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BIDpred: unraveling
B cell Immunodominance
hierarchical pattern using
statistical feature discovery
and deep learning prediction
Sungjin Choi and Dongsup Kim*

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology,
Daejeon, Republic of Korea
Knowledge of B cell immunodominance is important for designing vaccines that

may elicit effective immune responses. However, the prevalence and

characteristics of B cell immunodominance remain poorly understood. In this

study, we introduced an immunodominance score through novel data

processing methods and identified statistically significant characteristics of B

cell immunodominance at the residue and patch levels. Based on these findings,

we developed BIDpred, a B cell ImmunoDominance predictor, that learns newly

discovered features by leveraging protein language model embeddings and

graph attention network to predict the immunodominance scores. BIDpred

demonstrates superior performance in predicting immunodominance scores

compared to existing methods while maintaining competitive accuracy with

state-of-the-art methods for conventional B cell epitope prediction. To the best

of our knowledge, this is the first study to systematically analyze and predict B cell

immunodominance patterns, marking a significant advancement in vaccine

design research.
KEYWORDS

immunoinformatics, B cell immunodominance, vaccine design, deep learning, protein
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Introduction

Immunodominance (ID), described as a hierarchical level of preference for immune

response in antigen, is essential for understanding adaptive immunity. In vaccine design,

ID is often used to elicit the intended immune response in epitope-based vaccines (1).

While T cell ID has been extensively studied (2–4), relatively little is known about B cell ID

(5). Furthermore, even the existence of B cell epitopes has been argued that epitopes could

be everywhere on the surface of antigens (6). Despite this ambiguity, structural studies of

antibody-antigen complexes, such as those involving influenza A and SARS-CoV-2, reveal
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certain levels of immunological preference among antigen amino

acid residues; some residues of antigens appear more likely to bind

antibodies (7, 8).

Numerous computational approaches have been developed to

predict B cell epitopes for vaccine design applications (9–21).

However, previous methods have overlooked the hierarchical

nature of ID between epitopes as they were solely trained on the

binary labels by classifying residues as either epitopes or non-

epitopes. These labels were typically defined using distance-based

annotations derived from antigen-antibody complex structures. We

conjecture that incorporating ID scores, estimated using a novel

data processing strategy, could provide additional insights into the

relative immunological preference of certain epitopes over others.

ID scores are continuous scores ranging from 0 to 1, which

represent the epitope priorities against the antibody interaction.

Although the ID score defined in this study may not perfectly

capture the biological phenomenon due to limited data availability,

it could still serve as a reasonable approximation to enhance our

understanding of epitope prioritization.

We defined the ID score through a comprehensive data curation

process, which involves sequence clustering, multiple sequence

alignment (MSA) building, and epitope annotation. Statistical

analyses were then conducted to investigate the physico-chemical,

geometrical, evolutionary, and compositional characteristics

associated with B cell ID. Residue- and patch-level analyses

revealed statistically significant correlations with several features,
Frontiers in Immunology 02
particularly strong signals related to conservation and

clustering patterns.

Building on these insights, we developed BIDpred, a predictive

model that leverages highly significant features identified in the

statistical analysis. BIDpred integrates pretrained protein language

model embeddings with a graph attention network (GAT) to

capture the nuanced features of B cell ID. BIDpred demonstrates

superior performance in predicting immunodominance scores

compared to existing methods while maintaining comparable

accuracy with the state-of-the-art methods for conventional B cell

epitope prediction. This highlights the value of our novel data

processing approach in providing additional insights into immune

response preferences among epitopes. Code and dataset are

available at https://github.com/sj584/BIDpred and webserver at

http://bidpred.kaist.ac.kr.
Materials and methods

Data curation

X-ray crystallography data were collected from SAbDab (22) as

of Mar.19, 2024. The data curation process is illustrated in Figure 1.

For quality filtering, we used a filtering cutoff of resolution 3.0Å, R-

factor 0.25, antigen size with at least 50 amino acids, and maximum

antibody sequence identity of 99% (23). After quality filtering, we
FIGURE 1

Data curation process (A) Antibody-antigen structural dataset was downloaded from SAbDab and the antigen sequence was clustered using
mmseq2 with 70% sequence identity. (B) MSA was built using ClustalW for each cluster. (C) Epitopes were annotated based on the antibody-antigen
structure (6Å cutoff) and then mapped to each sequence in the MSA (residues in red color). (D) B cell ID scores were calculated by the ID score
definition and mapped to the representative sequence.
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extracted the antigen sequences and performed sequence clustering

using the mmseq2 easy-cluster command with a minimum

sequence identity threshold of 0.70; all other options were set to

default (24) (Figure 1A). Clusters with at least 4 elements were used.

One cluster can be viewed as a group of the same antigens

interacting with different antibodies. Within each cluster, MSAs

were constructed using the Clustal Omega clustalo command with

default settings (25) (Figure 1B). Further information about the

MSA depth for each cluster can be found in Supplementary Table

S1. In each MSA, we annotated epitopes from the antibody-antigen

complex structures. Antigen residues within 6Å distance to

antibody residues were defined as epitopes. After epitope

annotation was mapped to each sequence in MSA (Figure 1C), ID

scores were assigned to the representative sequence of the MSA

(Figure 1D). In summary, each data point corresponds to a

representative protein from its own cluster, with the ID score

annotated based on epitope annotation in cluster-wise MSA.

Motivated by the previous study (26), ID score is defined by,

ID   score =  
#   of   epitopes   in   the   position
#   of   alignment   in   the  MSA

Since the number of epitopes at a given position in an MSA is

always less than or equal to the number of alignments in the MSA,

ID score could only range from 0 to 1. For the data split, we

reasoned that the representative sequence with more alignments in

the MSA would better reflect the characteristics of B cell ID.

Consequently, we split the data such that the test set included

representative sequences with at least 10 alignments in the MSA,

while the training sets contained representative sequences with 4 to

9 alignments in the MSA. This resulted in a total of 92 training sets

and 24 test sets. The distribution of the antigen type can be found in

Supplementary Figure S1 and a full list of antigen types is provided

in Supplementary Table S11. Other characteristics such as antigen

size, epitope, non-epitope, and immunodominance can be found in

Supplementary Figure S2.
Feature embeddings

A molecular graph was generated from the protein structure.

Nodes were amino acid residues, and edges were constructed when

nodes were close to each other within 10Å distance. ESM-based

residue representation was used for node embedding. For ESM-2

(27), esm2_t33_650M_UR50D model was used. For ESM-IF1 (28),

esm_if1_gvp4_t16_142M_UR50 model was used.
Statistical analysis of protein features

Statistical analysis was performed on the representative

sequences in the test set, which has representative sequences with

at least 10 alignments in MSA. We used an independent sample T-

test for amino acid feature analysis, while a Mann-Whitney U-test

was used for compositional analysis. The null hypothesis was

rejected at a significance level of a ≤ 0:05. Afterwards, we
Frontiers in Immunology 03
performed Benjamini-Hochberg procedure for multiple testing

correction. Geometric features, physico-chemical features,

compositional (either amino acid or secondary structure), and

evolutionary features were examined at both residue and patch

levels (Supplementary Table S2). Surface residues with at least

relative surface accessibility (RSA) 0.10 were used. Surface patches

were constructed by grouping surface residues within a 10 Å

distance of central surface residues.
Features for statistical analysis

RSA and secondary structure were collected from DSSP (29)

module in Biopython (30). Protrusion and residue depth were

obtained from PSAIA (31). Hydrophobicity, isoelectric point,

residue volume, steric, polarizability, H-bond donor, polarity,

positive charge, and negative charge were acquired from AAIndex

(32) (Supplementary Table S3). Per-residue conservation score was

obtained from ConSurf (33).
Hyperparameters

Hyperparameters were optimized to achieve the lowest

validation loss. Specifically, 200 epochs, batch size of 4, 8 multi-

attention heads, learning rate of 1e-6, Adam optimizer, mean

squared error loss, 3 GAT layers with hidden dimensions of

2048-512-128, and 2 fully connected (FC) layers with dimensions

of 128-32–1 were used.
Evaluation metrics

B cell ID is a hierarchical level of preference in immune

response. Therefore, Spearman correlation was the main criterion

for measuring the ID. Also, R-squared (R2) score and Pearson

correlation were used for additional evaluation. For B cell epitope

prediction, area under the receiver operating characteristic curve

(AUC-ROC) and area under the precision-recall curve (AUC-PR)

were used for threshold independent evaluation for classification.
Result

Statistical analysis reveals B cell ID in
residue and patch level

To investigate which characteristics are related to the B cell

immunodominant regions, statistical analysis was performed to

examine geometrical, physicochemical, compositional, and

evolutionary features at both the residue and patch levels

(Supplementary Table S2). Only surface residues with a relative

surface accessibility (RSA) of at least 0.10 were considered. Surface

patches were generated from the central node with the same surface

criteria. We defined the two ID groups based on the following criteria;
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1646946
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Choi and Kim 10.3389/fimmu.2025.1646946
highly   immunodominant,   if   ID ≥ 0:5*max immunodominance   of   protein

   weakly   immunodominant,   if 0 < ID < 0:2*max immunodominance   of   protein

8>><
>>:

In residue-wise analysis (Figure 2, Supplementary Table S4),

highly immunodominant residues exhibit distinct patterns in

several features, including residue volume, polarizability,

hydrogen bond donor, and conservation. Specifically, highly

immunodominant residues tend to have bigger residue volume,

attractive interactions mediated by electrons, act as stronger

hydrogen bond donors, and display greater variability in

sequence conservation.

In patch-level analysis (Figure 3, Supplementary Table S4), we

observed that features identified in residue-level analysis are still

valid, implying that amino acids with similar properties are located

close to each other. We additionally found different patterns in

steric, RSA, and protrusion with statistical significance. In the patch

level, highly immunodominant patches were additionally found to

be highly steric, less exposed, and less protruding.

Based on the observation that similar residues are close to each

other in patch analysis, we investigated the distribution of

immunodominant residues within a patch by analyzing neighbor

immunodominance. For this analysis, residue ID scores in the patch
Frontiers in Immunology 04
were averaged while excluding the central node ID score

(Figure 4A). Here, a drastic difference pattern was observed

(Figure 4B, Supplementary Table S4). The result demonstrates

immunodominant residues tend to cluster closely together. This

clustering pattern was further visualized using PyMol (34), which

clearly highlights the spatial grouping of immunodominant residues

in B cell ID (Figures 4C–E).
B cell ID prediction task

Thus far, we have identified several features associated with B

cell immunodominance (ID). With the aforementioned features in

mind, we further explored B cell ID prediction methods using deep

learning. However, most prediction models based on statistical

features failed to achieve satisfactory performance, likely due to

weak signals that were insufficiently detectable. Meanwhile, we

noted that conservation and ID clustering patterns showed strong

statistical significance with low p-value (Supplementary Table S4).

Thus, we devised a model which leverages evolutionary and

clustering features in an efficient way (Figure 5). We used ESM-2

(27) sequence embedding and ESM-IF1 (28) structure embedding

to capture the evolutionary features of the B cell ID. To capture the
FIGURE 2

Residue-level statistical analysis between high immunodominance and weak immunodominance groups (A) Residue volume (B) Polarizability (C) Hydrogen
bond donor (D) Conservation.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1646946
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Choi and Kim 10.3389/fimmu.2025.1646946
structural homophily of the B cell ID, we used graph attention

network which uses message passing node updates from the

adjacent nodes.

We evaluated our model on B cell ID benchmark datasets and

compared it with existing B cell epitope prediction methods

(Table 1). The main criterion is Spearman correlation coefficient,

which measures the hierarchical preference of the immunogenic

residues. For this analysis, redundancy was removed by ensuring

70% sequence identity between each test set and the training sets of

the B epitope predictors. Since each model has a different training

set, subset of our test set was used for evaluation in comparison with

our model. This resulted in four separate evaluations. Across 24 test

sets, our model consistently achieved the highest Spearman

correlation scores, outperforming all other models. While ElliPro,

SEPPA3, and CBTope showed almost random performance in ID

prediction, BepiPred-3 and DiscoTope-3 were reported to have

certain levels of capturing immunodominance (Supplementary

Table S5). We reasoned that those models, being trained on ESM-

based evolutionary features with their redundant training sets,
Frontiers in Immunology 05
might have partially learned ID patterns. Evaluation results for all

models using independent and the same test set are provided in

Supplementary Table S6.
BIDpred method showed comparable
results in conventional B cell epitope
prediction

We also compared our model with other methods in the

conventional B cell epitope prediction task (Table 2). We used

Epitope3D (35) benchmark dataset with 45 PDB. Again, the

redundancy in the test set was removed by applying a 70% sequence

identity threshold. In this evaluation, our model demonstrated results

comparable to those of current state-of-the-art models. Notably, this

performance was achieved despite our model being exclusively trained

on the B cell ID prediction task. This outcome supports our initial

hypothesis that the B cell ID prediction task captures essential features

relevant to B cell epitope prediction.
FIGURE 3

Patch-level statistical analysis between the high immunodominant and weak immunodominant groups (A) Residue volume (B) Polarizability (C)
Hydrogen bond donor (D) Conservation (E) Steric (F) RSA (G) Protrusion.
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FIGURE 4

Neighboring immunodominance analysis and visualization (A) Schematics of Surface patch. Patch was generated from 10 Å distance from the central
node. Patch ID was defined by central node ID. Neighbor ID was the average value of the neighboring node ID score. (B) Statistical analysis of
neighbor immunodominance. (C) PDB ID: 1FBI, X chain (D) PDB ID: 4YPG, D chain (E) PDB ID: 8JEL, J chain.
FIGURE 5

Model architecture. ESM-based pretrained model embeddings were used for node features. The antigen structure was represented as a molecular
graph and encoded by graph attention (GAT) layer. A fully connected (FC) layer predicts the immunodominance score.
Frontiers in Immunology frontiersin.org06
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Ablation study

We conducted an ablation study to evaluate the impact of the

features used in our ID prediction model (Table 3, Supplementary

Table S7). The study revealed that both ESM features outperformed

the conventional one-hot encoding method, commonly used as a

feature representation. Among the two, ESM-IF1 (structural

evolutionary features) proved to be more effective than ESM-2

(sequential evolutionary features). The best performance was

achieved when both features were combined, highlighting their

complementary nature in capturing B cell ID characteristics. The

superior importance of structural evolutionary features can be

attributed to the spatial clustering of highly immunodominant

residues in 3D space, emphasizing the role of structural context

in B cell ID learning.
Case study: SARS-CoV-2

We performed a case study on SARS-CoV-2 in the test set

(Figure 6), which included a large number of structures, resulting in

the most extensive MSA alignments (271 alignments). In Figure 6A,
Frontiers in Immunology 07
we visualized the ID pattern and prediction results along the residue

positions. The model predictions closely aligned with the SARS-

CoV-2 ID pattern, accurately identifying ID peaks in most cases.

This agreement was reflected in strong Spearman, Pearson, and R2

scores. Additionally, the scatter plot shown in Figure 6B illustrates a

clear linear relationship between the model predictions and the

actual ID pattern, further validating the model’s predictive accuracy

for SARS-CoV-2. In comparison with other previous tools, our

model demonstrated the best performance, as shown in

Supplementary Table S8.
Discussion

B cell ID remains relatively unexplored from statistical and

computational perspectives, despite its biological significance. For

example, in the influenza A virus, the hemagglutinin (HA) head is

typically the primary target of immune responses, whereas the HA

stem is a subdominant region. However, the HA head is highly

mutable, which often renders previous vaccines ineffective against

new variants. To address this challenge, vaccine development efforts

are focusing on targeting the less immunodominant but more

conserved HA stem, aiming to create universal vaccines (36, 37).

In our dataset, influenza A virus ID scores are high on the HA head

instead of the stem. Also, the statistical analysis on variability aligns

with the conservation pattern in Influenza A virus, which suggests

that our data processing well approximates the biological pattern.

For many pathogens with unclear ID patterns due to limited data,

ID prediction tools can serve as a valuable resource for vaccine

discovery, facilitating the identification of conserved and

strategically targetable regions.

In summary, we systematical ly investigated B cell

immunodominance (ID) through statistical analysis and developed

a prediction model tailored to this task. We curated a dataset

specifically designed to capture B cell ID using a variety of

bioinformatics tools. Our analysis identified key characteristics

associated with B cell ID, highlighting statistically significant

features. After statistically identifying the B cell ID, we developed a

deep learning method, BIDpred, specifically trained on the B cell ID

dataset. We proposed that the conventional B cell epitope prediction

task closely aligns with B cell ID prediction task, but existing models

were not optimally trained for the B cell ID prediction. BIDpred

demonstrated the ability to perform both tasks effectively by

capturing the essence of antibody-agnostic B cell epitope

prediction. To our knowledge, this work represents the first
TABLE 1 B cell ID benchmark in comparison to conventional B cell
epitope predictors.

Method Pearson Spearman R2 score # of PDB
test

ElliPro 0.078 0.057 -5.165

Ours 0.393 0.406 0.144 24/24

SEPPA3 0.088 -0.015 -0.096

Ours 0.422 0.396 0.169 14/24

CBTope 0.065 0.017 -1.250

Ours 0.374 0.346 0.136 20/24

Bepipred-3 0.338 0.437 0.096

DiscoTope-3 0.405 0.444 0.018

Ours 0.429 0.476 0.181 6/24
Bold values indicate the highest score in the benchmark.
TABLE 2 B cell epitope prediction benchmark from the epitope3D
external dataset.

Method AUC AUC-PR MCC

SEPPA 3 0.55 0.11 -0.02

ElliPro 0.48 0.09 -0.02

epitope3D 0.49 0.08 -0.03

CBTope 0.55 0.13 0.01

Bepipred-3.0 0.71 0.20 0.08

DiscoTope-3.0 0.71 0.19 0.09

Ours 0.71 0.21 0.15
TABLE 3 Ablation study on ID prediction test set.

Ablation Pearson Spearman R2 score

One-hot -0.027 -0.006 -0.052

ESM-2 0.328 0.302 0.097

ESM-IF1 0.367 0.368 0.123

Ours 0.393 0.406 0.144
Bold values indicate the highest score in the benchmark.
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attempt to statistically analyze B cell ID and to train a deep learning

model optimally for B cell ID prediction, paving the way for

advancements in vaccine design and immunological research.
Conclusion

B cell ID is crucial for vaccine design. However, few studies

about B cell ID were available. In this study, we introduced a B cell

ID score, conducted a comprehensive statistical analysis of B cell ID

features, and developed a deep learning-based prediction model.

Our findings and predictive tools have the potential to accelerate

vaccine development and stimulate further research into B cell ID,

enhancing our understanding of adaptive immunity.

The limitation of this work is the deficiency of the data being

clustered, which might lead to incomplete B cell ID annotation. Each

data point is a representative protein of all proteins in a single cluster.

While the representative proteins in the test set were selected to have

at least 10 alignments in the MSA, those in the training set had fewer

alignments, ranging from 4 to 9. This discrepancy suggests that the

training set may not fully capture the robustness of the test set,
Frontiers in Immunology 08
potentially affecting model performance. In Supplementary Table S9,

we present results from random shuffling of the train and test sets.

When the test set was randomly selected, it often contained very few

representative proteins with high MSA depth, resulting in noised

training and test outcomes. However, when we ensured that the test

set included at least half of its representative proteins with high MSA

depth, model training and testing became more stable. This suggests

that the rigorous evaluation of model predictions requires a test set

with a sufficient number of representative proteins with high MSA

depth. As more antigen-antibody structural data becomes available,

the dataset could better approximate the true B cell ID phenomenon,

leading to enhancedmodel training and improved predictive accuracy.

There are other limitations regarding the gap between

computational biology and experimental biology. While our

statistical analysis shows correlation of immunodominance, these

findings do not necessarily indicate biological causation. Therefore,

further experimental validation is required before these results can be

translated into biological application. Additionally, some of the

characteristics identified as significant, such as RSA and Protrusion

in patch level, are correlated with each other, drawing attention to the

result in terms of redundancy. (Supplementary Figure S3) While our
FIGURE 6

Case study of SARS-CoV-2 immunodominance pattern and model prediction from test set (PDB ID: 8e1g) (A) Immunodominance/prediction score
per amino acid position (B) Scatter plot of prediction and immunodominance with evalution metrics.
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model generalizes well to several types of antigens including virus,

parasite, and human proteins, (Supplementary Table S10) the model

has a limitation of not distinguishing neutralizing epitopes from non-

neutralizing epitopes. However, it is reasonable to expect that the

epitopes with high ID scores imply the neutralizing epitopes. To our

knowledge, no prediction tools have attempted to predict direct

neutralization. Future direction should aim for predicting the

neutralizing effect to bridge the gap between physical interaction and

biological function to enhance translational relevance.
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