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Neuroinflammatory processes are increasingly recognized as central to the

pathophysiology of diverse central nervous system (CNS) disorders, including

major depressive disorder (MDD), Alzheimer’s disease (AD), and Parkinson’s

disease (PD). Microglia, the resident immune effector cells of the CNS, are key

regulators of neuroimmune responses and engage in bidirectional communication

with the serotonergic system. Activation of microglia toward a pro-inflammatory

phenotype can disrupt serotonergic neurotransmission by altering the expression

and function of the serotonin transporter (SERT) andmodulating downstream 5-HT

receptor signaling pathways. Conversely, serotonergic neurotransmission—

mediated through receptor subtypes such as 5-HT1A, 5-HT2A/2B, and 5-HT7—can

regulate microglial phenotypic polarization and cytokine production, thereby

influencing the inflammatory milieu and CNS homeostasis. This review

synthesizes current evidence on the dynamic interplay between microglial

activation states and serotonergic signaling, emphasizing their mutual

contributions to disease onset and progression. Furthermore, we examine the

therapeutic potential of targeting this neuroimmune interface using

pharmacological strategies, including selective serotonin reuptake inhibitors

(SSRIs), anti-inflammatory agents, and receptor-specific ligands. Clarifying this

bidirectional crosstalk may inform the development of innovative interventions for

neuroinflammation-associated neuropsychiatric and neurodegenerative disorders.
KEYWORDS

microglial activation states, serotonin (5-HT), serotonin transporter (SERT),
neuroinflammation, neuropsychiatric disorders
1 Introduction

Neuroinflammation is increasingly recognized as a central pathogenic mechanism

underlying a broad spectrum of central nervous system (CNS) disorders, including major

depressive disorder (MDD), Alzheimer’s disease (AD), and Parkinson’s disease (PD) (1–3).

Among the primary cellular mediators of neuroinflammatory responses, microglia—the
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resident immune cells of the CNS—exert a dual role in preserving

neural homeostasis and driving disease progression, depending on

their activation state (4).The dynamic polarization of microglia

between pro-inflammatory (M1-like) and anti-inflammatory (M2-

like) phenotypes has been shown to critically influence neuronal

survival, synaptic integrity, and behavioral outcomes (5). Recent

studies have further revealed that microglial activation not only

sustains neuroinflammatory cascades but also interacts with key

neurotransmitter systems involved in emotion regulation and

cognitive performance (6).

The serotonergic system, classically associated with mood

regulation and higher-order cognitive functions, has emerged as a

crucial modulator of neuroimmune interactions (7, 8). Serotonin (5-

hydroxytryptamine, 5-HT) exerts immunoregulatory effects on

microglia via subtype-specific receptor signaling pathways, while

activated microglia release pro-inflammatory cytokines that can

disrupt multiple aspects of serotonergic signaling—including

alterations in serotonin transporter (SERT) activity as well as

changes in 5-HT receptor expression, localization, and downstream

signaling dynamics (9–11). This bidirectional interplay between

serotonergic pathways and microglial function forms a regulatory

axis that is essential for maintaining CNS homeostasis and is

increasingly implicated in the pathogenesis and progression of both

neuropsychiatric and neurodegenerative disorders (12, 13).

This review integrates current findings on the reciprocal

regulation between microglial activation and serotonergic

pathways, with a focus on how microglial phenotypic states

influence both SERT and 5-HT receptor signaling, and how

serotonergic receptors—such as 5-HT1A, 5-HT2A/2B, and 5-HT7—

modulate microglial inflammatory responses. We further discuss

the implications of this neuroimmune crosstalk in disease-relevant

models and highlight emerging pharmacological strategies that

target this interface as potential therapeutic approaches for MDD,

AD, and PD.
2 Activation of Microglia and
Neuroinflammation

Microglia, the primary immune effector cells of the CNS, play a

vital role in initiating and regulating neuroinflammation (14). Their

activation is typically triggered by various danger-associated

molecular patterns (DAMPs) and pathogen-associated molecular

patterns (PAMPs) (15). These molecular cues are recognized by

pattern recognition receptors (PRRs) on the surface of microglia,

activating downstream signaling cascades that lead to phenotypic

changes (16). This biochemical alteration leads to the liberation of

pro-inflammatory cytokines and mediators that facilitate the

initiation and advancement of neuroinflammatory processes (17).
2.1 Role of pattern recognition receptors

Microglia possess a wide array of PRRs, such as Toll-like

receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like
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receptors (RLRs), which enable them to detect specific molecular

patterns and initiate innate immune responses (18).

TLRs, particularly TLR4, are among the most well-

characterized PRRs in microglia. TLR4 can detect ligands like

lipopolysaccharide (LPS) and high-mobility group box 1

(HMGB1) (19). Upon activation, TLR4 signals through both

MyD88-dependent and -independent pathways, leading to the

activation of Nuclear factor kappa B (NF-kB) and Mitogen-

Activated Protein Kinase (MAPK) pathways. This results in the

transcription and release of pro-inflammatory cytokines such as

Tumor necrosis factor-alpha (TNF-a), interleukin-1 beta (IL-1b),
and interleukin-6 (IL-6) (20). For instance, in Alzheimer’s disease

(AD) models, amyloid-beta (Ab) oligomers activate TLR4 on

microglia, significantly increasing the production of IL-1b and

TNF-a and exacerbating neuronal damage (21).

NLRs are intracellular PRRs that detect bacterial peptidoglycans

and cellular stress signals (22). Among them, the NLRP3

inflammasome is particularly crucial. Its activation involves two

distinct steps: first, a priming signal such as LPS or TNF-a induces

the NF-kB -mediated expression of NOD-like receptor family pyrin

domain containing 3 (NLRP3) and pro-IL-1b; second, an activating

signal like ATP or Ab prompts the assembly of the inflammasome

complex, leading to caspase-1 activation and the maturation and

release of IL-1b and IL-18 (23). Recent findings strongly associate

NLRP3 hyperactivation with the development of several

neuropsychiatric conditions (24).
2.2 Microglial functional states and
phenotypic diversity

Microglial polarization plays a central role in mediating

neuroinflammatory responses under both physiological and

pathological conditions (25). Depending on the surrounding

microenvironment, microglia can adopt different activation states

that influence their function in either promoting or resolving

inflammation (26). Traditionally, microglial phenotypes have

been categorized into two opposing states: the pro-inflammatory

M1 phenotype and the anti-inflammatory M2 phenotype. This

classification, though useful in many experimental settings, has

limitations when applied to the complexity of CNS disorders.

M1 microglia are activated by signals such as interferon-gamma

(IFN-g), LPS or TNF-a, and are distinguished by increased

expression of pro-inflammatory cytokines (e.g., IL-1b, IL-6, TNF-
a) and chemokines (e.g., CCL2, CXCL10) (26). These cells are

essential for pathogen phagocytosis and clearance of cellular debris;

however, their hyperactivation can induce neurotoxicity (27). M1

microglia contribute to neuronal apoptosis and synaptic

degeneration by releasing pro-inflammatory mediators such as IL-

1b, TNF-a, and IL-6, which can exert neurotoxic effects when

persistently elevated (28). For instance, in ischemic stroke models,

M1 microglia exacerbate injury via TNF-a secretion (29).

Additionally, they produce reactive oxygen species (ROS) and

nitric oxide (NO) through enzymes such as NADPH oxidase
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(NOX) and inducible nitric oxide synthase (iNOS), leading to

oxidative stress and mitochondrial dysfunction in neurons (30).

Conversely, M2 microglia are induced by signals including

interleukin-4 (IL-4), interleukin-10 (IL-10), or transforming

growth factor-beta (TGF-b), characterized by high expression of

anti-inflammatory cytokines (e.g., IL-10, TGF-b) and neurotrophic

factors (e.g., brain-derived neurotrophic factor (BDNF), insulin-like

growth factor 1 [IGF-1]) (31). M2 microglia are pivotal in tissue

repair and resolution of neuroinflammation, mediating these effects

through the secretion of anti-inflammatory mediators and

promoting regenerative processes. For example, in spinal cord

injury models, M2 microglia facilitate axonal regeneration via

IGF-1 secretion (32). They also maintain CNS homeostasis by

phagocytosing cellular debris and pathogens.

Although the M1/M2 classification has been instrumental in

shaping our understanding of microglial responses, emerging

research has made it increasingly clear that microglial activation

is far more fluid, heterogeneous, and context-dependent than

previously appreciated. The widely used “resting” and “activated”

descriptors have been challenged, as microglia remain metabolically

and functionally active even under homeostatic conditions. They

continuously monitor their environment, engaging in synaptic

remodeling, phagocytosis, and immune surveillance. Thus,

microglia do not transition from a static “resting” state to an

“activated” one upon injury or disease, but rather shift across a

dynamic spectrum of states in response to region-, age-, sex-, and

stimulus-specific cues (33).

Advances in single-cell RNA sequencing and multi-omics

technologies have revealed diverse microglial populations that

cannot be fully captured by binary categories. For instance,

microglia rarely exhibit exclusive M1 or M2 marker expression in

vivo, and often co-express both pro- and anti-inflammatory genes.

Distinct microglial states such as disease-associated microglia

(DAM), interferon-responsive microglia (IRM), lipid-droplet

accumulating microglia (LDAM), and ARG1+ microglia have

been identified under different pathological and developmental

contexts (33). DAM, first described in Alzheimer’s disease

models, are characterized by downregulation of homeostatic

markers like P2RY12 and CX3CR1, and upregulation of Trem2,

Apoe, Axl, and Spp1. Their emergence depends on TREM2

signaling and is associated with amyloid plaque interaction and

phagocytic activity (34). However, DAM are not a universal

signature of disease; their transcriptional features vary across

species, brain regions, and disease models.

Nonetheless, the M1/M2 framework remains valuable for

understanding how microglial polarization influences

neuroinflammation. The polarization states of microglia are

highly plastic and are modulated by the neuroimmune

microenvironment. During early stages of Alzheimer’s disease,

microglia predominantly exhibit an M2 phenotype, contributing

to Ab clearance; however, as pathology advances, a phenotypic shift

toward M1 occurs, intensifying neuroinflammation and neuronal

injury (35). Furthermore, epigenetic mechanisms, including DNA

methylation and histone modifications, influence microglial
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phenotypic transitions, adding an additional regulatory layer to

their functional states (36).
2.3 Key mediators of neuroinflammation

During neuroinflammatory processes, microglia secrete a

diverse array of inflammatory mediators that are integral to

maintaining CNS homeostasis and mediating responses to neural

injury. These mediators predominantly encompass pro-

inflammatory cytokines, anti-inflammatory cytokines, chemokines

and ROS, collectively constituting a complex regulatory network

that orchestrates neuroimmune responses. Sustained release of

these mediators may result in chronic neuroinflammation,

thereby contributing to the pathogenesis and progression of

neuropsychiatric and neurodegenerative disorders (37).

Pro-inflammatory cytokines are proteins extensively secreted by

activated microglia, chiefly including TNF-a, IL-1b, and IL-6.

These cytokines are pivotal in initiating and amplifying

neuroinflammatory cascades. TNF-a functions as a central

inflammatory mediator, primarily activating the NF-kB signaling

pathway to induce the expression of additional pro-inflammatory

factors and augment microglial activation (38). Moreover, TNF-a
interacts with its receptor TNFR1 to induce neuronal apoptosis,

thereby exacerbating neuronal degeneration in neurodegenerative

conditions (39). IL-1b is processed and released following NLRP3

inflammasome activation in response to pro-inflammatory stimuli,

promoting microglial chemotaxis and enhancing phagocytic

activity, while also contributing to neuronal injury under

pathological conditions (40). In Alzheimer’s disease models, IL-1b
expression is upregulated following Ab deposition and exacerbates

neuroinflammation by amplifying glial reactivity and cytokine

release, thereby accelerating disease progression (41). IL-6

displays pleiotropic effects, mediating pro-inflammatory signaling

in acute neuroinflammation, while potentially exerting

neuroprotective or anti-inflammatory roles under certain chronic

or regulatory conditions. Evidence suggests that IL-6 activates the

Janus kinase–signal transducer and activator of transcription (JAK/

STAT) pathway to support neuronal survival; however, its

persistent overexpression may lead to excessive glial proliferation

and heightened neuroinflammation (42).

In the modulation of neuroinflammatory responses, anti-

inflammatory cytokines such as IL-4, IL-10, and TGF-b serve to

attenuate excessive inflammatory activity, facilitate neural tissue

repair, and promote microglial polarization toward the M2

phenotype. IL-4 is a key regulator of M2 microglial polarization,

activating the Signal Transducer and Activator of Transcription 6

(STAT6) pathway to upregulate anti-inflammatory gene expression,

including Arg-1 and CD206 (43). IL-4 exerts neuroprotective effects

during post-injury recovery by reducing neuronal damage and

enhancing synaptic plasticity. IL-10, predominantly produced by

microglia and astrocytes, inhibits NF-kB and MAPK signaling

pathways, thereby decreasing pro-inflammatory cytokine

production and supporting tissue regeneration (44). In various
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neuroinflammatory models, IL-10 has demonstrated efficacy in

reducing inflammation and improving neurological outcomes.

TGF-b is a multifunctional cytokine that plays a vital role in

regulating neuroinflammation and promoting tissue repair. It

activates the Smad signaling pathway to suppress inflammatory

cytokine release and facilitate blood-brain barrier repair (45).

Additionally, TGF-b significantly influences microglial activation

states, limiting excessive M1 polarization and promoting a

neuroprotective M2 phenotype.

Chemokines constitute a class of small molecular cytokines

capable of modulating the chemotactic migration of immune

effector cells and directing the trafficking and targeted activation

of microglia within neuroinflammatory milieus. The C-C

chemokine subfamily (CCL) and the C-X-C chemokine subfamily

(CXCL) represent the predominant chemokine subclasses within

the CNS (46). CCL2, also designated as monocyte chemoattractant

protein-1 (MCP-1), functions as a principal chemotactic mediator

in the CNS, effectively recruiting monocytes and microglia to

inflammatory loci. In ischemic stroke models, CCL2 expression is

markedly upregulated, facilitating inflammatory cell infiltration and

aggravating neural tissue injury (47). CX3CL1, primarily expressed

by neurons, interacts with its receptor CX3CR1, predominantly

localized on microglia. The CX3CL1-CX3CR1 signaling axis is

integral to maintaining microglial homeostasis and modulating

their activation states (48). Disruption of CX3CR1 signaling

results in microglial hyperactivation, thereby amplifying

neuroinflammatory responses.

Reactive oxygen species (ROS) serve as critical signaling

mediators during microglial activation and are central to

neuronal injury mechanisms. The generation of ROS

predominantly depends on mitochondrial respiratory function

and the enzymatic activity of NADPH oxidases. NOX2, the

principal source of ROS in microglia, can be activated by

inflammatory stimuli to produce superoxide anions (O2
-) and

hydrogen peroxide (H2O2) (49). Several studies have shown that

NOX2 expression is elevated in both human postmortem tissue and

animal models of depression, implicating it in microglia-mediated

oxidative stress and neuroinflammation associated with depressive

symptoms (50, 51). Mitochondria produce ROS during oxidative

phosphorylation; when mitochondrial integrity is compromised,

ROS accumulation becomes excessive, further impairing neuronal

and glial cell functions. Moreover, ROS contribute to

neurodegeneration through oxidative modifications of DNA and

proteins, thereby facilitating the progression of neurodegenerative

disorders (52).
3 Serotonin

Serotonin, also referred to as 5-hydroxytryptamine (5-HT),

functions as a vital monoaminergic neurotransmitter within the

central and peripheral nervous systems (53). Its biosynthesis

initiates with the essential amino acid L-tryptophan, acquired

through dietary intake. The biosynthetic pathway involves two

key enzymatic reactions: first, tryptophan hydroxylase (TPH)
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catalyzes the hydroxylation of L-tryptophan to produce 5-

hydroxy-L-tryptophan (5-HTP) (54). TPH exists in two isoforms:

TPH1, which is predominantly expressed in peripheral tissues such

as the gut, and TPH2, which is mainly localized in the central

nervous system. Subsequently, aromatic L-amino acid

decarboxylase (AADC) decarboxylates 5-HTP to generate

serotonin (55). Notably, approximately 90% of the body’s total

serotonin is synthesized in the gastrointestinal tract by

enterochromaffin cells and stored in platelets. In this context,

peripheral serotonin primarily regulates gut motility via the

enteric nervous system and contributes to vascular tone and

hemostasis through platelet-mediated release (56). By

comparison, serotonin in the CNS is synthesized locally by

serotonergic neurons located in the raphe nuclei of the brainstem,

where it plays crucial roles in mood regulation, cognition, and

neuroimmune signaling.

Serotonin cannot cross the blood-brain barrier (BBB) under

normal physiological conditions due to its polar nature and lack of a

specific transporter (57). Therefore, central serotonergic activity

depends on the transport of L-tryptophan across the BBB via

carrier-mediated active transport mechanisms (58). Within the

brain, L-tryptophan is converted into serotonin through a two-

step enzymatic process and subsequently stored in neuronal

synaptic vesicles. Upon neuronal depolarization and activation,

serotonin is released into the synaptic cleft, where it interacts

with postsynaptic receptors to modulate neural signaling (59).

Most released serotonin is reabsorbed into the presynaptic neuron

via the serotonin transporter (SERT). Inside the neuron,

monoamine oxidase (MAO), primarily isoforms MAO-A and

MAO-B, catalyzes the oxidative deamination of serotonin,

producing 5-hydroxyindoleacetic acid (5-HIAA). As a primary

metabolite, 5-HIAA is transported out of the CNS via active

transport mechanisms and excreted through renal pathways.

Synthesized serotonin is primarily stored in synaptic vesicles,

remaining readily available for release upon neuronal

stimulation (60).
3.1 Serotonin receptor

Serotonin exerts its effects through at least 14 receptor subtypes,

most of which belong to the G protein-coupled receptor (GPCR)

family, except for 5-HT3, which functions as a ligand-gated ion

channel (61). These receptors regulate a range of neurophysiological

processes, including mood regulation, cognitive function, sleep-

wake cycles, and appetite control, through subtype-specific

signaling mechanisms (62). In adult microglial cells, several

serotonin receptor subtypes are expressed, particularly 5-HT2A, 5-

HT2B, 5-HT5A, and 5-HT7, though their expression and roles may

vary depending on the cellular environment and disease state (63).

The 5-HT2A receptor, a member of the class A GPCR family, is

widely regarded as a key therapeutic target in neuropsychiatry (64).

Among serotonin receptor subtypes, 5-HT2A is broadly expressed

throughout the CNS, particularly within monoaminergic nuclei

such as the dorsal raphe nucleus, median raphe nucleus, and
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ventral tegmental area—regions critical for mood regulation (65). In

addition to mood regulation, 5-HT2A modulates cognitive function

by influencing glutamatergic neurotransmission, including

interactions with NMDA receptor pathways. It also engages in

crosstalk with other receptor systems, such as 5-HT1A, GABA-A,

adenosine A1, and orexin OX2 receptors (66). 5-HT2A antagonists

represent a major class of psychotropic agents and are widely used

in treating psychiatric disorders, notably through atypical

antipsychotics such as clozapine, olanzapine, and risperidone

(67). In addition to their use in schizophrenia, 5-HT2A

antagonists have been investigated as adjuncts to selective

serotonin reuptake inhibitors (SSRIs) and other antidepressant

therapies to enhance therapeutic outcomes in certain depressive

disorders (65).

The 5-HT2B receptor is a G protein-coupled receptor primarily

coupled to Gq/11 proteins, initiating diverse intracellular signaling

cascades upon activation. Upon stimulation, Gq/11 proteins

activate phospholipase Cb (PLCb) , which hydrolyzes

phosphatidylinositol 4,5-bisphosphate (PIP2) to produce

diacylglycerol (DAG) and inositol trisphosphate (IP3). These

second messengers elevate intracellular calcium levels and activate

protein kinase C (PKC) (68). Although the functional role of 5-

HT2B receptors in the CNS remains partially understood, emerging

evidence suggests that SSRIs such as fluoxetine may indirectly

influence neuroglial signaling by modulating astrocytic 5-HT2B

receptors, potentially contributing to their neurotrophic effects

(69). While some studies have suggested that microglial 5-HT2B

activation may contribute to pro-inflammatory responses under

pathological conditions (70), astrocytic 5-HT2B signaling has been

shown to enhance antioxidant capacity and stimulate the release of

neurotrophic factors, such as S100b and BDNF, supporting a

potential neuroprotective role (71). The role of 5-HT2B receptors

in neuroinflammation demonstrates considerable complexity and

exhibits variation across different cell types and pathological

conditions, indicating that their contribution to glial immune

responses is context-dependent.

The 5-HT7 receptor is abundantly expressed in brain regions

including the thalamus, hypothalamus, hippocampus, and cerebral

cortex, primarily localized to neuronal somata and dendrites. It

regulates circadian rhythms, sleep-wake cycles, and affective

behaviors (54). Upon activation, 5-HT7 receptors engage both

classical and non-canonical signaling pathways. The classical Gas-

mediated pathway activates adenylate cyclase, increasing Cyclic

adenosine monophosphate (cAMP) and activating Protein Kinase

A (PKA), which subsequently phosphorylates effectors such as

ERK1/2 and Akt (72). The non-canonical Ga12-dependent

pathway activates Rho GTPases (Rho, Rac, and Cdc42),

facilitating dendritic remodeling and synaptogenesis (73). These

pathways may also enhance BDNF signaling via modulation of

TrkB receptors, contributing to synaptic plasticity and

neuroprotection (73). Increasing evidence supports an anti-

inflammatory role for 5-HT7 receptors in the CNS. In bacterial

meningitis, 5-HT7 stimulation limited microglial overactivation and

immune cell infiltration, preserving neuronal and vascular integrity

(74). Protective effects against neuronal apoptosis and blood-brain
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barrier disruption have also been observed in Alzheimer’s disease

models. These actions are partly mediated through modulation of

glial responses (75). 5-HT7 receptors present significant therapeutic

potential for treating neuroinflammatory and neuropsychiatric

disorders through their capacity to simultaneously resolve

inflammation and provide neuroprotection.
3.2 Serotonin transporter

The serotonin transporter (SERT) is a key regulator of

serotonergic neurotransmission, mediating the high-affinity

reuptake of serotonin from the synaptic cleft back into

presynaptic terminals. This reuptake process is essential for

terminating serotonergic signaling and maintaining synaptic

homeostasis (76).

Dysregulation of SERT has been extensively implicated in the

pathophysiology of affective disorders, particularly MDD and

anxiety. Among the most extensively studied genetic variants, the

serotonin-transporter-linked polymorphic region (5-HTTLPR)

within the promoter of the SLC6A4 gene—especially the short (S)

allele—has been consistently associated with reduced

transcriptional activity, lower SERT expression, and increased

susceptibility to stress-related psychopathology (77). Importantly,

the behavioral and clinical consequences of this polymorphism are

modulated by environmental and biological factors, including sex

differences, early-life adversity, and perinatal exposure to SSRIs.

These findings reveal a complex gene–environment interaction that

influences emotional regulation and determines susceptibility to

mood disorders (78).

SERT expression is subject to multilayered regulation

encompassing transcriptional control, epigenetic modifications,

post-translational processes, and protein–protein interactions.

The SLC6A4 gene is located on chromosome 17q11.2 and is

regulated by multiple intracellular signaling pathways (79, 80).

Proinflammatory cytokines such as IL-1b and TNF-a have been

shown to enhance SERT activity via p38-mitogen-activated protein

kinase (MAPK)-dependent phosphorylation. This cytokine-

mediated modulation is both time-sensitive and cell-type specific,

and contributes to inflammation-induced alterations in

serotonergic neurotransmission (81, 82). Post-translational

mechanisms further refine SERT function and trafficking. For

example, glycogen synthase kinase-3b (GSK-3b) enhances SERT

membrane trafficking and transport activity via phosphorylation-

dependent mechanisms. Additionally, kappa-opioid receptor

ligands have been shown to modulate SERT function through

noncanonical signaling pathways, while cyclic GMP can enhance

SERT activity through mechanisms that do not involve direct

phosphorylation of the transporter (83–85). Glycosylation is also

essential for proper SERT folding, stability, and trafficking to the

plasma membrane; mutations at N-glycosylation sites can disrupt

these processes, resulting in diminished transporter function and

reduced surface expression (86). Finally, SERT interacts with several

intracellular proteins that fine-tune its surface expression and

activity. For example, syntaxin 1A, a component of the SNARE
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complex, binds to the C-terminal domain of SERT and inhibits its

transport activity by regulating its insertion into the plasma

membrane (87).
4 Crosstalk between microglial
polarization and serotonin signaling

The interplay between microglial phenotypic polarization and

serotonergic signaling is pivotal in the pathophysiology of

neuroinflammation and neuropsychiatric conditions. Microglia-

derived pro-inflammatory cytokines have been shown to

influence SERT expression. In turn, the SERT/serotonin axis

exerts a feedback effect on microglial inflammatory phenotypes

through engagement of specific 5-HT receptors. This bidirectional

neuroimmune communication is critically involved in the initiation
Frontiers in Immunology 06
and progression of both neuroinflammatory and neurodegenerative

disorders (Figure 1).
4.1 Neuroinflammation regulation of the
serotonin transporter

Activated microglia in the CNS release a spectrum of pro-

inflammatory cytokines, notably TNF-a and IL-1b, which exert

profound effects on the expression and function of the SERT.

Recent studies suggest that these cytokine–SERT interactions are

highly dynamic and regulated in a time- and cell type-

dependent manner.

During the initial phase of the neuroinflammatory response,

transient exposure to pro-inflammatory cytokines—particularly IL-

1b and TNF-a—can rapidly modulate the function of the SERT
FIGURE 1

Reciprocal regulation between neuroinflammatory signaling and serotonergic transmission mediated by microglia and neurons. Pathological stimuli
such as amyloid-b (Ab) and lipopolysaccharide (LPS) activate microglia, leading to the release of pro-inflammatory cytokines including TNF-a, IL-1b,
and IL-6. These cytokines stimulate intracellular signaling cascades such as p38 MAPK, which upregulates the expression of the serotonin transporter
(SERT) in neurons, resulting in excessive serotonin (5-HT) reuptake and decreased extracellular 5-HT availability. Meanwhile, inflammatory signals
also suppress the expression of tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme in 5-HT synthesis, further compromising serotonergic
tone. Notably, SERT is subject to complex regulation under inflammatory conditions: while cytokines can enhance its expression via MAPK activation,
Ab has been shown to exert an opposing effect by downregulating SERT, indicating complex modulation of SERT.Conversely, 5-HT released into the
synaptic cleft can act on specific receptors expressed on microglia to suppress their activation. Activation of the 5-HT1A receptor inhibits the cAMP–
PKA signaling pathway, while 5-HT2B receptor engagement promotes b-arrestin2-dependent signaling. These receptor-mediated pathways
collectively contribute to dampening microglial inflammatory responses. This bidirectional interaction reflects a dynamic feedback loop through
which inflammation alters serotonergic homeostasis, while serotonergic signaling in turn modulates microglial activation states.
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through intracellular signaling cascades. Specifically, IL-1b binding

to its receptor on serotonergic neurons activates the p38-MAPK

pathway, resulting in increased transporter affinity for serotonin

and enhanced reuptake efficiency within minutes (82). Similarly,

TNF-a has been shown to transiently increase SERT surface

expression and transport capacity via p38-MAPK signaling in

various cellular models. These rapid molecular adaptations may

lead to a temporary reduction in extracellular serotonin (5-HT)

concentrations, contributing to behavioral manifestations such as

lethargy and anhedonia (88, 89).

In contrast, models of chronic neuroinflammation—such as

transgenic AD mice exhibiting sustained microglial activation and

amyloid-b accumulation—demonstrate significantly reduced SERT

activity in both cortical and hippocampal regions. This

downregulation contributes to the serotonergic deficits commonly

observed during disease progression (12). Conversely, rodent

models of obesity-associated low-grade neuroinflammation

display increased SERT expression in the hippocampus,

accompanied by diminished serotonergic tone and attenuated

therapeutic responses to selective serotonin reuptake inhibitors

(SSRIs) such as escitalopram (90).

These findings demonstrate that SERT expression is

upregulated during the initial phases of acute inflammatory

responses and in conditions of chronic low-grade inflammation.

Conversely, SERT expression becomes downregulated in

environments marked by severe neuroinflammation. These

observations raise the possibility that in some inflammation-

associated depressive subtypes, such as post-stroke depression

(91), the limited responsiveness to selective serotonin reuptake

inhibitors (SSRIs) might, in part, reflect underlying neuroimmune

dysregulation, warranting further investigation into this

mechanistic link.
4.2 SERT/5-HT signaling feedback
regulation of neuroinflammation

Serotonin receptor subtypes play a crucial role in regulating

microglial activation within the CNS, a process that is fundamental

to the development and progression of various neuroinflammatory

and neuropsychiatric disorders. Notably, 5-HT receptors are

expressed on both microglia and astrocytes, where they influence

neuroimmune responses through distinct intracellular

signaling pathways.

Recent research highlights the anti-inflammatory and

neuroprotective roles of 5-HT1A receptor activation across various

central nervous system disorders. In a chronic glaucoma model, 8-

OH-DPAT protects retinal ganglion cells by enhancing presynaptic

GABAergic transmission through inhibition of the cAMP–PKA

signaling cascade, thereby mitigating excitotoxicity and

neuroinflammatory damage (92). Activation of the 5-HT7

receptor attenuates neuroinflammation in a neonatal mouse

model of white matter injury by reducing glial reactivity and

preserving oligodendrocyte maturation, suggesting its therapeutic

potential in protecting the developing brain from preterm-related
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damage (93). Pharmacological activation of the 5-HT2A receptor

exerts immunomodulatory effects in the central nervous system by

attenuating microglial TNF-a production and enhancing BDNF

expression, thereby facilitating a shift toward an anti-inflammatory

and neuroprotective microglial phenotype (94). The 5-HT2B

receptor plays a critical role in regulating neuroinflammation by

modulating microglial developmental programming and immune

reactivity, and its activation attenuates macrophage-driven

neuroinflammatory responses in models of neuropathic pain and

peripheral immune challenge (95, 96). Cytokines released by

activated microglia—such as IL-1a, TNF-a, and C1q—can induce

the formation of A1-type reactive astrocytes, which exhibit

diminished neuroprotective properties and may contribute to

neuronal damage (97). Activation of astrocytic 5-HT2B receptors

—for example, by fluoxetine—has been shown to block this

phenotypic transformation via b-arrest in2-dependent
mechanisms, thereby providing neuroprotection in experimental

models of depression (71).

In summary, serotonergic signaling regulates glial activity in the

CNS through receptor-specific mechanisms, shaping both

neuroinflammatory responses and neuroprotective outcomes.
5 Microglial polarization and the
interplay of 5-HT in disease
pathogenesis

Pro-inflammatory polarization of microglia is a key driver of

neuroinflammation and contributes to the pathogenesis of various

neuropsychiatric disorders. Serotonin influences these processes by

modulating microglial activation through specific receptor-

dependent pathways. Recent evidence highlights a bidirectional

relationship, whereby serotonergic signaling shapes microglial

phenotypes, and inflammatory mediators from microglia in turn

modulate components of the serotonergic system. This

neuroimmune cross-talk represents a promising target for

therapeutic strategies in psychiatric disease.
5.1 Depression

The etiology of depression is multifactorial, with the

neuroinflammatory hypothesis gaining increasing prominence in

recent years. Pro-inflammatory cytokines have been shown to

induce core depressive symptoms, including anhedonia and

reduced reward sensitivity (98). Experimental studies using

rodent models demonstrate that intraperitoneal administration of

LPS elevates central and peripheral cytokine levels, resulting in

depression-like behaviors that can be attenuated by antidepressant

treatment (99). Anti-inflammatory pharmacotherapies have also

shown efficacy in reducing depressive symptoms, both in patients

with comorbid inflammatory conditions and in those without (100).

Non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit

COX enzymes and thereby suppress the synthesis of inflammatory

mediators, have been reported to alleviate behavioral deficits
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induced by chronic unpredictable mild stress (CUMS) (101).

Microglia polarized toward the pro-inflammatory M1 phenotype

secrete large quantities of cytokines such as TNF-a, IL-1b, and IFN-
g, and their activation has been strongly linked to the

pathophysiology of depression (102). Neuroimaging studies using

positron emission tomography (PET), often combined with

computed tomography (CT) or magnetic resonance imaging

(MRI), have identified increased expression of the translocator

protein (TSPO)—a marker of microglial activation—in the

prefrontal cortex, anterior cingulate cortex, insula, and

hippocampus of individuals with depression (103, 104). Notably,

treatment with anti-inflammatory agents like minocycline has been

shown to reverse these behavioral abnormalities and normalize

microglial phenotypic imbalance, supporting the role of

neuroinflammation in depression pathogenesis (105, 106).

The monoamine hypothesis remains a foundational framework

for understanding depression, proposing that mood disturbances

are driven by deficits in serotonergic, dopaminergic, and

noradrenergic neurotransmission—particularly reduced serotonin

in the prefrontal cortex, dopamine in the nucleus accumbens, and

norepinephrine in limbic regions (107, 108). Consistent with this,

neuroimaging studies have identified reduced activity and synaptic

density in the dorsolateral prefrontal cortex (DLPFC) among

patients with MDD (109, 110). Emerging evidence now points to

a neuroimmune component, suggesting that dysfunction of

astrocytic potassium channels and aquaporin-4 (AQP4) may

disturb ion homeostasis, enhance neuronal excitability, and

promote microglial polarization toward a pro-inflammatory M1

phenotype (111, 112). Inflammatory activation of glial cells leads to

excess glutamate release, which may further disrupt prefrontal-

limbic connectivity and dampen serotonergic transmission,

providing a mechanistic link between neuroinflammation, glial

dysfunction, and impaired 5-HT signaling in depression (113,

114). Moreover, diminished serotonergic activity may also be

mediated by neuroinflammatory processes. Pro-inflammatory

cytokines such as IL-1b and IL-6 can upregulate indoleamine 2,3-

dioxygenase (IDO) activity, diverting tryptophan metabolism

toward the kynurenine pathway. This results in the accumulation

of neurotoxic metabolites, including quinolinic acid and kynurenic

acid, which have been shown to impair neuronal function and

reduce serotonin synthesis (115, 116). These findings suggest that

M1-polarized microglia may contribute to serotonergic deficits in

depression by both direct and indirect mechanisms.

Microglial activation is a central component of the

neuroinflammatory processes implicated in depression and has

been shown to modulate both the function and expression of the

SERT. Pro-inflammatory cytokines released by activated microglia

—particularly TNF-a, IL-1b, and IL-6—can regulate SERT via post-

translational modifications and transcriptional mechanisms,

thereby disrupting serotonergic neurotransmission within the

CNS. Recent studies suggest that during acute inflammatory

responses—such as transient exposure to TNF-a or IL-1b—SERT

activity may be upregulated through p38 - MAPK -mediated

phosphorylation, resulting in enhanced serotonin reuptake and a

temporary reduction in synaptic 5-HT availability (89). This
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mechanism has been linked to behavioral phenotypes typical of

early-stage depression, including anhedonia and motivational

deficits. Animal models exposed to CUMS exhibit pronounced

microglial activation in the prefrontal cortex and hippocampus,

accompanied by region-specific changes in SERT expression (117).

Some studies report SERT upregulation in the hippocampus under

inflammatory conditions, while others describe reduced transporter

availability in regions such as the amygdala (118).

Current pharmacological treatments for depression, including

SSRIs and SNRIs, have been shown to modulate microglial activity

and attenuate neuroinflammatory cascades. These agents suppress

the production of pro-inflammatory mediators such as NO and

ROS, thereby mitigating neuroinflammatory responses (119, 120).

SSRIs primarily exert their antidepressant effects by inhibiting the

SERT, thereby increasing synaptic serotonin concentrations (121–

123). Elevated 5-HT levels enhance serotonergic neurotransmission

and provide negative feedback on microglial cytokine release,

including TNF-a and IL-1b (124, 125). In addition, SSRIs have

been shown to promote neuroplasticity, in part through the

upregulation of BDNF (126). Recent studies highlight the critical

role of microglial polarization in mediating antidepressant

responses. For instance, fluoxetine has been shown to inhibit the

formation of neurotoxic A1 astrocytes by activating astrocytic 5-

HT2B receptors via a b-arrestin2-dependent pathway in mouse

models of depression (71). Given that 5-HT2B receptors are also

expressed on microglia, it is plausible that SSRIs may exert direct

anti-inflammatory effects on these cells. Similarly, fluvoxamine has

been reported to induce a phenotypic shift in microglia from a pro-

inflammatory M1 state to an anti-inflammatory M2 state in models

of traumatic brain injury (127), although the precise mechanisms

remain to be fully elucidated. Importantly, the interaction between

the serotonergic system and neuroinflammation is bidirectional.

While serotonergic pharmacotherapies can suppress microglial

activation, inflammatory processes may simultaneously disrupt

serotonergic homeostasis. Inflammation-induced activation of the

kynurenine pathway depletes tryptophan—the precursor of

serotonin—thereby reducing central 5-HT synthesis. Anti-

inflammatory agents such as minocycline and NSAIDs have

demonstrated the ability to restore serotonergic tone by elevating

5-HT levels and, in certain contexts, reducing aberrantly

upregulated SERT expression under inflammatory conditions (128).
5.2 Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder primarily characterized by age-related cognitive decline

and memory impairment. Its hallmark neuropathological features

include the accumulation of extracellular Ab plaques and

intracellular neurofibrillary tangles (NFTs) composed of

hyperphosphorylated tau protein (129). Microglia, the resident

immune cells of the CNS, respond to pathogenic stimuli such as

aggregated Ab peptides. Under physiological conditions, microglia

exhibiting an M2-like phenotype are predominantly involved in the

phagocytosis and clearance of insoluble fibrillar Ab deposits,
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thereby exerting neuroprotective effects (130). However, increasing

evidence suggests that chronic or dysregulated microglial activation

leads to a shift toward a pro-inflammatory M1 phenotype, which

contributes to neurotoxicity. M1-polarized microglia release pro-

inflammatory cytokines and other neurotoxic mediators that can

damage neurons directly or indirectly 想 by activating reactive

astrocytes with neurotoxic A1-like properties (131). Notably,

several Alzheimer’s disease (AD)-associated genetic risk variants

—including APOE e4, TREM2 R47H (rs75932628), CD33

rs3865444-C, INPP5D regulatory variants, MS4A6A locus

variants, and PLCG2 P522R (rs72824905)—are enriched in

microglia and influence their functional state (132). These

variants have been linked to microglial processes such as

activation, amyloid-b clearance, and inflammatory signaling. For

example, APOE e4 affects lipid handling and promotes a pro-

inflammatory profile (133); TREM2 R47H reduces phagocytic

capacity and impairs microglial survival (134, 135). CD33 and

INPP5D variants are associated with altered inhibitory signaling

thresholds, while the MS4A gene cluster modulates calcium

dynamics and cytokine release (135). The rare PLCG2 P522R

variant has been shown to enhance microglial immune reactivity

and is thought to confer protection. These genetic factors are

increasingly recognized as regulators of the transition from

homeostatic to disease-associated microglial phenotypes in

AD (136).

While cholinergic dysfunction has long been viewed as the

primary neurochemical deficit underlying AD, growing evidence

highlights a critical—and potentially upstream—role for

serotonergic dysregulation in disease onset and progression (137,

138). Serotonin pathways regulate cognitive functions such as

memory and learning by interacting with cholinergic,

dopaminergic, and glutamatergic systems. Receptor subtypes

including 5-HT1A, 5-HT4, 5-HT6, and 5-HT7 are abundantly

expressed in cognition-related brain regions, with 5-HT6

receptors in particular being implicated in synaptic plasticity and

cognitive enhancement (139–142). Moreover, 5-HT2B receptor

mRNA is increased in microglia within Ab plaque-enriched

regions of the cortex and hippocampus, although overall receptor

binding appears reduced (143). Ab aggregation, the hallmark

pathological feature of AD, activates microglia and triggers the

release of pro-inflammatory cytokines such as TNF-a and IL-1b.
Both animal studies and human neuroimaging data showing

reduced SERT availability in cortical regions of individuals with

mild cognitive impairment (MCI) and AD (137, 144).

Pharmacologically, serotonergic agents—particularly SSRIs—

have shown potential beyond mood regulation. Preclinical studies

suggest that SSRIs can reduce amyloid burden and microglial

activation, although clinical trials have yielded inconsistent results

in established AD (145). Nonetheless, epidemiological data indicate

that early SSRI use may delay the progression from MCI to AD

(146). Vortioxetine, a multimodal antidepressant that targets both

SERT and multiple 5-HT receptors, has demonstrated

improvements in both mood and cognitive function in AD

patients with comorbid depression (147).
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5.3 Parkinson’s disease

Parkinson ’s disease (PD) is the second prevalent

neurodegenerative movement disorder among the elderly,

characterized by tremors, motor deficits, and impairments in

balance and coordination. Pathologically, it involves the

degeneration of dopaminergic neurons within the substantia nigra

pars compacta (SNpc) and the widespread intracellular aggregation

of alpha-synuclein (a-syn) (148). The accumulation of a-synuclein
can directly induce microglial polarization toward the pro-

inflammatory M1 phenotype, thereby aggravating motor

dysfunction and expanding neuronal injury in PD (149). Multiple

preclinical investigations have demonstrated that peroxisome

proliferator-activated receptor gamma (PPAR-g) agonists facilitate
microglial shift toward the anti-inflammatory M2 phenotype,

potentially mitigating neuronal damage in PD (150). Although

dopaminergic neuronal degeneration is central to PD pathology,

impairments in serotonergic neurotransmission may also

contribute to both motor and non-motor symptomatology (151,

152). Notably, 5-HT1A receptor activation has been shown to

al lev ia te levodopa-induced dyskines ia and modulate

neuroinflammation, indicating a potential adjunctive role for

serotonergic targets in PD therapy (153, 154). Reduced SERT

availability in the raphe, assessed via SPECT imaging, has been

associated with greater tremor severity and reduced responsiveness

to dopaminergic therapy (155, 156). Therefore, serotonergic

pharmacotherapies may offer therapeutic benefits for PD patients

with resting tremors.
6 Existing drug repurposing

Repurposing clinically approved drugs for novel therapeutic

indications represents a practical and cost-efficient approach. In the

context of microglia–serotonin crosstalk, several anti-inflammatory

and antidepressant compounds have demonstrated promising

neuroimmune-modulatory effects in preclinical models. However,

rigorous validation is required before their clinical applicability can

be established.

Anti-inflammatory drugs, notably minocycline, have been

tested in animal models of depression. In chronically stressed or

LPS-challenged mice, minocycline prevented microglial activation,

reduced neuroinflammation, and alleviated depressive-like

behaviors, largely by inhibiting NF−kB signaling and promoting

hippocampal neurogenesis (157). Additionally, minocycline

showed selective inhibition of pro-inflammatory (M1) microglial

polarization via NF−kB suppression in vitro and in models of

neurodegeneration (158). Despite these neuroprotective effects,

minocycline may cause side effects such as gastrointestinal upset,

dizziness, pigment changes, and rarely, hypersensitivity or

autoimmune reactions.

Antidepressant medications, especially SSRIs like fluoxetine,

also modulate microglial activity. In LPS-stimulated BV2

microglial cultures, fluoxetine significantly inhibited production
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of TNF−a, IL−6 and NO by preventing NF−kB and p38 MAPK

activation (159). Furthermore, in stroke and neurodegeneration

models, fluoxetine boosted microglial phagocytosis and autophagy,

reducing pro-inflammatory cytokine release. Notably, at higher

doses or prolonged treatment, fluoxetine may increase oxidative

stress in microglia—suggesting dose-dependent dual effects (160).

Most current evidence stems from rodent models or in vitro

studies, which do not fully capture the complexity of human

neuroimmune interactions. Differences in microglial phenotypes,

serotonergic receptor distribution, and immune responses across

species present challenges for clinical translation (161, 162). Long-

term or off-label use of NSAIDs carries risks such as gastrointestinal

bleeding, renal impairment, and cardiovascular events (163).

Similarly, SSRIs may influence peripheral immune responses and

potentially impair host defense, particularly with chronic or high-

dose administration (164). Modulating microglial activity also

raises concerns about unintended behavioral effects, including

changes in cognition or stress adaptation (165). Inflammatory

states may further interfere with SSRI efficacy, as elevated

cytokine levels have been associated with poor antidepressant

response. In light of these factors, while drug repurposing holds

therapeutic promise, its clinical application requires careful

evaluation (166). Future studies should incorporate inflammatory

biomarkers, consider patient stratification, assess dose–response

effects, and ensure long-term safety monitoring.
7 Conclusion

The interaction between microglial activation and serotonergic

signaling represents a crucial regulatory axis in the development of

neuroinflammatory and neuropsychiatric disorders. Pro-

inflammatory cytokines released by activated microglia can

modulate the expression and functional activity of the SERT

through transcriptional, post-translational, and epigenetic

mechanisms, thereby altering serotonergic tone within the central

nervous system. In turn, serotonin receptors can influence

microglial activation states, promoting either pro- or anti-

inflammatory phenotypes and contributing to the regulation of

neuroimmune homeostasis.

This bidirectional relationship holds significant therapeutic

implications. Serotonergic agents, such as SSRIs, have been shown

to dampen neuroinflammatory responses mediated by microglia,

while certain anti-inflammatory compounds—including NSAIDs

and tetracyclines—can restore SERT expression and improve

serotonergic neurotransmission. These findings suggest a

potential dual therapeutic strategy: enhancing serotonergic

signaling to reduce inflammation and using anti-inflammatory

approaches to support serotonergic function.

To further advance understanding of this interplay, future

studies should focus on the spatial and temporal dynamics of

microglial activation, serotonergic receptor expression, and SERT

regulation across disease-relevant brain regions. Techniques such as

single-cell RNA sequencing and in vivo imaging may help clarify

how these processes evolve during disease progression and respond
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to pharmacological intervention. Targeting both microglial

reactivity and serotonergic dysregulation in a coordinated manner

may ultimately offer improved outcomes for disorders such as

major depress ive disorder , Alzheimer ’s disease , and

Parkinson’s disease.
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