
heparin binding, extracellular matrix structural constituent, integrin
binding, and Wnt—protein binding, growth factor activity were the top
10 ranks molecular functions (MFs); Collagen-containing extracellular
matrix, vesicle lumen, cytoplasmic vesicle lumen, secretory granule

Frontiers in Immunology

lumen, endocytic vesicle, secretory granule membrane, endocytic
vesicle membrane, platelet alpha granule, collagen trimer, and
platelet alpha granule lumen were the top 10 rank cell components
(CC); Leukocyte cell-cell adhesion, regulation of inflammatory
response, leukocyte migration, cell chemotaxis, myeloid leukocyte
activation, external encapsulating structure organization, extracellular
structure organization, extracellular matrix organization, leukocyte
chemotaxis, and positive regulation of inflammatory response were
the top 10 rank biological processes (BP) (Figures 3A, B).

The results of the KEGG analysis indicated that Cytokine-
cytokine receptor interaction, Complement and coagulation
cascades, Phagosome, Efferocytosis, JAK-STAT signaling pathway,
Chagas disease, IL-17 signaling pathway, AGE-RAGE signaling
pathway in diabetic complications, Pertussis, and Malaria were
the top 10 rank enrichment KEGG pathways (Figures 3C, D).

3.4 Machine learning based HCM
diagnostic model with SHAP interpretation

At the single-gene expression level, the AUC values of the ROC
curve for HCM patient diagnosis were RNF165 = 0.752, SNCA =
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4 Inverse variance weighted 0.029 «— ' 0.731 (0.552 to 0.968)
STEAP4 6 Weighted median 0.014 «o—i ! 0.833 (0.719 to 0.964)
6 Inverse variance weighted 0.036 <—0—0: 0.856 (0.740 to 0.990)
TKT 5 Weighted median 0.062 «o— 0.814 (0.655 to 1.011)
5 Inverse variance weighted 0.036 <-0—|: 0.802 (0.653 to 0.985)
I
1
FIGURE 2

Acquisition and expression levels and chromosomal localization analysis of key genes in HCM. (A) Venn diagram of genes with intersection between
highly expressed genes in HCM and MR analysis OR > 1; (B) Venn diagram of genes with intersection between lowly expressed genes in HCM and
MR analysis OR < 1; (C) Chromosomal localization analysis of seven key genes; (D) Box plot of expression levels of seven key genes between healthy
control and HCM, ***p < 0.001; (E) Forest plots illustrating the IVW and WM analysis methods for MR of seven key genes. HCM, Hypertrophic
Cardiomyopathy; MR, Mendelian Randomization; OR, Odds Ratio; IVW, Inverse Variance Weighted; WM, Weighted Median.
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FIGURE 3

Go and KEGG functional enrichment analysis of DEGs in HCM. (A) The barplot of GO enrichment functions; (B) The circlize diagram of GO
enrichment functions; (C) Bubble diagram of top 10 KEGG signaling pathways; (D) The circlize diagram of the signaling pathways. GO, gene
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, Differentially expressed genes.

0.732, SRGN = 0.770, MARCO = 0.778, STEAP4 = 0.766, SIGLEC9
= 0.735, and TKT = 0.728 (Figures 4A-G).

After incorporating seven key genes into ten machine learning
algorithms, we found that the Random Forest (RF) model exhibited
the highest AUC value of 0.939 (Figure 5A). Additional
performance metrics for the RF model included an accuracy of
0.824, precision of 0.833, recall of 0.873, and an F1-score of 0.853,
indicating favorable discrimination and predictive power.
Furthermore, the calibration curve (Figure 5B) demonstrated
good agreement between predicted and observed outcomes, with
a C-index of 0.814, supporting the model’s robustness and potential
clinical applicability. The SHAP summary bar plot revealed that
MARCO contributed most significantly to the model’s predictive
output, whereas SNCA had the smallest impact (Figure 5C).

The SHAP bee swarm plot (Figure 5D) displays the impact of
the seven key genes on the Random Forest (RF) model’s
predictions. MARCO exhibited the highest mean absolute SHAP
value (0.109), indicating its dominant role in HCM discrimination,
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followed by STEAP4 (0.095) and TKT (0.054). Notably, RNF165
and SNCA showed positive SHAP values (mean: 0.045 and 0.040,
respectively), suggesting that higher expression of these genes was
associated with an increased predicted risk of HCM. In contrast, the
remaining genes (MARCO, STEAP4, TKT, SRGN, SIGLEC9)
demonstrated negative SHAP values, implying an inverse
relationship with HCM likelihood (Figure 5D).

The SHAP waterfall plot further elucidates gene-specific effects
(Figure 5E), deconstructing the model’s prediction for a
representative sample. The baseline prediction value (E[f(x)] =
0.422) was adjusted based on each gene’s contribution, with
values above 0.422 classified as HCM samples and values below
0.422 classified as normal controls. The expression levels of the
seven genes in this sample were as follows:

MARCO (expression level = 8.8) exerted the strongest
negative influence, significantly reducing the predicted HCM
risk probability. TKT (9.61) and SRGN (11.3) further drove the
prediction downward through negative SHAP values. In contrast,
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FIGURE 4

ROC curve illustrating the diagnostic potential of key gene expression levels in HCM patients. (A) RNF165; (B) SNCA; (C) SRGN; (D) MARCO; (E) STEAP4;
(F) SIGLEC9; (G) TKT. RNF165, Ring Finger Protein 165; SNCA, Synuclein Alpha; SRGN, Serglycin; MARCO, Macrophage Receptor with Collagenous
Structure; STEAP4, Six Transmembrane Epithelial Antigen of the Prostate 4; SIGLECY, Sialic Acid Binding Ig Like Lectin 9; TKT, Transketolase.

STEAP4 (10.4), SNCA (9.9), RNF165 (8.72), and SIGLECY (6.91)
contributed positive effects, partially offsetting the impact of
other genes. The final predicted value for this sample was f(x) =
0.238. According to the RF model algorithm, this sample was
classified as normal, and the prediction was confirmed to
be correct.

Although these biomarkers were identified in myocardial tissue,
their diagnostic performance may not be directly translatable to
clinical settings due to the impracticality of obtaining cardiac
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biopsies. Therefore, their current value lies in elucidating
disease mechanisms.

3.5 Analysis results of key genes expression
levels and immune cell infiltration in HCM
patients

Compared with the immune cell infiltration levels in
the control group, four out of the 22 immune cell types
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FIGURE 5

Machine learning model performance and SHAP-based interpretation of key genes in HCM diagnosis. (A) ROC curves of ten machine learning
models; (B) The calibration curve of the random forest model; (C) SHAP summary bar plot showing the mean absolute contribution of key genes;
(D) SHAP bee swarm plot displaying the distribution and directionality of gene effects; (E) SHAP waterfall plot for a representative sample. ROC,
Receiver Operating Characteristic; SHAP, Shapley Additive Explanations; HCM, Hypertrophic Cardiomyopathy.

exhibited significantly higher infiltration in HCM, while seven
immune cell types showed lower infiltration in
HCM. (Figure 6A).

The expression level of RNF165, SNCA, MARCO, STEAP4,
SIGLECY, and TKT was positively correlated with the infiltration
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degree of 1, 2, 1, 1, 2, 2 kinds of immune cells, respectively, and
negatively correlated with the infiltration degree of 2, 2, 3,4, 2, and 1
kinds of immune cells, respectively. There was no correlation
between the expression level of SRGN and the degree of immune
cell infiltration (Figure 6B).
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FIGURE 6

Analysis of key genes expression levels and immune cell infiltration in HCM patients. (A) Analysis of the differences in infiltration levels of 22 immune
cells between healthy control and HCM patients; (B) Heat map for correlation analysis between seven key genes and 22 types of immune cells.

HCM, Hypertrophic Cardiomyopathy.

3.6 Construction of the ceRNA network
and potential drug target prediction of key
genes

The ceRNA network was constructed by screening miRNAs and
IncRNAs through online database systems, incorporating a total of
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5 mRNAs, 40 miRNAs, and 152 IncRNAs. The network was
visualized using Cytoscape. Among the seven key genes, five were
included in the network: STEAP4, SRGN, RNF165, TKT, and
SNCA (Figure 7).

After conducting potential drug prediction of the 7 key genes
in the DGIdb database, a total of 2 genes (SNCA and SRGN) were
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identified as potential targets for 34 drugs. Specifically, the SRGN
gene was found to be targeted by HEPARIN drug, while SNCA
was identified as a potential target for the remaining 33
drugs (Figure 8).

3.7 Validation of pCR levels in normal and
HCM samples

A total of 35 subjects were included in this study, comprising 15
patients with hypertrophic cardiomyopathy (HCM) and 20 healthy
controls. As shown in Table 2, there were no significant differences
in age, sex distribution, or ejection fraction (EF) between the two
groups (all p > 0.05). The results showed that compared with
normal samples, RNF165 and SNCA were upregulated in HCM
samples, while SRGN, MARCO, STEAP4, SIGLECY, and TKT were
downregulated (Figures 9A-G). These pCR results were consistent
with the mRNA expression patterns observed in the GEO dataset.

4 Discussion

Hypertrophic cardiomyopathy is generally recognized as a
monogenic heart disease that is an important cause of sudden
arrhythmia death, heart failure, and atrial fibrillation (with embolic
stroke). It is one of the common hereditary heart diseases in the
world, but with the technological progress of sequencing technology
and molecular biology, the sequencing results of HCM and further
exploration of its pathogenesis cannot be used to explain the
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occurrence and development of HCM with a single gene mutation.
Therefore, it is necessary to further study and analyze the genomic
changes of HCM compared with healthy people in order to deeply
understand its pathogenesis and disease heterogeneity.

Specifically, we summarize that seven immune-associated
genes-RNF165, SNCA, MARCO, SIGLECY, SRGN, STEAP4, and
TKT-were identified using transcriptomic data, eQTL-based
Mendelian randomization, and machine learning. These genes
showed consistent expression trends and predictive potential in
HCM. To comprehensively evaluate the roles of key genes in HCM
diagnosis and immune regulation, we employed ten mainstream
machine learning algorithms to construct diagnostic prediction
models and interpreted each gene’s contribution through SHAP
analysis. The Random Forest (RF) model demonstrated the highest
AUC value among all algorithms, exhibiting superior diagnostic
performance. These results confirmed that the significantly
differentially expressed genes in HCM have good diagnostic value
for HCM. Therefore, we further verified the results on human
specimens and found that these genes in HCM human samples were
consistent with the results of public data analysis. Tan Z et al. found
that SNCA and TKT were significantly higher in the HMC model
group than in the control group through public database
transcriptome and experimental verification analysis results (24).
Gu X et al. found that SRGN was enriched in HCM pathway (25)
through long-term analysis of COVID in a comprehensive cohort of
two years of proteomic exploration. RNF165, MARCO, SIGLECY,
and STEAP4 have not yet been reported in HCM. Rnf165/Ark2C
enhances BMP-Smad signaling mediated motor axon elongation
(26). MARCO and SIGLECY have been reported in many studies on
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FIGURE 8

Network diagram of potential drug target prediction for key genes.

immunity (27-29). The results of Dong Q et al. obtained the
MARCO immunotherapy biomarker by analyzing the public
database (27, 30-32). Another study suggests that targeting
MARCO and IL37R on lung cancer immunosuppressive
macrophages blocks regulatory T cells and supports cytotoxic
lymphocyte function (28). These results indicate that MARCO is
closely related to the immune system, and the immune system
disorder plays an important regulatory role in HCM. SIGLEC9

TABLE 2 Baseline clinical and echocardiographic characteristics of HCM
patients and controls.

Variable

Age (years) 45.50 (36.5- 47.00 (42.00- 1168 | 0.254
ey 55.75) 58.00) : :
57.50 (55.25- 55.00 (54.00-
Ejection fraction (EF, %) 60.75)( 60.00)( 1.358 | 0.174
Maximum LV wall 11.00 (10.25- 18.00 (16.00-
K 5.075 @ <0.001
thickness (mm) 12.00) 19.00)
Gender 1.944 | 0.163
Female 10 4
Male 10 11

Values are presented as median (interquartile range, IQR) for continuous variables and counts
for categorical variables. Group comparisons were performed using the Mann-Whitney U test
or ) test, as appropriate.
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positive tumor-associated macrophages predict prognosis and
treatment vulnerability in colon cancer patients. Zheng Y
systematically elucidates the role of natural killer cells SIGLEC7
and SIGLECY in viral infection and tumor progression (32).
Specifically, we now state that while many functional insights
about these genes originate from cancer or infectious disease
models, accumulating evidence suggests that scavenger receptors
(e.g., MARCO) and inhibitory checkpoint molecules (e.g.,
SIGLECY9) play conserved roles in tissue-specific immune
responses, including the heart (33, 34). STEAP4 has been
preliminarily studied in liver and prostate cancer (35, 36). Zhao J
et al. confirmed that the expression of STEAP4 in resident cells of
the central nervous system promotes Th17 cell-induced
autoimmune encephalomyelitis (37).

While our study validates differential mRNA expression of
immune-related genes such as MARCO and SIGLECY, their
functional roles in cardiac tissue remain poorly characterized.
Based on prior studies, these genes are primarily expressed in
infiltrating immune cells, particularly macrophages, rather than
cardiomyocytes. In the context of the myocardium, MARCO-a
scavenger receptor-is likely to be involved in monocyte/
macrophage-mediated phagocytosis and immune suppression
(38), while SIGLECY functions as an inhibitory receptor that may
modulate T cell and NK cell activation (39). It is plausible that these
genes contribute to the formation of an immunosuppressive
microenvironment in HCM, potentially through canonical
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pathways such as IL-10 or TGF-B, both of which are known to
promote fibroblast activation and myocardial fibrosis. However, our
current study lacks single-cell or spatial transcriptomics data to
directly distinguish between cell-type sources, and no proteomic or
histological validation was performed to confirm pathway
activation. Therefore, MARCO, SIGLEC9 and STEAP4 may affect
HCM through the regulation of inflammation and immunity, and
their exact molecular mechanisms in HCM still need to be further
studied. Although myocardial transcriptomic profiling provides
insights into local immune remodeling in HCM, we further
validated the expression of key genes using peripheral blood
samples, demonstrating their consistent expression patterns and
highlighting their potential utility as non-invasive biomarkers in
clinical practice. Future studies should aim to assess whether these
immune-related genes or their corresponding protein products can
be detected and quantified in plasma, serum, or circulating
extracellular vesicles from HCM patients. Several recent studies
have shown that immune-related cardiac biomarkers, such as IL-6,
TGEF-B, or galectin-3, are detectable in blood and correlate with
myocardial remodeling and prognosis in cardiomyopathies (40, 41).
Accordingly, peripheral validation and longitudinal follow-up are
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essential steps to determine the diagnostic or prognostic utility of
these candidate markers.

Changes in genes are often accompanied by effects or alterations
in biological processes that affect the course of disease, Therefore,
we further carried out functional enrichment analysis on differential
genes and the results showed that HCM compared with HI in
healthy group had significant differential expression of genes in
cytokine activity, extracellular matrix structural constituent,
integrin binding, and Wnt-protein binding, regulation of
inflammatory response, leukocyte migration, myeloid leukocyte
activation and the JAK-STAT signaling pathway, IL-17 signaling
pathway, AGE- RAGE signaling pathway and other molecular
signaling pathways as important components. The enrichment of
JAK-STAT and IL-17 signaling is particularly relevant, as both
pathways are known to mediate cardiac inflammation and fibrosis.
JAK-STAT signaling—especially through IL-6 and IFN-y—can
promote macrophage activation and fibroblast proliferation,
contributing to myocardial remodeling (42). IL-17, secreted
mainly by Th17 cells, has been implicated in neutrophil-driven
inflammation and extracellular matrix disruption in various
cardiomyopathies (43). These findings suggest that dysregulation
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of these signaling cascades may be a common mechanism linking
immune activation to structural changes in HCM. A review by Fang
L et al. systematically explores the tumor necrosis factor (TNF)-a,
interleukin (IL)-6 and serum amyloid P (SAP) were significantly
increased in HCM patients compared to controls (18). Sewanan LR
et al. ‘s findings reveal that the extracellular matrix of hypertrophic
myocardium leads to impaired tic dynamics of healthy
cardiomyocytes (44). RyR2 dysfunction mediated by Wang Y
integrin B1D defect is one of the causes of catecholamine-
sensitive ventricular tachycardia in arrhythmogenic right
ventricular cardiomyopathy (45). It was also found that the
regulation of inflammatory response also plays an important role
in the occurrence and development of HCM. As for white blood cell
migration, white blood cells are the main effector cells that produce
inflammation in the body. As mentioned above, some core genes of
differential expression of HCM are closely related to immunity, and
they may play a regulatory role in the development of HCM by
regulating immune response. Chatterjee S et al. confirmed that
leukocyte telomere length is related to the severity of hypertrophic
cardiomyopathy, and the shorter leukocyte telomerase is, the more
severe HCM is (46). It is well known that the length of telomerase is
related to the lifespan of cells, and its specific mechanism of action
still needs further study. IL-17 and JAK-STAT molecular signaling
pathways have not been studied in HCM, while JAK-STAT has been
extensively studied in different types of cardiomyopathy. Prmt7 has
a sex-specific cardioprotective effect by modulating the JAK/STAT
signaling pathway (47). Sitapliptin alleviates cardiomyopathy in
experimental diabetic rats by inhibiting the JAK/STAT signaling
pathway (48). These results further confirm that the significantly
differentially expressed genes in HCM play an important regulatory
role in the pathogenesis of cardiomyopathy.

We have discussed above that the significantly differentially
expressed genes in HCM may play important regulatory roles in
immune and inflammatory responses and thus influence the
progression of HCM. Therefore, we further analyzed the
infiltration abundance of different types of immune cells and the
interaction of significantly differentially expressed genes with
immune cells in HCM and healthy controls. Compared to healthy
samples Plasma cells, Macrophages M2, Dendritic cells activated,
Neutrophils were lower infiltration in HCM samples, but T cells
CD4 naive, T cells CD4 memory resting, T cells CD4 memory
activated, T cells regulatory (Tregs), Macrophages M0, Dendritic
cells resting were higher infiltration in HCM patient samples.
Bioinformatics and immunoosmotic analysis reveal key pathways
in the pathogenesis of hypertrophic cardiomyopathy and immune
cells (49). Recent bioinformatics studies have increasingly
highlighted the role of immune dysregulation in HCM. Hou et al.
conducted a comprehensive analysis using necroptosis signatures
and immune infiltration profiles, identifying elevated expression of
pro-inflammatory pathways in HCM myocardium (16). Similarly,
Zhang et al. demonstrated that key immune cell populations such as
M2 macrophages and regulatory T cells are significantly altered in
HCM tissues, supporting our own immune infiltration findings
(49). Mononuclear RNA sequencing revealed changes in
intercellular communication and dendritic cell activation in non-
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obstructive hypertrophic cardiomyopathy (50), results showing
increased dendritic cell expression in HCM is inconsistent with
this study. Becker RC et al. systematically described the potential
role of the Von Willebrand factor and neutrophil extracellular trap
in the natural history of hypertrophic and hypertensive
cardiomyopathy (51). Yehia et al. ‘s findings revealed that the
increased neutrophil-to-lymphocyte ratio was a negative
prognostic indicator for HCM cats (52). The results of our
analysis showed that various T cell subtypes generally showed a
state of high infiltration in HCM. Shintani Y et al. studied the
clinical effects of using endocardial biopsy to pathologically
quantified myocardial fibrosis and infiltrating T lymphocytes in
patients with hypertrophic cardiomyopathy (53). The greater the
number of infiltrating CD3+ cells, the worse the clinical prognosis
of HCM patients.

In addition to their immunomodulatory functions, several
identified genes may also influence fibrotic remodeling, which is a
hallmark of advanced HCM. For instance, immune cells such as
macrophages and T-helper cells are known to secrete pro-fibrotic
cytokines like TGF-B1, thereby promoting fibroblast activation and
extracellular matrix deposition (54). Genes such as MARCO and
STEAP4, which are involved in inflammatory signaling and redox
regulation, may indirectly modulate this fibrotic cascade. These
interactions suggest that immune dysregulation and fibrosis may be
mechanistically linked in HCM pathogenesis. These results confirm
that immune cells play an important role in the development of
HCM. But a major limitation of our study is the reliance on bulk
transcriptomic data, which cannot resolve gene expression at the
single-cell level. Although we used CIBERSORT to estimate
immune cell proportions, this method infers population averages
and does not clarify the specific cellular sources of key genes such as
MARCO or SIGLECY. Recent studies using single-cell and spatial
transcriptomics in HCM have revealed diverse immune cell subsets
and complex intercellular communication. For example, Nie et al.
reported enhanced dendritic cell activity and fibroblast-immune
cell interactions in HCM myocardium (55), while Bos et al.
demonstrated spatially restricted immune niches in cardiac tissue
(56). These high-resolution approaches could help determine
whether the immune-related genes we identified are expressed by
infiltrating immune cells, resident cardiac macrophages, or other
cell types. Future studies integrating single-cell and spatial data will
be essential to validate our findings and clarify how immune cells
contribute to myocardial remodeling in HCM. Besides, the lack of
comparison with other cardiac pathologies such as dilated
cardiomyopathy (DCM) or myocarditis, due to the absence of
such samples in our dataset. This prevents us from determining
whether the observed immune signatures are specific to HCM.
However, prior studies have reported distinct immune profiles in
different cardiomyopathies. For example, myocarditis is often
marked by CD8+ T cell-mediated injury and dendritic cell
activation, whereas DCM tends to show macrophage-driven
inflammation and extracellular matrix remodeling (57). Future
studies integrating transcriptomic data across multiple
cardiomyopathy subtypes will be essential to determine the
specificity and clinical utility of immune-related biomarkers in
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HCM. Notably, recent studies have suggested that sex-specific
immune responses may influence the development and
progression of hypertrophic cardiomyopathy. For example, female
patients with HCM may exhibit heightened fibrosis, altered T-cell
responses, and distinct macrophage activation patterns compared
to males (58, 59). While our study lacked access to complete sex-
stratified metadata from public datasets, we recognize this as a
critical variable and recommend future studies to incorporate sex-
based immunogenomic analyses to enhance precision in biomarker
discovery and disease modeling.

The regulation of gene expression in vivo is influenced by
various factors, including non-coding RNAs such as IncRNAs and
miRNAs. To explore this, we constructed a ceRNA network
centered on five core genes (RNF165, SNCA, SRGN, STEAP4,
and TKT) identified in our study. The analysis revealed that these
genes are potentially regulated by several non-coding RNAs,
suggesting that ceRNA interactions may play a role in modulating
immune and metabolic pathways in HCM. Previous studies have
shown that non-coding RNAs participate in cardiovascular diseases
by regulating oxidative stress, fibrosis, and immune activation. For
example, SNCA has been linked to mitochondrial dysfunction and
is a known miRNA target in neural and cardiac tissues (60). SRGN,
involved in the storage and release of inflammatory mediators, may
be regulated by IncRNAs under pro-inflammatory conditions (61).
Although RNF165 is primarily studied in neurobiology (26), our
findings suggest it may also be regulated by cardiac non-coding
RNAs, potentially affecting inflammatory signaling in HCM. These
findings highlight the possibility that ceRNA networks contribute to
key processes in HCM such as immune infiltration, myocardial
remodeling, and metabolic dysfunction. However, functional
validation of these IncRNA-miRNA-mRNA interactions in
cardiac tissue remains lacking. Future studies using cardiac-
specific single-cell sequencing or RNA-interference experiments
will be essential to clarify these regulatory mechanisms and their
potential as therapeutic targets. The ultimate goal of all disease
research always comes back to finding drugs to treat the disease,
SRGN gene was found to be targeted by HEPARIN drug, SRGN
gene was found to be targeted by heparin drug, while SNCA was
identified as a potential target for the remaining 33 drugs, while
SNCA was identified as a potential target for the remaining 33
drugs, These results indicate that these two genes may now serve as
potential therapeutic gene targets for HCM. Similar to non-coding
RNAs, there are drugs that target these core genes, but no studies
have demonstrated the efficacy of these drugs against HCM. As
mentioned above, these core genes participate in many important
biological processes for the development of HCM, but their specific
roles in HCM are not yet clear, so the specific therapeutic and
biological effects of their targeted drugs and non-coding RNAs in
HCM are also not yet known. Therefore, these results urgently
require us to further verify these results and explore the specific
biological regulation process of HCM. While our study identified 33
potential therapeutic agents targeting immune-related genes in
HCM, translational application requires careful consideration. For
example, heparin, although known for its anti-inflammatory
properties, lacks specificity for myocardial tissue and carries
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bleeding risk. In contrast, agents like resveratrol and metformin
have shown cardioprotective or anti-fibrotic effects in animal
models of HCM and warrant further investigation (62, 63). We
consulted DrugBank (https://go.drugbank.com/) to assess
pharmacokinetic properties, cardiac safety, and therapeutic
precedent. Several agents exhibited favorable oral bioavailability
and cardiac safety profiles, but off-target immunosuppressive effects
or systemic toxicity remain concerns. Future preclinical validation
using cardiomyocyte and cardiac immune cell models is essential to
prioritize candidates for clinical translation.nistic insights into post-
translational regulation.

In summary, our study highlights several core genes that are not
only differentially expressed in HCM but also significantly
correlated with immune cell infiltration, suggesting a potential
immunoregulatory mechanism underlying HCM pathogenesis.
The construction of a ceRNA network revealed that these genes
are regulated by multiple IncRNAs and miRNAs, although their
roles in HCM remain largely unexplored and are currently better
understood in cancer research. While our study validates
differential expression of the seven key genes at the mRNA level
using qRT-PCR, it does not assess protein expression or functional
consequences. Given that transcript levels may not always
correspond to protein abundance or activity, this represents a
limitation of our current study. Future work should incorporate
proteomic approaches (e.g., Western blotting, mass spectrometry)
or immunohistochemistry to verify protein-level changes in
myocardial tissues and to explore their spatial distribution and
functional roles in HCM pathogenesis. Although our study
establishes a strong association between immune-related genes
and HCM, it remains unclear whether such immune activation is
a cause or consequence of myocardial remodeling. While
Mendelian randomization provides preliminary causal inference,
definitive validation requires functional studies. Future work should
employ gene knockdown or overexpression in animal models (e.g.,
cardiac-specific MARCO or SIGLECY transgenic mice), and
CRISPR-based editing in human iPSC-derived cardiomyocytes.
Single-cell and spatial transcriptomics combined with in vivo
immune modulation may further elucidate whether immune
activation precedes or follows structural cardiac changes in HCM.
Furthermore, drug-gene interaction analysis suggested that SRGN
may be targeted by heparin, and SNCA by over 30 candidate
compounds, implying their potential as therapeutic targets.
However, the effectiveness of these drugs in treating HCM is
unknown due to the absence of experimental validation in
cardiac-specific models. Considering that these genes are involved
in immune-related processes such as cytokine signaling, leukocyte
migration, and inflammatory regulation, future studies should focus
on elucidating how gene expression modulates immune cell
behavior and contributes to myocardial remodeling. Given the
invasive nature of myocardial sampling, our identified markers
should be considered mechanistic rather than directly diagnostic at
this stage. Future work should aim to evaluate whether these genes-
or their related protein or transcript levels-are detectable and
discriminative in peripheral blood, plasma, or exosomal samples,
which would facilitate their translation into clinically viable
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biomarkers. Taken together, our findings not only identify novel
diagnostic and therapeutic targets for HCM but also emphasize the
crucial role of immune dysregulation in its progression, providing a
foundation for future mechanistic and translational research.

5 Conclusion

In this study, we identified seven key genes including RNF165,
SNCA, MARCO, SIGLECY, SRGN, STEAP4, and TKT that are
differentially expressed in HCM and significantly associated with
disease risk and diagnostic value. Mendelian randomization
analysis further supported the causal relationship between gene
expression and HCM susceptibility. These genes were also closely
related to immune cell infiltration, suggesting they may influence
HCM progression through immune regulation. Functional
enrichment revealed their involvement in immune-related
pathways such as cytokine signaling, leukocyte migration, JAK-
STAT signaling, and IL-17 signaling. Immune infiltration analysis
confirmed abnormal activation of multiple immune cell subtypes in
HCM samples, particularly T cells and macrophages. Furthermore,
ceRNA network analysis suggested that non-coding RNAs may
regulate these genes, and drug-gene interaction analysis identified
potential therapeutic compounds, especially for SRGN and SNCA.
Although further experimental validation is needed, our results
provide novel insights into the immune-related molecular
mechanisms of HCM and suggest potential diagnostic markers
and therapeutic targets for future translational research.
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