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Introduction: Systemic lupus erythematosus (SLE) is a complex autoimmune
disorder characterized by aberrant inflammation, type | IFN-stimulated gene
(ISG) expression, and autoantibody production. Glucocorticoids (GCs) like
dexamethasone (DEX) are standard long-term SLE treatments but cause
significant side effects, highlighting the need for safer steroid-sparing options.
Preclinical and clinical studies suggest that dietary supplementation with omega-
3 fatty acids (O3FAs), particularly docosahexaenoic acid (DHA), suppresses
inflammation and autoimmunity associated with SLE disease progression. We
explored the steroid-sparing potential of DHA to influence the suppressive
effects of DEX on pathogenic gene expression.

Methods: Macrophages from SLE-prone NZBWF1 mice were first subjected to
DHA (5, 10, or 25 pM), DEX (1, 10, 100, or 1000 nM), or DHA+DEX cotreatment.
Following pretreatment, cells were exposed to lipopolysaccharide (LPS; 20 ng/
mL) to model SLE hyperinflammation. Resultant gene expression was subjected
to synergy and deconvolution analysis.

Results: gRT-PCR indicated that subinhibitory concentrations of DHA (5-10 uM)
potentiated the efficacy of low-dose DEX (1-100 nM) in suppressing LPS-
induced ISG expression (e.qg., Irf7, Oasll, Rsad?2), amplifying the effects of DEX
monotherapy by 10- to 100-fold. SynergyFinder analysis confirmed that DHA and
DEX interacted synergistically in suppressing ISG expression, with significant
inhibition observed at concentrations as low as 1 nM DEX and 5 pyM DHA.
RNA-seq revealed that combining suboptimal DHA (10 uM) and DEX (100 nM)
induced 247 differentially expressed genes (DEGs) at 4 hr and 347 DEGs at 8 hr
post-LPS, dramatically surpassing the effects of each treatment alone. Functional
enrichment analysis indicated DHA+DEX cotreatment robustly suppressed
immune and inflammatory pathways while promoting proliferative and
metabolic processes, reflecting a shift from inflammatory (M1) to pro-resolving
(M2) macrophage phenotypes. DHA and DEX countered LPS effects by i)
downregulating common transcription factors (TFs) canonically associated
with inflammation (e.g., NF-kB, AP-1, STATs, and IRF1), ii) upregulating shared
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regulatory factors involved in inflammation resolution (e.g., YBX1, EGR1, and
BCL6), and iii) selectively influencing other regulatory factors.

Discussion: Altogether, DHA and DEX synergistically suppress inflammatory gene
expression by targeting common and unique molecular pathways in SLE
macrophages, favoring the pro-resolving M2 phenotype. O3FA-GC
cotreatment might facilitate reducing requisite steroid dosages for

SLE management.

fetal liver-derived alveolar-like macrophage (FLAM), glucocorticoid (GC), omega-3 fatty
acid, autoimmunity, lupus, interferon (IFN)

1 Introduction

Systemic lupus erythematosus (SLE, lupus) is a debilitating
autoimmune disease characterized by chronic inflammation,
aberrant type I IFN-stimulated gene (ISG) responses, loss of self-
tolerance, and multi-organ damage driven by genetic susceptibility
and environmental triggers (1, 2). Genome-wide association studies
in patients with SLE have identified more than 150 risk loci that
converge on pathways regulating IFN signaling and immune cell
activation (1, 3). Environmental exposures, such as airborne
pollutants, infections, and ultraviolet light, amplify genetic
predispositions to SLE by triggering oxidative stress and aberrant
nucleic acid sensing (4, 5).

Macrophage hyperactivity plays a central role in SLE
pathogenesis (6, 7) by perpetuating tissue injury through
dysregulated cytokine production, phagocytic dysfunction, and
sustained type I IFN secretion—a hallmark of SLE observed in
60-80% of patients (8, 9). Macrophage hyperactivity is mediated by
the activation of pattern-recognition receptors such as toll-like
receptors (TLRs), which detect both pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs) (6, 7), or by activation of cytokine receptors
specific for type I IFN, TNFaq, IL-1, or IL-6 (8, 10, 11). This is
exemplified preclinically in SLE-prone NZBWF1 mouse alveolar
macrophages, which exhibit heightened pathogenic gene expression
following activation of TLR4 by PAMPs like lipopolysaccharide
(LPS) or DAMPs unleashed by toxic silica particles (5, 12, 13). TLR4
activation triggers MAPK/NF-kB signaling and IFN regulatory
factors (IRFs), resulting in increased expression of
proinflammatory and type I IFN-stimulated genes (ISGs) (14, 15).
This cascade creates a feed-forward loop that enhances antigen
presentation, promotes autoantibody production by plasma cells,
and activates autoreactive T cells (16, 17). Accordingly, airborne
environmental triggers, such as LPS and silica, accelerate the onset
and progression of SLE in NZBWF1 mice, highlighting the crucial
role of AM hyperactivity in lupus pathogenesis.

Glucocorticoids (GCs; steroids) remain the cornerstone of lupus
treatment, as they suppress key inflammatory pathways, including
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NF-kB and MAPK signaling (18, 19). However, chronic GC use at
moderate-to-high doses is associated with severe adverse side
effects, including osteoporosis, hyperglycemia, muscle atrophy,
cardiovascular complications, and increased infection risk (20-
22). Consistent with this notion, we found that while moderate-
to-high dose GC treatment of silica-exposed NZBWFI mice at
translationally relevant dosages inhibits proinflammatory and
autoimmune gene expression, it also elicits significant muscle
wasting and hyperglycemia without improving survival outcomes
(23). These findings highlight the critical need for steroid-sparing
adjunctive therapies that effectively control inflammation while
minimizing patient health risks.

Emerging evidence positions marine oil-derived omega-3 fatty
acids (O3FAs), such as docosahexaenoic acid (DHA), as promising
anti-inflammatory agents for adjunctive treatment in SLE and other
autoimmune diseases (24-26). Mechanistically, DHA exerts its
effects through multiple pathways: i) altered receptor function due
to lipid raft composition (27) and size (28), ii) activating anti-
inflammatory transcription factors (TFs) such as PPARy (29), iii)
inhibiting NF-xB (30), iv) disrupting cholesterol synthesis, v)
upregulating NFE2L2 (NRF2)-associated genes (31), and vi)
producing specialized pro-resolving mediators like resolvins and
maresins (32). We recently reported that, in a cohort of 418
participants with SLE, higher serum levels of O3FAs, particularly
DHA, were associated with favorable outcomes, including reduced
SLE scores, less pain, and improved sleep quality (33). In preclinical
studies of silica-triggered SLE in NZBWF1 mice, we demonstrated
that dietary DHA supplementation suppresses IFN-stimulated and
proinflammatory gene expression and consequent pulmonary
inflammation and lupus nephritis (5, 34-36).

Given their potential for complementary anti-inflammatory
mechanisms, O3FAs might be valuable adjuncts to reduce GC
dosages needed to suppress SLE progression. Here, we hypothesized
that DHA could be used as an adjunct to reduce the DEX
concentration required to suppress proinflammatory and IFN
responses in lupus macrophages. To test this hypothesis, we
preclinically modeled SLE hyperinflammation using LPS activation
of novel self-renewing fetal liver-derived alveolar-like macrophages
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(FLAMs) derived from NZBWFI1 mice (37). The results showed that
combining subinhibitory concentrations of DHA with low-dose
dexamethasone (DEX) creates a potent synergy that robustly
suppresses IFN-stimulated and proinflammatory gene expression
induced by LPS in the SLE macrophages. Cotreatment outperformed
individual treatments by targeting key pathways and TFs involved in
inflammation and resolution. These findings support the idea that
O3FA-GC cotreatment may be a feasible steroid-sparing strategy for
SLE management.

2 Methods

2.1 Self-renewing fetal liver-derived
NZBWF1 lupus macrophages

The Institutional Animal Care and Use Committee (IACUC) at
Michigan State University (MSU; AUF# 201800113) approved all
animal experimental protocols for this study. SLE-prone NZBWF1
mice (Jackson Laboratories, Bar Harbor, ME) were housed at MSU’s
animal facility, which was maintained at a constant temperature
(21-24°C), humidity (40-55%), and a 12-hr light/dark cycle.

After the mice were bred, the dams were euthanized between
gestational days 14 and 18. Specifically, dams were placed in
Optimice cages and euthanized via CO, inhalation (4.7 L CO,/
min) for 10 minutes to ensure death to both the dam and neonates.
Death of the dam via CO, inhalation was confirmed by paw pinch.
Cervical dislocation was used as a secondary form of euthanasia for
the dam. Fetuses were promptly dissected from the dam by severing
the placental arteries. Loss of access to the maternal blood supply
served as the secondary form of euthanasia for the neonates.

Excised fetal livers were further processed to generate fetal liver-
derived alveolar-like macrophage (FLAM) cell cultures as
previously described (31, 37). Briefly, fetal livers were dissociated
in sterile phosphate-buffered saline (PBS) to create a single-cell
suspension. Suspensions were filtered through a 70-pm filter and
centrifuged at 220 x g for 5 minutes. Two wash steps were
performed using sterile PBS before resuspending cells in modified
RPMI media (mRPMI, Thermo Fisher), which contained 10% fetal
bovine serum (FBS, Thermo Fisher), 1% penicillin-streptomycin (P/
S, Thermo Fisher), 30 ng/mL murine granulocyte-monocyte
colony-stimulating factor (GM-CSF, PeproTech), and 20 ng/mL
recombinant human TGF-B1 (PeproTech). Cells were plated in 10
cm culture plates (one liver per plate). mRPMI media was replaced
every ~2 days until cells created an adherent monolayer and
exhibited a round AM-like morphology (~1 wk). Cells were then
frozen in liquid nitrogen until needed for this study.

FLAMs were thawed and cultured in mRPMI media for this
experiment, and cells between passages 10-11 were used for
subsequent studies. Upon LPS stimulation, NZBWF1 FLAMs
exhibited significantly elevated type I IFN gene responses
compared with FLAMs derived from C57BL/6 controls
(Supplementary Figure 1), supporting their utility as a model for
investigating therapeutic interventions targeting hyperinflammatory
SLE-associated macrophages.
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2.2 Study 1. Quantitative RT-PCR analysis
of DHA and DEX cotreatment effects on
LPS-induced ISG expression

2.2.1 Experimental design

FLAMs were seeded in 12-well plates at -48 hr in mRPMI
media. At -24 hr, cells were gently washed with PBS, and media was
replaced with mRPMI containing 0.25% FBS and 0, 5, 10, or 25 uM
DHA (NuChek Prep, Elysian, MN). At -1 hr, FLAMs were treated
with mRPMI media containing 0.25% FBS and 0, 1, 10, 100, or 1000
nM DEX (Sigma-Aldrich). At 0 hr, FLAMs were treated with
mRPMI medium containing vehicle (VEH/CON) or containing
20 ng/mL LPS (LPS/VEH; Salmonella enterica serotype
Typhimurium containing <1% impurities, Millipore Sigma). Cells
were collected at 4 and 8 hr for qRT-PCR.

2.2.2 qRT-PCR

Total cellular RNA was extracted using RNeasy Mini Kits
(Qiagen) according to the manufacturer’s instructions. RNA was
eluted using RNase-free water provided by the RNeasy kit and
quantified using the Nanodrop ND-1000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA). ¢cDNA was prepared
from RNA using a High-Capacity cDNA Reverse Transcriptase Kit
(Thermo Fisher Scientific). Taqgman assays were performed in
technical triplicate using the Takara Bio Smart Chip real-time
PCR system, with assistance from the MSU Genomics Core, to
assess gene expression. Expression of ISGs (MxI, Irf7, Ifitl, Isgl5,
Oasll, and Rsad2) and housekeeping genes (Actb and Hprt) was
assessed. ACt values were calculated by subtracting the average raw
Ct value of both housekeeping genes from the raw Ct value for each
gene of interest. AACt values were calculated by subtracting the
average ACt value of the respective VEH/CON group from the
average ACt value of the LPS/VEH treatment. AACt values are
shown in units of fold increase relative to LPS/VEH for each gene of
interest. Similarly, to assess DHA/DEX treatment on LPS-
stimulated FLAMs, AACt values were calculated by subtracting
the average ACt value of the respective LPS/VEH group from the
average ACt value of the corresponding DHA/DEX treatment. AACt
values are shown in units of fold increase relative to LPS/VEH for
each gene of interest.

2.3 Study 2. RNA-seq and functional
analysis of DHA and DEX cotreatment
effects on immune pathways

2.3.1 Experimental design

FLAMs were seeded in 6-well plates at -48 hr in mRPMI media.
At -24 hr, cells were gently washed with PBS, and media was
replaced with mRPMI media containing 0.25% FBS with or without
10 uM DHA. At -1 hr, FLAMs were treated with mRPMI media
containing 0 or 100 nM DEX. At 0 hr, FLAMs were treated with
mRPMI medium (VEH/CON) or media containing 20 ng/mL LPS.
Culture cohorts were collected for fatty acid analysis (4 hr), gene
expression by RNA-seq (4 and 8 hr), and cytokine secretion by
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ELISA (24 hr). Treatment groups were as follows: (i) VEH/CON,
(i) LPS/VEH, (iii) DHA/LPS, (iv) DEX/LPS, and (v) DHA
+DEX/LPS.

2.3.2 Fatty acid analysis

Cell pellets were preserved in 100% methanol at -80°C before
fatty acid composition analysis using gas chromatography with
flame ionization detection at OmegaQuant (Sioux Falls, SD). The
procedure involved transferring pellets to screw-cap glass vials and
adding an internal standard, di-C23:0 PL. A modified Folch
extraction was performed, followed by thin-layer chromatography
(TLC) separation using a solvent mixture of hexane, ethyl ether, and
acetic acid (8:2:0.15). The phospholipid band from the TLC plate
was collected and treated with methanol containing 14% boron
trifluoride. HPLC-grade water and hexane were added after heating
at 100°C for 10 minutes. The mixture was vortexed and centrifuged
for phase separation. The hexane layer underwent gas
chromatography analysis using a GC2010 Gas Chromatograph
with a specific capillary column. Fatty acids were quantified by
comparison with a standard mixture and an internal standard. Di-
C23:0 PL was used to calculate recovery efficiency. The analysis
identified 24 different saturated fatty acids (SFAs),
monounsaturated fatty acids (MUFAs), omega-6 fatty acids
(O6FAs), and omega-3 fatty acids (O3FAs). Results were
expressed as a percentage of total identified fatty acids.

2.3.3 RNA-seq

Cells were lysed using RLT lysis buffer (Qiagen), and RNA was
isolated from cells using RNeasy Mini Kits (Qiagen). RNA was
quantified with Qubit (Thermo Fisher Scientific), and integrity was
verified with TapeStation (Agilent Technologies). Samples (RNA
integrity numbers >8) were library-prepped at the MSU Genomics
Core using the Illumina Stranded mRNA Library Preparation,
Ligation Kit with IDT for Illumina Unique Dual Index adapters
following the manufacturer’s recommendations, except that half-
volume reactions were used. Libraries were pooled in equimolar
proportions and quantified using the Invitrogen Collibri
Quantification qPCR kit. Samples were sequenced on the
NovaSeq 6000 S4 flow cell in a 2x150bp paired-end format using
a NovaSeq v1.5, 300-cycle reagent kit. Base calling was performed
using [lumina Real-Time Analysis (RTA) v3.4.4, and the RTA
output was demultiplexed and converted to FastQ format with
Mumina Bcl2fastq v2.20.0. Following quality control using FastQC,
reads were aligned to the mouse reference genome (GRCm39,
release 107) using STAR (version 2.3.7a) (38). Normalization and
differential expression analysis were performed using DESeq2 (39)
in R (version 4.1.2). Genes were considered differentially expressed
when | fold change | > 1.5 and the adjusted p-value < 0.05.

2.3.4 Functional analysis

Gene set enrichment analysis was performed using the fgsea
package in R on gene expression datasets ranked by fold-change and
gene sets from the Gene Set Knowledgebase (GSKB) (40) filtered
only to include Gene Ontology (GO) and KEGG gene sets (41). The
pathway-level information extractor (PLIER) tool (42) was used to
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summarize gene expression signatures for all treatment conditions,
except for unstimulated controls, using the same gene sets as prior
knowledge. Differences in latent variable (LV) estimates between
conditions were determined by three-way ANOVA with DHA
treatment, DEX treatment, and time as factors.

2.3.5 Transcription factor (TF) analysis

TF analysis was performed using the decoupleR package (43).
DESeq2 differential expression analyses sorted by fold-change were
used as input with the DoRothEA collection of TF-gene interactions
with a level of confidence “A - highest confidence” (44).

2.3.6 Enzyme-linked immunosorbent assay

Representative ISG-related proteins (i.e., IFN-f3, CCL2,
CXCL10) that were identified with qRT-PCR and RNA-seq were
measured in supernatants of treated FLAMs by enzyme-linked
immunosorbent assay (ELISA). Specifically, IFN-} was measured
using a LumiKine Xpress mIFN-f 2.0 kit (InvivoGen, San Diego,
CA), and other proteins were measured using corresponding
DuoSet ELISA kits (R&D Systems, Minneapolis, MN) according
to the manufacturer’s instructions.

2.4 Data visualization and statistics

GraphPad Prism Version 10 (GraphPad Software, La Jolla,
California, USA, www.graphpad.com) was used to visualize fatty
acid, quantitative RT-PCR, and cytokine data. These data were
subjected to the ROUT outlier test (Q=1%) and then the Shapiro-
Wilk test (p < 0.01) to identify outliers and assess normality,
respectively. Data failing to meet the assumption for normality
were analyzed using the non-parametric Kruskal-Wallis test,
followed by Dunn’s post-hoc test. Data that met assumptions for
normality and equal variances were analyzed by parametric one-
way analysis of variance (ANOVA) followed by Tukey’s post-hoc
test. Data are shown as mean + standard error of the mean, with p <
0.05 considered statistically significant. The SynergyFinder 3.14.0 R
package (45) was used to evaluate inhibitory interactions between
DHA and DEX on ISG expression. Synergy scores were calculated
using the zero-interaction potency (ZIP) model (46). Visualizations
of RNA-seq differential expression and functional enrichment
analyses were generated using GraphPad Prism and R.

3 Results

3.1 Study 1. DHA and DEX interact
synergistically to inhibit ISG expression in
SLE FLAMs

LPS stimulation in NZBWF1 FLAMs induced robust
upregulation of representative ISGs, including Irf7, Mxl, Ifitl,
Isgl5, Oasll, and Rsad2. DHA monotherapy concentration-
dependently suppressed this IFN response. Significant ISG
suppression was observed at 25 uM (p < 0.05 vs. LPS control)
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(Figure 1A), while lower concentrations (5 to 10 uM) showed a
significant decrease (Figures 1B, C). DEX monotherapy at 1 uM
effectively suppressed ISG expression, whereas lower doses (<100
nM) demonstrated incomplete and variable transcriptional
inhibition (Figures 1A-C). Combining subinhibitory DHA (5 to
10 pM) with low-dose DEX (1 to 100 nM) enhanced the
suppression of LPS-driven ISGs (p < 0.05 vs. individual
treatments), exceeding additive effects (Figures 1B, C). This
combination amplified DEX’s potency by 10- to 100-fold,
achieving near-complete transcriptional silencing. This
potentiation was observed across multiple ISGs, indicating broad
modulation of type I IFN-regulated genes and signaling pathways.

Using SynergyFinder 3.14.0 and the ZIP synergy model, we
quantified the synergy between DHA and DEX related to the
inhibition of ISG expression. At all concentrations, DHA and
DEX demonstrated significant synergistic interactions in
inhibiting Irf7 (Figure 2A), Oasll (Figure 2B), Rsad2 (Figure 2C),
Ifit] (Supplementary Figure 1A), Isgl5 (Supplementary Figure 1B),
and MxI (Supplementary Figure 1C). Synergy was most robust
when FLAMs were pretreated with 1 nM or 10 nM DEX in
conjunction with 5 uM DHA (Figure 2 and Supplementary
Figure 1). At higher concentrations of DHA (i.e., 10 pM and 25
uM) and DEX (i.e., 100 nM and 1000 nM), ZIP synergy scores were
still greater than 0, indicating a smaller magnitude of synergy, as the
pathways were more robustly inhibited by monotherapies at these
higher concentrations.

Consistent with gene expression, LPS exposure stimulated
secretion of IFN-B and selected ISG products (CCL2 and
CXCL10) after 24 hr compared to VEH-treated control cells
(Supplementary Figure 2). These responses were significantly
attenuated by DHA and DEX monotherapies. When DHA and
DEX were administered in combination, the secretion of IFN-J,
CCL2, and CXCL10 was further reduced. Accordingly, combining
DHA and DEX enhanced suppression of ISG protein
expression, further underscoring their potential as a combined
therapeutic strategy for modulating TLR4-driven pathogenic
gene responses.

3.2 Study 2. RNA-seq and functional
analysis of DHA and DEX cotreatment
effects on immune pathways in SLE FLAMs

3.2.1 Treatment with DHA but not DEX skews
cellular phospholipid profiles

Fatty acid profiles of phospholipids were profoundly altered by
10 uM DHA treatment (Figures 3A, B). DHA, the primary O3FA,
rose from 4.9% in the VEH/CON group to 12.0% and 11.9% in the
LPS/DHA and LPS/DHA+DEX groups, respectively, with total
O3FA levels reaching 18.0% and 17.8%, compared to 9.5% in the
VEH/CON group. These findings are consistent with earlier work
using C57BL/6 FLAMs (47), where we found that treatment with a
higher dose (25 uM DHA) resulted in DHA incorporation of
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approximately 20% of total fatty acids. In addition, these DHA
concentrations are comparable to those observed in red blood cells
(14% of total fatty acids) of NZBWFI mice fed 2 g/d human caloric
equivalent DHA (34).

In tandem with these DHA and O3FA observations, O6FAs
decreased in DHA-treated groups. Linoleic acid (C18:2w6) fell from
1.1% in the VEH/CON group to 0.8% in the LPS/DHA+DEX group,
while arachidonic acid (C20:4w6) decreased from 8.3% to 6.6% and
6.3% in the LPS/DHA and LPS/DHA+DEX groups, respectively.
Likewise, MUFAs declined significantly with DHA treatment. Oleic
acid (C18:1®9), the dominant MUFA, dropped from 36.1% in the
VEH/CON group to 22.2% and 21.4% in the LPS/DHA and LPS/
DHA+DEX groups, respectively. SFAs increased notably in the
LPS/DHA and LPS/DHA+DEX groups compared to the VEH/CON
group with palmitic acid (C16:0), the main SFA, rising from 18.9%
in the VEH/CON group to 28.5% and 25.0% in the LPS/DHA and
LPS/DHA+DEX groups, respectively. Similarly, stearic acid (C18:0)
increased to 14.0% in both groups, compared to the VEH/CON
group. Overall, DHA supplementation remodeled fatty acid profiles
in the phospholipid fraction by increasing the levels of O3FA and
SFA while reducing those of MUFA and O6FA. Adding DEX
slightly enhanced some trends but did not significantly alter the
effects of DHA.

3.2.2 LPS treatment significantly alters the
transcriptome, enriching pathways related to
inflammation and the immune response

RNA-seq analysis revealed that LPS treatment resulted in 3,632
significantly differentially expressed genes (DEGs) at 4 hr and 3,571
DEGs at 8 hr compared to VEH/CON-treated FLAMs (Figure 4A).
Of these DEGs, 1860 were upregulated at 4 hr and 1998 at 8 hr.
Conversely, 1772 DEGs were downregulated at 4 hr and 1573 at 8
hr. These responses highlight the dynamic nature of gene regulation
during LPS-induced inflammation.

The top 10 inferred active and inactive transcription factors
(TFs) responding to LPS treatment were identified using decoupleR
for both 4- and 8-hr time points. Enrichment scores were elevated
for canonical proinflammatory TFs, including NF-«B (Rel, Nfkb1),
AP-1 (Jun, JunD, Fos), STATs (Statl, 2, 3), and Irfl (Figure 4B).
Notably, nine out of ten TFs remained among the most positively
enriched regulators across both time points, indicating a
coordinated regulation of inflammatory responses through
immediate-early transcriptional programs. In addition, anti-
inflammatory and regulatory transcription factors (TFs), such as
Ybx1, Lefl, E2f2/4, Vdr, and Mycn/Myc, were negatively enriched
at both time points (Figure 4C). These coordinated TF signatures
highlight their potential vital role in modulating LPS-induced
immune and inflammatory signaling in FLAMs.

Functional enrichment analysis using GSEA revealed that LPS
treatment at both time points induces distinct transcriptional
responses, as shown by normalized enrichment scores (NES)
across biological processes (Supplementary Figure 3). Positive
NES were evident for immune/inflammatory responses,
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DHA and DEX monotherapy or cotreatment suppress IFN-stimulated gene expression. Cells were pretreated with either VEH containing no DHA or
RPMI media containing 25 pM (A), 10 uM (B), or 5 uM (C) DHA at -24 hr. Cells were then treated with VEH containing no DEX or varying
concentrations of DEX (1 nM to 1 uM) -1 hr prior to LPS treatment. gRT-PCR was performed on FLAMs stimulated with LPS (20 ng/mL) for 4 hr. Fold
change is shown as DHA and/or DEX treatment relative to LPS VEH + SEM. n=3 biological replicates. p<0.05; *Significant compared to LPS VEH;

#Significant compared to DHA alone; tSignificant compared to DEX alone

chemokine/cytokine activity, responses to viruses, LPS, IFN, and
double-stranded DNA (dsDNA). Elevated NES values were
equivalent or higher at 4 hr than at 8 hr, illustrating the temporal
dynamics of LPS-induced immune activation. Conversely, negative

NES were associated with cell division, DNA replication, lipid
metabolism, spindle, and microtubule motor activity, consistent
with suppression of proliferative and metabolic processes following
LPS stimulation.
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FIGURE 2

DHA and DEX synergistically inhibit the expression of IFN-stimulated genes. Irf7 (A), Oasl1 (B), and Rsad2 (C) were measured by qRT-PCR in FLAMs
stimulated with LPS (20 ng/mL) for 4 hr. Cells were pretreated with either VEH containing no DHA or RPMI media containing 25 uM, 10 uM, or 5 uM
DHA at -24 hr. Cells were then treated with VEH containing no DEX or varying concentrations of DEX (1 nM-1 uM) at -1 hr prior to LPS treatment.
SynergyFinder version 3.14.0 generated inhibition matrices and ZIP synergy matrices for each gene. Inhibition matrices show the average of 3
experimental replicates. Individual and mean ZIP synergy scores were calculated using an average of 3 experimental replicates. Synergy score > 0,
synergistic interaction; synergy score=0, additive effect; synergy score < 0, antagonistic interaction.

3.2.3 DHA+DEX cotreatment suppresses LPS
proinflammatory responses in FLAMs

Sub-inhibitory DHA monotherapy (10 pM) in LPS-primed
FLAMs resulted in 16 DEGs at 4 hr and 83 DEGs at 8 hr
(Figure 5A). DEX monotherapy (100 uM) resulted in 48 DEGs at
4 hr and 160 DEGs at 8 hr. There were 0 and 10 common DEGs at 4
and 8 hr shared between DHA and DEX, respectively. Consistent
with synergy observed in Study 1, DHA+DEX cotreatment
significantly increased DEGs being expressed at 4 hr (247) and 8
hr (347). DHA+DEX cotreatment in LPS-primed FLAMs resulted
in 247 DEGs at 4 hr and 347 DEGs at 8 hr. There were 15 and 40
percent overlaps of DEGs between cotreatment and monotherapies
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at 4 and 8 hr, respectively. Functional enrichment analysis using
GSEA indicated strong negative enrichment for many LPS-
upregulated gene pathways (Figure 5B).

Functional enrichment analysis using PLIER was further used
to identify biological processes associated with DHA+DEX
treatment, revealing that cotreatment significantly altered
pathways related to the cellular response to IFN, antigen
processing/presentation, and NAD ADP-ribosyl transferase
(Figures 6A, B). The top 40 genes most significantly altered by
DHA+DEX treatment were extracted from the identified pathways
and depicted in a heatmap (Figure 6C). Genes altered with DEX
+DHA treatment were associated with IFN and antiviral response
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atty Acid % of total fatty acids, mean * SE

Common name Chemical Formula VEH/CON LPS/VEH LPS/DHA LPS/DEX  LPS/DHA+DEX
Moyristic acid C14:0 2.66 +0.02 2.40+0.20 2.15+0.28 1.85+0.19 1.75+0.33
Palmitic acid C16:0 18.92+0.42 23.61+1.02* 28.46+1.04" 24.96+0.70 30.11+0.88"
Palmitelaidic acid Cl6:lw7t 0.24+0.02 0.18+0.01* 0.10+0.01" 0.21+0.01 0.12+0.01"
Palmitoleic acid Cl6:1w7 3.10+0.03 3.04 £ 0.06 2.61+0.03" 2.99+0.06 2.46 +0.07"
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C18:3w3 0.02+0.00 0.01+0.00* 0.01+0.00 0.01+0.00 0.01+0.00
C20:2w6 0.07 £0.01 0.06 + 0.00 0.03+0.01* 0.04 +0.00" 0.02 +0.01"
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Fatty acid composition of FLAMs treated following Study 2 experimental design detailed in Methods. *Significant change
in LPS VEH vs VEH CON group, p<0.05; tSignificant change vs LPS VEH, p<0.05.
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FIGURE 3

Treatment with DHA but not DEX skews cellular phospholipid profiles. (A) FLAMs were treated with DEX, DHA, and/or LPS as described and analyzed
for major fatty acids as described in the Methods section. (B) DHA supplementation resulted in increased phospholipid DHA with accompanying
decreases in arachidonic acid (AA) and oleic acid OA. *Significant differences (p<0.05) between VEH/CON and LPS/VEH were determined using
Student's t-test; tSignificant differences (p<0.05) between LPS/VEH and LPS/DHA, LPS/DEX, or LPS/DHA+DEX treatments were determined using
one-way ANOVA.

(e.g., Mxl, Mx2, Oasll, Ifitl, Sp140, Gm5431), MHC antigen Log2-fold changes in representative gene responses resulting
processing and presentation (e.g., H2-DMa, H2-Abl, H2-Aa, H2-  from treatment are depicted in Figure 7. Individual DEGs
EbI), cytokine receptor signaling (e.g., CD74, Ccr5, Ccl2), and  pertaining to type I/II IFNs (Figure 7A), cytokine signaling
apoptosis and proliferation (e.g., Mxdl, Daxx, Zebl). (Figure 7B), and antigen processing and presentation (Figure 7C)
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FIGURE 4

LPS induces proinflammatory transcriptional responses in FLAMs. (A) Differentially expressed genes (DEGs) were determined using DESeq?2 (39),
filtering for genes exhibiting a |log2 fold change| >= 2 and adjusted p-value <= 0.05 between the LPS/VEH group and VEH/CON group. Venn
diagrams for total DEGs, upregulated DEGs, and downregulated DEGs are shown for the 4-hr time point (left circle), 8-hr time point (right circle),
and both time points (intersection). (B, C) The top 10 inferred (B) active and (C) inactive TFs following LPS treatment were identified for both time

points using decoupleR (43).

were downregulated by DHA and/or DEX compared to LPS
treatment at 8 hr. Downregulation of each gene was potentiated
with cotreatment, and DHA+DEX treated cells were significantly
different compared to cells treated with DHA and DEX individually.
Combinatorial effects were observed for some, but not all, genes at
the 4-hr time point.
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3.2.4 DHA, DEX, and DHA+DEX treatments
impact transcriptional responses in LPS-primed
FLAMs

The effects of DHA, DEX, and DHA+DEX treatment on LPS-
induced DEGs and predicted TF activity regulation in LPS-primed
cells are depicted in Figures 8-10. DHA treatment alone led to the
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FIGURE 5

NES

DHA and DEX monotherapies and DHA+DEX cotreatment suppress LPS-stimulated transcriptional responses in FLAMs. (A) Differentially expressed
genes (DEGs) were determined using (39) filtering for genes exhibiting a |log2 fold change| >= 2 and adjusted p-value <= 0.05 between DHA, DEX,
or DHA+DEX treatment relative to LPS/VEH. Venn diagrams for the number of treatment-dependent unique gene symbols for 4- and 8-hr time
points. (B) Functional enrichment analysis using the GSEA method indicates negative enrichment for LPS-upregulated gene pathways.

upregulation of 5 DEGs at 4 hr and 13 DEGs at 8 hr with no
overlapping DEGs, and the downregulation of 11 DEGs at 4 hr and
100 DEGs at 8 hr with 2 overlapping DEGs (Figure 8A). Treatment
with DEX alone contributed to the upregulation of 21 DEGs at 4 hr
and 41 DEGs at 8 hr, with 3 overlapping DEGs, and the

Frontiers in Immunology 10

downregulation of 18 DEGs at 4 hr and 110 DEGs at 8 hr, with 6
overlapping DEGs (Figure 9A). DHA+DEX combination treatment
resulted in the upregulation of 112 DEGs at 4 hr and 48 DEGs at 8
hr, with 8 overlapping DEGs, and the downregulation of 75 DEGs at
4 hr and 239 DEGs at 8 hr, with 52 overlapping DEGs (Figure 10A).
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FIGURE 6

Identification of biological processes enriched by DHA+DEX cotreatment using PLIER analysis. (A) Functional enrichment analysis using the pathway-
level information extractor (PLIER) method was used to identify significantly enriched biological processes associated with DHA+DEX treatment. PLIER
was used to identify high-confidence latent variables (LVs; AUC >= 0.7 and FDR <= 0.05) mapped to Gene Ontology (GO) and KEGG gene sets. (B) LV
estimates for high-confidence LVs are shown for each treatment group. Treatment groups were assessed by 3-way ANOVA, and different letters
indicate significant differences (p <= 0.05). (C) Heat maps of the top 40 genes enriched by cotreatment were determined using PLIER. The color scale
corresponds to the scaled expression value, with red being highly expressed genes and blue corresponding to downregulated genes.

DHA (Figure 8B), DEX (Figure 9B), and DHA+DEX (Figure 10B)
treatments all resulted in positive enrichment of TFs that are involved
with reducing inflammation (e.g., Ybx1) (48, 49), proliferation (e.g.,
Bcl6, E2f4) (50-53), differentiation and development (e.g., Myc, Gli2,
Nfic) (54-58), and metabolism (e.g., Arntl) (59, 60). DEX and DHA
+DEX treatment led to positive enrichment scores for Pparg, Nr3cl,
and Clock, which are involved with fatty acid metabolism, GC
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signaling, and circadian rhythm regulation, respectively (21, 61, 62).
DHA and DHA+DEX contributed to enrichment for Twist1, which is
involved with reducing inflammation (63), while DHA alone
selectively enriched for anti-inflammatory factors Cebpb, Rxra, Flil,
Nfe2l2, Stat5a, and Foxol (64-71) (Figure 8B).

DHA (Figure 8C), DEX (Figure 9C), and DHA+DEX (Figure 10C)
treatments all led to negative enrichment of TFs that regulate
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FIGURE 7

DHA+DEX combinatorial effects on suppression of innate immune response genes. Representative individual differentially expressed genes related to
(A) type | IFNs, (B) cytokine signaling, and (C) antigen processing and presentation that exhibited combinatorial effects compared to individual DHA
or DEX treatment were extracted from the RNA-seq dataset. Log2 fold change was determined relative to LPS/VEH. p<0.05; *Significant compared
to LPS/VEH; #Significant compared to DHA monotherapy within respective time point; tSignificant compared to DEX monotherapy within respective
time point.

proinflammatory cytokines (e.g, Rel, Fos) and ISGs (e.g, Irfl, Statl, 4 Discussion

Stat2, Stat3). DHA specifically contributed to the negative enrichment

of factors that were not affected by DEX, including Pgr, Srebf2, Tcf7l2, 4.1 Synopsis

Sox9, Crebl, Raro, Smad3, Gata3, Rfx5, Pax6, and Sp3 (Figure 8C).

DEX and DHA+DEX treatment resulted in significant negative Macrophages orchestrate immune responses through gene
enrichment of Nfkbl and Jun, which are components of the NF-kB  expression finely tuned by a complex interplay of TFs to balance
and AP-1 heterodimers, respectively (Figures 9C, 10C). inflammation, antimicrobial defense, and resolution. Dysregulation

Frontiers in Immunology 12 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1646133
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Heine et al. 10.3389/fimmu.2025.1646133
A Upregulated DEGs Downregulated DEGs
4 hr (5) 8 hr (13) 4 hr (11) 8 hr (100)
5 0 13 9 2 98
(28%) (0%) © (72%) (8%) (2%) (90%)
B
DHA 4 hr 15 DHA 8 hr
1.5
o
3
2] 1.0 4 - score
& ey l 14
[ 12
1S 1.0
§ i
. DHHHHH - HHH .
I
0.0 0.0 4 |
T T T l | T
) & O N
‘<°-\'o Q\\ é"z}o F g ‘<°\ *“\% Qj' é‘ 5\-0 \fzf’ Qg‘\\b‘@ @* @Qq' o
Transcrlptlon Factor Transcription Factor
c
DHA 4 hr DHA 8 hr
0.0 04
© -0.5-
o
O
2} -1 4 score
£ —1.04 o
g -22
§ -15- =
-2.04
-2.54
T T T I T T T T T T T T T T T T
N S &0
S FEF I E P o &b@o o o P < P o
Transcrlptlon Factor Transcription Factor
FIGURE 8

DHA monotherapy influences LPS-induced DEGs and transcription factor regulation. (A) Downregulated and upregulated differentially expressed
genes (DEGs) were determined using DESeq2 (39), filtering for genes exhibiting a |log2 fold change| >= 2 and adjusted p-value <= 0.05 between the
LPS/VEH group and VEH/CON group. Venn diagrams for downregulated DEGs are shown for the 4 hr time point (left circle), 8 hr time point (right
circle), and both time points (intersection). The top 10 inferred (B) active and (C) inactive TFs following DHA treatment were identified at 4 hr and 8

hr using decoupleR (43).

of these pathways can contribute to SLE onset and drive
pathogenesis, underscoring the importance of macrophages as
therapeutic targets in SLE management. While cellular and
molecular mechanisms of GC and O3FA treatments have been
individually studied for their anti-inflammatory effects on
macrophages (13, 31, 72-74), the combined impact of these
treatments on transcriptional networks remains unexplored. Here,
we hypothesized that O3FAs could be used as adjuncts to reduce
GC dosages needed to suppress proinflammatory and type I IFN
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responses in lupus macrophages. We addressed this question by
determining how cotreatment with DEX and DHA modulates
critical regulatory hubs and the transcriptional landscape in LPS-
stimulated NZBWF1 FLAMs. Following LPS stimulation, FLAMs
derived from NZBWFI mice demonstrated more robust type I IFN
responses relative to FLAMs derived from C57BL/6 mice, which do
not develop lupus, indicating their suitability as an experimental
model for evaluating therapeutic strategies targeting
hyperinflammatory macrophages in SLE. Our findings, as
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DEX monotherapy influences LPS-induced DEGs and transcription factor regulation. (A) Downregulated and upregulated differentially expressed
genes (DEGs) were determined using DESeq?2 (39), filtering for genes exhibiting a |log2 fold change| >= 2 and adjusted p-value <= 0.05 between the
LPS/VEH group and VEH/CON group. Venn diagrams for downregulated DEGs are shown for the 4 hr time point (left circle), 8 hr time point (right
circle), and both time points (intersection). The top 10 inferred (B) active and (C) inactive TFs following DHA treatment were identified at 4 hr and 8

hr using decoupleR (43).

summarized in Figure 11, support the conclusion that DHA+DEX
cotreatment synergistically quells LPS-induced changes in
transcription and regulatory factor activities, markedly
attenuating expression of IFN-stimulated and proinflammatory
genes that contribute to SLE pathogenesis. The demonstrated
synergy between O3FA and GC in lupus macrophages closely
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mirrors prior findings on the separate effects of these agents
across TLR, NF-kB, AP-1, STAT, and IRF signaling axes. This
synergy reveals novel crosstalk mechanisms between O3FAs and
GCs, highlighting the potential therapeutic value of combining
lipidomic and pharmacological approaches to combat SLE-
associated inflammation.
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DHA+DEX cotreatment robustly modulates LPS-induced DEGs and transcription factor regulation. (A) Downregulated and upregulated differentially
expressed genes (DEGs) were determined using DESeq?2 (39), filtering for genes exhibiting a |log2 fold change| >= 2 and adjusted p-value <= 0.05
between the LPS/VEH group and VEH/CON group. Venn diagrams for downregulated DEGs are shown for the 4 hr time point (left circle), 8 hr time
point (right circle), and both time points (intersection). The top 10 inferred (B) active and (C) inactive TFs following DHA+DEX cotreatment were

identified at 4 hr and 8 hr using decoupleR (43).

4.2 O3FA and GC individually modulate
regulation of proinflammatory gene
expression: prior studies

O3FA and GC synergy is highly consistent with previous
investigations of the individual effects of these agents on TLRs, NF-
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kB, AP-1, STATs, and IRFs. O3FAs, notably DHA, disrupt TLR
signaling through biophysical and structural mechanisms. DHA’s
highly unsaturated conformation prevents stable interaction with
MD2, a co-receptor for TLR4, effectively blocking TLR4 dimerization
and downstream NF-kB activation (75). Beyond direct receptor
interference, DHA increases membrane fluidity by incorporating
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Hypothetical interplay between LPS-induced signaling pathways and the modulatory effects of DHA+DEX on type | IFN-regulated and
proinflammatory gene expression. LPS stimulation activates toll-like receptor 4 (TLR4), initiating two major signaling pathways: 1) the MYD88-
dependent pathway and 2) the TRIF-dependent pathway. The MYD88-dependent pathway leads to activation of the transcription factors (TFs) AP-1
(ATF-2/c-Jun) and NF-kB (p50/RelA), which induce expression of proinflammatory cytokines such as TNF-a, IL-1o, and IL-6, as well as IFN-p.
Concurrently, the TRIF-dependent pathway phosphorylates IRF3/7, which forms a complex with NF-kB and AP-1, termed the IFN-B enhanceosome,
to drive IFN-B production. IFN-f binds to its receptor (IFNAR1/IFNAR2), activating JAK/STAT signaling and inducing downstream ISGs such as CCL2,
CXCL10, and IRF1. DHA combined with DEX suppresses the expression of inflammatory cytokines (TNF-a, IL-1a, IL-6) and IFN-B, as well as
downstream genes regulated by STAT1/2, by inhibiting key IFN-B enhanceosome components. Symbols: —, increase activity; -| , suppress activity.

Created with BioRender.com.

phospholipid bilayers, which disperses lipid raft microdomains critical
for TLR4 colocalization with CD14 (76). These biophysical effects
impair receptor clustering and signaling amplification, highlighting a
dual mechanism of action via direct structural inhibition and indirect
membrane remodeling. GC treatment can significantly reduce
expression levels of TLR4 and MyD88 in monocytes (77). GCs also
induce the expression of mitogen-activated protein kinase phosphatase-
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1 (MKP-1), which inhibits p38 MAPK activation downstream of TLR4,
dampening cytokine production in macrophages (78). Additionally,
GCs regulate TLR signaling through microRNA-mediated mechanisms,
such as increasing miR-511-5p expression, which directly targets TLR4
to inhibit the production of proinflammatory cytokines (79).

O3FA suppression of NF-kB is mediated through interference
with both canonical and non-canonical inflammatory pathways.
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DHA and EPA competitively inhibit arachidonic acid metabolism,
reducing proinflammatory prostaglandin E2 and leukotriene B4
production, which are known to enhance NF-xB activity (80).
Oxidized metabolites of O3FAs, such as 18-HEPE and 17-HDHA,
exhibit enhanced potency by activating PPARa., which sequesters
NE-kB coactivators and promotes its nuclear export (81, 82).
O3FAs also directly inhibit IkB kinase (IKK) phosphorylation,
preventing IkB degradation and NF-kB nuclear translocation in
macrophages (83). GC interference with NF-xB signaling is
multifaceted and central to its anti-inflammatory effects. GCs
induce the synthesis of IxBo, which sequesters NF-kB in inactive
cytoplasmic complexes, preventing its nuclear translocation and
transcriptional activity (84). The GC receptor (GR) physically
associates with the p65 subunit of NF-xB, disrupting its DNA-
binding and transcriptional activation capabilities (55). GCs also
induce the expression of GC-induced leucine zipper (GILZ), which
binds to the transactivation domain of activated NF-xB p65, further
inhibiting its activity (85).

O3FAs attenuate AP-1 signaling by targeting MAPK cascades.
In murine macrophages, O3FAs suppress p44/42 and JNK/SAPK
phosphorylation—steps preceding AP-1 activation—which leads to
reduced AP-1 activity and subsequent downregulation of
proinflammatory cytokine genes in macrophages, confirming
transcriptional-level anti-inflammatory effects (86). EPA
suppresses phosphorylation of p38 MAPK and JNK/SAPK in
human monocytic THP-1 cells, reducing c-Fos/c-Jun heterodimer
formation and AP-1 DNA-binding activity (87). O3FA inhibition of
AP-1 may be linked to the upregulation of MAPK phosphatase-1
(MKP-1), which dephosphorylates and inactivates JNK (88). GC-
mediated suppression of AP-1 signaling occurs through several
mechanisms. GRs physically interact with c-Jun and c-Fos,
components of AP-1, inhibiting their transcriptional activity
without requiring GR binding to DNA (89, 90). GCs also inhibit
the phosphorylation and activation of JNK, thereby reducing AP-1
activity (91, 92). The induction of MAPK phosphatase-1 (MKP-1)
by GR activation further suppresses AP-1 activity by
dephosphorylating and inactivating JNK (93).

O3FAs attenuate STAT activation. We have previously found
that DHA inhibits the expression of STAT1/STAT2-target genes in
LPS-treated macrophages (31). RvD2, a pro-resolving metabolite of
DHA, suppresses phosphorylation of STATI in bone marrow-
derived macrophages (94). DHA and its metabolites also inhibit
STAT3 phosphorylation in cancer cells (95-98). GCs primarily
inhibit STAT1 through the induction of SOCSI, which inhibits
STAT1 activation by degrading phosphorylated JAK2 (74).
Furthermore, GCs suppress TLR-mediated STATI
phosphorylation at Ser727 and Tyr701 during later phases of
activation, impairing its nuclear translocation and transcriptional
activity. Recruitment of GR to DNA-bound STATS3 is associated
with trans-repression or transcriptional antagonism (99).

O3FAs indirectly regulate IRFs and IFNAR signaling by
inhibiting ISG expression in LPS-treated macrophages (31). DHA
also attenuates IFNAR signaling by reducing STATI1
phosphorylation, thereby blunting IFN-driven inflammatory gene
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expression (100). Meanwhile, GCs have been shown to interfere
with IRF signaling by suppressing STAT1 mRNA transcription,
leading to reduced activation of IRF-dependent pathways and
diminished IFN-inducible gene expression, particularly in
macrophages (101). DEX inhibits IRF3 phosphorylation and
nuclear translocation in macrophages by suppressing TBKI1, a
kinase crucial for IRF3 activation (102). The GC receptor
sequesters GRIP1, a coactivator for IRF3 and IRF9, preventing
their transcriptional activity and disrupting the activation of ISGs
(72). GCs antagonize the co-recruitment of IRF3 and NF-xB
subunit p65 to ISRE-containing promoters, thereby reducing ISG
transcription (72). GCs interfere with IFN receptor signaling by
inhibiting the assembly of the STAT1-STAT2-IRF9 (ISGF3)
transcription complex, essential for type I IFN signaling, and also
prevent the nuclear translocation of IRF9, a critical step for
triggering IFN-responsive gene expression (103). Furthermore,
GCs block IFN-induced IRF1 mRNA levels, disrupting
transcriptional activation of interferon-responsive genes regulated
by IRF elements in the GC receptor promoter region (104). These
findings suggest a strong synergistic potential between O3FAs and
GCs that are amenable to in vitro and in vivo investigations.

4.3 DHA+DEX co-therapy influences LPS-
triggered pathway crosstalk in NZBWF1
FLAMS

Figure 11 illustrates how DHA+DEX co-therapy hypothetically
impacts LPS activation targets in NZBWF1 FLAMs as revealed by
deconvolution analysis. These agents appeared to act on LPS-
induced activation of both MyD88-dependent and TRIF-
dependent pathways to drive M1 macrophage polarization (105).
The MyD88 pathway triggers IkBo. degradation via IKK, enabling
NF-xB subunits (e.g., NFKB1, REL) to translocate to the nucleus
(106), while parallel MAPK activation phosphorylates AP-1
components (e.g., JUN, FOS) (107). These TFs collaborate with
coactivators like p300 to remodel chromatin, initiating robust
transcription of proinflammatory cytokines such as TNF-o, IL-6,
and IL-1f (106). Simultaneously, the TRIF pathway phosphorylates
IRF7, which synergizes with NF-kB and AP-1 at the IFN-B
enhanceosome. This multi-protein complex recruits p300/CBP to
stabilize enhancer assembly and drive IFN-f production (105, 108).
Resultant IFN-f activates the expression of ISGs, including IRFI,
via the JAK/STAT/IRF9 pathway. Although baseline IRF1 levels are
constitutively low in resting macrophages, it integrates into the
enhanceosome complex when induced, binding regulatory elements
to potentiate IFN-B and ISG transcription (109). These actions
constitute an autocrine/paracrine loop where IFN-f reinforces its
production, enhancing antiviral responses and solidifying M1
polarization through sustained enhancer activity. Altogether,
DHA+DEX suppressed this cooperative interplay between NF-kB,
AP-1, and IRFs at the enhanceosome.

In complementary fashion, DHA+DEX co-therapy inhibits
LPS-induced suppression of multiple transcriptional and post-
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transcriptional regulators such as EGR1, YBX1, E2F, GLI2, MYC/
MYCN, and NFIC that form a collaborative network for
suppressing macrophage inflammatory signaling. For example,
EGRI, in association with the NuRD complex, drives chromatin
compaction and decreases accessibility at inflammatory enhancers
(110), while YBX1 exerts post-transcriptional control by binding to
and silencing inflammatory gene mRNAs (48, 49). This dual-layer
repression system may be especially critical for maintaining
stringent control over key cytokine loci, as disruption of either
EGRI or YBX1 only partially restores inflammatory responses in
experimental models (54, 56). The inhibition of GLI2 and E2F
family members adds additional redundancy, with GLI2 attenuating
NE-kB through Hedgehog signaling and E2F proteins modulating
NE-kB dynamics and competing with AP-1 at shared promoters
(50, 57). Meanwhile, MYC’s role in driving glycolytic flux and
stabilizing IRF4 introduces a metabolic checkpoint that intersects
with NFIC’s transcriptional regulation of PTEN and SENP8, which
together serve to reduce oxidative stress and further dampen
immune activation.

In addition to these LPS-sensitive regulators, DHA+DEX
also enriched suppressive TF activities that were not markedly
affected by LPS, including BCL6, NFATC2, and HNF4A. BCL6
acts as a transcriptional repressor to suppress NF-xB-driven
proinflammatory genes (e.g., IL-6, Ccl2) and restrain type I IFN
signaling (52, 111). At the same time, NFATC2 integrates calcium
signaling, TLR4 activation, and interferon pathways to regulate
macrophage immunity (112). HNF4A promotes M2 macrophage
polarization via the NCOA2/GR/STABI axis and attenuates acute-
phase gene expression, with its activation linked to improved
outcomes in models of sepsis (113). The shared enrichment of
these factors by DHA and DEX suggests that these therapies
reinforce multiple layers of anti-inflammatory control, potentially
providing a broader and more robust defense against excessive

immune activation.

4.4 DHA monotherapy selectively
modulates other regulators

DHA alone positively enriched regulatory TFs that promote
anti-inflammatory and reparative functions, including NFE2L2,
CEBPB, RXRA, TWIST1, STAT5A, FLI1, and FOXO1. These TFs
play essential roles in resolving inflammation and maintaining
macrophage homeostasis. NFE2L2 interferes with LPS-induced
transcriptional upregulation of proinflammatory cytokines,
including IL-6 and IL-1B, in macrophages by binding to the
proximity of these genes and inhibiting RNA polymerase II
recruitment (114). CEBPB is essential for M2 macrophage
polarization, driving anti-inflammatory genes like Argl and IL-10
via CREB-mediated induction, which is critical for resolving tissue
damage (65). RXRo (retinoid X receptor o) plays a significant role
in modulating the host’s antiviral response by regulating the
production of type I IENs, particularly IFN-f (66, 115). RXRA
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also contributes to anti-inflammatory effects by modulating nuclear
receptor-mediated gene expression networks. STAT5A activation
promotes M2 macrophage polarization, favoring tissue repair and
the production of anti-inflammatory cytokines (64). TWIST1
induces M2 macrophage polarization by upregulating profibrotic
factors (ARG-1, CD206, IL-10, TGF-B) through direct activation of
galectin-3 transcription, enhancing M2 phenotypic plasticity (63).
FLI1 loss has been linked to increased IFN-regulated expression
(116). FOXOL1 activity is associated with both the M1 and M2
phenotypes, suggesting a more complex role in regulating
macrophage polarization (68).

DHA monotherapy also uniquely negatively enriched the
activity of other proinflammatory regulators, including SP3, PGR,
and RFX5. SP3 plays a critical role in promoting proinflammatory
macrophage activation (M1 phenotype) by driving NF-xB-
mediated transcription activation. When SP3 activity is
diminished, macrophages exhibit decreased expression of MI-
associated proinflammatory genes, such as Nos2, Tnfa, Il1b, and
116, and increased expression of M2-associated anti-inflammatory
markers like Argl and Retnla. PGR, the progesterone receptor,
modulates macrophage function through its activation. Stimulation
of membrane-bound PGRs increases the transcription of
proinflammatory genes such as Il1b, Tnfa, and Nos2 (117),
suggesting that decreased PGR activity likely suppresses these
proinflammatory responses, reducing the production of
inflammatory cytokines. RFX5 regulates MHC class II expression
and macrophage antigen presentation (118, 119). Reduced activity
of RFX5 could impair antigen presentation capacity and potentially
alter cytokine signaling pathways, indirectly influencing
inflammatory responses. Collectively, the suppression of these
TFs by DHA likely shifts macrophage activity away from a
proinflammatory phenotype.

Interestingly, DHA alone also reduced enrichment scores for
suppressive factors like TCF7L2 at the 4-hr time point and CREBI,
RARa, SMAD3, and GATA3 at the 8-hr time point. TCF7L2
modulates inflammatory cytokine expression in macrophages by
promoting polarization toward the anti-inflammatory M2
phenotype, which suppresses proinflammatory cytokines like
TNF-o and IL-6 (120). CREB1 (cAMP response element-binding
protein 1) primarily suppresses proinflammatory cytokines like
TNF-o and inhibits NF-xB signaling in macrophages,
maintaining anti-inflammatory responses. Reduced CREBI
activity diminishes IL-10 production and decreases NF-xB
suppression, amplifying proinflammatory gene transcription
(121). RARo is known for its anti-inflammatory effects through
modulating macrophage polarization and proinflammatory gene
expression (122). SMAD3 promotes an anti-inflammatory
macrophage phenotype via TGF-B signaling; its suppression
increases proinflammatory cytokines such as IL-1f and TNF-o
while reducing anti-inflammatory mediators like IL-10 (123).
GATA3 promotes M2 differentiation and suppresses
proinflammatory cytokines; reduced GATA3 activity can increase
these cytokines and ISGs (124). Given their anti-inflammatory
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roles, decreased enrichment of these pro-resolving regulatory
factors by DHA might reflect complex, time-dependent
homeostatic control and suggest the need for further investigation.

4.5 Selective modulation of regulatory
pathways by DEX monotherapy

DEX monotherapy also negatively enriched TFAP2A and
ATF4, which likely dampened inflammatory pathways, as these
factors regulate stress-responsive and cytokine genes (125, 126).
Accordingly, DEX orchestrates a dual mechanism in macrophages
by activating anti-inflammatory TFs while suppressing key
proinflammatory regulators. This comprehensive modulation
attenuates LPS-induced cytokine and IFN-regulated gene
expression, thereby reprogramming macrophages toward an anti-
inflammatory state.

DEX alone further selectively enriched for factors that promote
resolution, including NR3C1, PPARY, ARNTL, CLOCK, LEF1, and
TFDP1. NR3C1 (glucocorticoid receptor, GR) directly inhibits
proinflammatory TFs AP-1 and NF-xB, a key mechanism for
suppressing inflammation (127). PPARY reinforces these anti-
inflammatory effects by inhibiting AP-1 and NF-kB, another
mechanism that promotes the M2 phenotype (128). ARNTL
(BMALL1) and CLOCK are circadian regulators that suppress LPS-
induced proinflammatory genes (e.g., TNF-a, IL-6) in macrophages
by competitively displacing NF-kB/AP-1 at enhancers and reducing
H3K27ac histone acetylation, thereby limiting transcriptional
activation (59, 60). ARNTL further antagonizes STAT1-mediated
IFN-B signaling and stabilizes metabolic rhythms, while CLOCK
reinforces these anti-inflammatory effects by curbing excessive
enhancer remodeling. LEF1 expression is positively correlated
with the M2 phenotype (129). Although the role of TFDP1 in
inflammation remains unclear, its association with E2F factors

suggests regulatory influence over immune response genes (53).

4.6 Limitations

Although we present herein compelling evidence for O3FA+GC
synergy in inhibiting LPS-induced inflammation in SLE
macrophages, we acknowledge that our study has limitations. First,
our use of an in vitro LPS-activated NZBWF1 macrophage model,
while mechanistically informative, does not capture the full
complexity of human SLE, as it lacks multicellular interactions and
the tissue-specific microenvironment present in an in vivo model.
Also, the lack of non-lupus control in these studies limits the
generalizability to other diseases. Second, our analysis was limited
to early transcriptional responses (4-8 hr post-LPS treatment),
creating uncertainty about whether the observed DHA and DEX
synergy is sustained or subject to rebound effects during chronic
inflammation. Third, although key transcriptional regulators were

Frontiers in Immunology

19

10.3389/fimmu.2025.1646133

identified by functional enrichment, the precise molecular
mechanisms underlying the observed synergy, such as direct
receptor crosstalk, demonstration of altered TF activity, epigenetic
changes, or metabolic reprogramming, remain uncharacterized.
Finally, the efficacy and safety of low-dose DHA and DEX
cotreatment have not yet been validated in preclinical SLE models
or clinical settings, where factors such as bioavailability, off-target
effects, and patient heterogeneity could significantly impact
therapeutic outcomes. These limitations highlight the need for
further mechanistic, longitudinal, and preclinical studies to advance
this promising combinatorial approach toward clinical application.

5 Conclusions

Our data reveal that low-dose DHA powerfully boosts the anti-
inflammatory potency of DEX in SLE-modeled macrophages,
synergistically suppressing LPS-driven hyperinflammation by up
to 100-fold through coordinated targeting of both shared and
unique transcriptional nodes. This cooperative effect not only
dampens central proinflammatory signaling via NF-xB and STAT
pathways but also activates resolution-promoting factors (such as
TWIST1, BCL6) and drives macrophage metabolism toward a
reparative, M2-like phenotype. Mechanistically, the DHA+DEX
regimen appears to orchestrate a multifaceted network of
transcriptional and lipid mediators—engaging context-dependent,
overlapping regulators rather than acting through a single
dominant pathway. The resultant working hypothetical model
shown in Figure 11 provides a basis for further mechanistic
studies, leveraging time-resolved transcriptomics, transcription
factor analysis, and lipid mediator profiling, combined with
CRISPR-mediated knockout approaches in our self-renewing SLE
macrophage model and relevant control macrophages. Collectively,
these studies should facilitate the dissection of hierarchy and
interplay of these key effectors and resolve which nodes exert
dominant control in vivo. Based on the findings shown in our
present study, DHA might synergistically work with DEX to
suppress inflammatory pathways in contexts outside of lupus
treatment such as rheumatoid arthritis and asthma. Ultimately, by
enabling potent steroid efficacy at markedly reduced doses, this
O3FA-GC co-therapy strategy offers a mechanistically informed
avenue to recalibrate macrophage responses, minimize
glucocorticoid toxicity, and improve therapeutic outcomes for
autoimmune hyperinflammation.
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AP-1
BMAL1
CCL2
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CREB1
CXCL10
DAMP
DEG
DEX
DHA
dsDNA
ELISA
FBS
FLAM
GC
GILZ
GM-CSF
GO

GR
GRIP1
GSEA
IFN
IEN-B
IL-1
IL-6
IRF1
ISG
ISGF3
ISRE
KEGG
LDH
LPS

LV
MAPK

activator protein 1

brain and muscle ARNT-like 1

chemokine (C-C motif) ligand 2

vehicle control

cAMP response element-binding protein 1
chemokine (C-X-C motif) ligand 10
damage-associated molecular pattern
differentially expressed gene
dexamethasone

docosahexaenoic acid

double-stranded DNA

enzyme-linked immunosorbent assay

fetal bovine serum

fetal liver-derived alveolar-like macrophage
glucocorticoid

glucocorticoid-induced leucine zipper
granulocyte-monocyte colony-stimulating factor
Gene Ontology

glucocorticoid receptor

glucocorticoid receptor-interacting protein 1
gene set enrichment analysis

interferon

interferon beta

interleukin 1

interleukin 6

interferon regulatory factor 1
interferon-stimulated gene
interferon-stimulated gene factor 3
interferon-stimulated response element
Kyoto Encyclopedia of Genes and Genomes
lactate dehydrogenase

lipopolysaccharide

latent variable

mitogen-activated protein kinase
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MKP-1
mRPMI
MUFA
NES
NF-xB
NCOA2
NZBWF1
NuRD
O3FA
O6FA
PAMP
PBS
PLIER
PPARa
PPARy
PTEN
P/S
qRT-PCR
RARal
RNA-seq
RXRA
SFA

SLE
SOCS1
STAT
TCF7L2
TF
TGF-B1
TLC
TLR
TNFa
YBX1
17-HDHA

18-HEPE
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mitogen-activated protein kinase phosphatase-1
modified RPMI media

monounsaturated fatty acid

normalized enrichment score

nuclear factor kappa-light-chain-enhancer of activated B cells
nuclear receptor coactivator 2

New Zealand Black/White F1 lupus-prone mouse model
nucleosome remodeling and deacetylase complex
omega-3 fatty acid

omega-6 fatty acid

pathogen-associated molecular pattern
phosphate-buffered saline

pathway-level information extractor

peroxisome proliferator-activated receptor alpha
peroxisome proliferator-activated receptor gamma
phosphatase and tensin homolog
penicillin-streptomycin

quantitative reverse transcription polymerase chain reaction
retinoic acid receptor alpha

RNA sequencing

retinoid X receptor alpha

saturated fatty acid

systemic lupus erythematosus

suppressor of cytokine signaling 1

signal transducer and activator of transcription
transcription factor 7-like 2

transcription factor

transforming growth factor beta 1

thin-layer chromatography

toll-like receptor

tumor necrosis factor alpha

Y-box binding protein 1
17-hydroxydocosahexaenoic acid

18-hydroxyeicosapentaenoic acid
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