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Neutrophil extracellular traps (NETs) are reticular fiber structures released by

neutrophils in response to various stimuli. Although NETs have antibacterial

defense functions, their excessive formation has been proven to accelerate the

progression of autoimmune diseases. Increasing studies have shown that NETs

play an important role in the pathogenesis of autoimmune diseases. The

pathogenesis of recent advances in autoimmune disease research, with a

focus on the role of NETs in the etiology and pathogenesis of these disorders,

and summarizes the current treatment strategies targeting NETs, aiming to

provide new directions for the treatment of autoimmune diseases.
KEYWORDS
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1 Introduction

Neutrophils are the most abundant immune cells in the human body and constitute the

first defense against pathogen invasion, playing a crucial role in host immunity (1).

Typically, neutrophils degranulate by releasing antibacterial and proteolytic enzymes, then

perform phagocytosis to kill invading microorganisms; however, when encountering large

biological structures that cannot be engulfed (e.g., fungi and parasites), they undergo a

distinct process to release DNA, histones, and granular proteins—such as neutrophil

elastase (NE) and myeloperoxidase (MPO)—thus forming `neutrophil extracellular traps

(NETs) (2). These NETs immobilize, kill, and degrade the pathogens extracellularly

through the action of associated proteolytic enzymes.

NETs are involved in many autoimmune diseases and are thought to be crucial in the

inflammatory process. Although NETs are beneficial during infection, they may play a

harmful role in inflammatory, autoimmune, and other pathophysiological conditions

(3–5). NETs promote inflammatory processes by releasing active molecules such as

hazardous associated molecular patterns (DAMPs), histones, and extracellular active

lyases, leading to further immune responses (6). Thus, NETs can also serve as a

potential source of autoantigens that bind to associated autoantibodies produced by

inflammatory autoimmune diseases. In autoimmune diseases, including gouty arthritis
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(GA), systemic lupus erythematosus (SLE), rheumatoid arthritis

(RA), psoriasis, antineutrophil cytoplasmic antibody (ANCA)-

associated vasculitis (AAV), antiphospholipid syndrome (APS),

and type 1 diabetes mellitus (T1DM), NETs exhibit aberrant

accumulation and impaired clearance. Based on gradient density,

neutrophils are classified into low-density neutrophils (LDNs) and

normal-density neutrophils subgroups. LDNs is more likely to form

NETs in patients with SLE and psoriasis, which may explain the link

between the disease and NETs formation (7, 8). In addition, the

composition of NETs may vary according to different stimuli, as

well as the diseases associated with them (9). In some cases, NETs

may also have anti-inflammatory features (10).

Therefore, this article will elucidate the role of NETs in

autoimmune diseases from the perspective of their formation and

function, and explore their potential as therapeutic targets, thereby

providing new insights for the clinical treatment of autoimmune

diseases.
2 Overview of NETs

2.1 Formation of NETs

The concept of NETs was first proposed by Brinkmann et al. in

2004, who found that neutrophils have a novel mode of death,

which is different from cell necrosis and apoptosis (11). Through

the breakdown of the neutrophil plasma membrane, a highly active

mixture of nucleic acids and proteins is released outside the cell,

forming this smooth filamentous structure with an DNA as a

skeleton to which various protein particles are anchored called

NETs (12). The formation of NETs is triggered by a variety of

factors, including cytokines, bacteria, fungi, viruses and protozoa

(13, 14). For example, stimulated by Phorbol-12-myristate-13-

acetate (PMA), PMA can promote the assembly and activation of

nicotinamide adenine dinucleotide phosphate oxidase (NOX) and

induce the production of reactive oxygen species (ROS) without

forming phagosomes (15, 16). The RAF-MEK-ERK pathway is

located upstream of NOX, regulates the production of ROS.

However, there are also NOX independent ROS, which are

produced by mitochondria (17). ROS damage secretory granules

and lysosome membranes, resulting in the release of NE and MPO.

NE is first translocated to the nucleus, cutting some specific histones

and promoting chromatin depolymerization. Subsequently, MPO

also enters the nucleus and collaborates with NE to promote

chromatin depolymerization (18). PMA can also activate peptidyl

arginine deiminase 4 (PAD4) by binding to protein kinase C (PKC)

to induce the release of intracellular calcium ions. PAD4 can

dominate histone arginine residues to form citrulline residues,

reduce the positive charge, weaken the electrostatic binding force

with DNA, and thus depolymerize chromatin (19). It can be seen

that the core process in the formation of NETs is chromatin

deaggregation, which requires the participation of ROS, NE, MPO

and PAD4. Depolymerized chromatin is released from the ruptured

nucleus into the cytoplasm, and together with other substances in

the cytoplasm such as MPO and NE, it is discharged into the
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extracellular space through membrane tearing, resulting in the

death of neutrophils (20). The mechanism of NETs formation is

shown in Figure 1.
2.2 Functions of NETs

NETs are a double-edged sword. On the one hand, NETs have

been shown to play a positive role in controlling bacterial infections

(21, 22). Substances such as histone, NE, MPO, cathepsin G,

lactoferrin, and antimicrobial peptides can protect wounds and

prevent the spread of infection. Histone proteins play an important

role in the decomposition of bacterial cell membrane (23). In anti-

HIV, influenza, and novel coronavirus, viruses stimulate the

formation of NETs via Toll Like Receptor 4 (TLR4), TLR7, and

TLR8, NETs inhibit viral replication by capturing the virus or

blocking the PKC pathway (24–26). In terms of anti-parasite,

immune cells play an irreplaceable role in host defense.

For example, neutrophils play a protective role in toxoplasmosis

infected fibroblasts (27). Neutrophils can also produce

antimicrobial factors to stop the spread of leishmania (28). On

the other hand, excessive formation of NETs or inadequate

clearance by the body may result in uncontrolled inflammatory

response. NETs can regulate congenital and adaptive immune

disorders through various mechanisms, and NETs can also

amplify inflammatory responses, possibly worsening diseases and

even organ damage (29, 30). Because some of the released proteins

have non-specific effects, they will directly cause damage to other

cells, form immune complexes, induce the production of

autoantibodies, and result in pathological tissue damage (31). It

has been found that there are a large number of circulating NETs in

patients with sepsis, and their presence is associated with poor

prognosis and multiple organ failure (32–34). NETs, through their

pro-inflammatory and cytotoxic effects, can promote the

progression of various diseases including autoimmune disorders,

thrombotic conditions, cancer metastasis and progression, as well as

severe COVID-19 (35). Histones have DAMPs that increase the

release of pro-inflammatory cytokines and activate the Pyrin

Domain Containing Protein 3 (NLRP3) inflammasome to further

amplify the inflammatory response (36). Induce cytotoxicity and

increase the production of ROS, cause endothelial dysfunction and

induce organ damage.

Therefore, although NETs constitute a crucial antimicrobial

defense mechanism, their uncontrolled release poses a significant

threat to host tissues. Thus, the following section will focus on how

the detrimental effects of NETs—resulting from either excessive

formation or impaired clearance—play a critical role in the

pathogenesis of various autoimmune diseases.
3 NETs and autoimmune diseases

Autoimmune diseases are caused by the breakdown of the

balance between the body’s immune defense and its own

antigens, resulting in immune response and damage to its own
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tissues. At this time, autoimmune cells unable to distinguish

between “self” and “non-self” components, the immune system is

abnormal, the body produces antibodies to attack itself, causing

organ and tissue damage (37). Neutrophils play an irreplaceable role

in autoimmune diseases, the excessive formation or insufficient

clearance of NETs affects the course of autoimmune disease.

Therefore, the study of NETs may be a new direction in the

treatment of autoimmune diseases, and possibly the prevention of

other diseases associated with the disease. The mechanism of

neutrophils and NETs in autoimmune diseases is shown in Figure 2.
3.1 NETs and GA

GA, the most common inflammatory arthritis, is a

multifactorial autoinflammatory disease uniquely characterized by

the deposition of monosodium urate (MSU) crystals within joints,

which triggers acute and painful synovitis (38, 39). During the onset

of acute GA, the accumulation of MSU crystals can induce a large

infiltration of inflammatory cells (such as neutrophils and

monocytes) into the MSU crystal deposit site of the patient. The

release of from these immune cells further triggers the release of

various pro-inflammatory cytokines and chemokines, which

upregulates selectin and integrin on the surface of endothelial cell

lumen, and further enhances neutrophil recruitment (40). Upon

contact with MSU crystals, neutrophils release a range of

inflammatory mediators—including Tumor Necrosis Factor alpha

(TNF-a), Interleukin-6 (IL-6), as well as neutrophil inducers (e.g.,
Frontiers in Immunology 03
IL-8) and activators (such as CCL3 and CXCL10) (41).

Furthermore, MSU crystals activate infiltrating neutrophils not

only to secrete cytokines but also to form NETs through two

principal mechanisms: a ROS-independent vital pathway

involving calcium-mediated direct activation of PAD4, and a

ROS-dependent suicidal pathway driven by calcium/NOX-

generated ROS leading to PAD4 activation—both of which

ultimately result in NETs release (42). Macrophage phagocytosis

of MSU crystals activates the NLRP3 inflammasome, prompting

release of IL-1b and IL-18, which recruit neutrophils that undergo

oxidative burst (a rapid ROS-producing process) and form NETs

through genomic DNA and granular protein release (43). These

NETs components—notably histones and DNA—directly damage

tissues such as vascular endothelium, inducing further release of

inflammatory mediators like Adenosine Triphosphate and uric acid

and thereby sustaining a feed-forward inflammatory cycle (44).

NETs release proinflammatory mediators in the early stages of

neutrophil recruitment or when the number of neutrophils is

comparable to that of peripheral blood (40). Conversely, a high

density of neutrophils—such as that found in the synovial fluid of

GA or within highly infiltrated inflammatory tissues—promotes the

formation of aggregated NETs (aggNETs) both in vivo and in vitro

(45). These aggNETs can be covered on the surface of MSU crystals

to isolate them from inflammatory mediators, thus promoting the

formation of gout stones and indirectly alleviating the damage

caused by MSU crystals to the body (46). Thus, in GA, the

formation of NETs has a double-edged sword effect: on the one

hand, NETs can package and isolate MSU crystals or adhere to
FIGURE 1

The schematic diagram of the formation mechanism of NETs. PMA, Phorbol-12-myristate-13-acetate; PKC, protein kinase C; ROS, Reactive oxygen
species; PAD4, peptidyl arginine xdeiminase 4; MPO, myeloperoxidase; NE, neutrophilic elastase.
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apoptotic cells and clear them, inhibit inflammatory response and

protect the body by controlling the production of cytokines by

proteases, which shows that NETs play a role in promoting and

alleviating inflammation. On the other hand, NETs release various

damage-related molecular modes (histone or DNA-activated TLR

or NLRP3 inflammatory bodies), which aggravates the

inflammatory response by releasing pro-inflammatory factors or

direct action, and excessive NETs will form aggNETs, promote the

formation of gout, cause bone erosion, and induce chronic

inflammatory reaction. Given the unique role of NETs in GA,

targeting NETs is considered a highly attractive and promising

therapeutic approach for treating GA.
Frontiers in Immunology 04
3.2 NETs and SLE

SLE is a complex multi-system autoimmune disease involving

epigenetic, genetic, ecological, and environmental factors (47). It is

characterized by the presence of autoantibodies targeting nuclear

and cytoplasmic antigens, with antinuclear antibody serving as a

key serological marker (48). Patients with SLE produce a variety of

autoantibodies, among which anti-dsDNA antibodies are highly

specific and contribute to disease pathogenesis (49). NETs play a

crucial role in SLE through multiple mechanisms. Anti-dsDNA

antibodies can be components of NETs, and impaired NETs

clearance—due to deoxyribonuclease (DNase) inhibition, DNase
FIGURE 2

Mechanism of Neutrophils and NETs in Autoimmune Diseases (GA, SLE, RA, Psoriasis, AAV, APS, T1DM). MSU, Monosodium urate; aggNETs,
aggregated NETs; NETs, neutrophil extracellular traps. pDCs, Plasmacytoid Dendritic Cells; IFN-a, interferon-a; TNF-a, Tumor Necrosis Factor-a;
ACPA, anti-citrullinated protein antibody; RF, rheumatoid factor; BAFF, B Cell Activating Factor; LCN2, Lipocalin-2; MyD88, Myeloid differentiation
factor-88; NF-kB, nuclear factor-kappaB; TLR4, Toll-like receptor 4; PR3, protease 3; ANCA, anti-neutrophil cytoplasmic antibody; DCs, Dendritic
cells; MPO, myeloperoxidase; ROS, Reactive oxygen species; b2GP1, b2-glycoprotein-1; PSGL-1, P-selectin glycoprotein-1; DNase,
deoxyribonuclease; TLR4, Toll-like receptor 4; MAC-1, Macrophage-1; CRAMP, cathelicidin-related antimicrobial peptide.
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inhibitors, or anti-NET antibodies—leads to NETs accumulation,

further elevating anti-dsDNA antibody titers and activating the

complement system, thereby perpetuating a vicious cycle of

inflammation (50).

Studies have indicated that levels of NETs are elevated in

patients with SLE. NET-associated proteins, such as LL-37, can

promote hyperactivation of the NLRP3 inflammasome in adjacent

macrophages, leading to the release of large quantities of

inflammatory cytokines and thereby causing severe tissue damage

(51). In this process, released IL-18 further stimulates neutrophils to

produce more NETs (52). Moreover, inflammasome-mediated

activation of gasdermin D is also a key factor in NET formation

(53, 54). Additionally, NETs can lower the activation threshold of T

cells and promote T cell activation via T cell receptor signaling,

thereby linking innate and adaptive immune responses (55). NETs

in SLE are enriched in ox-mtDNA and citrullinated histones, which

act as potent autoantigens. These structures activate Toll-like

receptors and intracellular nucleic acid sensors, triggering

Interferon Alpha (IFN-a) production by plasmacytoid dendritic

cells (pDCs). IFN-a promotes dendritic cell maturation, T-cell

activation, and autoantibody production by B cells, further

stimulating NETs release (56, 57).

LDNs are a distinct subpopulation of neutrophils in patients

with SLE (58). LDNs is significantly increased in the peripheral

blood of SLE patients. LDNs from SLE patients demonstrate the

capacity to activate T cells and induce the release of cytokines,

including IFN-g and TNF-a, a function not exhibited by their

normal-density neutrophil counterparts (59). CD10+ LDNs exhibit

a mature polymorphonuclear morphology, express high levels of

type I interferon-stimulated genes (ISG15, MX1) and

proinflammatory cytokines (IL-6, IL-8, TNF-a), and demonstrate

enhanced NET-forming capacity (60). These NETs contain ox-

mtDNA and citrullinated histone H4, which not only act as

autoantigens driving anti-dsDNA antibody production via B-cell

TLR9 activation but also stimulate the NLRP3 inflammasome in

macrophages, promoting pyroptosis and IL-1b/IL-18 release (51).

This cascade further potentiates Neutrophil Extracellular Traposis

(NETosis), while IFN-a released from pDCs feedback enhances

NETs formation and impairs endothelial repair, establishing a self-

sustaining inflammatory loop.

Given the core role of NETs in the pathogenesis of SLE and

their detectability in patient serum and tissues, NETs are expected

to serve as biomarkers for disease activity, organ involvement, and

treatment response.
3.3 NETs and RA

RA is a systemic inflammatory autoimmune disease

characterized by joint inflammation and bone damage (61). It is

characterized by persistent synovitis, systemic inflammation, the

presence of autoantibodies, and the production of a large number of

inflammatory cytokines, which can lead to articular cartilage and

bone damage (62). The serological hallmark of RA is anti-

citrullinated protein antibodies (ACPA) (63). Citrullinated
Frontiers in Immunology 05
histones are thought to be a persistent source of B cell antigens

that promote the production of new ACPA (64).

It was found that the synovial fluid in RA patients was

infiltrated by neutrophils, which were prone to form NETs

(65, 66). When neutrophils are activated, a large number of

histones are citrullinated by PAD4, which is a key step in

chromatin decondensation and NETs release (67, 68). About 70%

of the proteins in NETs are histones (69). Citrullinated antigens on

NETs play a critical role in initiating and perpetuating

autoimmunity and ACPA production (70). Therefore, ACPA-

related immune responses and the formation of NETs play an

important role in the pathogenesis of RA. Studies have shown that

circulating neutrophils in patients with RA are more likely than

those in healthy subjects to undergo NETosis (71, 72). As in other

autoimmune diseases, NETs act as a source of extracellular

autoantigens, leading to excessive innate and adaptive immune

responses within the joint and subsequent tissue damage.

NETs promote synovial inflammation by stimulating the release

of pro-inflammatory cytokines such as IL-6, IL-8, TNF-a, and IL-17
from macrophages and fibroblast-like synoviocytes (FLSs) (73).

They also enhance cartilage damage through the internalization of

arthritogenic peptides by FLSs via the RAGE-TLR9 pathway,

upregulation of MHC class II, and activation of T cells and

B cells, leading to ACPA production and inflammatory spread.

Additionally, NET-derived enzymes such as NE, matrix

metalloproteinase-8 (MMP8), and MMP9 contribute to cartilage

matrix degradation (65, 74). Activated neutrophils release B-cell

Activating Factor (BAFF) and activate B cells (75). Then, the

activated B cells release cytokines to cascade with other immune

cells, and B-cell-derived IL-8 recruits neutrophils to the synovial

membrane (76). Additionally, B cells, with the help of T cells,

promote the production of auto-antibodies. Some of these plasma

cells produce a large number of auto-antibodies, including RF and

ACPA; these formed immune complexes activate the complement

pathway and promote inflammation, which is particularly abundant

in RA (77, 78).

Studies have confirmed that the release of NETs exacerbates the

occurrence and development of RA (79). ACPA, rheumatoid factor,

and inflammatory cytokines (TNF-a, IL-17) can enhance the

formation of NETs. In the pathogenesis of RA, NETs repeatedly

stimulate the body to produce autoimmune responses through

exposure to autoantigens, which aggravates NETosis, forming a

vicious cycle and leading to a sustained inflammatory response. In

vitro and in vivo experiments have shown that during the

pathogenesis of RA, neutrophils undergo significant activation

and death, inducing the formation of NETs and thus exacerbating

their own apoptosis (80). Therefore, inhibiting the formation of

NETs may provide a new direction for the treatment of RA.
3.4 NETs and Psoriasis

Psoriasis is a chronic inflammatory systemic disease with a

genetic basis, characterized by symmetrical erythematous skin

lesions covered with silvery-white scales (81, 82). While its exact
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cause remains unknown, neutrophils are among the earliest cells

infiltrating nascent psoriatic plaques, and their epidermal

accumulation is a hallmark of the disease (83).

Recent evidence highlights the significant role of NETs in

psoriasis pathogenesis. Stimulating keratinocytes to produce high

levels of various inflammatory mediators induces TLR4 expression

(84). The endogenous neutrophil-derived TLR4 ligand then acts

synergistically with IL-36 to induce the production of LCN2

through MyD88 and NF-kB activation signaling (85). In turn,

upregulated LCN2 regulates the formation of NETs and

neutrophil migration, enhancing and maintaining the

inflammatory response (86). Circulating neutrophils in psoriasis

patients exhibit a heightened tendency for spontaneous or stimulus-

induced NETosis, which correlates with disease severity (87). These

neutrophils, including an increased population of LDNs, are primed

for NETs release (88). Notably, exosomes derived from

keratinocytes treated with psoriasis-related cytokines (e.g., IL-

17A, IL-22, IFN-g, TNF-a) can activate normal neutrophils,

leading to NETs formation via NF-kB and p38 mitogen-activated

protein kinase (MAPK) signaling pathways (89).

Within psoriatic lesions, NETotic neutrophils are found in both

the epidermis (e.g., within Munro’s microabscesses) and dermis.

These neutrophils can produce IL-17 through NETs formation,

contributing to further neutrophil recruitment and sustained

inflammation (90). NETs also facilitate Th17 cell differentiation

and induce the expression of antimicrobial peptides like human

b-defensin-2 in keratinocytes (87, 91). Moreover, NET-derived

components form complexes such as DNA/cathepsin G/secretory

leukocyte protease inhibitor and RNA/LL-37, which activate pDCs

and neighboring neutrophils, respectively (92, 93). These

interactions promote the production of type I interferons and

proinflammatory cytokines, amplifying the inflammatory

cascade.Interestingly, dimethylfumarate—a therapeutic agent for

psoriasis—inhibits neutrophil activation, including NETs

formation, suggesting that targeting NETosis may be a viable

treatment strategy.
3.5 NETs and AAV

AAV is a systemic necrotizing small vasculitis that includes

Wegener’s granulomatosis, eosinophilic granuloma with vasculitis,

and microvasculitis (94). ANCA is a specific antibody that targets

MPO and Recombinant Proteinase 3 (PR3) (95). The study suggests

that ANCA may be involved in the activation of NETs formation in

patients with AAV. AAV occurs when ANCA binds to autoantigens

PR3 and MPO, which are granular proteins found on the surface of

neutrophils that are associated with GPA and MPA, respectively

(96). NETs also contain the targeted antigen MPO (stored within

neutrophilic granulocyte) or PR3 (expressed on the membrane of

resting neutrophils) whose expression rises when neutrophils are

activated by cytokines (97). Studies have shown that NETs is also

modified byMPO and PR3 in vitro and in vivo immunofluorescence

in AAV necrotic lesions (98). For example, the co-localization of

DNA, MPO, and PR3 in the kidney tissue of patients with small
Frontiers in Immunology 06
vasculitis (SVV) glomerulonephritis indicates the presence of NETs

and ANCA antigens in the inflammatory tissue (99). In patients

with low NETs degradation activity, these NETs persist, particularly

MPO and PR3. These antigens are presented to CD4+T cells via

dendritic cells, producing ANCA (100). Neutrophils express MPO

and PR3 on the plasma membrane, and PR3-ancas and MPO-

ANCAs bind to them. At the same time, these crystallizable

fragment (Fc) regions of ANCA bind to the Fc-g receptor on

neutrophils (101). This binding induces hyperactivation of

neutrophils, resulting in abnormal cytokine production, while

releasing ROS and lyases, which further form NETs and damage

vascular endothelial cells. In addition to ANCA, BAFF are produced

by activated neutrophils, and CD4+T cells (via IL-21) stimulate

B cells, enabling continuous ANCA production (102). The study

found that higher levels of MPO-DNA were detected in the serum

of patients with active AAV compared to those with AAV in

remission (103). However, another study did not find a difference

in serum MPO-DNA levels between patients with active AAV and

those with AAV in remission (104). This discrepancy may be

related to differences in NETs clearance capacity among

individual patients, such as reduced serum DNase I activity or

impaired macrophage phagocytic function, which can lead to NETs

accumulation that does not fully correlate with current clinical

activity (105, 106). These findings indicate that while NETs are

clearly present in patients with AAV, their utility as biomarkers for

assessing disease activity remains to be determined. Furthermore,

despite the potential of NET-associated biomarkers (e.g., MPO-

DNA, citrullinated histones, and cell-free DNA) to aid in diagnosis,

prognostic evaluation, and relapse prediction, further

standardization and validation are still required.

NETs contribute to the progression of AAV through multiple

mechanisms. On one hand, NETs are not only involved in the

initiation of ANCA autoimmune responses but also directly cause

vascular damage via histone-mediated cytotoxicity (107). On the

other hand, the persistence of NETs is closely associated with an

imbalance in their clearance. Studies have demonstrated that the

endogenous degrading factor DNase1 can effectively degrade NETs,

while intravenous immunoglobulin (IVIG) exhibits therapeutic

potential by significantly inhibiting NET formation (108, 109). In

therapeutic approaches, targeted strategies addressing NETs

formation and clearance have emerged as research hotspots,

including: C5a receptor antagonists (e.g., Avacopan), Syk

inhibitors, PAD4 inhibitors, and recombinant DNase I. To sum

up, NETs play an extremely important role in the pathogenesis of

AAV. NETs can be used as the information of disease diagnosis and

the target of future treatment. Effective intervention in the

formation of NETs is expected to provide new ideas for the

treatment of autoimmune vasculitis.
3.6 NETs and APS

APS is an autoimmune disorder associated with elevated levels

of antiphospholipid antibodies (aPL), characterized by arterial,

venous, or small vessel thrombosis or recurrent early pregnancy
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loss, fetal loss (110). aPL is a general term for antibodies to

phosphol ip ids and surface proteins , including lupus

anticoagulants, anti-b2-glycoprotein-1, and anti-cardiolipin (111,

112). aPL is known to promote thrombosis by activating endothelial

cells, monocytes, and platelets. Several mechanisms contribute to

the release of NETs in APS. Anti-b2GP1 antibodies recognize

b2GP1 bound to the surface of neutrophils, leading to the

upregulation of adhesion molecules PSGL-1 and Mac-1 (113).

This enhances their adherence to the endothelium. Subsequently,

under the influence of this endothelial adhesion, TLR4 signaling,

and potential interferon stimulation, APS neutrophils become

activated and release ROS and NETs (114). Furthermore, anti-

NETs antibodies present in APS may impair the clearance of NETs

by inhibiting circulating DNase, preventing their effective

degradation (115, 116). Studies have found that NETs play a key

role in the involvement of platelets and neutrophils in the

formation, stabilization, and growth of peripheral and coronary

thrombosis (117). In patients with APS, increased NETs release is

associated with autoimmunity and inflammation, driven by stimuli

such as immune complexes, autoantibodies and complement

activation (118). Seminal work by Yalavarthi et al. showed that

IgG from APS patients stimulates NETosis in control neutrophils

via mechanisms dependent on ROS and TLR4 signaling (119, 120).

Moreover, impaired degradation of NETs—due to DNase inhibitors

or anti-NET antibodies—further contributes to NETs persistence

and thrombotic risk (121). Inhibition of NETs release may have

potential benefits in patients with APS.

Experimental studies have demonstrated that serum and

purified IgG isolated from patients with APS can induce

neutrophils to release NETs (122). Furthermore, inhibition of

ROS production or blockade of TLR4 signaling has been shown

to reduce NET formation (123). In an animal model of APS,

administration of patient-derived IgG was associated with

increased thrombosis; conversely, degradation of NETs via DNase

I treatment or depletion of neutrophils significantly attenuated

thrombotic events (124). These findings suggest that modulating

NETs formation or enhancing their clearance may represent a

promising therapeutic strategy for APS.
3.7 NETs and T1D

T1DM is an autoimmune disease characterized by destruction

of islet b cells, characterized by elevated blood glucose levels, often

accompanied by absolute lack of endogenous insulin (125).

Although the pathogenesis of T1DM is unknown, physiologic

b cell death is a predisposing factor in the development of the

disease through recruitment and activation of neutrophils, which

penetrate the pancreas. In the pancreas, neutrophils can release

CRAMP, pDCs can be induced to produce interferons alpha (126).

The interaction between immune cells is necessary to induce a

diabetic T cell response that subsequently leads to the development
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of T1DM (127). In addition, interactions between neutrophils and

other non-immune cells, such as platelets in the blood or vascular

endothelial cells, are thought to play an important role in the

microvascular and macrovascular complications of diabetes. The

number of circulating neutrophils decreased in T1DM patients and

high-risk subjects before symptoms. Previous studies have shown

that neutrophils infiltrate the pancreas before onset and form NETs

within it, exhibiting strong pro-inflammatory biological activity

(128). NETs is an important link for neutrophils to participate in

the occurrence and development of T1DM, T1DM neutrophils

express high levels of PAD4 and produce more NETs. In human

T1DM, reduced circulating neutrophils and elevated NETs

markers (e.g., NE, PR3, CitH3) correlate with autoantibody levels

and beta cell loss (129). NETs and histones directly damage human

islets in vitro, an effect reversible with polyanions like Mcbs

(130).In the serum of children 10 days after T1DM onset, the

levels of NETs, mtDNA and nuclear DNA in peripheral blood were

higher than those in healthy children, and T1DM serum could

induce normal neutrophils to form NETs (131). However, some

studies have found that the levels of NE and PR3 in T1DM subjects

decreased significantly, especially in the subjects within three years

after diagnosis (132). The levels of NE and PR3 were correlated

with the absolute neutrophil count. This may reflect disease stage-

dependent changes in neutrophil activity. In the study of T1DM,

non-obese diabetic (NOD) mice can spontaneously be T1DM,

which is often used to study the pathogenesis and intervention of

T1DM (133). You et al. found that the formation of PAD4

dependent NETs is involved in the aggravation of intestinal

barrier dysfunction, the production of autoantibodies and the

activation of intestinal autoimmune T cells in DSS-induced

colitis and PAD4 knockout experiments in NOD mice, and then

these cells migrated to pancreatic lymph nodes to cause injury

(134). Neutrophils also promote early autoimmunity in NOD mice

via pDC activation and IFN production (135). In female NOD

mice, physiological b cell death induced the recruitment and

activation of B-1a cells, neutrophils and plasma cell-like

dendritic cells (pDC) to the pancreas (136). Activated Bmur1a

cells secrete double-stranded DNA-specific IgG and activate

neutrophils to form NETs. This DNA-specific IgG activates

pDCs through Toll-like receptors, resulting in the production of

IFN-a in islets and the formation of T1DM (137). Notably, PAD4

inhibition prevents diabetes in NODmice, underscoring the role of

NETosis (138). NETs impair wound healing and are more

pronounced in T1DM, and inhibiting NETs may improve wound

heal ing in diabetes and reduce NETs-driven chronic

inflammation (139).

In T1DM, although the level of NETs is uncertain, the presence

of NETs directly or indirectly activates innate and adaptive immune

responses in the pancreas, damages islet b cells, and participates in

the occurrence and development of T1DM. Accumulating evidence

from humans and NOD models indicates NETs contribute to islet

autoimmunity through cytotoxicity and immune activation.
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Therefore, the study of NETs may be one of the directions in the

treatment of T1DM.
4 Drug intervention in NETs to treat
autoimmune diseases

A variety of drugs have been used to treat autoimmune diseases

in clinic, and their mechanism of action has been gradually

explored. Studies have found that a variety of drugs may act on

NETs to play a therapeutic.
4.1 NE and MPO inhibitors

NE and MPO are key synergistic molecules in the process of

NETs formation, as well as core functional components of NETs

structure. They collectively participate in immune defense and

mediate the amplification of inflammation and tissue damage

during the pathogenesis of diseases. Therefore, inhibitors

targeting NE and MPO have emerged as potential therapeutic

strategies, some of which have advanced into clinical research.

Among NE inhibitors, Sivelestat is a selective, reversible, and

competitive small-molecule inhibitor that suppresses NE enzymatic

activity by binding to its active site, thereby reducing NETs

formation and mitigating inflammatory responses and tissue

injury (140). Studies have shown that early administration of

Sivelestat in diabetic mouse models significantly reduces the

incidence of spontaneous insulitis and autoimmune diabetes

(141). Furthermore, this compound has demonstrated therapeutic

potential in various animal models of acute respiratory distress

syndrome, sepsis, non-alcoholic steatohepatitis, and acute lung

injury. Other NE inhibitors that have entered clinical stages

include POL6014, PHP-303, Elafin, CHF6333, and alvelestat, all

of which inhibit NE activity through a similar competitive

mechanism (142–145). On the other hand, MPO inhibitors such

as PF-1355 can significantly reduce MPO activity in mouse plasma,

thereby inhibiting neutrophil recruitment and vascular edema, and

have been used in basic research on immune complex-mediated

vasculitis (146). In addition, ceruloplasmin has been shown to

decrease plasma MPO activity in mice and inhibit the production

of MPO-derived oxidants during inflammation, demonstrating

protective effects (147). Recent studies have also indicated that

ABAH reduces MPO-dependent hepatocyte death in a non-

alcoholic steatohepatitis model, decreases MPO activity in a

mouse model of acute stroke, and inhibits MPO activity in

sputum from pulmonary cystic fibrosis (148–150). Similarly,

compounds such as INV-315, PF-0628999, and AZM198 alleviate

inflammatory responses by inhibiting MPO activity (151, 152).

In summary, NE and MPO inhibitors exhibit promising

therapeutic effects in various disease models by regulating NETs
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formation and neutrophil-mediated inflammatory responses. Some

compounds have progressed to clinical research stages, offering new

directions for the treatment of related inflammatory and

autoimmune diseases.
4.2 DNase I

DNA serves as the primary structural framework of NETs.

DNase I is an enzyme capable of degrading DNA, effectively

breaking down the DNA component within NETs, thereby

reducing NETs formation (153). Although the early use of

recombinant human DNase I (rhDNase I) in the treatment of

SLE demonstrated a favourable safety profile, its clinical efficacy was

limited; nevertheless, it has been approved for the treatment of

cystic fibrosis (CF) (154). Recently, a novel bioenzyme with dual

DNase1/DNase1L3 activity has shown significant effects in murine

lupus models, effectively suppressing autoantibody production and

resisting neutralization by autoantibodies in SLE patients (155). In

RA patients, DNase I can also inhibit neutrophil NET generation

and mitigate NET-induced thrombosis and endothelial damage

(79). On the other hand, advances in production technology have

provided crucial support for the clinical application of DNase I.

Recent studies indicate that the use of a Pichia pastoris expression

system enables successful recombinant production of active human

DNase I (156). This breakthrough is expected to substantially

reduce manufacturing costs and lay the foundation for large-scale

applications in various NET-related diseases.
4.3 Targeted IFN preparations

Therapeutic targeting of IFN signaling can reduce NET-induced

inflammation and autoimmune responses. For instance, both the

JAK inhibitor tofacitinib and the type I IFN inhibitor anifrolumab

have been demonstrated in clinical studies to lower NETs levels in

SLE patients and improve their clinical symptoms (157, 158).

Current biologic agents for SLE treatment primarily consist of

monoclonal antibodies that directly target either IFN-a or the type I

IFN receptor (IFNAR). Sifalimumab and rontalizumab are two

anti-IFN-a monoclonal antibodies. Among them, sifalimumab has

been shown to significantly reduce SLE disease activity, whereas

rontalizumab did not demonstrate notable efficacy—the underlying

mechanisms remain unclear (159, 160). Anifrolumab, an anti-

IFNAR monoclonal antibody, has been approved by the U.S.

FDA and the European Union for the treatment of moderate to

severe SLE (161). Additionally, QX006N is another monoclonal

antibody targeting IFNAR1. It specifically binds to the SD3 domain

of IFNAR1, creating steric hindrance that prevents the binding of

type I IFN ligands and inhibits the assembly of the IFN/IFNAR1/

IFNAR2 complex (162). This agent is currently under investigation

for SLE therapy.
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4.4 PAD4 inhibitor

PAD4 serves as a nuclear promoter that mediates citrullination

of histone H3 in neutrophils, facilitating chromatin decondensation

and promoting NET formation. Studies have shown that inhibiting

PAD4 to suppress NETosis confers protective effects in mouse

models of lupus, diabetes, and atherosclerosis without significant

adverse events. Cl-amidine inhibits the citrullination of histone H3

by irreversibly binding to PAD4, thereby restraining NET

formation (163).Research indicates that Cl-amidine alleviates

endothelial dysfunction in SLE mice and reduces the deposition

of immune complexes in renal tissues (164). Furthermore,

Cl-amidine suppresses the production of NETs and inflammatory

cytokines by reducing PAD4 levels in the joint tissues of arthritic

mice, thereby ameliorating joint edema (165). Meanwhile, in vivo

studies demonstrate that GSK484, a reversible PAD4 inhibitor, also

inhibits NET release and exerts immunomodulatory effects. It

enhances radiosensitivity in colorectal cancer by promoting DNA

double-strand breaks and suppresses NET formation both in vivo

and in vitro (166). Administration of GSK484 in CIA mice reduces

the expression of synovial MPO, NE, and PAD4, decreases NET

generation, attenuates arthritis severity, and inhibits macrophage

infiltration, supporting its therapeutic potential (167). In various

lupus models, PAD inhibitors can reduce NETs formation while

protecting the vasculature, kidneys, and skin from damage. The

selective PAD4 inhibitor JBI-589 blocks NET formation and PAD4-

dependent citrullination; oral administration in mouse models

reduces the incidence and severity of arthritis and inhibits ACPA

production (168).
4.5 ROS remover

ROS are essential for the formation of NETs. A range of ROS

scavengers have demonstrated therapeutic potential in autoimmune

diseases. As a scavenger of ROS, N-acetylcysteine (NAC) has been

observed to reduce NET generation upon treatment (169). In two

clinical studies, NAC administration improved disease outcomes in

SLE patients, though related mechanistic investigations remain at

an early stage (170). Moreover, MitoTempo, a specific scavenger of

mitochondrial ROS, prevented spontaneous NETosis and reduced

disease severity in a lupus mouse model (171). Ethyl pyruvate

attenuates NET formation and sepsis-induced intestinal injury by

inhibiting ROS-mediated activation of MAPK/ERK1/2 and p38

MAPK (172). Additionally, other agents targeting ROS also

exhibit efficacy. For instance, diphenyleneiodonium demonstrates

significant anti-tumor activity in MYCN-amplified neuroblastoma

by targeting MYCN-induced mitochondrial alterations and ROS

production, thereby inducing apoptosis and suppressing tumor

growth (173).
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4.6 Traditional Chinese medicine
compounds

Traditional Chinese medicine (TCM) represents a precious

treasure endowed by nature and is increasingly demonstrating its

therapeutic value. Numerous compounds derived from TCM that

are currently under preclinical investigation have shown potential

for targeting NETs. For instance, triptolide has been found to

inhibit NET generation in vitro independently of cellular ROS

levels (174). In a murine model of RA, it suppressed neutrophil

autophagy, NET formation, tissue damage, and inflammation (175).

Similarly, tetrandrine exhibited therapeutic effects in an RA model

by modulating neutrophil-associated inflammatory responses and

inhibiting NET formation (176). Quercetin was shown to reduce

neutrophil infiltration, plasma cytokine levels, and autophagy-

dependent NET formation (177). Andrographolide decreased

joint levels of CXCL2, MPO, and NE, while also reducing

neutrophil infiltration in ankle tissues (178). The classical TCM

formula Simiao Yong’an Tang inhibited neutrophil migration,

promoted apoptosis, and reduced ROS production and NET

formation in vitro (179). Additionally, emodin alleviated arthritis

in AA mice by diminishing neutrophil infiltration, inhibiting the

release of pro-inflammatory cytokines (IL-6, IFN-g, and TNF-a),
suppressing autophagy-mediated NETosis, and promoting

neutrophil apoptosis (180). Furthermore, our recent study

demonstrated that Ermiao San and its primary active components

(phellodendrine and atractylenolide-I) exert therapeutic effects

against RA by suppressing PAD4 to reduce the formation of

NETs (181).
5 Conclusion

The burgeoning field of NETosis has fundamentally redefined

our understanding of autoimmune pathogenesis, establishing NETs

not merely as inflammatory effectors but as central orchestrators

that bridge innate and adaptive immunity. NETs contribute to

autoimmunity through multiple mechanisms: they serve as a source

of autoantigens, amplify inflammatory cascades, activate innate and

adaptive immune pathways via Toll-like receptors, inflammasomes,

and type I interferon responses, and directly cause tissue damage

through cytotoxic components. Their involvement across various

autoimmune diseases, including SLE, RA, APS, and T1DM,

highlights a shared pathological mechanism rooted in

dysregulated NET formation and clearance. Therapeutic strategies

targeting NETs, such as inhibitors (e.g., PAD4 inhibitors,

neutrophil elastase inhibitors, myeloperoxidase inhibitors, reactive

oxygen species (ROS) inhibitors), DNase-based interventions, and

biologics targeting interferon signaling pathways, have

demonstrated significant potential in both preclinical and clinical
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studies. Additionally, multi-omics-driven biomarker discovery and

exploration of the microbiome–NET axis hold promise for

improving diagnosis, subtyping, and personalized treatment. The

integration of advanced technologies—such as single-cell analysis,

real-time NET imaging, and neutrophil engineering—will be crucial

to translate these mechanistic insights into precise clinical

interventions, ultimately revolutionizing the management of

autoimmune diseases.
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Glossary

AAV antineutrophil cytoplasmic antibody -associated vasculitis
Frontiers in Immunol
LL-37 Cathelicidin Antimicrobial Peptide
ACPA anti-citrullinated protein antibodies
MAPK mitogen-activated protein kinase
aggNETs aggregated NETs
MMP8 matrix metalloproteinase-8
ANCA antineutrophil cytoplasmic antibody
MMP9 matrix metalloproteinase-9
aPL antiphospholipid antibodies
MPO myeloperoxidase
aPL antiphospholipid antibodies
MSU monosodium urate
APS antiphospholipid syndrome
NE neutrophil elastase
BAFF B-cell Activating Factor
NETosis Neutrophil Extracellular Traposis
CCL3 C-C chemokine ligand 3
NETs Neutrophil extracellular traps
CF cystic fibrosis
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells
CRAMP Dopamine-Cathelicidin-related antimicrobial peptide
NLRP3 the Pyrin Domain Containing Protein 3
CXCL10 C-X-C motif chemokine ligand 10
NOD non-obese diabetic
DAMPs hazardous associated molecular patterns
NOX nicotinamide adenine dinucleotide phosphate oxidase
DNase deoxyribonuclease
PAD4 peptidyl arginine deiminase 4
FLSs fibroblast-like synoviocytes
ogy 15
pDCs plasmacytoid dendritic cells
GA gouty arthritis
PKC protein kinase C
IFN-a Interferon Alpha
PMA Phorbol-12-myristate-13-acetate
IFN-g Interferon-gamma
PR3 Proteinase 3
IFN-g Interferon-gamma
PR3 Recombinant Proteinase 3
IL-17 Interleukin-17
RA rheumatoid arthritis
IL-17A Interleukin-17A
rhDNase I recombinant human DNase I
IL-18 Interleukin-18
ROS reactive oxygen species
IL-1b Interleukin-1b
SLE systemic lupus erythematosus
IL-21 Interleukin-21
T1DM type 1 diabetes mellitus
IL-22 Interleukin-22
TLR4 Toll Like Receptor 4
IL-6 Interleukin-6
TLR7 Toll Like Receptor 7
IL-8 Interleukin-8
TLR8 Toll Like Receptor 8
IVIG Intravenous immunoglobulin
TLR9 Toll Like Receptor 9
LDNs low-density neutrophils
TNF-a Tumor Necrosis Factor alpha
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