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Introduction: Extracorporeal photopheresis (ECP) is an immunomodulatory

treatment option for different T cell-mediated diseases such as cutaneous T

cell lymphoma (CTCL) and chronic graft-versus-host disease (GvHD). While in

CTCL the polarization of T cells is shifted towards T helper cells type 1 (TH1) and

an immune response against the lymphoma is induced, ECP in GvHD rather leads

to the expansion of regulatory T cells (Treg). How ECP regulates the immune

response dependent on the underlying disease is still not exactly known. As

dendritic cells (DCs) are crucial regulators of the immune response, it is supposed

that they are key players in the immunomodulatory effects of ECP. However, due

to the scarcity of primary DCs in blood, research has focused on in vitro-

generated monocyte-derived DCs so far.

Methods: Here, we present for the first time how the primary human blood DC

subpopulations, i.e., conventional DCs type 1 (cDC1), cDC2, DC3, and

plasmacytoid DCs (pDC), directly isolated from blood of healthy donors,

respond to in vitro ECP treatment.

Results: We demonstrate that the exposure to 8-methoxypsoralen and UV-A light

irradiation induces apoptosis in Toll-like receptor ligand-activated cDC1 and pDC as

well as - to a minor extent - in steady state cDC1, cDC2, and DC3. However, the

selective effect of ECP on viability of DC subpopulations was dependent on culture

duration (18h vs. 42h) as well as condition (steady state vs. TLR ligand activated).

Further, ECP modulates the expression of the co-stimulatory and co-regulatory

molecules CD40, CD86, and PD-L1 on DC subpopulations. While ECP did not affect

the T cell stimulatory capacity of cDC2 and DC3, ECP-treated cDC1 and - to aminor

extent - pDC showed reduced activation of memory T cells and diminished

secretion of TH1- and TH17-associated cytokines.

Conclusion: Thus, especially blood cDC1 are direct targets of ECP and the

reduction of their T cell stimulatory capacity might contribute to the clinical

efficacy observed in chronic GvHD patients.
KEYWORDS
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1 Introduction

Extracorporeal photopheresis (ECP) is an immunomodulatory

treatment for different T cell-mediated diseases. For the treatment,

leukocytes of the patient are collected by apheresis, incubated with

8-methoxypsoralen (8-MOP), a photoactivatable substance, and

exposed to UV-A irradiation followed by reinfusion of the treated

leukocytes into the patient. Typically, patients are treated on two

consecutive days with ECP in cycles every two to six weeks

dependent on the severity of the symptoms. Mechanistically, UV-

A light-activated 8-MOP induces single strand breaks in the DNA

of the cells by forming adducts with pyrimidine bases of the DNA

(1). Subsequently, the leukocytes undergo apoptosis when the repair

mechanism of the cells are overloaded (1). ECP was first discovered

in the 1980s to be effective for the treatment of cutaneous T cell

lymphoma (CTCL) but is now also used to treat other T cell-

mediated diseases, such as chronic graft-versus-host disease

(GvHD) and chronic allograft rejection (2–5). In addition, ECP

has been demonstrated to be effective as prophylactic treatment for

the prevention of acute cellular rejection in lung allograft patients

(6) and in reducing immune-related adverse events in cancer

patients treated with immune checkpoint inhibitors (7, 8).

However, despite its broad use and effectiveness, the exact

mechanism how ECP leads to immunomodulation is unclear and

seems to depend on the underlying disease. In CTCL, ECP induces a

shift from an IL-4-driven T helper cell (TH) type 2 environment to

an IFNg/IL-12-mediated TH1 immune response against the

lymphoma (9). In contrast, murine models of GvHD showed an

increase in regulatory T cells (Treg) in response to ECP treatment

(10). Polarization of T cells into certain subtypes, such as TH1,

TH2, or Treg, is usually regulated by dendritic cells (DCs) (11). DCs

belong to the group of antigen-presenting cells (APCs) and are the

most efficient cell type in inducing naïve T cell responses. DCs are

present in both lymphoid as well as non-lymphoid tissues and are

equipped with pattern recognition receptors, such as Toll-like

receptors (TLRs), C-type lectin receptors, and NOD-like

receptors, to sense the environment for pathogen- and danger-

associated molecular patterns (PAMPs and DAMPs) (12). After the

uptake of antigens by pinocytosis, phagocytosis, or receptor-

mediated endocytosis, DCs process the antigens and present the

fragments on the cell surface as peptide-MHC (major

histocompatibility complex) complexes to T cells (11). Dependent

on the environment, DCs either induce tolerance in steady state or

T cell immunity under inflammatory conditions. In human and

mice, several DC subpopulations exist that can be differentiated

based on ontogeny, function, and surface marker expression (11).

Conventional DC type 1 (cDC1) depend on the transcription

factors IRF8 and BATF3 and human cDC1 can be identified by

the expression of XCR1, CLEC9A, and CD141 (13–16). cDC1 excel

in the cross-presentation of cell-associated antigens and, therefore,

play a crucial role in anti-tumor immunity (17–22). cDC2 partly

depend on the transcription factor IRF4 and human cDC2 are

characterized by the expression of CD1c, FceR1A, and CLEC10A

and also termed CD1c+ DCs (22–25). CD1c+ DCs are superior in

the induction of T helper cell responses and can be further divided
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into bona fide CD5+ cDC2 with higher T cell-stimulatory capacity

and monocyte-related CD163+CD64+ DC3 with a more pro-

inflammatory phenotype (18, 26–32). In addition, plasmacytoid

DCs (pDC) exist that rely on transcription factors such as E2–2 and

SpiB and are identified in humans by the expression of CD123 and

CD303 (33–36). pDC are known for their capacity to secrete high

amounts of type I interferons and, thus, for their role in antiviral

immunity (37, 38).

Due to their important role in the regulation of T cell immunity,

ECP might influence DCs to either induce immunity in CTCL or

tolerance in GvHD. However, as primary DCs are very rare cell

types, accounting for less than 1% of peripheral blood mononuclear

cells (PBMCs), much of the research has focused on monocyte-

derived DCs (moDCs) or bone marrow-derived DCs (BMDCs),

which can be generated in large quantities in vitro by culturing

purified monocytes or bone marrow cells, respectively, in the

presence of GM-CSF and IL-4 (39, 40). moDCs treated in vitro

with ECP showed strong induction of apoptosis in the steady state

as well as under inflammatory conditions (41). Further, ECP

prevented the expression of co-stimulatory molecules as well as

the secretion of IL-12 leading to a reduced induction of naïve T cell

responses (41). When untreated moDCs were co-cultured with

ECP-treated apoptotic lymphocytes, the moDCs showed reduced

expression of co-stimulatory molecules as well as enhanced

secretion of the anti-inflammatory cytokine IL-10 (42). Similarly,

rat BMDCs showed a decreased expression of co-stimulatory

molecules, an increased secretion of IL-10, and a reduced capacity

to induce naïve T cell responses, when co-cultured with ECP-

treated splenic cells (43). Thus, in vitro-generated BMDCs and

moDCs seem to respond to ECP. However, moDCs do not reflect

the primary blood DCs present in the apheresate of patients but

rather correspond to inflammatory DCs (44).

Thus, data on the response of human primary blood DCs to ECP

are still largely missing. Since infusion of ECP-treated enriched DCs

was sufficient to transfer the therapeutic effect of ECP in a murine

model of contact hypersensitivity (45), we investigated how human

primary blood DCs respond to in vitro treatment with ECP. For this

purpose, cDC1, cDC2, DC3, and pDCwere isolated from the blood of

healthy donors by cell sorting and treated with 8-MOP and UV-A

light in steady state and in presence of TLR ligands. Subsequently, the

induction of cell death, the expression of co-stimulatory and co-

inhibitory molecules, cytokine secretion as well as the capacity to

activate memory T cell responses were determined. We demonstrate

that in vitro ECP induces apoptosis preferentially in cDC1 and pDC

after stimulation with TLR ligands and strongly reduces the capacity

of cDC1 to activate CD4+ and CD8+ memory T cell responses. Thus,

in an inflammatory setting as observed in GvHD patients, the

reduction of the T cell stimulatory capacity of cDC1 might

contribute to the effector mechanism of ECP.
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2 Materials and methods

2.1 Isolation of peripheral blood
mononuclear cells from healthy blood
donors

Leukocyte reduction system (LRS) cones and thrombocyte

apheresis cassettes (TACs) were retrieved from healthy adults

undergoing thrombocytapheresis at the Department of Transfusion

Medicine and Hemostaseology of the University Hospital Erlangen.

This study was performed with the informed written consents of all

donors in accordance with the Declaration of Helsinki (approved by

the local ethics committee [Ethikkommission der Friedrich-

Alexander-Universität Erlangen-Nürnberg]; ethics vote 346_18 B).

Peripheral blood mononuclear cells (PBMCs) were isolated from LRS

cones and TACs as described before (46, 47). Briefly, the blood

product was extracted and diluted with PBS. Subsequently, 20 ml of

diluted blood product was overlaid onto 14 ml of Lymphocyte

Separation Medium (Anprotec) and centrifuged for 20 min with

520 x g at room temperature without brakes. Then, the interphase

containing the mononuclear cells was transferred to a 50 ml tube and

washed twice with phosphate-buffered saline (PBS). After washing,

cell numbers were determined using a Luna-FL Automated

Fluorescence Cell Counter (Logos Biosystems) and the cells used

for the experiments.
2.2 Cell sorting of human primary dendritic
cell subpopulations

For experiments with human dendritic cell (DC) subpopulations,

DCs were isolated from PBMCs of healthy adults by cell sorting as

described before (16, 31, 46). Briefly, PBMCs were resuspended in

PBS + 2% fetal calf serum (FCS) + 1 mM EDTA (EasySep Buffer)

with a concentration of 1 x 108 cells/ml. Up to 9 ml of cell suspension

were transferred to 14 ml roundbottom tubes and enriched using the

EasySep Human Pan-DC Pre-Enrichment Kit (Stemcell

Technologies). Subsequently, enriched DCs were stained with a

panel of fluorochrome-coupled antibodies and stained on ice for 30

min. After washing, cells were resuspended in EasySep Buffer + DAPI

(100 ng/ml) and sorted into sterile FACS tubes using a BD FACSAria

II cell sorter with a 70 μm nozzle. DCs were defined as Lin- (CD3/

CD19/CD20/CD56 and CD14/CD16) and sorted as cDC1 (HLA-

DR+CD141+CD11cintCD1c-CD123-), cDC2 (HLA-DR+CD1c+

CD11c+CD64-CD163-CD123-), DC3 (HLA-DR+CD1c+CD11c
+CD64+CD163+CD123-), and pDC (HLA-DR+CD123+CD141int

CD1c-CD11c-) as shown in Figure 1.
2.3 In vitro treatment with extracorporeal
photopheresis

For in vitro treatment with ECP, sorted human primary DC

subpopulations were resuspended in DC medium (RPMI-1640 +

10% human serum type AB + 1% L-Glutamax + 1% Penicillin/
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Streptomycin + 1% Na-Pyruvat + 1% non-essential amino acids +

1% HEPES) and seeded in sterile 96-well plates (V-bottom). Then,

either 400 ng/ml 8-MOP or solvent control (equal volume ethanol)

were added and the cells incubated at 37°C for 30 min. After

incubation, plates were either irradiated with 2 J/cm² UV-A light

(BIO-LINK BLX-365 irradiation chamber) or MOCK treated (48).

After centrifugation for 10 min at room temperature with 300 x g,

supernatant was removed and the cells resuspended either in DC

medium (steady state) or in DC medium + 5 μg/ml R848, 5 μg/ml

pIC, 100 ng/ml CRX-527, or 2.5 μM CpG (ODN2216)

(inflammatory conditions). Cells were cultured for different time

points (18 h, 42 h) before flow cytometric analysis and harvesting of

supernatants for cytometric bead assay (CBA) analysis. For flow

cytometric analysis, cells were stained with BV605-coupled anti-

CD1c (clone: L161, BioLegend), PE/Cy7-coupled anti-CD11c

(clone: 3.9, BioLegend), A647-coupled anti-CD64 (clone: 10.1,

BioLegend), BV510-coupled anti-CD123 (clone: 6H6, BioLegend),

BV421-coupled anti-CD141 (clone: M80, BioLegend), PE/Dazzle

594-coupled anti-CD163 (clone: GHI/61, BioLegend), and APC/

Cy7-coupled anti-HLA-DR (clone: L243, BioLegend) for

identification of DC subpopulations. In addition, they were

stained with either A700-coupled anti-CD40 (clone: 5C3,

BioLegend), FITC-coupled anti-CD86 (clone: Bu63, BioLegend),

BV650-coupled anti-PD-L1 (clone: 29E2A3, BioLegend) or

respective isotype controls for 30 min on ice. After washing, cells

were stained with PE-coupled Annexin V (BioLegend) and 7-AAD

(BioLegend) for 20 min on ice. After washing, cells were acquired

using a Cytoflex S (Beckman Coulter) and analyzed using FlowJo

Software (V10). Supernatants of the cells were stored at -80°C until

analysis for secreted cyto- and chemokines by CBA using the

LEGENDplex Human Macrophage/Microglia Panel (BioLegend).

Supernatants were thawed and concentrations of the cytokines IL-

12p70, TNF-a, IL-6, IL-4, IL-10, IL-1b, Arginase, CCL17 (TARC),

IL-1RA, IL-12p40, IL-23, IFN-g, and CXCL10 (IP-10) determined

as described by the manufacturer. Subsequently, samples were

acquired using a Cytoflex S (Beckman Coulter) and analyzed

using the LEGENDplex Data Analysis Software Suite (Qognit).

Then, the data were normalized based on the highest measured

value (median of six/five individual values for each condition) in the

complete dataset for each cytokine and plotted as heatmap. The

maximal measured median value was given as reference in the

figure. Based on the color code (% of max. values) and the max.

value measured in the dataset, the median concentration for each

subset and condition can be determined.
2.4 Activation of antigen-specific memory
T cells

In order to perform co-cultures of DC subpopulations and

autologous memory T cells, cDC1, cDC2, DC3, and pDC were

sorted from healthy blood donors as described above. Autologous

memory T cells were isolated from the same blood donor by negative

enrichment using the MojoSort Human CD3 T Cell Isolation Kit

(BioLegend) with addition of biotinylated anti-CD45RA antibody
frontiersin.org
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(clone: HI100, BioLegend) to deplete naïve T cells. To measure

proliferation of T cells, isolated memory T cells were labeled with 5

μM CFSE (BioLegend) for 15 min at 37°C prior to the co-culture.

Before the co-culture, DCs were incubated with 400 ng/ml 8-

MOP or solvent control for 30 min at 37°C. Then, DCs were

irradiated with 2 J/cm2 UV-A light (BIO-LINK BLX-365 irradiation

chamber) or MOCK treated. After centrifugation for 8 min with 300

x g at 30°C, supernatant was removed and DCs resuspended in

medium either with 1 nM CEFT peptides for presentation on

MHC-I and MHC-II molecules (JPT petide technologies), 1 nM

CEFT peptides + 1 μg/ml R848, or 10 CFU/DC heat-killed E. coli

(Invivogen). After 18 h at 37°C, autologous CFSE+ memory T cells

were added in a 1:10 DC:T cell ratio and co-cultured for five days.

After the co-culture, supernatants were stored at -80°C until

analysis for cytokine secretion using the LEGENDplex Hu Th
Frontiers in Immunology 04
Cytokine Panel (BioLegend). The T cells were analyzed by flow

cytometry for proliferation (dilution of CFSE signal) as well as

phenotype (activation and exhaustion markers). Therefore, cells

were stained with BV510-coupled anti-CD3 (clone: OKT3,

BioLegend), APC/Cy7-coupled anti-CD4 (clone: OKT4,

BioLegend), PE/Cy5-coupled anti-CD8a (clone: HIT8a,

BioLegend) as well as either APC-coupled anti-CD25 (clone:

BC96, BioLegend), PE-coupled anti-CD71 (clone: CY1G4,

BioLegend), A700-coupled anti-CD197 (clone: G043H7,

BioLegend), BV605-coupled anti-CD223 (clone: 11C3C65,

BioLegend), as well as PE/Cy7-coupled anti-CD178 (clone: NOK-

1, BioLegend) or respective isotype controls for 30 min on ice. After

washing, cells were stained with 100 ng/ml DAPI (Carl Roth) for 5

min on ice. Then, cells were acquired using a Cytoflex S (Beckman

Coulter) and analyzed using FlowJo Software.
FIGURE 1

Applied gating strategy for the isolation of human DC subpopulations. PBMCs of healthy human adults undergoing thrombocytapheresis were
enriched using the EasySep Pan-DC Pre-Enrichment kit and stained with a panel of fluorochrome-conjugated antibodies (Table 1). Then, DC
subpopulations were sorted using a BD Aria II by gating for the morphology of leukocytes (FSC-A/SSC-A), singlets (FSC-A/FSH-H), and living cells
(DAPI-). After exclusion of T cells (CD3+), B cells (CD19/CD20+), NK cells (CD56/CD335+), and monocytes (CD14/CD16+), DCs were selected by
gating for HLA-DR+ cells. DCs were divided into CD1c+CD123-, CD1c-CD123-, and CD1c-CD123+ cells using a quadrant gate. CD1c+ DCs were
identified in CD1c+CD123- cells by co-expression of CD1c and CD11c and sorted into CD64-CD163- cDC2 (red) and CD64+CD163+ DC3 (purple).
cDC1 were gated in the CD1c-CD123- fraction as CD141+CD11cint cells (yellow-orange). In the CD1c-CD123+ quadrant, pDC were sorted as
CD123+CD141int cells. One representative donor is shown.
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2.5 Statistical analysis

Statistical analysis was performed in GraphPad Prism (V10)

using 2way ANOVA for grouped data with Dunnett’s multiple

comparisons tests as posthoc test. Individual symbols were used for

each donor. In figures showing data from the same timepoint,

donors can be traced by these individual symbols (all Figures for

18h time point, all Figure for 42h time point as well as all Figures

and all Supplementary Figures for memory T cell assay).
3 Results

3.1 Extracorporeal photopheresis induces
apoptosis especially in cDC1 and pDCs
stimulated with TLR ligands

ECP is an immunomodulatory treatment inducing apoptosis in

lymphocytes as well as modulating the immune response towards

TH1 in CTCL or Tregs in GvHD. In contact hypersensitivity in mice,

ECP-treated DCs are sufficient to transfer the tolerogenic effect of

ECP (45). However, it is unclear how primary human DCs, which are

present in the photopheresate of patients, respond to the treatment

with 8-MOP and UV-A light irradiation. As DCs are the main

regulators of T cell responses, we speculated that ECP affects DCs

directly. Due to the scarcity of DCs, we decided to perform in vitro

ECP of sorted human primary bloodDCs from healthy blood donors.

Therefore, we enriched all human DC subpopulations from blood of

healthy donors by negative enrichment followed by cell-sorting as

described recently (31, 46). For cell sorting, enriched DCs were

stained with a panel of fluorochrome-coupled antibodies (Table 1)

and sorted into CD141+CD11cint cDC1, CD1c+CD11c+CD64-
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CD163- cDC2, CD1c+CD11c+CD14-CD64+CD163+ DC3 (CD14-

DC3), and CD123+CD141intCD11c- pDC (Figure 1). When we

cultured the DCs for 18h at 37°C, the phenotype of the DC

subpopulations was stable: cDC1 showed expression of CD141 and

CD11c but lacked markers of the DC2 lineage (Supplementary

Figure 1). Both cDC2 and CD14- DC3 remained CD1c+CD11c+.

While they still could be differentiated based on CD163 and CD64

expression, the signal was weaker compared to freshly isolated DC3

(Supplementary Figure 1). Further, pDC could be identified by

CD123 and CD141 expression as during cell sorting and did not

express DC2-associated markers such as CD1c (Supplementary

Figure 1). For the in vitro treatment with ECP, the purified DC

subpopulations were incubated with 400 ng/ml 8-MOP or ethanol as

solvent control for 30 minutes at 37°C followed by irradiation with 2

J/cm² UV-A or mock treatment. Subsequently, the medium

containing 8-MOP or ethanol was replaced with fresh medium to

mimic reinfusion of the photophoresate into the patients resulting in

strong dilution of the photophoresate. The DCs were then either

cultured in presence of the TLR ligand R848, as a model for DC

activation in inflammatory conditions, or in medium tomimic steady

state conditions. Since ECP induces apoptosis in lymphocytes such as

T cells, we analyzed the induction of cell death using flow cytometry

by staining the cells with Annexin V and 7-AAD to distinguish

between early (Annexin V+/7-AAD-) and late apoptosis (Annexin

V+/7-AAD+) as well as necrosis (Annexin V-/7-AAD+)

(Supplementary Figure 2). After 18 h of culture, we observed

induction of apoptosis in cDC1 and cDC2 in steady state

conditions as well as in cDC1, cDC2, and CD14- DC3 after TLR

stimulation (Figure 2). Since ECP has been shown to influence the

phenotype of immune cells such as monocytes (49, 50), we were

interested in how in vitro ECP would modulate the expression of co-

stimulatory and -regulatory molecules and the secretion of cyto- and
TABLE 1 Antibody panel for cell sorting of human DCs.

Fluorochrome Antigen Clone Vendor Catalogue Dilution

BV421 CD141 M80 BioLegend 344114 1:50

BV510 CD123 6H6 BioLegend 306022 1:50

BV605 CD1c L161 BioLegend 331538 1:100

FITC

CD3 SK7 BioLegend 344804 1:200

CD19 HIB19 BioLegend 302206 1:200

CD20 2H7 BioLegend 302304 1:200

CD56 HCD56 BioLegend 318304 1:200

CD335 9E2 BioLegend 331922 1:200

PE/Dazzle 594 CD163 GHI/61 BioLegend 333624 1:100

PE/Cy7 CD11c 3.9 BioLegend 301608 1:100

A647 CD64 10.1 BioLegend 305012 1:100

A700
CD14 M5E2 BioLegend 301822 1:200

CD16 3G8 BioLegend 302025 1:200

APC/Cy7 HLA-DR L243 BioLegend 307618 1:100
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chemokines in steady state as well as upon TLR stimulation.

Therefore, we analyzed the living DCs (Annexin V-/7-AAD-) for

the expression of co-stimulatory (CD40, CD86) and -regulatory (PD-

L1) molecules by flow cytometry (Supplementary Figure 3), while the

supernatants of the cells were collected for analysis of secreted cyto-

and chemokines. After 18h, we observed only minor changes in the

expression of co-stimulatory and -regulatory molecules (Figure 3). In

steady state, 8-MOP/UV-A-treated cDC1 showed enhanced

expression of CD40, whereas upon TLR stimulation CD86 and

PD-L1 were enhanced on in vitro ECP-treated cDC1 (Figure 3).

The phenotype of CD14- DC3 was more pro-inflammatory under

ECP conditions both in steady state (CD86) as well as after

stimulation with R848 (CD40 and CD86), whereas ECP-treated

pDC showed enhanced expression of the immunoregulatory

molecule PD-L1 after TLR stimulation (Figure 3). The surface

phenotype of cDC2 remained largely unchanged except for

increased CD40 expression after ECP in presence of the TLR
Frontiers in Immunology 06
ligand R848 (Figure 3). In order to analyze whether these changes

were specific to stimulation of TLR7/8, we used the TLR3 ligand pIC

for cDC1, the TLR4 ligand CRX-527 for cDC2 and CD14- DC3, and

the TLR9 ligand CpG for pDC. Then, we analyzed the induction of

cell death as well as co-stimulatory and -regulatory molecule

expression as before. As with R848, we observed induction of

apoptosis in cDC1 and CD14- DC3 after TLR3 and TLR4

stimulation, respectively, whereas the cell death of cDC2 were

rather dependent on UV-A light irradiation (Supplementary

Figure 4A). Except for upregulation of PD-L1 on DC3 and pDC,

we did not observe changes in the expression of co-stimulatory or

-regulatory molecules (Supplementary Figure 5A).

As ECP was reported to induce spontaneous release of IL-10 by

myeloid CD1c+ DCs isolated from the photophoresate of refractory

chronic GvHD patients (51), we were interested in how in vitro ECP

would affect the secretion of cyto- and chemokines by sorted DCs.

We determined the concentration of secreted cyto- and chemokines
FIGURE 2

Experimental ECP induces apoptosis primarily in human blood cDC1 after 18 h of culture. Cell sorter-purified cDC1, cDC2, CD14- DC3, and pDC
were incubated either with 400 ng/ml 8-MOP or equal amount of solvent control (ethanol) for 30 min at 37°C as indicated below the figure. Then,
cells were either irradiated with 2 J/cm2 UV-A light or mock-treated. After centrifugation to remove the solvent, cells were resuspended in (A)
medium or (B) medium containing 5 µg/ml R848. After 18 h of culture, DCs were stained with the antibodies used for cell sorting and 7-AAD and
Annexin V-PE to determine viability. Truncated violin plots depict percentages of alive (Annexin V-/7-AAD-), early apoptotic (Annexin V+/7-AAD-), late
apoptotic (Annexin V+/7-AAD+), and necrotic (Annexin V-/7-AAD+) cDC1 (yellow-orange symbols), cDC2 (red symbols), DC3 (purple symbols) and
pDC (blue symbols) of six donors (each donor with an individual symbol). Statistical analysis was performed in GraphPad Prism (V10) using 2way
ANOVA for grouped data with Dunnett’s multiple comparisons tests as posthoc test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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in the supernatants of the treated DCs by CBA using the

LEGENDplex Human Macrophage/Microglia Panel. As expected,

cDC1 were the main producers of IL-12 family members, i.e., IL-

12p70, IL-12p40, and IL-23, after stimulation with R848, while

cDC2 and CD14- DC3 excelled in the secretion of the pro-

inflammatory cytokines IL-6, TNFa, and IL-1b as well as the

anti-inflammatory cytokines IL-10 and IL-1RA (Figure 4A). In

contrast, pDC were the main producers of the chemokine

CXCL10 (IP-10) that is dependent on signaling of interferon

response factors (IRFs) (Figure 4A). When analyzing the impact

of in vitro ECP, we did not observe induction of pro- or anti-

inflammatory cytokines in steady state conditions and only slight

changes on the secretion of cyto- and chemokines after TLR

stimulation (cDC2: TNFa↑, IL-1b↑, IL10↑, IL-1RA↑; CD14- DC3:
IL-10↓; pDC: CXCL10↓; Figure 4A).

In order to monitor how ECP would affect DCs at a later time

point after reinfusion of the photophoresate, we performed the

same analyses after 42 h of incubation at 37°C. The majority of DCs

were apoptotic or necrotic in steady state conditions, but ECP

reduced further the survival of CD14- DC3 and pDC (Figure 5A).

The low viability of the different DC subpopulations is in

accordance with data on the circulating lifespan of human DCs in

vivo showing a shorter lifetime of cDC1 (1.3 days) compared to

DC2 and DC3 (2.2 days) (52). However, after TLR stimulation the
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survival of cDC1 (R848 and pIC) and pDCs (R848 and CpG) was

strongly increased in control conditions, which was completely

abrogated when cDC1 and pDC were treated with ECP in vitro

(Figure 5B, Supplementary Figure 4A). In contrast, we did not

observe enhanced cell death in cDC2 and CD14- DC3 after in vitro

ECP after stimulation with R848 (Figure 5B). As R848 can activate

the NLRP3 inflammasome in human CD14- DC3 (31), we used the

TLR4 ligand CRX-527 to avoid the induction of cell death by the

TLR ligand alone. Notably, in vitro ECP strongly induced cell death

in CRX-527-activated CD14- DC3 and to a minor extend in cDC2

(Supplementary Figure 4B). Thus, in vitro ECP seems to reduce the

viability of cDC1 and pDC in general in response to TLR ligands,

whereas it depends on the stimulated pattern recognition receptor

for human cDC2 and CD14- DC3. We also measured co-

stimulatory and -inhibitory molecule expression by flow

cytometry but did not observe strong changes on ECP-treated

DCs compared to the control treatment (Figure 6). cDC1 showed

enhanced expression of immunoregulatory PD-L1 in steady state

conditions, whereas PD-L1 was enhanced on pDC after in vitro ECP

upon stimulation irrespective of the TLR ligand (Figure 6,

Supplementary Figure 5B). CD14- DC3 showed slightly increased

expression of the co-stimulatory molecule CD86 after R848

stimulation, when they were treated prior with ECP (Figure 6).

The analysis of cytokine secretion showed that anti-inflammatory
FIGURE 3

Experimental ECP modulates the expression of co-stimulatory and -regulatory molecules on human primary DCs after 18 h of culture. Cell sorter-
purified cDC1, cDC2, CD14- DC3, and pDC were incubated either with 400 ng/ml 8-MOP or equal amount of solvent control (ethanol) for 30 min at
37°C as indicated below the figure. Then, cells were either irradiated with 2 J/cm2 UV-A light or mock-treated. After centrifugation to remove the
solvent, cells were resuspended in (A) medium or (B) medium containing 5 µg/ml R848. After 18 h of culture, DCs were stained with the antibodies
used for cell sorting and A700-coupled anti-CD40, FITC-coupled anti-CD86, and BV650-coupled anti-PD-L1 or respective isotype controls.
Truncated violin plots show DMFI on alive (Annexin V-/7-AAD-) cDC1 (yellow-orange symbols), cDC2 (red symbols), DC3 (purple symbols) and pDC
(blue symbols) of six donors (each donor with an individual symbol). Statistical analysis was performed in GraphPad Prism (V10) using 2way ANOVA
for grouped data with Dunnett’s multiple comparisons tests as posthoc test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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IL-1RA released by cDC2 and CD14- DC3 and IL-10 released by

cDC2 were increased by ECP upon TLR stimulation (Figure 4B).

Overall, changes on phenotype and cytokine secretion by DCs due

to ECP were low. Thus, in vitro ECP of human DC subpopulations

showed minor effects on the phenotype of the DCs but strongly

induced apoptosis in cDC1 and pDCs after activation by TLR

ligands as well as in CD14- DC3 dependent on the used TLR ligand.
3.2 ECP reduces the capacity of human
blood cDC1 to activate memory T cell
responses

Since it has been reported that ECP induces amelioration of

different T cell-mediated diseases, such as GvHD, we were

interested in whether in vitro ECP would influence the T cell

stimulatory capacity of human DCs. As ECP affects preexisting

immune responses in patients, we analyzed the T cell stimulatory

capacity of DCs by co-culturing them with autologous CD4+ and

CD8+ memory T cells in the presence of common viral and bacterial

antigens. DCs were sorted after negative enrichment and memory T

cells were purified from PBMCs of the same donor by magnetic

bead-based enrichment kits. Then, sorted DCs were treated with in

vitro ECP as described above. They were either loaded with a pool of

pre-processed MHCI- and MHCII-specific peptides derived from
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common antigens (CEFT: CMV, EBV, Influenza, and Tetanus

Toxoid) which can be loaded on a broad array of HLA molecules

with or without additional stimulation with the TLR ligand R848 as

it strongly activates all human DC subpopulations. As loading with

peptides is a passive process that does not require processing of

antigens, we were interested in how in vitro ECP would influence

the capacity to process antigens. Here, the sorted DCs were

incubated with heat-killed E. coli that have to be phagocytosed

and processed in order to present peptides on HLA molecules to T

cells. Further, as E. coli is a complex pathogen, it is able to activate

diverse pattern recognition receptors, such as TLR2, TLR4, and

TLR8 (53–57). Thereby, influence of the activated TLR on cell death

induction might be minimized. After 18 h of culture with the

peptides or E. coli, CFSE-labelled memory T cells were added and

co-cultured with the sorted DCs for five days. Then, T cells were

analyzed by flow cytometry for proliferation (dilution of CFSE

signal), activation (expression of CD25 and CD71), and phenotype

(expression of CD178, CD223, and CCR7) (Supplementary

Figure 6). When DCs were loaded with CEFT peptides in steady

state conditions, the DCs could hardly activate memory CD4+ and

CD8+ T cells and we did not observe any influence of in vitro ECP

on the induction of memory T cell proliferation (Figure 7A).

Simultaneous stimulation and peptide loading (CEFT + R848)

boosted the capacity of cDC1 and pDC to induce memory T cell

proliferation but in vitro ECP showed only a minor reduction by
FIGURE 4

R848-induced cyto- and chemokine secretion by DCs is minorily influenced by in vitro treatment with ECP. Supernatants of DC subpopulations
treated either with ECP (8-MOP/UV-A) or control conditions for (A) 18 h or (B) 42 h were analyzed by LEGENDplex Human Macrophage/Microglia
Panel (BioLegend) for the secretion of cyto- and chemokines. Measured concentrations (pg/ml) were normalized based on the highest measured
median value for each analyte in the whole data set. Percentage of maximum for cDC1, cDC2, CD14- DC3, pDC is shown (each square shows the
mean of (A) six or (B) five donors).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1646421
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Heger et al. 10.3389/fimmu.2025.1646421
cDC1 and pDC to activate memory T cells (Figure 7B). However,

when DCs were cultured with heat-killed E. coli, which have to be

phagocytosed and processed in order to restimulate E. coli-reactive

memory T cells, we observed a strong decline in proliferated

memory CD4+ and CD8+ T cells when cDC1 were exposed to in

vitro ECP (Figure 7C). ECP also reduced the capacity of pDC to

activate memory CD4+ T cells (Figure 7C). While in vitro ECP did

not influence the capacity of cDC2 and CD14- DC3 to induce T cell

proliferation (Figure 7C), we observed changes of the phenotype of

the proliferated CD4+ T cells (Figure 8). T cells stimulated by steady

state cDC2 and CD14- DC3 showed lower expression of the

activation markers CD25 and CD71 as well as of the exhaustion

marker CD223 (LAG-3), when DCs were treated with ECP prior to

the co-culture (Figure 8A). This was also the case when CD14- DC3

were stimulated with heat-killed E. coli prior to the co-culture with

memory T cells (Figure 8C). As ECP modulates the polarization of
Frontiers in Immunology 09
T cells (8, 10), we were interested whether ECP-treated DCs

influence the secretion of cytokines by activated T cells.

Therefore, we analyzed the supernatants of DC:T cell co-culture

for cytokines associated with different subsets of T helper cells by

CBA assay. When DCs were only loaded with CEFT peptide

without TLR stimulation, levels of secreted cytokines were low

and not influenced by ECP-treatment (Supplementary Figure 7).

When DCs were simultaneously activated during peptide loading,

we observed higher level of TH1-associated cytokines such as IFNg
but they were not influenced by the treatment with ECP

(Supplementary Figure 8). However, in accordance with the T cell

proliferation data (Figure 7C), we observed a strong reduction in

TH1- and TH17-associated cytokines (IFNg, IL-22, IL-17A, and IL-

17F) as well as IL-2, when cDC1 were stimulated with E. coli after

pretreatment with in vitro ECP (Figure 9). In contrast, in vitro ECP

did not influence the secretion of cytokines when T cells were co-
FIGURE 5

Experimental ECP induces apoptosis primarily in human blood cDC1 and pDC after 42 h of culture. Cell sorter-purified cDC1, cDC2, CD14- DC3, and pDC
were incubated either with 400 ng/ml 8-MOP or equal amount of solvent control (ethanol) for 30 min at 37°C as indicated below the figure. Then, cells
were either irradiated with 2 J/cm2 UV-A light or mock-treated. After centrifugation to remove the solvent, cells were resuspended in (A) medium or (B)
medium containing 5 µg/ml R848. After 42 h of culture, DCs were stained with the antibodies used for cell sorting and 7-AAD and Annexin V-PE to
determine viability. Truncated violin plots depict percentages of alive (Annexin V-/7-AAD-), early apoptotic (Annexin V+/7-AAD-), late apoptotic (Annexin V+/7-
AAD+), and necrotic (Annexin V-/7-AAD+) cDC1 (yellow-orange symbols), cDC2 (red symbols), DC3 (purple symbols) and pDC (blue symbols) of five donors
(each donor with an individual symbol). Statistical analysis was performed in GraphPad Prism (V10) using 2way ANOVA for grouped data with Dunnett’s
multiple comparisons tests as posthoc test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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cultured with cDC2, CD14- DC3 and only slightly with pDC

(Figure 9). Further, in vitro ECP did not influence the secretion

of TH2- (IL-4, IL-5, IL-13) or Treg-associated cytokines (IL-10)

irrespective of the DC subset and the antigen (Figure 9,

Supplementary Figures 7, 8). Thus, in vitro ECP of human

primary blood DCs directly influences the capacity of cDC1 and

pDC to induce memory T cell activation as well as changes the

phenotype of memory T cells activated by cDC2 and CD14- DC3.

Further, it reduces the secretion of TH1- and TH17-associated

cytokines by T cells, when restimulated with ECP-treated cDC1.
4 Discussion

ECP is a widely used immunomodulating therapy for various T

cell-mediated diseases, such as CTCL, GvHD, and allograft

rejection. Although ECP has been used for more than 30 years,

the exact mechanism of action remains enigmatic. While it has been

known that ECP induces apoptosis in treated leukocytes, analysis of

the response of human primary DCs to ECP was hampered by the

scarcity of the cells in human blood. In this study, we show that ECP

induces apoptosis in the DC subpopulations cDC1 and pDC upon

TLR stimulation, whereas cDC2 and CD14- DC3 are less affected.
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While ECP has only a minor influence on the expression of co-

stimulatory and -regulatory molecules as well as on the secretion of

cytokines by DCs, it strongly reduces the capacity of cDC1 and - to a

minor extent - of pDC to activate memory T cell responses. Further,

secretion of TH1- and TH17-associated cytokines after co-culture

with ECP-treated cDC1 were strongly diminished. Since especially

cDC1 have a pivotal role in the T cell-mediated immune response,

our data suggest that reducing the function of cDC1 might

contribute to the immunomodulating effect of ECP.

Currently, DCs in mice and men are classified in four main DC

subpopulations, namely cDC1, cDC2, DC3, and pDC, with

functional specialization. In our experimental ECP model, we

observed the strongest effect on human cDC1 with apoptosis

induction as well as reduced activation of CD4+ and CD8+

memory T cell responses. cDC1 are known for their high capacity

to cross-present antigens to CD8+ T cells as well as the ability to

prime TH1 cells (17, 18, 58–61). Therefore, they are crucial for the

induction of anti-tumor T cell responses (14, 20, 21). However, the

role of cDC1, and DCs in general, is controversial in GvHD (62–69).

Host and donor DCs seem to be necessary for the induction of

GvHD and additional transfusion of DCs deteriorates the

symptoms of GvHD (62, 68, 69). Further, the depletion of DCs

ameliorates the disease indicating a GvHD-promoting effect of DCs
FIGURE 6

Experimental ECP induces minor changes in the expression of co-stimulatory and -regulatory molecules on human primary DCs after 42 h of
culture. Cell sorter-purified cDC1, cDC2, CD14- DC3, and pDC were incubated either with 400 ng/ml 8-MOP or equal amount of solvent control
(ethanol) for 30 min at 37°C as indicated below the figure. Then, cells were either irradiated with 2 J/cm2 UV-A light or mock-treated. After
centrifugation to remove the solvent, cells were resuspended in (A) medium or (B) medium containing 5 µg/ml R848. After 42 h of culture, DCs
were stained with the antibodies used for cell sorting and A700-coupled anti-CD40, FITC-coupled anti-CD86, and BV650-coupled anti-PD-L1 or
respective isotype controls. Truncated violin plots show DMFI on alive (Annexin V-/7-AAD-) cDC1 (yellow-orange symbols), cDC2 (red symbols), DC3
(purple symbols) and pDC (blue symbols) of five donors (each donor with an individual symbol). Statistical analysis was performed in GraphPad Prism
(V10) using 2way ANOVA for grouped data with Dunnett’s multiple comparisons tests as posthoc test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001).
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(63, 64). Based on these studies, induction of apoptosis and

reducing the T cell-stimulatory capacity of DCs might contribute

to the positive effects of ECP in the treatment of GvHD. However,

other studies demonstrated rather protective effects of cDC1 and

pDCs against GvHD (65–67, 70). In mice, expansion of cDC1 by

FLT3L injection prior to bone marrow (BM) transfer reduced

GvHD mortality by clonal deletion of alloreactive T cells (66, 67).

Moreover, transfer of tolerogenic CCR9+ pDCs together with the

BM reduced GvHD mortality by inducing Tregs (70). Batf3-/- mice

lacking selectively the cDC1 population showed aggravated GvHD

and faster mortality compared to wild type mice (65). Thus, the role

of DCs in murine models of GvHD is still unclear. However, our

results are in accordance with data from a murine model of contact

hypersensitivity (45). Here, the transfer of ECP-treated enriched

DCs was sufficient to suppress antigen-specific T cell responses

(45). While several studies showed enhanced induction of Tregs

after therapy with ECP (10, 43, 71–73), we observed mainly a

decrease in TH1- and TH17-associated cytokines by in vitro ECP of

human cDC1. As we restimulated the already polarized memory T
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cells only once with ECP-treated DCs, this might not be sufficient

for a repolarization of TH1 or Th17 cells into Tregs as observed in

patients treated with ECP over a longer period of time.

In contrast to T cell-mediated inflammatory diseases such as

GvHD, treatment of CTCL patients with ECP rather induces T cell

responses against the lymphoma cells by differentiation of

monocytes into DC-like cells (50, 74, 75). However, the

differentiation of monocytes to DC-like cells is not directly

dependent on treatment with 8-MOP and UV-A light but rather

on the interaction of monocytes with platelets in the device which

are activated due to the plastic surface (49). While DCs in GvHD

patients show rather tolerogenic responses to ECP (42, 43, 51), the

monocyte-derived DC-like cells in CTCL patients are rather

proinflammatory and thought to induce anti-lymphoma T cell

responses (50, 74, 76). Whether these controversial reports are

due to cell type-specific responses to ECP (monocytes vs. DCs) or

because of different environments in patients (suppressive TH2

prone environment in CTCL vs. inflammatory TH1 prone

environment in GvHD) is not clear yet. However, we also
FIGURE 7

In vitro ECP of human primary blood cDC1 strongly reduces their capacity to activate memory T cells. Cell-sorted cDC1 (yellow-orange), cDC2 (red),
CD14- DC3 (purple), and pDC (blue) were treated with 8-MOP and UV-A light. After washing, DCs were (A) pulsed with CEFT peptides, (B) pulsed
with CEFT peptides in presence of 1 µg/ml R848, or (C) incubated with 10 CFU/DC heat-killed E. coli. After 18 h of culture, autologous CFSE-
labelled memory T cells were added (1:10 DC:T cell ratio) and co-cultured for five days. T cells were stained with a panel of fluorochrome-coupled
antibodies and acquired using a Cyoflex S (Beckman Coulter). T cells were gated as shown in Supplementary Figure 6. Truncated violin plots depict
percentages of proliferated and activated (CFSE-CD25+) CD4+ (left panel) and CD8+ (right panel) memory T cells of six donors (cDC1 in (A) five
donors; each donor with an individual symbol). Statistical analysis was performed in GraphPad Prism (V10) using 2way ANOVA for grouped data with
Dunnett’s multiple comparisons tests as posthoc test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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observed subtype-specific reaction to in vitro ECP, as monocyte-

related DC3 showed a more proinflammatory phenotype, whereas

bona fide cDC1 underwent apoptosis and lost their T cell

stimulatory capacity (77). These differences might also explain

why treatment of GvHD patients with ECP is not associated with

an increased risk for infections and has less severe side effects than

immunosuppressive regimens (78, 79). As cDC2 and CD14- DC3

still have the capacity to activate T cells, they might be responsible

for the induction of immune responses against invading pathogens

and compensate for the loss of cDC1.

In order to analysis the impact of the underlying disease on the

response of the primary DCs to ECP, DCs have to be isolated from

patients suffering from CTCL or GvHD. However, this is currently

not possible due to the scarcity of DCs. We additionally observed an

influence of ECP on pDCs. Due to our gating strategy (see Figure 1),

we cannot exclude that the sorted pDC contain transitional DCs

(tDC). tDC have a pDC-like phenotype based on marker expression

such as CD123 and CD303 (BDCA-2) but have the potential to

differentiate into DC2-like cells (80–84). However, we did not

observe the emergence of CD1c+ cells during the culture of sorted

pDC (Supplementary Figure 1) implying that either tDC were

depleted during the enrichment process or the time frame of the

experiments was too short for efficient differentiation of tDC into

DC2-like cells. To exclude contamination with tDC in future

studies, Axl might be added to the staining panel used for

cell-sorting.
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While we concentrated in our study on the direct influence of

ECP on DC subpopulations, it is clear that ECP in certain conditions

has an indirect effect on the immune system via the recognition of

apoptotic lymphocytes by immune cells. When ECP is used to treat

immune-related adverse events in cancer patients due to treatment

with immune checkpoint inhibitors, the apoptotic leukocytes induced

by ECP are ingested by intestinal macrophages leading to an anti-

inflammatory M2-like polarization of macrophages by STAT6

signaling (7). This induces the secretion of adiponectin and the

subsequent expression of arginase-1 leading to tolerogenic T cell

responses (7). ECP-treated apoptotic lymphocytes induced a

tolerogenic phenotype in untreated BMDCs and moDCs in an in

vitromodel, thereby leading to increased Treg induction in a cardiac

allograft rejection model and a mixed lymphocyte response,

respectively (43, 71). Thus, ECP might additionally induce a

tolerogenic phenotype in untreated DCs by the recognition of

apoptotic cells, which might be analyzed in future studies.

However, this is only possible in cultures of whole PBMCs that are

treated with ECP. Unambiguous identification of DC subpopulations

in cultures of whole PBMCs is not possible over a longer period of

time, as the surface marker expression on DCs as well as on

monocytes changes during the culture and due to the scarcity of

DCs. Therefore, we were limited to analyze effects of ECP on DCs in

cultures of cell-sorter purified DCs of healthy donors. Thus, we

cannot exclude that the presence of other cells and the secretion of

soluble molecules by ECP-treated leukocytes might influence the
FIGURE 8

Experimental ECP of primary blood DCs does not enhance the expression of exhaustion markers or death receptors on activated memory T cells.
Proliferated and activated memory T cells from Figure 7 were analyzed for the expression of CD25, CD71, CD178, and CD223 by flow cytometry.
Data were normalized to the highest measured value in the data set and the relative values (percentage of maximum) plotted as heatmap. Each
square shows the mean of six donors (cDC1 in (A) five donors).
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response of DCs to ECP. In order to mimic inflammatory conditions

present in GvHD, we used the TLR ligand R848 in our study.

However, the environment in GvHD patients is very complex and

additionally influenced by the treatment with corticosteroids and
Frontiers in Immunology 13
other immunosuppressive drugs. Nevertheless, TLR signaling is

involved in GvHD pathogenesis with contributions of different

TLRs, such as TLR4, TLR7, and TLR9 (85–91). In conclusion, we

demonstrate that ECP directly induced apoptosis in cDC1 and pDC
FIGURE 9

In vitro ECP-treatment of human cDC1 reduces the secretion of TH1- and TH17-associated cytokines by memory T cells. Supernatants from DC:T
cell co-cultures shown in Figure 9C were analyzed for the concentration of T cell-associated cytokines using the LEGENDplex Hu Th Cytokine Panel
(BioLegend). Truncated violin plots show the concentrations of (A) IL-2, (B) TNFa, (C) IFNg, (D) IL-22, (E) IL-17A, (F) IL-17F, (G) IL-6, (H) IL-9, (I) IL-10,
(J) IL-4, (K) IL-5, and (L) IL-13 for T cells co-cultured with cDC1 (yellow-orange symbols), cDC2 (red symbols), DC3 (purple symbols) and pDC (blue
symbols) of six donors (each donor with an individual symbol). Statistical analysis was performed in GraphPad Prism (V10) using 2way ANOVA for
grouped data with Dunnett’s multiple comparisons tests as posthoc test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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upon TLR stimulation and strongly reduced the capacity of especially

cDC1 to activate memory CD4+ and CD8+ T cell responses.
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