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Introduction: Sepsis is characterized by life-threatening organ dysfunction

caused by dysregulated host response to infection. A key contributor is the

disruption of neutrophil-endothelial interactions. Despite extensive research,

there are no FDA-approved therapies that directly target altered neutrophil

function in sepsis.

Methods: We previously identified three functionally distinct neutrophil

phenotypes in sepsis patients: Hyperimmune, Hypoimmune, and Hybrid, using

clinical profiling, organ-on-chip models, and proteomics. In this study, we

applied bioinformatics tools to elucidate the molecular pathways and

druggable targets associated with each phenotype. Differentially expressed

proteins were identified using ExpressAnalyst, while pathway enrichment and

modeling were performed via Metascape and KEGG-based analyses. DrugBank

and the Broad Institute Drug Repurposing Hub were queried to identify FDA-

approved therapeutics. STRING and Cytoscape were used to build protein–

protein interaction networks and prioritize hub targets.

Results: In our study, the Hyperimmune and Hybrid neutrophil phenotypes had

similar numbers of upregulated proteins, while the Hypoimmune and Hybrid

neutrophil phenotypes had approximately the same numbers of downregulated

proteins. Functional enrichment analysis highlighted several biological processes

and pathways that impacted adhesion/migration patterns, such as calcium

transport and neutrophil degranulation. Neutrophil pathway analysis

highlighted nine differentially expressed proteins that were directly implicated

in known neutrophil processes related to sepsis, such as leukocyte

transendothelial migration. These findings were leveraged to identify FDA-

approved therapeutics that could be repurposed to target proteins within each

phenotype highlighting the impact in normalizing altered neutrophil-related

responses such as adhesion, migration and pro-inflammatory mediator release.

Finally, a protein-protein interaction network was employed to prioritize these
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target proteins within each phenotype using network analysis and identified three

distinct drug targets across phenotypes that could modulate the neutrophil

response in sepsis: VTN in the Hybrid phenotype, TRPV2 in the Hypoimmune

phenotype and H2AC21 in the Hyperimmune phenotype.

Discussion:Our integrative approach highlights phenotype-specific drug targets

and FDA-approved candidates to modulate dysfunctional neutrophil responses

in sepsis. This strategy supports a precision medicine framework for repurposing

existing drugs based on neutrophil functional phenotyping.
KEYWORDS

bioinformatics, drug repurposing, neutrophils, organ on chip, proteomics, sepsis
1 Introduction

According to the Sepsis-3 definition, sepsis is characterized as life-

threatening organ dysfunction resulting from a dysregulated host

response to infection (1). Sepsis accounts for over 250,000 deaths

annually in the US and is responsible for 20% of global mortality (2–4).

In sepsis pathology, the dysregulation of the leukocyte adhesion

cascade is a hallmark of disease progression. This results in increased

neutrophil adhesion and migration across endothelial barriers into

tissues, as well as increased barrier permeability, ultimately

contributing to organ damage and enhanced mortality rates in sepsis

patients (5, 6). At present, there are no FDA-approved therapeutics

targeting the underlying pathophysiology of the disease (7), particularly

the neutrophil-endothelial interactions. Additionally, approximately

150 potential druggable chemical entities that succeeded in treating

sepsis in murine models have failed in clinical trials (7, 8) primarily as a

result of the heterogeneous nature of sepsis—including sex, age,

infection source, demographics, comorbidities, and importantly

diversity in host response to infection and pathogen type, which can

alter the clinical course of the disease (5). These differences, particularly

in immune function and response to infection, limit the use of animal

models for developing therapeutics for sepsis (7, 9, 10), as they

inadequately mimic the various clinical manifestations of the human

disease and differences in leukocyte composition between rodents and

humans (7, 11). Thus, due to the of the lack of translation from bench-

to-bedside, novel methods (e.g., in silico modeling and organ-on-chip

(OoC) assays) are required to a) further our knowledge of the

phenotypes of the disease leading to clinical presentation and

precision medicine (12), b) develop novel testable hypotheses for the

discovery of druggable candidates at a faster rate and a lower cost, and

c) investigate how patient heterogeneity impacts the response to

therapeutics in the disease (13).

Specifically, in sepsis, endothelial cells (ECs) are activated, resulting

in enhanced neutrophil-EC interactions, disruption of EC barrier,

upregulation of adhesion molecules and induction of apoptosis (14,

15). These events lead to increase neutrophil rolling, adhesion,
02
migration across the barrier and excessive neutrophil trafficking into

critical organs (e.g., lungs) and eventually, multiple organ dysfunction

syndrome, if left uncontrolled. Furthermore, neutrophils can damage

ECs through neutrophil extracellular trap formation (NETs),

degranulation and release of reactive oxygen species, thus disrupting

the EC glycocalyx and enhancing permeability through the breakdown

of cell-cell junctions (12, 14, 16). Previously we used a synergistic

combination of clinical and laboratory results from sepsis patients, a

functional OoC assay and neutrophil proteomics to identify and

validate three neutrophil functional phenotypes (i.e., Hyperimmune,

Hypoimmune and Hybrid) in sepsis patients (16). Ex vivo neutrophils

in the Hyperimmune phenotype exhibited increased adhesion and

migration across the endothelium barrier in response to cytomix in our

OoC; neutrophils in the Hypoimmune phenotype demonstrated

blunted adhesion and migration patterns, while neutrophils in the

Hybrid phenotype showed increased adhesion but blunted migration

(16). These functional neutrophil phenotypes were associated with

distinct proteomic signatures indicating significant intrinsic differences

in protein expression among these neutrophil functional groups (16).

In this study, we propose a workflow to identify proteins

targeting differentially expressed proteins (DEPs) unique to each

functional neutrophil phenotype in sepsis patients, employing a

synergistic approach that combines experimental proteomics and

biological network modeling. Network modeling has been effective

in discovering optimal drug targets in various contexts, including

previously established targets for breast cancer (e.g., SRC proto-

oncogene non-receptor tyrosine kinase (SRC), mechanistic target of

rapamycin kinase (MTOR)) (17) and spinal cord injury (e.g., TNF,

FOS, IL6) (18). We hypothesize that conducting functional

enrichment analysis will reveal distinct biological processes

associated with these neutrophil functional phenotypes while

applying pathway analysis and protein-protein interaction (PPI)

network analysis. This will offer an objective methodology for

identifying phenotype-specific drug targets and examples of FDA-

approved therapeutics that could potentially be repurposed for

treatment of sepsis.
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2 Materials and methods

2.1 Human neutrophil proteomic analysis

As previously reported (16), patients (ages 18–88 years old) in

the Temple University Hospital Medical ICU who were diagnosed

with sepsis or septic shock according to the Sepsis-3 definition (1)

were eligible for enrollment in this study following written informed

consent (Temple IRB protocol #24515), and a single 10-15cc of

blood sample was obtained. Neutrophill isolation was started within

1 hour following the blood draw from sepsis patients employing

standard isolation techniques such as ficoll-hypaque separation,

dextran sedimentation, and hypotonic lysis to remove erythrocytes

as previously described (16). Isolated neutrophils were not vortexed

and were kept at room temperature to reduce the possibility of ex

vivo neutrophil activation. The freshly isolated neutrophils were

used in organ-on-chip experiments within an hour of isolation (16).

Control samples were deidentified healthy adult donors through the

Thrombosis Research Center Blood Program (Temple IRB protocol

#24515) (16). For proteomic analysis, freshly isolated neutrophils

were suspended in HBSS (2 x 106 cells/ml), centrifuged and the cell

pellets stored at -70°C prior to label-free global proteomic analysis

(16). The proteomics analysis was performed for three neutrophil

phenotypes as defined by their unique adhesion/migration patterns

in our OoC as reported in a previous study (16). Samples were

prepared and analyzed by mass spectrometry as described by our

group previously (16). Mass spectra processing was performed with

Proteome Discoverer version 2.5. The generated de-isotoped peak

list was submitted to an in-house Mascot server 2.2.07 for searching

against the Swiss-Prot database (Release 2013_01, version 56.6,

538,849 sequences), MSAmanda 2.0 database and Sequest HT

database. Mascot, MS Amanda 2.0 and Sequest HT search

parameters were set as follows: species, homo sapiens; enzyme,

trypsin with maximal one missed cleavage; static modification,

cysteine carbamidomethyl; 10 ppm mass tolerance for precursor

peptide ions; 0.02 Da tolerance for MS/MS fragment ions. For

dynamic modifications, oxidation/+15.995 Da (M) and N-terminal

modification Met-loss/-131.040 Da (M) were used. Further

bioinformatic analysis of the data was performed in R using

RStudio (v.4.1.2). Pearson correlation coefficients (r) were

calculated and transformed to Fisher z scale for a t-test with the

Benjamini-Hochberg false discovery rate (FDR) algorithm to

identify DEPs within neutrophil proteomes between phenotypes.

Proteins with a fold change>2 and a FDR-adjusted p<0.01 were

characterized as upregulated, while proteins with a fold change<0.5

and a FDR-adjusted p<0.01 were downregulated. DEPs were further

characterized to identify those that are expressed in neutrophils.
2.2 Functional enrichment analysis

Metascape integrates protein annotation, membership search,

interactome analysis and functional enrichment and uses over 40

independent databases within a single web service to provide a

comprehensive analysis on omics data (19). Thus, this tool was used
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for functional enrichment analysis across the DEPs to obtain the

enriched terms. Specifically, we use “terms” to indicate the pathways

(e.g., KEGG) and biological processes (e.g., Gene Ontology) that are

significant using a hypergeometric test/Fisher’s exact test

(Benjamini-Hochberg adjusted-p value < 0.05). Terms were

ranked by p-value [i.e., -log10(P value)]. Barcharts of enriched

terms were created using the ggplot2 package in RStudio.

ExpressAnalyst (20) was used to create UpSet plots of the

upregulated and downregulated DEPs using the “Distinct” mode.

Enriched terms were identified across druggable targets; however,

due to the limited number of therapeutically targeted, uniquely

expressed DEPs within each individual phenotype, pathway-level

analyses were more informative when aggregating DEPs across

phenotypes. Thus, we combined all the therapeutically targeted

DEPs across phenotypes to show how DEPs associated with a given

termmay contribute to neutrophil function in a single phenotype or

multiple phenotypes.
2.3 Identification of FDA-approved
therapeutics and (pre) clinical trial
therapeutics

The Harvard/MIT Broad Institute Drug Repurposing Hub (21)

is an open-access, curated repository of >6000 compounds/

therapeutics and >2000 targets; these compounds are in different

preclinical and clinical phases of the drug development pipeline,

including those that are approved and launched. Drugbank (version

6.0) is a repository that integrates drug data with drug target

information; the database contains 4563 FDA-approved drugs,

6231 investigational drugs and 1,413,413 drug-drug interactions

(22). In this study, we only included therapeutics from both

databases that were categorized as “Launched” in the Drug

Repurposing Hub or “Approved” from Drugbank since these

therapeutics are already approved and could be potentially

repurposed for sepsis treatment. “Launched” indicates a

therapeutic that is FDA approved and is clinically available,

whereas “Approved” indicates a therapeutic that is FDA approved

that may or may not be clinically available. FDA-approved and

(pre)clinical trial therapeutics from these two databases were used

to target the DEPs within and across phenotypes in our study.

Barcharts were created to illustrate which DEPs were targeted by

therapeutics across phenotypes.
2.4 PPI network analysis

The Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) database (version 12.0) (23) was used to create a protein-

protein interaction (PPI) network of the DEPs that are targeted by

FDA-approved therapeutics or pre (clinical) trial therapeutics.

STRING creates PPI networks when there is evidence indicating a

functional relationship between two proteins; proteins in these

interactions can be functionally or indirectly associated. A full

STRING network was created using all interaction sources (e.g.,
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Textmining, Neighborhood, Experiments, Gene Fusion, Databases,

Co-occurrence, Co-expression). The confidence level for the

STRING network was set to low (0.15) to include the maximum

number of proteins in the resulting PPIs (24). Disconnected nodes

and protein names were hidden. The remaining parameters were

default. The STRING network was then imported into Cytoscape

(version 3.10.1) (25) for further network analysis and data

visualization, and the cytoHubba app was used to identify and

rank nodes in a PPI using the Degree parameter (26). Hubs are

defined as the most connected proteins within the network that are

responsible for sustaining network (degree-based circular PPIs)

connectivity (27).
3 Results

3.1 Global proteomic analysis indicates
significant differences in protein expression
between phenotypes

Figure 1 shows the bioinformatics analysis workflow for this study.

We use procurement analysis of three different neutrophils phenotypes

in sepsis patients identified and validated previously (16) to not only
Frontiers in Immunology 04
perform functional enrichment analysis but also utilize network

modeling (i.e., PPIs) to identify phenotype-specific drug targets and

that could be used to repurpose FDA-approved and (pre)clinical trial

therapeutics that target DEPs unique to each functional neutrophil

phenotype. To test our hypothesis that functional enrichment analysis

can identify terms (i.e. significant processes or pathways) associated

with neutrophil phenotype DEPs, unbiased proteomic analysis of

sepsis patient neutrophils was performed using mass spectrometry to

discover the DEPs unique to each phenotype and common DEPs

across phenotypes. Figure 2 shows UpSet plots of the upregulated

(Figure 2A) and downregulated (Figure 2B) DEPs. Hyperimmune and

Hybrid phenotypes had approximately the same number of total

upregulated proteins supporting the inference that the neutrophil

proteomes in these patients were altered to a greater degree as

compared to the Hypoimmune phenotype. Conversely,

Hypoimmune and Hybrid phenotypes had the highest number of

total downregulated proteins followed by the Hyperimmune

phenotype further demonstrating differential regulation of protein

expression in the different neutrophil phenotypes. Additionally, the

Hypoimmune phenotype had the highest number of unique

upregulated and downregulated proteins. These specific DEPs are

listed in the “Common and unique upregulated and downregulated

proteins in sepsis patient phenotypes” (Supplementary Table 1).
FIGURE 1

Bioinformatics workflow to identify and prioritize DEPs in neutrophil phenotypes that are targeted by FDA-approved therapeutics or classified as pre
(clinical) trial therapeutics for sepsis treatment. This figure was created in BioRender.
frontiersin.org
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3.2 Functional enrichment analysis of
protein targets identifies calcium signaling
and cell division impacting neutrophil
function

Metascape was used to identify those biological pathways and

processes that were significantly enriched across the DEPs targeted

by FDA-approved or (pre)clinical trial therapeutics, including

terms that impact neutrophil adhesion/migration, as shown in

Figure 3 and Figure 4 respectively. We performed functional
Frontiers in Immunology 05
enrichment analysis on the DEPs that are targeted by FDA-

approved therapeutics and observed the association of the DEPs

with calcium transport which suggests an increase in cytosolic

calcium (28). Neutrophil rolling is not only mediated by selectins

but also causes downstream release of endoplasmic reticulum

calcium stores and leads to adhesion of neutrophils to the

endothelium (29). For the enriched terms using the DEPs

targeted by (pre)clinical trial therapeutics as input, Cell division

control protein 42 (Cdc42 - a downstream gene of RAS Like Proto-

Oncogene (RalA) signaling, Figure 4) is a critical regulator of cell
FIGURE 2

UpSet plots of neutrophil upregulated (A) and downregulated (B) differentially expressed proteins (DEPs) (compared to controls) within and between
the three different functional neutrophil phenotypes. The horizontal bars show the total number of differentially expressed proteins identified in each
phenotype, and the vertical bars (distinct size) indicate the number of DEPs that were unique or common across phenotypes. Dots that are
connected indicate DEPs that are shared across phenotypes; while unconnected dots indicate DEPs that are unique within a phenotype. The purple
vertical bar indicates the number of shared DEPs between the Hyperimmune and Hybrid phenotypes; the green bar indicates the number of DEPs
unique to the Hypoimmune phenotype; the dark green bar indicates those DEPs that are common across all three phenotypes; the red bar indicates
the number of DEPs unique to the Hypoimmune phenotype; the blue bar indicates the number of DEPs unique to the Hybrid phenotype; the
turquoise bar indicates the number of shared DEPs between the Hybrid and Hypoimmune phenotypes and the forest green bar indicates the
number of shared DEPs between the Hyperimmune and Hypoimmune phenotypes.
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polarity and in neutrophils, Cdc42, along with Wasp, controls

neutrophil chemotaxis and transmigration to lung alveoli during

inflammation (30). Proteins associated with each of these terms are

listed in the “Metascape analysis of DEPs targeted by FDA-

approved therapeutics and DEPs classified as pre(clinical) trial

therapeutics” (Supplementary Table 2).
3.3 Neutrophil pathway analysis identifies
drug targets across phenotypes impacting
differential functional outcomes

Building on our central hypothesis that distinct biological

processes and cellular pathways are differentially regulated in the

three identified sepsis neutrophil functional phenotypes, we

further identified specific drug targets within these pathways

and their potential downstream effects on neutrophil-related

outcomes such as adhesion, migration, neutrophil extracellular
Frontiers in Immunology 06
traps (NETs) formation, and pro-inflammatory mediator release.

From the list of identified DEPs as potential drug targets for sepsis

(listed in “All FDA-approved therapeutics and pre(clinical) trial

therapeutics targeting the DEPs” Supplementary Table 3), nine

DEPs (CDC42, TAOK1, FPR1, VTN, H2AC21, PPP2CA,

CACNA1G, TRPV2, ATP2B1) were directly implicated in

known neutrophil processes related to sepsis. As an example,

these targets are illustrated in a simplified pathway model (created

in Biorender) based on the KEGG NETs formation pathway as

shown in Figure 5. Additionally, the identified drug targets were

also mapped to the data collected from other pathways (e.g.,

MAPK signaling, PI3K-Akt signaling, NOD signaling, and

calcium signaling events) in KEGG to highlight the diverse

biological signaling pathways involved in neutrophil (patho)

physiology. Some drug targets were specific to one phenotype,

while others were common across multiple phenotypes, indicating

their potential to mitigate neutrophil dysfunction in one or

multiple phenotypes.
FIGURE 3

Barchart showing the top enriched categories in all the DEPs that are druggable by FDA-approved therapeutics. Terms are ranked based on
decreasing statistical significance where the red bars indicate the most significant terms and the blue bars indicate the least significant terms. In this
figure, and in agreement with the literature (30–32), we found that calcium signaling, cell division and neutrophil degranulation are critical processes
impacting neutrophil adhesion/migration.
FIGURE 4

Barchart showing the top enriched categories in all the DEPs that are druggable by pre(clinical) trial therapeutics. Terms are ranked based on
decreasing statistical significance where the red bars indicate the most significant terms and the blue bars indicate the least significant terms.
frontiersin.org
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3.4 Unique identified FDA-approved
therapeutics and (pre)clinical trial
therapeutics targeting DEPs across sepsis
phenotypes

Figure 6 shows all the DEPs across phenotypes that are

targeted by FDA-approved therapeutics (panel A) and those

targeted by pre(clinical) trial therapeutics (panel B) plotted

against their Fold Change as compared to healthy subjects. As

shown in Figure 6A, nine upregulated DEPs are targeted by broad

spectrum FDA-approved therapeutics (e.g., those therapeutics that

target DEPs across more than one phenotype), while eight

upregulated DEPs are targeted by FDA-approved therapeutics

that are phenotype-specific (e.g., those drugs that target DEPs in

one phenotype). All the approved and (pre)clinical trial

therapeutics can be found in the “All FDA-approved

therapeutics and pre(clinical) trial therapeutics targeting the

DEPs” Supplementary Table 3. Figure 6B shows those DEPs that

are targeted by pre(clinical) trial therapeutics. Even though these
Frontiers in Immunology 07
therapeutics are not approved, further experimentation can

provide insight on what downstream effects they may have on

underlying biological mechanisms and protein targets, prior to

approval. The top DEP (i.e., the DEP with the most potential

clinical candidates) was MIF (associated with the Hyperimmune

and Hybrid phenotypes) for which 12 pre(clinical) trial

therapeutics are in the pipeline. MIF has been shown to induce

neutrophil migration in vitro (31). Several of these inhibitors such

as caffeic-acid (32), ISO-1 (33), YZ9 (34) and 4-iodo-6-

phenylpyrimidine (35) have been used in (pre)clinical sepsis

studies; ISO-1, in particular, was found to inhibit leukocyte

migration (36). Since these chemical therapeutics are not yet

approved, there are no current indications. Even though we have

identified those DEPs that are targeted by FDA-approved

therapeutics or pre(clinical) therapeutics and play a role in

neutrophil function and/or sepsis by investigating drug databases

(e.g., Drugbank and/or Drug Repurposing Hub), we will use an

objective approach (network analysis, see below) to prioritize these

DEPs for each neutrophil phenotype for future sepsis treatment.
FIGURE 5

A schematic illustrating some of the critical pathways and processes involving differentially expressed neutrophil proteins (green) targeted by FDA-
approved therapeutics. The other non-target protein pathways are shown in black, and downstream outcomes are highlighted in red blocks. The
schematic is based on NETs formation pathway in KEGG, with additional pathways (green blocks) added to show the diverse roles of each protein
across multiple signaling mechanisms leading to an outcome. Solid arrows ( ) indicate direct links between proteins, dashed arrows ( )

represent indirect associations, and “T”-shaped solid arrows ( ) indicate direct inhibition. Phenotypes are listed above each drug target and

arrows next to each phenotype represent upregulation or downregulation. ROS refers to reactive oxygen species, -P indicates dephosphorylation
and Ca2+ indicates calcium ion. This figure was created in BioRender.
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3.5 Network analysis identifies hubs
targeted by FDA-approved therapeutics
and (pre)clinical trial therapeutics

To prioritize the identified unique DEPs that are targeted by

FDA-approved therapeutics for the potential treatment of sepsis, we

deployed a network biology approach centered around identifying

key hubs within biological networks. This methodology has been

effective in uncovering optimal drug targets in various contexts,

including previously established targets for breast cancer (e.g., SRC,

MTOR) (17) and spinal cord injury (e.g., TNF, FOS, IL6) (18). By

integrating network biology with protein expression data, we

prioritize DEPs that are unique to these immune cells and use the

PPI network utilizing STRING database to identify clustered hubs
Frontiers in Immunology 08
within these networks. Figure 7 shows a STRING network of all the

DEPs that are targeted by FDA-approved therapeutics and (pre)

clinical trial therapeutics. Network analysis in Figure 5 identified hubs

as indicated in red (hubs), green (unique upregulated hubs in a

phenotype), or blue (non-hubs). Specifically, the unique hub target of

currently FDA-approved therapeutics was H2AC21 (Hyperimmune,

degree=6), VTN (Hybrid, degree=15) and TRPV2 (Hypoimmune,

degree=5). Table 1 specifically shows examples of FDA-approved

therapeutics (small molecules) targeting the unique upregulated

DEPs from Figure 6 and highlights additional information on these

hub targets. Thus, networks analysis indicates that targets of currently

FDA-approved therapeutics have high degree (number of

connections to other nodes) and should be prioritized for treating

each phenotype. Network statistics for the network in Figure 7 as well
FIGURE 6

Barplots showing the number of FDA approved therapeutics targeting the upregulated and downregulated DEPs (A) and the number of (pre)clinical
trial therapeutics targeting the DEPs (B). The dark blue bar (top left) and orange bar (middle top) represents those DEPs that were uniquely
upregulated or downregulated in the Hyperimmune phenotype respectively. The yellow bar (bottom left) and grey bar (top right) indicates those
DEPs that were uniquely upregulated or downregulated in the Hypoimmune phenotype respectively. The light blue bar (middle bottom) and green
bar (bottom right) shows those DEPs that were uniquely upregulated or downregulated in the Hybrid phenotype respectively.
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as the results from the CytoHubba ranking analysis are included in

the “STRING network analysis of FDA-approved therapeutics and

(pre)clinical trial targeting neutrophil DEPs” file in the

Supplementary Table 4.

All the FDA-approved therapeutics (small molecules) and their

targets and pathways presented in Table 1 have been shown to play

a role in sepsis and/or neutrophil functions (see Discussion).
Frontiers in Immunology 09
4 Discussion

The repurposing of FDA-approved therapeutics for diseases or

indications outside their originally approved intent is an emerging

field of research with significant potential to reduce the transition

time of a therapeutic from bench to bedside, as well as to lower

production costs and attrition percentages (37, 38). In this study, we
FIGURE 7

Degree-based circular STRING PPIs of the DEPs that are targeted by FDA-approved therapeutics and (pre)clinical trial therapeutics. Circles represent
nodes (i.e., proteins) and edges between them represent physical or functional interactions. The thickness of the edge represents the amount of
confidence associated with each interaction; thicker edges have greater data support (from the literature, experiments, etc.) associated with it
compared to thinner edges. Node size is proportional to the degree of the proteins and is presented in a clockwise fashion (e.g., ALB has the highest
degree and DAGLB has the lowest degree). Red nodes are classified as hubs, blue nodes are non-hubs and green nodes are unique upregulated
hubs that play a role in the NETs pathway in Figure 5 in a specific neutrophil phenotype. Specifically, VTN is unique in the Hybrid phenotype, TRPV2
in the Hypoimmune phenotype and H2AC21 in the Hyperimmune phenotype.
TABLE 1 List of FDA-approved therapeutics that specifically target the unique upregulated differentially expressed proteins obtained using STRING
network analysis in Cytoscape.

Functional
phenotype
(s)

Degree
(number of
connections
with other
proteins)

Drug(s)/small
molecule(s)

DEP(s) and (Fold
change in protein
expression as
compared
to control)

DEP(s)’
inflammatory/
neutrophil
pathway(s)
of interest

Reference citing
drug in neutrophil
and/or sepsis study

Hyperimmune 6 Polysialic acid, Heparin, C-
reactive protein, Tirofiban,
Thrombomodulin/activated
protein C

H2AC21 (3) Neutrophil extracellular
trap formation: Histone/
DNA packaging

(39)

Hypoimmune 5 Amiloride TRPV2 (6) NOD-like receptor
signaling: Non-selective
cation channel

(42, 45, 46)

Hybrid 15 RGDfv VTN (11) PI3K-Akt
signaling: Glycoprotein

(47)
Only those therapeutics that are inhibitors of their selected targets are listed in this Table. Other therapeutics from our study are listed in “All FDA-approved therapeutics and pre(clinical) trial
therapeutics targeting the DEPs (Supplementary Table 3).
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used a bioinformatic, network biology approach to identify and

repurpose FDA-approved therapeutics that could potentially be

repurposed to treat sepsis. We identified DEPs within and across

the three phenotypes (Hyperimmune, Hypoimmune, and Hybrid)

and characterized the ontological and pathway roles of all the

druggable DEPs across phenotype, demonstrating how DEPs

associated with a given term may contribute to neutrophil

function in a single phenotype or multiple phenotypes.

Furthermore, we developed a neutrophil-specific pathway model

highlighting the contribution of unique and/or common druggable

DEPs to neutrophil downstream processes and elucidating other

pathways that these therapeutics could target. We constructed a PPI

network and used network analysis to discover the top-ranked,

unique, druggable hubs across the phenotypes, and then mapped

these hubs to their corresponding targets. Thus, our study is one of

the first to incorporate proteomics, bioinformatics, in vitro and

clinical data in the identification of FDA-approved potential

therapeutics that could be repurposed to treat sepsis.

Relevance of several of the targets identified in this study to

neutrophil function have been reported in the literature. For

example, polysialic acid binds to histones in vitro using a single

chain variable fragment antibody approach, reduces histone and

NET cytotoxicity and indirectly decreases neutrophil adhesion; thus,

it could mitigate sepsis damage (39, 40) in the Hyperimmune

phenotype by binding to H2AC21. Since patients in the

Hyperimmune phenotype had worse clinical outcomes compared to

the Hypoimmune and Hybrid phenotypes and a proteomic signature

consisting of more detrimental neutrophil patterns (16), the molecular

effect of this therapeutic on the Hyperimmune’s neutrophil adhesion/

migration patterns can be potentially beneficial to this group of

patients. In addition, C-reactive protein reduces histone-mediated

toxicity in vitro and in animal models and prevents calcium influx

which can lead to downstream neutrophil consequences (39, 41).

Another potential therapeutic identified in this study, Amiloride,

suppresses the inflammatory response (42, 43), endothelial cell

activation, chemokine production (42) and neutrophil migration

(44), making it a candidate for Transient receptor potential cation

channel subfamily Vmember 2 (TRPV2) (45, 46) in the Hypoimmune

phenotype. Lastly, the RGD-blocking peptide binds to its RGDmotif to

reduce VTN’s antiapoptotic effects, leading to reduced neutrophil

adhesion/migration patterns (47). Thus, this therapeutic could be

repurposed to target VTN in the Hybrid phenotype. Patients in the

Hybrid phenotype had enhanced adhesion but blunted migration, yet

when activated, neutrophils in this phenotype could potentially

accumulate in the vasculature (16), and thus a therapeutic that could

mitigate this effect needs to be validated.

There are several possible limitations in this study. Even though

this is the first study of its kind which utilizes ICU patients in a

single medical center to identify phenotype-specific drug targets

and FDA-approved candidates with potential to modulate

dysfunctional neutrophil responses in sepsis, we only studied ICU

patients with advanced sepsis. This highlights the fact that our

model has not been tested in patients with early or developing sepsis

such as a patient population that would be encountered in the

emergency department. Additional studies may be required to
Frontiers in Immunology 10
determine if the omic profile of sepsis patients changes

significantly during the progression of the disease. Validation of

potential therapeutics identified in this study in in vitro, in vivo and/

or in silico models is necessary to ensure they have a significant

effect in mitigating neutrophil adhesion/migration damage in sepsis

patients and potentially lead to better clinical outcomes. These

potential therapeutics can be validated using the microphysiological

system incorporated in our previous study (16). We have previously

shown that a novel therapeutic for treating sepsis (PKCd TAT

inhibitory peptide) similarly reduces neutrophil migration and

adhesion in both our microphysiological system using primary

human cells and in an animal model of sepsis (14, 15). In

addition, the identification of hubs in the PPI network indicates

which nodes play a crucial role in regulating multiple processes/

pathways within and across phenotypes and thus should be further

investigated as druggable candidates. The PPI network was

constructed using the STRING database. However, additional

edges and proteins may be documented in the literature but not

curated and included in this database, rendering the network

incomplete. Therefore, detailed curation of the literature to

incorporate novel edges and proteins into the network in the

future could further the predictive power of these networks.

Furthermore, the incorporation of multi-omic (48–52) datasets

and creating network models that contain a variety of biological

entitles (e.g., proteins, transcription factors, genes, metabolites etc.)

would provide a more complete picture of the underlying biological

processes in septic neutrophils and identify even more protein

targets for potential therapeutics.

In summary, functional enrichment analysis of DEPs from

different neutrophil phenotypes generated sepsis-related pathways

and processes can advance our understanding of the underlying

molecular mechanisms of this heterogeneous disease. Network

analysis has been used to uncover drug targets (53–55) and for

drug repurposing leading to novel clinical applications of approved

drugs (56, 57). In this study, we used a novel application of network

analysis leveraging human neutrophil DEPs in sepsis to identify

drug targets, an approach that has not been explored when

compared to traditional methods like gene profiling or RNA

sequencing (58–60). Focusing on neutrophil functional

phenotypes allows us to prioritize DEPs that are unique to these

immune cells, potentially revealing targeted therapeutic strategies

that could enhance precision treatment options for sepsis based on

specific phenotypes. Furthermore, we used the PPI network using

STRING database to identify clustered hubs within these networks

to not only shed light on the underlying biological mechanisms of

sepsis but also enhance our ability to predict and prioritize potential

therapeutic targets. This is of paramount importance since there are

currently no FDA-approved therapeutics that modulate and restore

the immune response in sepsis. Although a few studies have

investigated FDA-approved therapeutics repurposing for sepsis

(38, 61), to our knowledge, this is the first therapeutic

repurposing study that leverages a combination of clinical,

functional phenotyping and proteomics of sepsis patient

neutrophils tools to identify examples of FDA-approved

therapeutics that can be repurposed for treating sepsis. Since
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these phenotypes have been validated by showing that they correlate

with disease severity (16), this study provides a roadmap for

achieving precision medicine in sepsis to identify the right

therapeutic for the right patient at the right time.
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Glossary

ALB Albumin
Frontiers in Immunol
ALG1 ALG1 chitobiosyldiphosphodolichol beta-mannosyltransferase
ALPL Alkaline phosphatase
APP Amyloid beta precursor protein
ASRGL1 Asparaginase and isoaspartyl
ATP2B1 ATPase plasma membrane Ca2+ transporting 1
BAZ1B Bromodomain adjacent to zinc finger domain 1B
BLVRB Biliverdin reductase B
BP Biological process
CACNA1G Calcium voltage-gated channel subunit alpha1G
CD2 Cluster of differentiation 2
CD247 Cluster of differentiation 247
CD74 Cluster of differentiation 74
Cdc42 Cell division cycle 42
COVID 19 Coronavirus disease 2019
CYB5R3 Cytochrome b5 reductase 3
DAGLB Diacylglycerol lipase beta
DDX3Y DEAD-box helicase 3 Y-linked
DHCR7 7-dehydrocholesterol reductase
DEPs Differentially expressed proteins
EED Embryonic ectoderm development
EPX Eosinophil peroxidase
EXOC8 Exocyst complex component 8
FDA Food and Drug Administration
FDR False discovery rate
FGG Fibrinogen gamma chain
FLNC Filamin C
FOS Fos proto-oncogene, AP-1 transcription factor subunit
FPR1 Formyl peptide receptor 1
FTH1 Ferritin heavy chain 1
GNB1 G protein subunit beta 1
GO Gene ontology
GSTM2 Glutathione S-transferase mu 2
H2AC21 H2A clustered histone 21
HAPLN1 Hyaluronan and proteoglycan link protein 1
HIBADH 3-hydroxyisobutyrate dehydrogenase
ICU Intensive care unit
IDH3A Isocitrate dehydrogenase (NAD(+)) 3 catalytic subunit alpha
IL6 Interleukin 6
KEGG Kyoto Encyclopedia of Genes and Genomes
LRSAM1 Leucine rich repeat and sterile alpha motif containing 1
KLBR1 Killer cell lectin like receptor B1
ogy 14
MAPK Mitogen-activated protein kinase
MBOAT7 Membrane bound O-acytransferase domain containing 7
MIA3 MIA SH3 domain ER export factor 3
MIF Macrophage migration inhibitory factor
MME Membrane metalloendopeptidase
MTOR Mechanistic target of rapamycin kinase
NDUFA2 NADH:ubiquinone oxidoreductase subunit A2
NDUFV2 NADH:ubiquinone oxidoreductase core subunit V2
NETs Neutrophil extracellular traps
NOD Nucleotide-binding oligomerization domain-like receptors
OoC Organ-on-chip
ORM2 Orosomucoid 2
PAK1 p21 (RAC1) activated kinase 1
PDHA1 Pyruvate dehydrogenase E1 subunit alpha 1
PDP1 Pyruvate dehydrogenase phosphatase catalytic subunit 1
PI3k-Akt Phosphoinositide 3-kinase-Protein kinase B
PMPCA Peptidase, mitochondrial processing subunit alpha
PPIs Protein-protein interaction networks
PPP2CA Protein phosphatase 2 catalytic subunit alpha
PPIH Peptidylprolyl isomerase H
PPT1 Palmitoyl-protein thioesterase 1
PRG2 Proteoglycan 2, pro eosinophil major basic protein
RALA RAS like proto-oncogene
RNASE3 Ribonuclease A family member 3
SRC SRC proto-oncogene, non-receptor tyrosine kinase
SP110 SP110 nuclear body protein
SPPL2A Signal peptide peptidase like 2A
STRING Search Tool for the Retrieval of Interacting Genes/Proteins
TAOK1 TAO kinase 1
TF Transferrin
TLR1 Toll-like receptor 1
TNF Tumor necrosis factor
TRPV2 Transient receptor potention cation channel subfamily V

member 2
TPP1 Tripeptidyl peptidase 1
TSPO Translocator protein
TTR Transthyretin
UBE4A Ubiquitination factor E4A
UGCG UDP-glucose ceramide glucosyltransferase
VTN Vitronectin
Wasp WASP actin nucleation promoting factor.
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