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Neutrophil extracellular traps (NETs) are reticular fiber structures released by
neutrophils in response to various stimuli. Although NETs have antibacterial
defense functions, their excessive formation has been proven to accelerate the
progression of autoimmune diseases. Increasing studies have shown that NETs
play an important role in the pathogenesis of autoimmune diseases. The
pathogenesis of recent advances in autoimmune disease research, with a
focus on the role of NETs in the etiology and pathogenesis of these disorders,
and summarizes the current treatment strategies targeting NETs, aiming to
provide new directions for the treatment of autoimmune diseases.
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1 Introduction

Neutrophils are the most abundant immune cells in the human body and constitute the
first defense against pathogen invasion, playing a crucial role in host immunity (1).
Typically, neutrophils degranulate by releasing antibacterial and proteolytic enzymes, then
perform phagocytosis to kill invading microorganisms; however, when encountering large
biological structures that cannot be engulfed (e.g., fungi and parasites), they undergo a
distinct process to release DNA, histones, and granular proteins—such as neutrophil
elastase (NE) and myeloperoxidase (MPO)—thus forming ‘neutrophil extracellular traps
(NETs) (2). These NETs immobilize, kill, and degrade the pathogens extracellularly
through the action of associated proteolytic enzymes.

NETs are involved in many autoimmune diseases and are thought to be crucial in the
inflammatory process. Although NETs are beneficial during infection, they may play a
harmful role in inflammatory, autoimmune, and other pathophysiological conditions
(3-5). NETs promote inflammatory processes by releasing active molecules such as
hazardous associated molecular patterns (DAMPs), histones, and extracellular active
lyases, leading to further immune responses (6). Thus, NETs can also serve as a
potential source of autoantigens that bind to associated autoantibodies produced by
inflammatory autoimmune diseases. In autoimmune diseases, including gouty arthritis
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(GA), systemic lupus erythematosus (SLE), rheumatoid arthritis
(RA), psoriasis, antineutrophil cytoplasmic antibody (ANCA)-
associated vasculitis (AAV), antiphospholipid syndrome (APS),
and type 1 diabetes mellitus (T1DM), NETs exhibit aberrant
accumulation and impaired clearance. Based on gradient density,
neutrophils are classified into low-density neutrophils (LDNs) and
normal-density neutrophils subgroups. LDNs is more likely to form
NETs in patients with SLE and psoriasis, which may explain the link
between the disease and NETs formation (7, 8). In addition, the
composition of NETs may vary according to different stimuli, as
well as the diseases associated with them (9). In some cases, NET's
may also have anti-inflammatory features (10).

Therefore, this article will elucidate the role of NETs in
autoimmune diseases from the perspective of their formation and
function, and explore their potential as therapeutic targets, thereby
providing new insights for the clinical treatment of autoimmune
diseases.

2 Overview of NETs
2.1 Formation of NETs

The concept of NET's was first proposed by Brinkmann et al. in
2004, who found that neutrophils have a novel mode of death,
which is different from cell necrosis and apoptosis (11). Through
the breakdown of the neutrophil plasma membrane, a highly active
mixture of nucleic acids and proteins is released outside the cell,
forming this smooth filamentous structure with an DNA as a
skeleton to which various protein particles are anchored called
NETs (12). The formation of NETs is triggered by a variety of
factors, including cytokines, bacteria, fungi, viruses and protozoa
(13, 14). For example, stimulated by Phorbol-12-myristate-13-
acetate (PMA), PMA can promote the assembly and activation of
nicotinamide adenine dinucleotide phosphate oxidase (NOX) and
induce the production of reactive oxygen species (ROS) without
forming phagosomes (15, 16). The RAF-MEK-ERK pathway is
located upstream of NOX, regulates the production of ROS.
However, there are also NOX independent ROS, which are
produced by mitochondria (17). ROS damage secretory granules
and lysosome membranes, resulting in the release of NE and MPO.
NE is first translocated to the nucleus, cutting some specific histones
and promoting chromatin depolymerization. Subsequently, MPO
also enters the nucleus and collaborates with NE to promote
chromatin depolymerization (18). PMA can also activate peptidyl
arginine deiminase 4 (PAD4) by binding to protein kinase C (PKC)
to induce the release of intracellular calcium ions. PAD4 can
dominate histone arginine residues to form citrulline residues,
reduce the positive charge, weaken the electrostatic binding force
with DNA, and thus depolymerize chromatin (19). It can be seen
that the core process in the formation of NETs is chromatin
deaggregation, which requires the participation of ROS, NE, MPO
and PAD4. Depolymerized chromatin is released from the ruptured
nucleus into the cytoplasm, and together with other substances in
the cytoplasm such as MPO and NE, it is discharged into the
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extracellular space through membrane tearing, resulting in the
death of neutrophils (20). The mechanism of NETs formation is
shown in Figure 1.

2.2 Functions of NETs

NETs are a double-edged sword. On the one hand, NETs have
been shown to play a positive role in controlling bacterial infections
(21, 22). Substances such as histone, NE, MPO, cathepsin G,
lactoferrin, and antimicrobial peptides can protect wounds and
prevent the spread of infection. Histone proteins play an important
role in the decomposition of bacterial cell membrane (23). In anti-
HIV, influenza, and novel coronavirus, viruses stimulate the
formation of NETs via Toll Like Receptor 4 (TLR4), TLR7, and
TLR8, NETs inhibit viral replication by capturing the virus or
blocking the PKC pathway (24-26). In terms of anti-parasite,
immune cells play an irreplaceable role in host defense.
For example, neutrophils play a protective role in toxoplasmosis
infected fibroblasts (27). Neutrophils can also produce
antimicrobial factors to stop the spread of leishmania (28). On
the other hand, excessive formation of NETs or inadequate
clearance by the body may result in uncontrolled inflammatory
response. NETs can regulate congenital and adaptive immune
disorders through various mechanisms, and NETs can also
amplify inflammatory responses, possibly worsening diseases and
even organ damage (29, 30). Because some of the released proteins
have non-specific effects, they will directly cause damage to other
cells, form immune complexes, induce the production of
autoantibodies, and result in pathological tissue damage (31). It
has been found that there are a large number of circulating NETSs in
patients with sepsis, and their presence is associated with poor
prognosis and multiple organ failure (32-34). NETSs, through their
pro-inflammatory and cytotoxic effects, can promote the
progression of various diseases including autoimmune disorders,
thrombotic conditions, cancer metastasis and progression, as well as
severe COVID-19 (35). Histones have DAMPs that increase the
release of pro-inflammatory cytokines and activate the Pyrin
Domain Containing Protein 3 (NLRP3) inflammasome to further
amplify the inflammatory response (36). Induce cytotoxicity and
increase the production of ROS, cause endothelial dysfunction and
induce organ damage.

Therefore, although NETs constitute a crucial antimicrobial
defense mechanism, their uncontrolled release poses a significant
threat to host tissues. Thus, the following section will focus on how
the detrimental effects of NETs—resulting from either excessive
formation or impaired clearance—play a critical role in the
pathogenesis of various autoimmune diseases.

3 NETs and autoimmune diseases

Autoimmune diseases are caused by the breakdown of the
balance between the body’s immune defense and its own
antigens, resulting in immune response and damage to its own

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1646527
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Tang et al. 10.3389/fimmu.2025.1646527

PMA

Y e

I U 1 i 1 U U U hilil VU U U j U U Yl Cell membrane
RAF-MEK-ERK ~ PKC\
Mitochondria O
@ Citrullinated histones
I I I I I 0 I I 1 I I I I
| U U | U J | | U 1 L
FIGURE 1

The schematic diagram of the formation mechanism of NETs. PMA, Phorbol-12-myristate-13-acetate; PKC, protein kinase C; ROS, Reactive oxygen
species; PAD4, peptidyl arginine xdeiminase 4; MPO, myeloperoxidase; NE, neutrophilic elastase.

tissues. At this time, autoimmune cells unable to distinguish
between “self” and “non-self” components, the immune system is
abnormal, the body produces antibodies to attack itself, causing
organ and tissue damage (37). Neutrophils play an irreplaceable role
in autoimmune diseases, the excessive formation or insufficient
clearance of NETs affects the course of autoimmune disease.
Therefore, the study of NETs may be a new direction in the
treatment of autoimmune diseases, and possibly the prevention of
other diseases associated with the disease. The mechanism of
neutrophils and NETs in autoimmune diseases is shown in Figure 2.

3.1 NETs and GA

GA, the most common inflammatory arthritis, is a
multifactorial autoinflammatory disease uniquely characterized by
the deposition of monosodium urate (MSU) crystals within joints,
which triggers acute and painful synovitis (38, 39). During the onset
of acute GA, the accumulation of MSU crystals can induce a large
infiltration of inflammatory cells (such as neutrophils and
monocytes) into the MSU crystal deposit site of the patient. The
release of from these immune cells further triggers the release of
various pro-inflammatory cytokines and chemokines, which
upregulates selectin and integrin on the surface of endothelial cell
lumen, and further enhances neutrophil recruitment (40). Upon
contact with MSU crystals, neutrophils release a range of
inflammatory mediators—including Tumor Necrosis Factor alpha
(TNF-a), Interleukin-6 (IL-6), as well as neutrophil inducers (e.g.,
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IL-8) and activators (such as CCL3 and CXCL10) (41).
Furthermore, MSU crystals activate infiltrating neutrophils not
only to secrete cytokines but also to form NETs through two
principal mechanisms: a ROS-independent vital pathway
involving calcium-mediated direct activation of PAD4, and a
ROS-dependent suicidal pathway driven by calcium/NOX-
generated ROS leading to PAD4 activation—both of which
ultimately result in NETs release (42). Macrophage phagocytosis
of MSU crystals activates the NLRP3 inflammasome, prompting
release of IL-1B and IL-18, which recruit neutrophils that undergo
oxidative burst (a rapid ROS-producing process) and form NETs
through genomic DNA and granular protein release (43). These
NETs components—notably histones and DNA—directly damage
tissues such as vascular endothelium, inducing further release of
inflammatory mediators like Adenosine Triphosphate and uric acid
and thereby sustaining a feed-forward inflammatory cycle (44).
NETs release proinflammatory mediators in the early stages of
neutrophil recruitment or when the number of neutrophils is
comparable to that of peripheral blood (40). Conversely, a high
density of neutrophils—such as that found in the synovial fluid of
GA or within highly infiltrated inflammatory tissues—promotes the
formation of aggregated NETs (aggNETs) both in vivo and in vitro
(45). These aggNETs can be covered on the surface of MSU crystals
to isolate them from inflammatory mediators, thus promoting the
formation of gout stones and indirectly alleviating the damage
caused by MSU crystals to the body (46). Thus, in GA, the
formation of NETs has a double-edged sword effect: on the one
hand, NETs can package and isolate MSU crystals or adhere to
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apoptotic cells and clear them, inhibit inflammatory response and
protect the body by controlling the production of cytokines by
proteases, which shows that NETs play a role in promoting and
alleviating inflammation. On the other hand, NETs release various
damage-related molecular modes (histone or DNA-activated TLR
or NLRP3 inflammatory bodies), which aggravates the
inflammatory response by releasing pro-inflammatory factors or
direct action, and excessive NET's will form aggNETs, promote the
formation of gout, cause bone erosion, and induce chronic
inflammatory reaction. Given the unique role of NETs in GA,
targeting NETs is considered a highly attractive and promising
therapeutic approach for treating GA.
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3.2 NETs and SLE

SLE is a complex multi-system autoimmune disease involving
epigenetic, genetic, ecological, and environmental factors (47). It is
characterized by the presence of autoantibodies targeting nuclear
and cytoplasmic antigens, with antinuclear antibody serving as a
key serological marker (48). Patients with SLE produce a variety of
autoantibodies, among which anti-dsDNA antibodies are highly
specific and contribute to disease pathogenesis (49). NETs play a
crucial role in SLE through multiple mechanisms. Anti-dsDNA
antibodies can be components of NETs, and impaired NETs
clearance—due to deoxyribonuclease (DNase) inhibition, DNase
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inhibitors, or anti-NET antibodies—leads to NETs accumulation,
further elevating anti-dsDNA antibody titers and activating the
complement system, thereby perpetuating a vicious cycle of
inflammation (50).

Studies have indicated that levels of NETSs are elevated in
patients with SLE. NET-associated proteins, such as LL-37, can
promote hyperactivation of the NLRP3 inflammasome in adjacent
macrophages, leading to the release of large quantities of
inflammatory cytokines and thereby causing severe tissue damage
(51). In this process, released IL-18 further stimulates neutrophils to
produce more NETs (52). Moreover, inflammasome-mediated
activation of gasdermin D is also a key factor in NET formation
(53, 54). Additionally, NETs can lower the activation threshold of T
cells and promote T cell activation via T cell receptor signaling,
thereby linking innate and adaptive immune responses (55). NETs
in SLE are enriched in ox-mtDNA and citrullinated histones, which
act as potent autoantigens. These structures activate Toll-like
receptors and intracellular nucleic acid sensors, triggering
Interferon Alpha (IFN-o) production by plasmacytoid dendritic
cells (pDCs). IFN-o. promotes dendritic cell maturation, T-cell
activation, and autoantibody production by B cells, further
stimulating NETs release (56, 57).

LDNs are a distinct subpopulation of neutrophils in patients
with SLE (58). LDNs is significantly increased in the peripheral
blood of SLE patients. LDNs from SLE patients demonstrate the
capacity to activate T cells and induce the release of cytokines,
including IFN-y and TNF-q, a function not exhibited by their
normal-density neutrophil counterparts (59). CD10" LDNs exhibit
a mature polymorphonuclear morphology, express high levels of
type I interferon-stimulated genes (ISG15, MX1) and
proinflammatory cytokines (IL-6, IL-8, TNF-at), and demonstrate
enhanced NET-forming capacity (60). These NETs contain ox-
mtDNA and citrullinated histone H4, which not only act as
autoantigens driving anti-dsDNA antibody production via B-cell
TLRY activation but also stimulate the NLRP3 inflammasome in
macrophages, promoting pyroptosis and IL-1B/IL-18 release (51).
This cascade further potentiates Neutrophil Extracellular Traposis
(NETosis), while IFN-o. released from pDCs feedback enhances
NETs formation and impairs endothelial repair, establishing a self-
sustaining inflammatory loop.

Given the core role of NETs in the pathogenesis of SLE and
their detectability in patient serum and tissues, NETs are expected
to serve as biomarkers for disease activity, organ involvement, and
treatment response.

3.3 NETs and RA

RA is a systemic inflammatory autoimmune disease
characterized by joint inflammation and bone damage (61). It is
characterized by persistent synovitis, systemic inflammation, the
presence of autoantibodies, and the production of a large number of
inflammatory cytokines, which can lead to articular cartilage and
bone damage (62). The serological hallmark of RA is anti-
citrullinated protein antibodies (ACPA) (63). Citrullinated
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histones are thought to be a persistent source of B cell antigens
that promote the production of new ACPA (64).

It was found that the synovial fluid in RA patients was
infiltrated by neutrophils, which were prone to form NETs
(65, 66). When neutrophils are activated, a large number of
histones are citrullinated by PAD4, which is a key step in
chromatin decondensation and NETs release (67, 68). About 70%
of the proteins in NETS are histones (69). Citrullinated antigens on
NETs play a critical role in initiating and perpetuating
autoimmunity and ACPA production (70). Therefore, ACPA-
related immune responses and the formation of NETs play an
important role in the pathogenesis of RA. Studies have shown that
circulating neutrophils in patients with RA are more likely than
those in healthy subjects to undergo NETosis (71, 72). As in other
autoimmune diseases, NETs act as a source of extracellular
autoantigens, leading to excessive innate and adaptive immune
responses within the joint and subsequent tissue damage.

NETSs promote synovial inflammation by stimulating the release
of pro-inflammatory cytokines such as IL-6, IL-8, TNF-0,, and IL-17
from macrophages and fibroblast-like synoviocytes (FLSs) (73).
They also enhance cartilage damage through the internalization of
arthritogenic peptides by FLSs via the RAGE-TLRY pathway,
upregulation of MHC class II, and activation of T cells and
B cells, leading to ACPA production and inflammatory spread.
Additionally, NET-derived enzymes such as NE, matrix
metalloproteinase-8 (MMP8), and MMP9 contribute to cartilage
matrix degradation (65, 74). Activated neutrophils release B-cell
Activating Factor (BAFF) and activate B cells (75). Then, the
activated B cells release cytokines to cascade with other immune
cells, and B-cell-derived IL-8 recruits neutrophils to the synovial
membrane (76). Additionally, B cells, with the help of T cells,
promote the production of auto-antibodies. Some of these plasma
cells produce a large number of auto-antibodies, including RF and
ACPA; these formed immune complexes activate the complement
pathway and promote inflammation, which is particularly abundant
in RA (77, 78).

Studies have confirmed that the release of NET's exacerbates the
occurrence and development of RA (79). ACPA, rheumatoid factor,
and inflammatory cytokines (TNF-co, IL-17) can enhance the
formation of NETs. In the pathogenesis of RA, NETSs repeatedly
stimulate the body to produce autoimmune responses through
exposure to autoantigens, which aggravates NETosis, forming a
vicious cycle and leading to a sustained inflammatory response. In
vitro and in vivo experiments have shown that during the
pathogenesis of RA, neutrophils undergo significant activation
and death, inducing the formation of NETs and thus exacerbating
their own apoptosis (80). Therefore, inhibiting the formation of
NETs may provide a new direction for the treatment of RA.

3.4 NETs and Psoriasis

Psoriasis is a chronic inflammatory systemic disease with a
genetic basis, characterized by symmetrical erythematous skin
lesions covered with silvery-white scales (81, 82). While its exact
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cause remains unknown, neutrophils are among the earliest cells
infiltrating nascent psoriatic plaques, and their epidermal
accumulation is a hallmark of the disease (83).

Recent evidence highlights the significant role of NETs in
psoriasis pathogenesis. Stimulating keratinocytes to produce high
levels of various inflammatory mediators induces TLR4 expression
(84). The endogenous neutrophil-derived TLR4 ligand then acts
synergistically with IL-36 to induce the production of LCN2
through MyD88 and NF-kB activation signaling (85). In turn,
upregulated LCN2 regulates the formation of NETs and
neutrophil migration, enhancing and maintaining the
inflammatory response (86). Circulating neutrophils in psoriasis
patients exhibit a heightened tendency for spontaneous or stimulus-
induced NETosis, which correlates with disease severity (87). These
neutrophils, including an increased population of LDNs, are primed
for NETs release (88). Notably, exosomes derived from
keratinocytes treated with psoriasis-related cytokines (e.g., IL-
17A, 1L-22, IFN-y, TNF-o) can activate normal neutrophils,
leading to NETs formation via NF-xB and p38 mitogen-activated
protein kinase (MAPK) signaling pathways (89).

Within psoriatic lesions, NETotic neutrophils are found in both
the epidermis (e.g., within Munro’s microabscesses) and dermis.
These neutrophils can produce IL-17 through NETSs formation,
contributing to further neutrophil recruitment and sustained
inflammation (90). NETs also facilitate Th17 cell differentiation
and induce the expression of antimicrobial peptides like human
B-defensin-2 in keratinocytes (87, 91). Moreover, NET-derived
components form complexes such as DNA/cathepsin G/secretory
leukocyte protease inhibitor and RNA/LL-37, which activate pDCs
and neighboring neutrophils, respectively (92, 93). These
interactions promote the production of type I interferons and
proinflammatory cytokines, amplifying the inflammatory
cascade.Interestingly, dimethylfumarate—a therapeutic agent for
psoriasis—inhibits neutrophil activation, including NETSs
formation, suggesting that targeting NETosis may be a viable
treatment strategy.

3.5 NETs and AAV

AAV is a systemic necrotizing small vasculitis that includes
Wegener’s granulomatosis, eosinophilic granuloma with vasculitis,
and microvasculitis (94). ANCA is a specific antibody that targets
MPO and Recombinant Proteinase 3 (PR3) (95). The study suggests
that ANCA may be involved in the activation of NET's formation in
patients with AAV. AAV occurs when ANCA binds to autoantigens
PR3 and MPO, which are granular proteins found on the surface of
neutrophils that are associated with GPA and MPA, respectively
(96). NETs also contain the targeted antigen MPO (stored within
neutrophilic granulocyte) or PR3 (expressed on the membrane of
resting neutrophils) whose expression rises when neutrophils are
activated by cytokines (97). Studies have shown that NETs is also
modified by MPO and PR3 in vitro and in vivo immunofluorescence
in AAV necrotic lesions (98). For example, the co-localization of
DNA, MPO, and PR3 in the kidney tissue of patients with small
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vasculitis (SVV) glomerulonephritis indicates the presence of NETs
and ANCA antigens in the inflammatory tissue (99). In patients
with low NETs degradation activity, these NET's persist, particularly
MPO and PR3. These antigens are presented to CD4™T cells via
dendritic cells, producing ANCA (100). Neutrophils express MPO
and PR3 on the plasma membrane, and PR3-ancas and MPO-
ANCAs bind to them. At the same time, these crystallizable
fragment (Fc) regions of ANCA bind to the Fc-y receptor on
neutrophils (101). This binding induces hyperactivation of
neutrophils, resulting in abnormal cytokine production, while
releasing ROS and lyases, which further form NETs and damage
vascular endothelial cells. In addition to ANCA, BAFF are produced
by activated neutrophils, and CD4"T cells (via IL-21) stimulate
B cells, enabling continuous ANCA production (102). The study
found that higher levels of MPO-DNA were detected in the serum
of patients with active AAV compared to those with AAV in
remission (103). However, another study did not find a difference
in serum MPO-DNA levels between patients with active AAV and
those with AAV in remission (104). This discrepancy may be
related to differences in NETs clearance capacity among
individual patients, such as reduced serum DNase I activity or
impaired macrophage phagocytic function, which can lead to NET's
accumulation that does not fully correlate with current clinical
activity (105, 106). These findings indicate that while NETs are
clearly present in patients with AAV, their utility as biomarkers for
assessing disease activity remains to be determined. Furthermore,
despite the potential of NET-associated biomarkers (e.g., MPO-
DNA, citrullinated histones, and cell-free DNA) to aid in diagnosis,
prognostic evaluation, and relapse prediction, further
standardization and validation are still required.

NETs contribute to the progression of AAV through multiple
mechanisms. On one hand, NETs are not only involved in the
initiation of ANCA autoimmune responses but also directly cause
vascular damage via histone-mediated cytotoxicity (107). On the
other hand, the persistence of NETs is closely associated with an
imbalance in their clearance. Studies have demonstrated that the
endogenous degrading factor DNasel can effectively degrade NETs,
while intravenous immunoglobulin (IVIG) exhibits therapeutic
potential by significantly inhibiting NET formation (108, 109). In
therapeutic approaches, targeted strategies addressing NET's
formation and clearance have emerged as research hotspots,
including: C5a receptor antagonists (e.g., Avacopan), Syk
inhibitors, PAD4 inhibitors, and recombinant DNase 1. To sum
up, NETs play an extremely important role in the pathogenesis of
AAV.NETs can be used as the information of disease diagnosis and
the target of future treatment. Effective intervention in the
formation of NETs is expected to provide new ideas for the
treatment of autoimmune vasculitis.

3.6 NETs and APS

APS is an autoimmune disorder associated with elevated levels
of antiphospholipid antibodies (aPL), characterized by arterial,
venous, or small vessel thrombosis or recurrent early pregnancy
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loss, fetal loss (110). aPL is a general term for antibodies to
phospholipids and surface proteins, including lupus
anticoagulants, anti-f2-glycoprotein-1, and anti-cardiolipin (111,
112). aPL is known to promote thrombosis by activating endothelial
cells, monocytes, and platelets. Several mechanisms contribute to
the release of NETs in APS. Anti-B2GP1 antibodies recognize
B2GP1 bound to the surface of neutrophils, leading to the
upregulation of adhesion molecules PSGL-1 and Mac-1 (113).
This enhances their adherence to the endothelium. Subsequently,
under the influence of this endothelial adhesion, TLR4 signaling,
and potential interferon stimulation, APS neutrophils become
activated and release ROS and NETs (114). Furthermore, anti-
NETs antibodies present in APS may impair the clearance of NET's
by inhibiting circulating DNase, preventing their effective
degradation (115, 116). Studies have found that NETs play a key
role in the involvement of platelets and neutrophils in the
formation, stabilization, and growth of peripheral and coronary
thrombosis (117). In patients with APS, increased NETs release is
associated with autoimmunity and inflammation, driven by stimuli
such as immune complexes, autoantibodies and complement
activation (118). Seminal work by Yalavarthi et al. showed that
IgG from APS patients stimulates NETosis in control neutrophils
via mechanisms dependent on ROS and TLR4 signaling (119, 120).
Moreover, impaired degradation of NETs—due to DNase inhibitors
or anti-NET antibodies—further contributes to NET's persistence
and thrombotic risk (121). Inhibition of NETSs release may have
potential benefits in patients with APS.

Experimental studies have demonstrated that serum and
purified IgG isolated from patients with APS can induce
neutrophils to release NETs (122). Furthermore, inhibition of
ROS production or blockade of TLR4 signaling has been shown
to reduce NET formation (123). In an animal model of APS,
administration of patient-derived IgG was associated with
increased thrombosis; conversely, degradation of NET's via DNase
I treatment or depletion of neutrophils significantly attenuated
thrombotic events (124). These findings suggest that modulating
NETs formation or enhancing their clearance may represent a
promising therapeutic strategy for APS.

3.7 NETs and T1D

TI1DM is an autoimmune disease characterized by destruction
of islet B cells, characterized by elevated blood glucose levels, often
accompanied by absolute lack of endogenous insulin (125).
Although the pathogenesis of TIDM is unknown, physiologic
B cell death is a predisposing factor in the development of the
disease through recruitment and activation of neutrophils, which
penetrate the pancreas. In the pancreas, neutrophils can release
CRAMP, pDCs can be induced to produce interferons alpha (126).
The interaction between immune cells is necessary to induce a
diabetic T cell response that subsequently leads to the development
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of TIDM (127). In addition, interactions between neutrophils and
other non-immune cells, such as platelets in the blood or vascular
endothelial cells, are thought to play an important role in the
microvascular and macrovascular complications of diabetes. The
number of circulating neutrophils decreased in TIDM patients and
high-risk subjects before symptoms. Previous studies have shown
that neutrophils infiltrate the pancreas before onset and form NET's
within it, exhibiting strong pro-inflammatory biological activity
(128). NETs is an important link for neutrophils to participate in
the occurrence and development of TIDM, T1DM neutrophils
express high levels of PAD4 and produce more NETs. In human
T1DM, reduced circulating neutrophils and elevated NETs
markers (e.g., NE, PR3, CitH3) correlate with autoantibody levels
and beta cell loss (129). NETs and histones directly damage human
islets in vitro, an effect reversible with polyanions like Mcbs
(130).In the serum of children 10 days after TIDM onset, the
levels of NETs, mtDNA and nuclear DNA in peripheral blood were
higher than those in healthy children, and TIDM serum could
induce normal neutrophils to form NETs (131). However, some
studies have found that the levels of NE and PR3 in T1DM subjects
decreased significantly, especially in the subjects within three years
after diagnosis (132). The levels of NE and PR3 were correlated
with the absolute neutrophil count. This may reflect disease stage-
dependent changes in neutrophil activity. In the study of TIDM,
non-obese diabetic (NOD) mice can spontaneously be T1DM,
which is often used to study the pathogenesis and intervention of
T1DM (133). You et al. found that the formation of PAD4
dependent NETs is involved in the aggravation of intestinal
barrier dysfunction, the production of autoantibodies and the
activation of intestinal autoimmune T cells in DSS-induced
colitis and PAD4 knockout experiments in NOD mice, and then
these cells migrated to pancreatic lymph nodes to cause injury
(134). Neutrophils also promote early autoimmunity in NOD mice
via pDC activation and IFN production (135). In female NOD
mice, physiological B cell death induced the recruitment and
activation of B-la cells, neutrophils and plasma cell-like
dendritic cells (pDC) to the pancreas (136). Activated Bmurla
cells secrete double-stranded DNA-specific IgG and activate
neutrophils to form NETs. This DNA-specific IgG activates
pDCs through Toll-like receptors, resulting in the production of
IFN-o in islets and the formation of TIDM (137). Notably, PAD4
inhibition prevents diabetes in NOD mice, underscoring the role of
NETosis (138). NETs impair wound healing and are more
pronounced in TIDM, and inhibiting NETs may improve wound
healing in diabetes and reduce NETs-driven chronic
inflammation (139).

In T1IDM, although the level of NETS is uncertain, the presence
of NETs directly or indirectly activates innate and adaptive immune
responses in the pancreas, damages islet § cells, and participates in
the occurrence and development of T1IDM. Accumulating evidence
from humans and NOD models indicates NETs contribute to islet
autoimmunity through cytotoxicity and immune activation.
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Therefore, the study of NETs may be one of the directions in the
treatment of TIDM.

4 Drug intervention in NETs to treat
autoimmune diseases

A variety of drugs have been used to treat autoimmune diseases
in clinic, and their mechanism of action has been gradually
explored. Studies have found that a variety of drugs may act on
NETs to play a therapeutic.

4.1 NE and MPO inhibitors

NE and MPO are key synergistic molecules in the process of
NETSs formation, as well as core functional components of NETs
structure. They collectively participate in immune defense and
mediate the amplification of inflammation and tissue damage
during the pathogenesis of diseases. Therefore, inhibitors
targeting NE and MPO have emerged as potential therapeutic
strategies, some of which have advanced into clinical research.

Among NE inhibitors, Sivelestat is a selective, reversible, and
competitive small-molecule inhibitor that suppresses NE enzymatic
activity by binding to its active site, thereby reducing NETs
formation and mitigating inflammatory responses and tissue
injury (140). Studies have shown that early administration of
Sivelestat in diabetic mouse models significantly reduces the
incidence of spontaneous insulitis and autoimmune diabetes
(141). Furthermore, this compound has demonstrated therapeutic
potential in various animal models of acute respiratory distress
syndrome, sepsis, non-alcoholic steatohepatitis, and acute lung
injury. Other NE inhibitors that have entered clinical stages
include POL6014, PHP-303, Elafin, CHF6333, and alvelestat, all
of which inhibit NE activity through a similar competitive
mechanism (142-145). On the other hand, MPO inhibitors such
as PF-1355 can significantly reduce MPO activity in mouse plasma,
thereby inhibiting neutrophil recruitment and vascular edema, and
have been used in basic research on immune complex-mediated
vasculitis (146). In addition, ceruloplasmin has been shown to
decrease plasma MPO activity in mice and inhibit the production
of MPO-derived oxidants during inflammation, demonstrating
protective effects (147). Recent studies have also indicated that
ABAH reduces MPO-dependent hepatocyte death in a non-
alcoholic steatohepatitis model, decreases MPO activity in a
mouse model of acute stroke, and inhibits MPO activity in
sputum from pulmonary cystic fibrosis (148-150). Similarly,
compounds such as INV-315, PF-0628999, and AZM198 alleviate
inflammatory responses by inhibiting MPO activity (151, 152).

In summary, NE and MPO inhibitors exhibit promising
therapeutic effects in various disease models by regulating NET's
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formation and neutrophil-mediated inflammatory responses. Some
compounds have progressed to clinical research stages, offering new
directions for the treatment of related inflammatory and
autoimmune diseases.

4.2 DNase |

DNA serves as the primary structural framework of NETs.
DNase I is an enzyme capable of degrading DNA, effectively
breaking down the DNA component within NETs, thereby
reducing NETs formation (153). Although the early use of
recombinant human DNase I (rhDNase I) in the treatment of
SLE demonstrated a favourable safety profile, its clinical efficacy was
limited; nevertheless, it has been approved for the treatment of
cystic fibrosis (CF) (154). Recently, a novel bioenzyme with dual
DNasel/DNaselL3 activity has shown significant effects in murine
lupus models, effectively suppressing autoantibody production and
resisting neutralization by autoantibodies in SLE patients (155). In
RA patients, DNase I can also inhibit neutrophil NET generation
and mitigate NET-induced thrombosis and endothelial damage
(79). On the other hand, advances in production technology have
provided crucial support for the clinical application of DNase I.
Recent studies indicate that the use of a Pichia pastoris expression
system enables successful recombinant production of active human
DNase I (156). This breakthrough is expected to substantially
reduce manufacturing costs and lay the foundation for large-scale
applications in various NET-related diseases.

4.3 Targeted IFN preparations

Therapeutic targeting of IFN signaling can reduce NET-induced
inflammation and autoimmune responses. For instance, both the
JAK inhibitor tofacitinib and the type I IEN inhibitor anifrolumab
have been demonstrated in clinical studies to lower NETs levels in
SLE patients and improve their clinical symptoms (157, 158).

Current biologic agents for SLE treatment primarily consist of
monoclonal antibodies that directly target either IFN-o. or the type I
IFN receptor (IFNAR). Sifalimumab and rontalizumab are two
anti-IFN-o monoclonal antibodies. Among them, sifalimumab has
been shown to significantly reduce SLE disease activity, whereas
rontalizumab did not demonstrate notable efficacy—the underlying
mechanisms remain unclear (159, 160). Anifrolumab, an anti-
IFNAR monoclonal antibody, has been approved by the U.S.
FDA and the European Union for the treatment of moderate to
severe SLE (161). Additionally, QX006N is another monoclonal
antibody targeting IFNARI. It specifically binds to the SD3 domain
of IFNARI, creating steric hindrance that prevents the binding of
type I IFN ligands and inhibits the assembly of the IFN/IFNAR1/
IFNAR2 complex (162). This agent is currently under investigation
for SLE therapy.
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4.4 PAD4 inhibitor

PAD4 serves as a nuclear promoter that mediates citrullination
of histone H3 in neutrophils, facilitating chromatin decondensation
and promoting NET formation. Studies have shown that inhibiting
PAD4 to suppress NETosis confers protective effects in mouse
models of lupus, diabetes, and atherosclerosis without significant
adverse events. Cl-amidine inhibits the citrullination of histone H3
by irreversibly binding to PAD4, thereby restraining NET
formation (163).Research indicates that Cl-amidine alleviates
endothelial dysfunction in SLE mice and reduces the deposition
of immune complexes in renal tissues (164). Furthermore,
Cl-amidine suppresses the production of NETs and inflammatory
cytokines by reducing PAD4 levels in the joint tissues of arthritic
mice, thereby ameliorating joint edema (165). Meanwhile, in vivo
studies demonstrate that GSK484, a reversible PAD4 inhibitor, also
inhibits NET release and exerts immunomodulatory effects. It
enhances radiosensitivity in colorectal cancer by promoting DNA
double-strand breaks and suppresses NET formation both in vivo
and in vitro (166). Administration of GSK484 in CIA mice reduces
the expression of synovial MPO, NE, and PAD4, decreases NET
generation, attenuates arthritis severity, and inhibits macrophage
infiltration, supporting its therapeutic potential (167). In various
lupus models, PAD inhibitors can reduce NETs formation while
protecting the vasculature, kidneys, and skin from damage. The
selective PAD4 inhibitor JBI-589 blocks NET formation and PAD4-
dependent citrullination; oral administration in mouse models
reduces the incidence and severity of arthritis and inhibits ACPA
production (168).

4.5 ROS remover

ROS are essential for the formation of NETs. A range of ROS
scavengers have demonstrated therapeutic potential in autoimmune
diseases. As a scavenger of ROS, N-acetylcysteine (NAC) has been
observed to reduce NET generation upon treatment (169). In two
clinical studies, NAC administration improved disease outcomes in
SLE patients, though related mechanistic investigations remain at
an early stage (170). Moreover, MitoTempo, a specific scavenger of
mitochondrial ROS, prevented spontaneous NETosis and reduced
disease severity in a lupus mouse model (171). Ethyl pyruvate
attenuates NET formation and sepsis-induced intestinal injury by
inhibiting ROS-mediated activation of MAPK/ERK1/2 and p38
MAPK (172). Additionally, other agents targeting ROS also
exhibit efficacy. For instance, diphenyleneiodonium demonstrates
significant anti-tumor activity in MYCN-amplified neuroblastoma
by targeting MYCN-induced mitochondrial alterations and ROS
production, thereby inducing apoptosis and suppressing tumor
growth (173).
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4.6 Traditional Chinese medicine
compounds

Traditional Chinese medicine (TCM) represents a precious
treasure endowed by nature and is increasingly demonstrating its
therapeutic value. Numerous compounds derived from TCM that
are currently under preclinical investigation have shown potential
for targeting NETs. For instance, triptolide has been found to
inhibit NET generation in vitro independently of cellular ROS
levels (174). In a murine model of RA, it suppressed neutrophil
autophagy, NET formation, tissue damage, and inflammation (175).
Similarly, tetrandrine exhibited therapeutic effects in an RA model
by modulating neutrophil-associated inflammatory responses and
inhibiting NET formation (176). Quercetin was shown to reduce
neutrophil infiltration, plasma cytokine levels, and autophagy-
dependent NET formation (177). Andrographolide decreased
joint levels of CXCL2, MPO, and NE, while also reducing
neutrophil infiltration in ankle tissues (178). The classical TCM
formula Simiao Yong’an Tang inhibited neutrophil migration,
promoted apoptosis, and reduced ROS production and NET
formation in vitro (179). Additionally, emodin alleviated arthritis
in AA mice by diminishing neutrophil infiltration, inhibiting the
release of pro-inflammatory cytokines (IL-6, IFN-y, and TNF-o),
suppressing autophagy-mediated NETosis, and promoting
neutrophil apoptosis (180). Furthermore, our recent study
demonstrated that Ermiao San and its primary active components
(phellodendrine and atractylenolide-I) exert therapeutic effects
against RA by suppressing PAD4 to reduce the formation of
NETs (181).

5 Conclusion

The burgeoning field of NETosis has fundamentally redefined
our understanding of autoimmune pathogenesis, establishing NET's
not merely as inflammatory effectors but as central orchestrators
that bridge innate and adaptive immunity. NETs contribute to
autoimmunity through multiple mechanisms: they serve as a source
of autoantigens, amplify inflammatory cascades, activate innate and
adaptive immune pathways via Toll-like receptors, inflammasomes,
and type I interferon responses, and directly cause tissue damage
through cytotoxic components. Their involvement across various
autoimmune diseases, including SLE, RA, APS, and T1DM,
highlights a shared pathological mechanism rooted in
dysregulated NET formation and clearance. Therapeutic strategies
targeting NETs, such as inhibitors (e.g., PAD4 inhibitors,
neutrophil elastase inhibitors, myeloperoxidase inhibitors, reactive
oxygen species (ROS) inhibitors), DNase-based interventions, and
biologics targeting interferon signaling pathways, have
demonstrated significant potential in both preclinical and clinical
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studies. Additionally, multi-omics-driven biomarker discovery and
exploration of the microbiome-NET axis hold promise for
improving diagnosis, subtyping, and personalized treatment. The
integration of advanced technologies—such as single-cell analysis,
real-time NET imaging, and neutrophil engineering—will be crucial
to translate these mechanistic insights into precise clinical
interventions, ultimately revolutionizing the management of
autoimmune diseases.
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Glossary
AAV
LL-37
ACPA
MAPK
aggNETs
MMP8
ANCA
MMP9
aPL
MPO
aPL
MSU
APS

NE
BAFF
NETosis
CCL3
NETs
CF
NF-«xB
CRAMP
NLRP3
CXCL10
NOD
DAMPs
NOX
DNase
PAD4

FLSs

antineutrophil cytoplasmic antibody -associated vasculitis
Cathelicidin Antimicrobial Peptide

anti-citrullinated protein antibodies
mitogen-activated protein kinase

aggregated NET's

matrix metalloproteinase-8

antineutrophil cytoplasmic antibody

matrix metalloproteinase-9

antiphospholipid antibodies

myeloperoxidase

antiphospholipid antibodies

monosodium urate

antiphospholipid syndrome

neutrophil elastase

B-cell Activating Factor

Neutrophil Extracellular Traposis

C-C chemokine ligand 3

Neutrophil extracellular traps

cystic fibrosis

Nuclear factor kappa-light-chain-enhancer of activated B cells
Dopamine-Cathelicidin-related antimicrobial peptide
the Pyrin Domain Containing Protein 3

C-X-C motif chemokine ligand 10

non-obese diabetic

hazardous associated molecular patterns
nicotinamide adenine dinucleotide phosphate oxidase
deoxyribonuclease

peptidyl arginine deiminase 4
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