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identifies immune related
candidate biomarkers in
inflammation-associated
hypertrophic cardiomyopathy
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and Dalang Fang2*

1Department of Health, Baise People’s Hospital, Baise, Guangxi, China, 2Department of Gland Surgery,
Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laboratory of Tumor Molecular
Pathology of Baise, Baise, Guangxi, China
Background: Hypertrophic cardiomyopathy (HCM) is a common inherited heart

disease frequently leading to heart failure. Although sarcomeric gene mutations

are known, they only account for a subset of cases. The role of immune

dysregulation in HCM progression has gained increasing attention,

necessitating the exploration of immune-related biomarkers and therapeutic

targets. This study integrates Mendelian randomization (MR), transcriptomics,

machine learning, and experimental validation to investigate the immune

mechanisms underlying HCM.

Methods: We analyzed three transcriptomic datasets from the GEO database

(210 healthy controls, 152 HCM patients) and identified differentially expressed

genes (DEGs) using the R package limma. MR analysis was performed on 19,942

expression quantitative trait loci (eQTLs) and HCM cases using the

TwoSampleMR package. Machine learning (10 algorithms) was employed to

construct diagnostic models, and SHAP analysis was applied to assess key

gene contributions. Functional enrichment was performed with clusterProfiler,

diagnostic performance was evaluated via ROC curves, and immune cell

infiltration was analyzed using CIBERSORT. A competing endogenous RNA

(ceRNA) network was constructed, and drug targets were predicted via the

DGIdb database. Key gene expression was validated by qPCR.

Results: We identified 472 DEGs and 205 HCM-associated loci, narrowing down

to seven key genes: RNF165, SNCA, SRGN, MARCO, STEAP4, SIGLEC9, and TKT.

These genes were enriched in immune-related pathways (e.g., cytokine activity,

leukocyte migration, JAK-STAT signaling). The Random Forest model exhibited

the highest diagnostic performance (AUC: 0.939), with SHAP analysis revealing

MARCO as the top contributor. Gene expression was associated with immune

cell infiltration: HCM samples showed increased CD4+ T cells and M0

macrophages but decreased M2 macrophages and neutrophils. The ceRNA

network comprised 5 mRNAs, 40 miRNAs, and 152 lncRNAs. SRGN and SNCA

were identified as potential targets for heparin and 33 other drugs, respectively.

qRT-PCR performed on a small number of myocardial samples supported

expression trends of the identified genes, in line with transcriptomic analysis.
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Conclusion: This study reveals immune-related mechanistic biomarkers and

potential therapeutic targets in HCM, highlighting the role of immune

dysregulation in disease progression. Machine learning and SHAP analysis

improved diagnostic model interpretability, providing a basis for future

development of non-invasive diagnostic tools.
KEYWORDS

hypertrophic cardiomyopathy, multi-approach, machine learning, biomarkers,
immune infiltration
1 Introduction

Hypertrophic cardiomyopathy (HCM), a heterogeneous

monogenic cardiac disorder studied for over five decades, is

recognized as a leading cause of arrhythmic sudden death, heart

failure, and atrial fibrillation (with thromboembolic stroke) (1).

Epidemiologic studies across diverse populations—including the

United States, Europe, Japan, China, and East Africa—have

e s t ab l i shed HCM as the mos t p r eva l en t i nhe r i t ed

cardiomyopathy, affecting at least 1 in 500 individuals (0.2%) in

the general population (2–4). Extrapolated estimates suggest

approximately 600,000 affected individuals in the United States

and 120,000 in the United Kingdom, though these figures likely

underestimate disease burden due to undiagnosed familial cases.

The molecular pathogenesis of HCM is driven by over 1,400

mutations in 11 or more genes encoding sarcomeric proteins.

Despite its status as the most common cause of sudden cardiac

death in young individuals (including trained athletes) and its

association with functional disability from heart failure or stroke,

most affected individuals remain undiagnosed due to asymptomatic

presentations, with many experiencing preserved life expectancy

and minimal symptoms. Clinical diagnosis relies on imaging

evidence of unexplained left ventricular hypertrophy (LVH) by

echocardiography or cardiovascular magnetic resonance (CMR).

Notably, an emerging subgroup harbors pathogenic mutations

without LVH, whose natural history remains undefined. Over

decades of research, HCM has evolved from a rare, untreatable

entity to a common genetic condition with management strategies

capable of restoring quality of life and extending survival (5).

Classically defined as a monogenic disorder with autosomal

dominant inheritance, HCM exhibits marked temporal and

phenotypic heterogeneity. However, prevailing research has

predominantly focused on sarcomeric gene mutations and their

impact on cardiomyocyte contractility, despite these variants being

identified in only a minority of patients. The Hypertrophic

Cardiomyopathy Registry (HCMR) delineated two distinct

cohorts: genotype-positive patients with confirmed sarcomere

mutations and genotype-negative individuals (6). Significant

differences in morphological features, fibrosis burden, and

dynamic obstruction on CMR underscore the necessity to
02
integrate clinical and imaging phenotypes with circulating

biomarkers that reflect disease activity. Such biomarkers hold

promise for improving diagnosis, guiding therapy, and predicting

outcomes. Disappointingly, genome-wide sequencing studies have

largely failed to identify novel pathogenic mutations beyond

sarcomeric genes, instead yielding variants of uncertain

significance (VUS), highlighting the limitations of a purely

monogenic framework.

In the post-genomic era, critical challenges persist in optimizing

patient selection for genetic testing and enhancing diagnostic yield.

The Mayo Clinic HCM Genotype Predictor Score, widely used in

clinical practice, estimates pretest probability of a pathogenic

variant by incorporating echocardiographic LV characteristics,

age at diagnosis, and family history. Yet, even with this algorithm,

the overall positivity rate of genetic testing remains modest at 34%

(7). This gap underscores the likelihood of polygenic contributions

to HCM pathogenesis, necessitating collaborative efforts among

clinicians, geneticists, and molecular biologists to unravel

multifactorial mechanisms. A seminal review by Chou et al. (8)

advances this paradigm by proposing an integrative model that

extends beyond sarcomere-centric pathophysiology. Their work

elucidates how calcium dysregulation, impaired autophagy, and

metabolic perturbations intrinsically drive cardiomyocyte

hypertrophy. Complementary to genomic and transcriptomic

approaches, proteomic and phosphoproteomic analyses (9, 10)

offer unique insights into post-translational modifications that

may underlie phenotypic diversity. The application of machine

learning (ML) and artificial intelligence (AI) in genomic disease

diagnosis offers new possibilities for addressing complex challenges

in HCM diagnosis. These technologies can integrate large-scale

genomic, transcriptomic, and phenotypic data to identify polygenic

interactions and nonlinear patterns that are difficult to detect using

conventional methods. By developing predictive models, machine

learning algorithms can significantly improve the detection

efficiency of pathogenic variants, compensating for limitations in

diagnostic yield seen in traditional scoring systems.

Although hypertrophic cardiomyopathy (HCM) has

trad i t iona l ly been c las s ified as a non- inflammatory

cardiomyopathy, growing transcriptomic and histopathologic

evidence indicates that immune cell infiltration, cytokine
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imbalance, and maladaptive inflammatory responses may

contribute to disease progression, myocardial fibrosis, and

arrhythmogenic remodeling (11, 12). Specifically, pro-

inflammatory signaling pathways such as NF-kB and interferon

responses have been implicated in cardiomyocyte stress, while

altered expression of immune-related genes involved in

macrophage activation, T-cell signaling, and antigen presentation

has been observed in hypertrophied myocardium (13, 14).

Accumulation of macrophages and interactions between

fibroblasts and immune cells may drive interstitial fibrosis and

increased myocardial stiffness, both characteristic features of

advancing HCM (15). In addition, studies utilizing single-cell

RNA sequencing and immune deconvolution algorithms such as

CIBERSORT have revealed shifts in immune cell composition,

including increased infiltration of M2 macrophages and

regulatory T cells, suggesting a potential immunoregulatory role

in cardiac remodeling (16). Although HCM is classically described

as a monogenic disorder, pathogenic variants are identifiable in only

40-60% of patients (17), highlighting the presence of additional

molecular contributors. Emerging evidence suggests that chronic

low-grade inflammation and myocardial fibrosis coexist in HCM

and may contribute to disease progression independently of

sarcomere gene mutations (18, 19). Recent single-cell and spatial

transcriptomic studies have revealed complex immune cell

heterogeneity and inflammatory signaling within cardiac tissues

(20, 21), underscoring the need to elucidate immune mechanisms in

cardiomyopathies. These findings support the rationale for an

integrated transcriptomic and immunogenomic analysis to

identify immune-related biomarkers and potential therapeutic

targets in HCM.

Building upon these findings, our study employs GWAS

analysis integrated with transcriptomic profiling and experimental

validation to identify high-risk molecular markers for HCM. To

further enhance diagnostic accuracy and deepen understanding of

molecular mechanisms, we incorporated machine learning methods

and SHAP analysis to evaluate the diagnostic potential of key genes

and their role in HCM immune regulation. To date, few studies

have systematically integrated transcriptomics, causal inference,

and machine learning to explore immune mechanisms in HCM

(22). Our work provides a novel framework by combining

Mendelian randomization, multi-dataset transcriptome

integration, SHAP-interpretable machine learning models, and

ceRNA/drug-target network analysis. This strategy not only

identifies immune-related genes associated with HCM but also

reveals potential regulatory and therapeutic pathways, offering

new insights into the immunogenomic landscape of this disease.

Recent evidence suggests that immune cell infiltration,

inflammatory signaling, and interactions between immune cells

and cardiac fibroblasts may promote myocardial fibrosis and

structural remodeling (23). By incorporating immunogenomic

features into our analysis, we aim to improve interpretation of

genotype-phenotype heterogeneity and reveal molecular

mechanisms beyond the traditional sarcomere model. Ultimately,

this approach is expected to improve risk stratification for HCM

patients and guide precision treatment strategies.
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2 Materials and methods

2.1 Raw data

Weobtained three transcriptome datasets from the GEO database,

GSE141910 (left ventricular samples from 166 healthy controls and 28

HCM), GSE160997 (left ventricular samples from 5 healthy controls

and 18 HCM), and GSE36961 (left ventricular samples from 39

healthy controls and 106 HCM). Only samples explicitly labeled as

hypertrophic cardiomyopathy (HCM) were included in our study.

Samples from other cardiomyopathy subtypes, such as dilated or

restrictive cardiomyopathy, were excluded during the data curation

and preprocessing stage to ensure cohort purity (see Supplementary

Table S1). We used the “sva” package (https://bioconductor.org/

packages/release/bioc/html/sva.html) to merge and normalize the

three datasets, then performed differentially expressed gene

analysis between HCM and control samples using the limma

package (https://bioconductor.org/packages/release/bioc/html/

limma.html) of R software (Version 4.3.1). The screening

thresholds for differentially expressed genes were defined as an

absolute value of log2 fold change |logFC| > 0.5 and a false discovery

rate (FDR) < 0.05.

To ensure cross-platform comparability, raw expression

matrices were preprocessed using platform-specific normalization

methods. For RNA-seq datasets, raw counts were transformed into

TPM values and log2-transformed. For the microarray dataset

(GSE36961), we applied robust multi-array average (RMA)

normalization. The normalized matrices were then merged, and

the “ComBat” function from the sva package was used to correct for

batch effects across datasets, which is widely used and validated for

cross-platform integration. Principal component analysis (PCA)

was performed before and after correction to visually confirm the

reduction of batch-related variance.
2.2 Screening of expression quantitative
trait locus exposure data and HCM
outcome data

The function “extract_instruments” in the R package

“TwoSampleMR” (https://github.com/MRCIEU/TwoSampleMR)

were utilized to summarize SNPs data of 19942 eQTLs from the

GWAS database. The filtering criteria for SNPs were as follows: p <

5e-08, clump_r2 = 0.001, clump_Kb =10000. The HCM outcome

data for this study consisted of a total of 24,199,797 SNPs obtained

from 507 HCM samples and 489,220 control samples from

European with the GWAS ID: ebi-a-GCST90018861.
2.3 Two-sample GWAS analysis between
exposure data and outcome data

The MR analysis followed three basic assumptions, Specifically,

to be used as an instrumental variable for a risk factor, a genetic

variant or variants must satisfy (1): be reliably associated with the
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risk factor under study (association hypothesis) (2); no association

with any known or unknown confounders (independence

assumption) (3); affecting the outcome only through the risk

factor and not through any other direct causal pathway

(excluding limiting assumptions). We applied five complementary

two-sample MR Methods: inverse variance weighting (IVW), MR-

Egger, weighted median (WM), weighted modal, and simple modal

methods using the R package TwoSampleMR for exposure data

eQTL and outcome data HCM. We employed the IVW method

with a significance threshold of p<0.05 and Mendelian analysis

pleiotropy with p values >0.05 as significance thresholds to screen

for criteria in order to identify candidate eQTLs.
2.4 Screening key biomarkers

The MR Analysis results were subjected to IVW<0.05 screening

to identify the eQTLs associated with HCM. Subsequently, the

intersection of selected eQTLs and DEGs were plotted using the R

package VennDiagram to obtain the key genes.
2.5 GO and KEGG enrichment analysis of
DEGs between healthy control and HCM

The clusterProfiler and org.Hs.eg.db packages were utilized to

conduct functional enrichment analysis on the DEGs (https://

bioconductor.org/packages/release/data/annotation/html/

org.Hs.eg.db.html), followed by visualization of the results using the

ggplot2 and ggpubr packages. The adjust p-value “qvalueFilter”

<0.05 was employed for screening GO and KEGG pathways, and

only the top 10 GO and KEGG pathways were presented.
2.6 Expression levels of key genes and
receiver operating characteristic curve
analysis

The Wilcoxon test was employed to examine disparities in key

genes between healthy individuals and those with HCM, followed

by the generation of box plots for visualization. The “pROC”

package was employed to generate ROC curves and calculate the

area under the curve (AUC), assessing the diagnostic value of single

key gene expression levels in HCM.
2.7 Machine learning and SHAP-based
feature interpretation

To evaluate the ability of multiple key genes to discriminate

HCM, we employed ten mainstream machine learning algorithms

using the caret package (https://cran.r-project.org/package=caret)

based on the merged cohort dataset. The algorithms included

Partial Least Squares (PLS), Random Forest (RF), Decision Tree

(DTS), Support Vector Machine (SVM), Logistic Regression, K-

Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost),
Frontiers in Immunology 04
Gradient Boosting Machine (GBM), Artificial Neural Network

(NeuralNet), Generalized Linear Model Boosting (glmBoost).

These algorithms were used to construct diagnostic prediction

models. Using the createDataPartition function, we randomly

sampled 70% of the merged cohort as the training set, with the

remaining 30% assigned as the test set. ROC curves were generated

based on predicted probabilities, and the AUC was calculated using

the pROC package to evaluate the classification performance of

each machine learning model.

Among all machine learning models, the one with the highest

AUC was selected as the optimal model and used for subsequent

feature interpretation analysis. The permshap function was applied

to compute SHapley Additive exPlanations (SHAP) values,

quantifying the contribution of each feature gene to the model’s

output. SHAP values quantify the contribution of each feature

(gene) to the model’s prediction in a game-theoretic manner. A

positive SHAP value indicates that the gene expression increases the

model’s predicted probability of HCM, whereas a negative value

indicates a protective or lowering effect on the predicted risk. The

shapviz package was utilized to generate SHAP bar plots, bee swarm

plots, and waterfall plots for representative samples, visualizing the

relative importance and directional impact of key feature genes.
2.8 Analysis of key genes expression levels
and immune cell infiltration in HCM
patients

The CIBERSORT method ((https://cibersort.stanford.edu/))

was employed to calculate the relative proportions of 22 immune

cell types in each HCM sample, followed by Spearman correlation

analysis to investigate the associations between key genes and

individual immune cell populations.
2.9 Construction of the HCM ceRNA
network

We utilized key genes to predict the target miRNAs from databases

including miRanda, miRDB, miRWalk, and TargetScan. Only those

miRNAs predicted by all four databases were considered as potential

target candidates of the key genes. After obtaining the final potential

miRNAs, we utilized the spongeScan database for predicting miRNA-

lncRNA targets. Subsequently, we constructed a ceRNA network

comprising mRNA-miRNA-lncRNA interactions, and visualized the

network using Cytoscape software (Version 3.10.1).
2.10 Potential drug target prediction of
HCM key genes

The Drug-Gene Interaction database (DGIdb) website (https://

www.dgidb.org/) was utilized for the prediction of potential drug

targets associated with key genes, followed by visualization of the

gene-drug targets using Cytoscape software.
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2.11 mRNA expression levels in HCM and
normal samples were measured using PCR
assay

To validate the expression levels of the key genes identified in

our study, we performed quantitative real-time PCR (qRT-PCR) on

peripheral blood mononuclear cell (PBMC) samples collected from

patients with HCM and healthy controls. Total RNA was extracted

from the samples using the TRIzol reagent (Invitrogen, Carlsbad,

CA, USA) according to the manufacturer’s instructions. The RNA

concentration and purity were measured using a NanoDrop ND-

1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA). High-quality RNA samples with an A260/A280 ratio

between 1.8 and 2.0 were selected for subsequent experiments.The

RNA samples were reverse-transcribed into cDNA using the

PrimeScript RT reagent Kit (Takara Bio, Kusatsu, Japan). The

reverse transcription reaction was performed in a 20 μL reaction

volume containing 1 μg of total RNA, 1μL of PrimeScript RT

Enzyme MixI, 4μL of 5×PrimeScript Buffer, 1μL of RT Primer Mix,

and 1μL of gDNA Eraser. The reaction was carried out at 37 °C for

15 minutes, followed by 85 °C for 5 seconds to inactivate the

enzyme. Quantitative real-time PCR was performed using the SYBR

Premix Ex Taq II kit (Takara Bio) on a CFX96 Real-Time PCR

Detection System (Bio-Rad Laboratories, Hercules, CA, USA). The

reaction mixture (20 μL) contained 10μL of 2×SYBR Premix Ex Taq

II, 0.4 μL of forward primer (10 μM), 0.4 μL of reverse primer (10

μM), 2 μL of cDNA template, and 7.2 μL of ddH2O. The thermal

cycling conditions were as follows: initial denaturation at 95 °C for

30 seconds, followed by 40 cycles of 95 °C for 5 seconds and 60 °C

for 30 seconds. A melting curve analysis was performed to confirm

the specificity of the PCR products. The relative expression levels of

the target genes were calculated using the 2-▵▵Ct method, with

GAPDH as the internal reference gene (Table 1).

2.12 Statistical analysis

All statistical analyses were performed using R software (version

4.3.1). Differential expression analysis between HCM and normal

samples was conducted using the limma package. The Wilcoxon

test was applied to assess expression differences of key genes.

Mendelian randomization analysis was carried out using multiple
Frontiers in Immunology 05
complementary methods, including inverse variance weighting,

MR-Egger, weighted median, weighted modal, and simple modal.

A p value less than 0.05 was considered statistically significant.

Correlations between gene expression and immune cell infiltration

were evaluated using Spearman correlation analysis. Receiver

operating characteristic curves were plotted to assess diagnostic

performance, and area under the curve values were calculated. All

visualizations were generated using ggplot2 and related packages.
3 Results

3.1 Differential expression analysis and
GWAS analysis between healthy control
and HCM

Following normalization and batch correction, PCA demonstrated

effective mixing of samples from different datasets, supporting

successful platform harmonization (Figures 1A, B). A total of 472

DEGs were identified (Figures 1C, D). We conducted GWAS analysis

individually on 19,942 eQTLs and HCM cases (GWAS ID: ebi-a-

GCST90018861). A total of 5,430 eQTLs (Supplementary Table S2)

containing 25,472 SNPs (Supplementary Table S3) were identified

based on the SNP screening criteria. The IVW method p<0.05 and

heterogeneity analysis p>0.05 (Supplementary Table S4) were

employed to select a total of 205 eQTLs (Supplementary Table S5)

for subsequent analysis.
3.2 Acquisition and expression levels and
chromosomal localization analysis of key
genes in HCM

Through integrative analysis of 472 DEGs and 205 eQTLs, two

genes were found to be significantly upregulated and five genes

significantly downregulated in HCM patients compared with

control samples. Moreover, this elevated gene expression was

associated with an increased incidence of HCM (MR_OR>1)

(Figure 2A); Additionally, a set of 5 genes exhibited low expression

levels in HCM (logFC<0), which was associated with an elevated risk

of developing HCM (MR_OR<1) (Figure 2B). The highly expressed
TABLE 1 Primer sequences for qRT-PCR valizdation of key genes.

Gene Forward primer sequence (5’->3’) Reverse primer sequence (5’->3’)

RNF165 CACAGATGGTCGTCCATGAAA CTTCGCTTCTTATACTTGTGGGG

SNCA TGGTGAGCGAAACAGAAGCC CCATAGCAACCTGCGTAATGAA

SRGN AGGTTATCCTACGCGGAGAG GTCTTTGGAAAAAGGTCAGTCCT

MARCO CAGCGGGTAGACAACTTCACT TTGCTCCATCTCGTCCCATAG

STEAP4 GGCTTTGGGAATACTTGGGTT TGGACAAATCGGAACTCTCTCC

SIGLEC9 CCACATACCAAGAATTGCACCC ACAGAGAGCCGGTGATGTTTAT

TKT TCCACACCATGCGCTACAAG CAAGTCGGAGCTGATCTTCCT

GAPDH ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA
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genes, Ring Finger Protein 165 (RNF165) and Synuclein Alpha

(SNCA), are located on chromosomes 18 and 4 respectively; The

lowly expressed genes, Serglycin (SRGN), Macrophage Receptor with

Collagenous Structure (MARCO), Six Transmembrane Epithelial

Antigen of the Prostate 4 (STEAP4), Sialic Acid Binding Ig Like

Lectin 9 (SIGLEC9), and Transketolase (TKT) located on

chromosomes10, 2, 8, 19, and 3 respectively (Figures 2C, D). The

results of the MR analysis for the seven core genes were subsequently

presented using a forest plot to illustrate the outcomes obtained from

both IVW and WM methods (Figure 2E).
3.3 Results of GO and KEGG enrichment
analysis of DEGs in HCM

The results of the GO functional enrichment analysis indicated that

receptor ligand activity, glycosaminoglycan binding, sulfur compound

binding, G protein−coupled receptor binding, cytokine activity,

heparin binding, extracellular matrix structural constituent, integrin

binding, and Wnt−protein binding, growth factor activity were the top

10 ranks molecular functions (MFs); Collagen-containing extracellular

matrix, vesicle lumen, cytoplasmic vesicle lumen, secretory granule
Frontiers in Immunology 06
lumen, endocytic vesicle, secretory granule membrane, endocytic

vesicle membrane, platelet alpha granule, collagen trimer, and

platelet alpha granule lumen were the top 10 rank cell components

(CC); Leukocyte cell-cell adhesion, regulation of inflammatory

response, leukocyte migration, cell chemotaxis, myeloid leukocyte

activation, external encapsulating structure organization, extracellular

structure organization, extracellular matrix organization, leukocyte

chemotaxis, and positive regulation of inflammatory response were

the top 10 rank biological processes (BP) (Figures 3A, B).

The results of the KEGG analysis indicated that Cytokine-

cytokine receptor interaction, Complement and coagulation

cascades, Phagosome, Efferocytosis, JAK-STAT signaling pathway,

Chagas disease, IL-17 signaling pathway, AGE-RAGE signaling

pathway in diabetic complications, Pertussis, and Malaria were

the top 10 rank enrichment KEGG pathways (Figures 3C, D).
3.4 Machine learning based HCM
diagnostic model with SHAP interpretation

At the single-gene expression level, the AUC values of the ROC

curve for HCM patient diagnosis were RNF165 = 0.752, SNCA =
FIGURE 1

DEGs between healthy control and HCM. (A) The principal component analysis (PCA) was performed on the three data sets, PC1 and PC2, without prior
standardization; (B) The principal component analysis (PCA) was performed on PC1 and PC2 after normalizing the data obtained from the three datasets;
(C) Heat map of the top 50 DEGs between control and HCM; (D) Volcano plot of DEGs between control and HCM. DEGs, Differentially Expressed
Genes; HCM, Hypertrophic Cardiomyopathy; PCA, Principal Component Analysis; PC1, Principal Component 1; PC2, Principal Component 2.
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FIGURE 2

Acquisition and expression levels and chromosomal localization analysis of key genes in HCM. (A) Venn diagram of genes with intersection between
highly expressed genes in HCM and MR analysis OR > 1; (B) Venn diagram of genes with intersection between lowly expressed genes in HCM and
MR analysis OR < 1; (C) Chromosomal localization analysis of seven key genes; (D) Box plot of expression levels of seven key genes between healthy
control and HCM, ***p < 0.001; (E) Forest plots illustrating the IVW and WM analysis methods for MR of seven key genes. HCM, Hypertrophic
Cardiomyopathy; MR, Mendelian Randomization; OR, Odds Ratio; IVW, Inverse Variance Weighted; WM, Weighted Median.
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2025.1645382
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2025.1645382
0.732, SRGN = 0.770, MARCO = 0.778, STEAP4 = 0.766, SIGLEC9

= 0.735, and TKT = 0.728 (Figures 4A–G).

After incorporating seven key genes into ten machine learning

algorithms, we found that the Random Forest (RF) model exhibited

the highest AUC value of 0.939 (Figure 5A). Additional

performance metrics for the RF model included an accuracy of

0.824, precision of 0.833, recall of 0.873, and an F1-score of 0.853,

indicating favorable discrimination and predictive power.

Furthermore, the calibration curve (Figure 5B) demonstrated

good agreement between predicted and observed outcomes, with

a C-index of 0.814, supporting the model’s robustness and potential

clinical applicability. The SHAP summary bar plot revealed that

MARCO contributed most significantly to the model’s predictive

output, whereas SNCA had the smallest impact (Figure 5C).

The SHAP bee swarm plot (Figure 5D) displays the impact of

the seven key genes on the Random Forest (RF) model’s

predictions. MARCO exhibited the highest mean absolute SHAP

value (0.109), indicating its dominant role in HCM discrimination,
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followed by STEAP4 (0.095) and TKT (0.054). Notably, RNF165

and SNCA showed positive SHAP values (mean: 0.045 and 0.040,

respectively), suggesting that higher expression of these genes was

associated with an increased predicted risk of HCM. In contrast, the

remaining genes (MARCO, STEAP4, TKT, SRGN, SIGLEC9)

demonstrated negative SHAP values, implying an inverse

relationship with HCM likelihood (Figure 5D).

The SHAP waterfall plot further elucidates gene-specific effects

(Figure 5E), deconstructing the model’s prediction for a

representative sample. The baseline prediction value (E[f(x)] =

0.422) was adjusted based on each gene’s contribution, with

values above 0.422 classified as HCM samples and values below

0.422 classified as normal controls. The expression levels of the

seven genes in this sample were as follows:

MARCO (expression level = 8.8) exerted the strongest

negative influence, significantly reducing the predicted HCM

risk probability. TKT (9.61) and SRGN (11.3) further drove the

prediction downward through negative SHAP values. In contrast,
FIGURE 3

Go and KEGG functional enrichment analysis of DEGs in HCM. (A) The barplot of GO enrichment functions; (B) The circlize diagram of GO
enrichment functions; (C) Bubble diagram of top 10 KEGG signaling pathways; (D) The circlize diagram of the signaling pathways. GO, gene
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, Differentially expressed genes.
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STEAP4 (10.4), SNCA (9.9), RNF165 (8.72), and SIGLEC9 (6.91)

contributed positive effects, partially offsetting the impact of

other genes. The final predicted value for this sample was f(x) =

0.238. According to the RF model algorithm, this sample was

classified as normal, and the prediction was confirmed to

be correct.

Although these biomarkers were identified in myocardial tissue,

their diagnostic performance may not be directly translatable to

clinical settings due to the impracticality of obtaining cardiac
Frontiers in Immunology 09
biopsies. Therefore, their current value lies in elucidating

disease mechanisms.
3.5 Analysis results of key genes expression
levels and immune cell infiltration in HCM
patients

Compared with the immune cell infiltration levels in

the control group, four out of the 22 immune cell types
frontiersin.o
FIGURE 4

ROC curve illustrating the diagnostic potential of key gene expression levels in HCM patients. (A) RNF165; (B) SNCA; (C) SRGN; (D) MARCO; (E) STEAP4;
(F) SIGLEC9; (G) TKT. RNF165, Ring Finger Protein 165; SNCA, Synuclein Alpha; SRGN, Serglycin; MARCO, Macrophage Receptor with Collagenous
Structure; STEAP4, Six Transmembrane Epithelial Antigen of the Prostate 4; SIGLEC9, Sialic Acid Binding Ig Like Lectin 9; TKT, Transketolase.
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exhibited significantly higher infiltration in HCM, while seven

immun e c e l l t y p e s s h ow e d l ow e r i nfi l t r a t i o n i n

HCM. (Figure 6A).

The expression level of RNF165, SNCA, MARCO, STEAP4,

SIGLEC9, and TKT was positively correlated with the infiltration
Frontiers in Immunology 10
degree of 1, 2, 1, 1, 2, 2 kinds of immune cells, respectively, and

negatively correlated with the infiltration degree of 2, 2, 3, 4, 2, and 1

kinds of immune cells, respectively. There was no correlation

between the expression level of SRGN and the degree of immune

cell infiltration (Figure 6B).
FIGURE 5

Machine learning model performance and SHAP-based interpretation of key genes in HCM diagnosis. (A) ROC curves of ten machine learning
models; (B) The calibration curve of the random forest model; (C) SHAP summary bar plot showing the mean absolute contribution of key genes;
(D) SHAP bee swarm plot displaying the distribution and directionality of gene effects; (E) SHAP waterfall plot for a representative sample. ROC,
Receiver Operating Characteristic; SHAP, Shapley Additive Explanations; HCM, Hypertrophic Cardiomyopathy.
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3.6 Construction of the ceRNA network
and potential drug target prediction of key
genes

The ceRNA network was constructed by screening miRNAs and

lncRNAs through online database systems, incorporating a total of
Frontiers in Immunology 11
5 mRNAs, 40 miRNAs, and 152 lncRNAs. The network was

visualized using Cytoscape. Among the seven key genes, five were

included in the network: STEAP4, SRGN, RNF165, TKT, and

SNCA (Figure 7).

After conducting potential drug prediction of the 7 key genes

in the DGIdb database, a total of 2 genes (SNCA and SRGN) were
FIGURE 6

Analysis of key genes expression levels and immune cell infiltration in HCM patients. (A) Analysis of the differences in infiltration levels of 22 immune
cells between healthy control and HCM patients; (B) Heat map for correlation analysis between seven key genes and 22 types of immune cells.
HCM, Hypertrophic Cardiomyopathy.
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identified as potential targets for 34 drugs. Specifically, the SRGN

gene was found to be targeted by HEPARIN drug, while SNCA

was identified as a potential target for the remaining 33

drugs (Figure 8).
3.7 Validation of pCR levels in normal and
HCM samples

A total of 35 subjects were included in this study, comprising 15

patients with hypertrophic cardiomyopathy (HCM) and 20 healthy

controls. As shown in Table 2, there were no significant differences

in age, sex distribution, or ejection fraction (EF) between the two

groups (all p > 0.05). The results showed that compared with

normal samples, RNF165 and SNCA were upregulated in HCM

samples, while SRGN, MARCO, STEAP4, SIGLEC9, and TKT were

downregulated (Figures 9A–G). These pCR results were consistent

with the mRNA expression patterns observed in the GEO dataset.
4 Discussion

Hypertrophic cardiomyopathy is generally recognized as a

monogenic heart disease that is an important cause of sudden

arrhythmia death, heart failure, and atrial fibrillation (with embolic

stroke). It is one of the common hereditary heart diseases in the

world, but with the technological progress of sequencing technology

and molecular biology, the sequencing results of HCM and further

exploration of its pathogenesis cannot be used to explain the
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occurrence and development of HCM with a single gene mutation.

Therefore, it is necessary to further study and analyze the genomic

changes of HCM compared with healthy people in order to deeply

understand its pathogenesis and disease heterogeneity.

Specifically, we summarize that seven immune-associated

genes-RNF165, SNCA, MARCO, SIGLEC9, SRGN, STEAP4, and

TKT-were identified using transcriptomic data, eQTL-based

Mendelian randomization, and machine learning. These genes

showed consistent expression trends and predictive potential in

HCM. To comprehensively evaluate the roles of key genes in HCM

diagnosis and immune regulation, we employed ten mainstream

machine learning algorithms to construct diagnostic prediction

models and interpreted each gene’s contribution through SHAP

analysis. The Random Forest (RF) model demonstrated the highest

AUC value among all algorithms, exhibiting superior diagnostic

performance. These results confirmed that the significantly

differentially expressed genes in HCM have good diagnostic value

for HCM. Therefore, we further verified the results on human

specimens and found that these genes in HCM human samples were

consistent with the results of public data analysis. Tan Z et al. found

that SNCA and TKT were significantly higher in the HMC model

group than in the control group through public database

transcriptome and experimental verification analysis results (24).

Gu X et al. found that SRGN was enriched in HCM pathway (25)

through long-term analysis of COVID in a comprehensive cohort of

two years of proteomic exploration. RNF165, MARCO, SIGLEC9,

and STEAP4 have not yet been reported in HCM. Rnf165/Ark2C

enhances BMP-Smad signaling mediated motor axon elongation

(26). MARCO and SIGLEC9 have been reported in many studies on
frontiersin.or
FIGURE 7

Construction of the ceRNA network in HCM patients. ceRNA, competing endogenous RNA, HCM, Hypertrophic Cardiomyopathy.
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immunity (27–29). The results of Dong Q et al. obtained the

MARCO immunotherapy biomarker by analyzing the public

database (27, 30–32). Another study suggests that targeting

MARCO and IL37R on lung cancer immunosuppressive

macrophages blocks regulatory T cells and supports cytotoxic

lymphocyte function (28). These results indicate that MARCO is

closely related to the immune system, and the immune system

disorder plays an important regulatory role in HCM. SIGLEC9
Frontiers in Immunology 13
positive tumor-associated macrophages predict prognosis and

treatment vulnerability in colon cancer patients. Zheng Y

systematically elucidates the role of natural killer cells SIGLEC7

and SIGLEC9 in viral infection and tumor progression (32).

Specifically, we now state that while many functional insights

about these genes originate from cancer or infectious disease

models, accumulating evidence suggests that scavenger receptors

(e.g., MARCO) and inhibitory checkpoint molecules (e.g.,

SIGLEC9) play conserved roles in tissue-specific immune

responses, including the heart (33, 34). STEAP4 has been

preliminarily studied in liver and prostate cancer (35, 36). Zhao J

et al. confirmed that the expression of STEAP4 in resident cells of

the central nervous system promotes Th17 cell-induced

autoimmune encephalomyelitis (37).

While our study validates differential mRNA expression of

immune-related genes such as MARCO and SIGLEC9, their

functional roles in cardiac tissue remain poorly characterized.

Based on prior studies, these genes are primarily expressed in

infiltrating immune cells, particularly macrophages, rather than

cardiomyocytes. In the context of the myocardium, MARCO-a

scavenger receptor-is likely to be involved in monocyte/

macrophage-mediated phagocytosis and immune suppression

(38), while SIGLEC9 functions as an inhibitory receptor that may

modulate T cell and NK cell activation (39). It is plausible that these

genes contribute to the formation of an immunosuppressive

microenvironment in HCM, potentially through canonical
TABLE 2 Baseline clinical and echocardiographic characteristics of HCM
patients and controls.

Variable
Control
(n = 20)

HCM
(n = 15)

Z/
c²

P
value

Age (years)
45.50 (36.5-
55.75)

47.00 (42.00-
58.00)

1.168 0.254

Ejection fraction (EF, %)
57.50 (55.25-
60.75)

55.00 (54.00-
60.00)

1.358 0.174

Maximum LV wall
thickness (mm)

11.00 (10.25-
12.00)

18.00 (16.00-
19.00)

5.075 <0.001

Gender 1.944 0.163

Female 10 4

Male 10 11
Values are presented as median (interquartile range, IQR) for continuous variables and counts
for categorical variables. Group comparisons were performed using the Mann–Whitney U test
or c² test, as appropriate.
FIGURE 8

Network diagram of potential drug target prediction for key genes.
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pathways such as IL-10 or TGF-b, both of which are known to

promote fibroblast activation and myocardial fibrosis. However, our

current study lacks single-cell or spatial transcriptomics data to

directly distinguish between cell-type sources, and no proteomic or

histological validation was performed to confirm pathway

activation. Therefore, MARCO, SIGLEC9 and STEAP4 may affect

HCM through the regulation of inflammation and immunity, and

their exact molecular mechanisms in HCM still need to be further

studied. Although myocardial transcriptomic profiling provides

insights into local immune remodeling in HCM, we further

validated the expression of key genes using peripheral blood

samples, demonstrating their consistent expression patterns and

highlighting their potential utility as non-invasive biomarkers in

clinical practice. Future studies should aim to assess whether these

immune-related genes or their corresponding protein products can

be detected and quantified in plasma, serum, or circulating

extracellular vesicles from HCM patients. Several recent studies

have shown that immune-related cardiac biomarkers, such as IL-6,

TGF-b, or galectin-3, are detectable in blood and correlate with

myocardial remodeling and prognosis in cardiomyopathies (40, 41).

Accordingly, peripheral validation and longitudinal follow-up are
Frontiers in Immunology 14
essential steps to determine the diagnostic or prognostic utility of

these candidate markers.

Changes in genes are often accompanied by effects or alterations

in biological processes that affect the course of disease, Therefore,

we further carried out functional enrichment analysis on differential

genes and the results showed that HCM compared with H1 in

healthy group had significant differential expression of genes in

cytokine activity, extracellular matrix structural constituent,

integrin binding, and Wnt-protein binding, regulation of

inflammatory response, leukocyte migration, myeloid leukocyte

activation and the JAK-STAT signaling pathway, IL-17 signaling

pathway, AGE- RAGE signaling pathway and other molecular

signaling pathways as important components. The enrichment of

JAK-STAT and IL-17 signaling is particularly relevant, as both

pathways are known to mediate cardiac inflammation and fibrosis.

JAK-STAT signaling—especially through IL-6 and IFN-g—can

promote macrophage activation and fibroblast proliferation,

contributing to myocardial remodeling (42). IL-17, secreted

mainly by Th17 cells, has been implicated in neutrophil-driven

inflammation and extracellular matrix disruption in various

cardiomyopathies (43). These findings suggest that dysregulation
FIGURE 9

Differential expression of key genes in peripheral blood mononuclear cells between HCM patients and healthy controls. (A) RNF165; (B) SNCA;
(C) SRGN; (D) MARCO; (E) STEAP4; (F) SIGLEC9; (G) TKT. ****p < 0.0001. RNF165, Ring Finger Protein 165; SNCA, Synuclein Alpha; SRGN, Serglycin;
MARCO, Macrophage Receptor with Collagenous Structure; STEAP4, Six Transmembrane Epithelial Antigen of the Prostate 4; SIGLEC9, Sialic Acid
Binding Ig Like Lectin 9; TKT, Transketolase.
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of these signaling cascades may be a common mechanism linking

immune activation to structural changes in HCM. A review by Fang

L et al. systematically explores the tumor necrosis factor (TNF)-a,
interleukin (IL)-6 and serum amyloid P (SAP) were significantly

increased in HCM patients compared to controls (18). Sewanan LR

et al. ‘s findings reveal that the extracellular matrix of hypertrophic

myocardium leads to impaired tic dynamics of healthy

cardiomyocytes (44). RyR2 dysfunction mediated by Wang Y

integrin b1D defect is one of the causes of catecholamine-

sensitive ventricular tachycardia in arrhythmogenic right

ventricular cardiomyopathy (45). It was also found that the

regulation of inflammatory response also plays an important role

in the occurrence and development of HCM. As for white blood cell

migration, white blood cells are the main effector cells that produce

inflammation in the body. As mentioned above, some core genes of

differential expression of HCM are closely related to immunity, and

they may play a regulatory role in the development of HCM by

regulating immune response. Chatterjee S et al. confirmed that

leukocyte telomere length is related to the severity of hypertrophic

cardiomyopathy, and the shorter leukocyte telomerase is, the more

severe HCM is (46). It is well known that the length of telomerase is

related to the lifespan of cells, and its specific mechanism of action

still needs further study. IL-17 and JAK-STAT molecular signaling

pathways have not been studied in HCM, while JAK-STAT has been

extensively studied in different types of cardiomyopathy. Prmt7 has

a sex-specific cardioprotective effect by modulating the JAK/STAT

signaling pathway (47). Sitapliptin alleviates cardiomyopathy in

experimental diabetic rats by inhibiting the JAK/STAT signaling

pathway (48). These results further confirm that the significantly

differentially expressed genes in HCM play an important regulatory

role in the pathogenesis of cardiomyopathy.

We have discussed above that the significantly differentially

expressed genes in HCM may play important regulatory roles in

immune and inflammatory responses and thus influence the

progression of HCM. Therefore, we further analyzed the

infiltration abundance of different types of immune cells and the

interaction of significantly differentially expressed genes with

immune cells in HCM and healthy controls. Compared to healthy

samples Plasma cells, Macrophages M2, Dendritic cells activated,

Neutrophils were lower infiltration in HCM samples, but T cells

CD4 naive, T cells CD4 memory resting, T cells CD4 memory

activated, T cells regulatory (Tregs), Macrophages M0, Dendritic

cells resting were higher infiltration in HCM patient samples.

Bioinformatics and immunoosmotic analysis reveal key pathways

in the pathogenesis of hypertrophic cardiomyopathy and immune

cells (49). Recent bioinformatics studies have increasingly

highlighted the role of immune dysregulation in HCM. Hou et al.

conducted a comprehensive analysis using necroptosis signatures

and immune infiltration profiles, identifying elevated expression of

pro-inflammatory pathways in HCM myocardium (16). Similarly,

Zhang et al. demonstrated that key immune cell populations such as

M2 macrophages and regulatory T cells are significantly altered in

HCM tissues, supporting our own immune infiltration findings

(49). Mononuclear RNA sequencing revealed changes in

intercellular communication and dendritic cell activation in non-
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obstructive hypertrophic cardiomyopathy (50), results showing

increased dendritic cell expression in HCM is inconsistent with

this study. Becker RC et al. systematically described the potential

role of the Von Willebrand factor and neutrophil extracellular trap

in the natural history of hypertrophic and hypertensive

cardiomyopathy (51). Yehia et al. ‘s findings revealed that the

increased neutrophil-to-lymphocyte ratio was a negative

prognostic indicator for HCM cats (52). The results of our

analysis showed that various T cell subtypes generally showed a

state of high infiltration in HCM. Shintani Y et al. studied the

clinical effects of using endocardial biopsy to pathologically

quantified myocardial fibrosis and infiltrating T lymphocytes in

patients with hypertrophic cardiomyopathy (53). The greater the

number of infiltrating CD3+ cells, the worse the clinical prognosis

of HCM patients.

In addition to their immunomodulatory functions, several

identified genes may also influence fibrotic remodeling, which is a

hallmark of advanced HCM. For instance, immune cells such as

macrophages and T-helper cells are known to secrete pro-fibrotic

cytokines like TGF-b1, thereby promoting fibroblast activation and

extracellular matrix deposition (54). Genes such as MARCO and

STEAP4, which are involved in inflammatory signaling and redox

regulation, may indirectly modulate this fibrotic cascade. These

interactions suggest that immune dysregulation and fibrosis may be

mechanistically linked in HCM pathogenesis. These results confirm

that immune cells play an important role in the development of

HCM. But a major limitation of our study is the reliance on bulk

transcriptomic data, which cannot resolve gene expression at the

single-cell level. Although we used CIBERSORT to estimate

immune cell proportions, this method infers population averages

and does not clarify the specific cellular sources of key genes such as

MARCO or SIGLEC9. Recent studies using single-cell and spatial

transcriptomics in HCM have revealed diverse immune cell subsets

and complex intercellular communication. For example, Nie et al.

reported enhanced dendritic cell activity and fibroblast–immune

cell interactions in HCM myocardium (55), while Bos et al.

demonstrated spatially restricted immune niches in cardiac tissue

(56). These high-resolution approaches could help determine

whether the immune-related genes we identified are expressed by

infiltrating immune cells, resident cardiac macrophages, or other

cell types. Future studies integrating single-cell and spatial data will

be essential to validate our findings and clarify how immune cells

contribute to myocardial remodeling in HCM. Besides, the lack of

comparison with other cardiac pathologies such as dilated

cardiomyopathy (DCM) or myocarditis, due to the absence of

such samples in our dataset. This prevents us from determining

whether the observed immune signatures are specific to HCM.

However, prior studies have reported distinct immune profiles in

different cardiomyopathies. For example, myocarditis is often

marked by CD8+ T cell-mediated injury and dendritic cell

activation, whereas DCM tends to show macrophage-driven

inflammation and extracellular matrix remodeling (57). Future

studies integrating transcriptomic data across multiple

cardiomyopathy subtypes will be essential to determine the

specificity and clinical utility of immune-related biomarkers in
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HCM. Notably, recent studies have suggested that sex-specific

immune responses may influence the development and

progression of hypertrophic cardiomyopathy. For example, female

patients with HCM may exhibit heightened fibrosis, altered T-cell

responses, and distinct macrophage activation patterns compared

to males (58, 59). While our study lacked access to complete sex-

stratified metadata from public datasets, we recognize this as a

critical variable and recommend future studies to incorporate sex-

based immunogenomic analyses to enhance precision in biomarker

discovery and disease modeling.

The regulation of gene expression in vivo is influenced by

various factors, including non-coding RNAs such as lncRNAs and

miRNAs. To explore this, we constructed a ceRNA network

centered on five core genes (RNF165, SNCA, SRGN, STEAP4,

and TKT) identified in our study. The analysis revealed that these

genes are potentially regulated by several non-coding RNAs,

suggesting that ceRNA interactions may play a role in modulating

immune and metabolic pathways in HCM. Previous studies have

shown that non-coding RNAs participate in cardiovascular diseases

by regulating oxidative stress, fibrosis, and immune activation. For

example, SNCA has been linked to mitochondrial dysfunction and

is a known miRNA target in neural and cardiac tissues (60). SRGN,

involved in the storage and release of inflammatory mediators, may

be regulated by lncRNAs under pro-inflammatory conditions (61).

Although RNF165 is primarily studied in neurobiology (26), our

findings suggest it may also be regulated by cardiac non-coding

RNAs, potentially affecting inflammatory signaling in HCM. These

findings highlight the possibility that ceRNA networks contribute to

key processes in HCM such as immune infiltration, myocardial

remodeling, and metabolic dysfunction. However, functional

validation of these lncRNA–miRNA–mRNA interactions in

cardiac tissue remains lacking. Future studies using cardiac-

specific single-cell sequencing or RNA-interference experiments

will be essential to clarify these regulatory mechanisms and their

potential as therapeutic targets. The ultimate goal of all disease

research always comes back to finding drugs to treat the disease,

SRGN gene was found to be targeted by HEPARIN drug, SRGN

gene was found to be targeted by heparin drug, while SNCA was

identified as a potential target for the remaining 33 drugs, while

SNCA was identified as a potential target for the remaining 33

drugs, These results indicate that these two genes may now serve as

potential therapeutic gene targets for HCM. Similar to non-coding

RNAs, there are drugs that target these core genes, but no studies

have demonstrated the efficacy of these drugs against HCM. As

mentioned above, these core genes participate in many important

biological processes for the development of HCM, but their specific

roles in HCM are not yet clear, so the specific therapeutic and

biological effects of their targeted drugs and non-coding RNAs in

HCM are also not yet known. Therefore, these results urgently

require us to further verify these results and explore the specific

biological regulation process of HCM.While our study identified 33

potential therapeutic agents targeting immune-related genes in

HCM, translational application requires careful consideration. For

example, heparin, although known for its anti-inflammatory

properties, lacks specificity for myocardial tissue and carries
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bleeding risk. In contrast, agents like resveratrol and metformin

have shown cardioprotective or anti-fibrotic effects in animal

models of HCM and warrant further investigation (62, 63). We

consulted DrugBank (https://go.drugbank.com/) to assess

pharmacokinetic properties, cardiac safety, and therapeutic

precedent. Several agents exhibited favorable oral bioavailability

and cardiac safety profiles, but off-target immunosuppressive effects

or systemic toxicity remain concerns. Future preclinical validation

using cardiomyocyte and cardiac immune cell models is essential to

prioritize candidates for clinical translation.nistic insights into post-

translational regulation.

In summary, our study highlights several core genes that are not

only differentially expressed in HCM but also significantly

correlated with immune cell infiltration, suggesting a potential

immunoregulatory mechanism underlying HCM pathogenesis.

The construction of a ceRNA network revealed that these genes

are regulated by multiple lncRNAs and miRNAs, although their

roles in HCM remain largely unexplored and are currently better

understood in cancer research. While our study validates

differential expression of the seven key genes at the mRNA level

using qRT-PCR, it does not assess protein expression or functional

consequences. Given that transcript levels may not always

correspond to protein abundance or activity, this represents a

limitation of our current study. Future work should incorporate

proteomic approaches (e.g., Western blotting, mass spectrometry)

or immunohistochemistry to verify protein-level changes in

myocardial tissues and to explore their spatial distribution and

functional roles in HCM pathogenesis. Although our study

establishes a strong association between immune-related genes

and HCM, it remains unclear whether such immune activation is

a cause or consequence of myocardial remodeling. While

Mendelian randomization provides preliminary causal inference,

definitive validation requires functional studies. Future work should

employ gene knockdown or overexpression in animal models (e.g.,

cardiac-specific MARCO or SIGLEC9 transgenic mice), and

CRISPR-based editing in human iPSC-derived cardiomyocytes.

Single-cell and spatial transcriptomics combined with in vivo

immune modulation may further elucidate whether immune

activation precedes or follows structural cardiac changes in HCM.

Furthermore, drug-gene interaction analysis suggested that SRGN

may be targeted by heparin, and SNCA by over 30 candidate

compounds, implying their potential as therapeutic targets.

However, the effectiveness of these drugs in treating HCM is

unknown due to the absence of experimental validation in

cardiac-specific models. Considering that these genes are involved

in immune-related processes such as cytokine signaling, leukocyte

migration, and inflammatory regulation, future studies should focus

on elucidating how gene expression modulates immune cell

behavior and contributes to myocardial remodeling. Given the

invasive nature of myocardial sampling, our identified markers

should be considered mechanistic rather than directly diagnostic at

this stage. Future work should aim to evaluate whether these genes-

or their related protein or transcript levels-are detectable and

discriminative in peripheral blood, plasma, or exosomal samples,

which would facilitate their translation into clinically viable
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biomarkers. Taken together, our findings not only identify novel

diagnostic and therapeutic targets for HCM but also emphasize the

crucial role of immune dysregulation in its progression, providing a

foundation for future mechanistic and translational research.
5 Conclusion

In this study, we identified seven key genes including RNF165,

SNCA, MARCO, SIGLEC9, SRGN, STEAP4, and TKT that are

differentially expressed in HCM and significantly associated with

disease risk and diagnostic value. Mendelian randomization

analysis further supported the causal relationship between gene

expression and HCM susceptibility. These genes were also closely

related to immune cell infiltration, suggesting they may influence

HCM progression through immune regulation. Functional

enrichment revealed their involvement in immune-related

pathways such as cytokine signaling, leukocyte migration, JAK-

STAT signaling, and IL-17 signaling. Immune infiltration analysis

confirmed abnormal activation of multiple immune cell subtypes in

HCM samples, particularly T cells and macrophages. Furthermore,

ceRNA network analysis suggested that non-coding RNAs may

regulate these genes, and drug-gene interaction analysis identified

potential therapeutic compounds, especially for SRGN and SNCA.

Although further experimental validation is needed, our results

provide novel insights into the immune-related molecular

mechanisms of HCM and suggest potential diagnostic markers

and therapeutic targets for future translational research.
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