
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Lilong Zhang,
Renmin Hospital of Wuhan University, China

REVIEWED BY

Hikmet Köseoğlu,
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Integrative single-cell and
machine learning analysis
predicts lactylation-driven
therapy resistance in
prostate cancer: a molecular
docking and experiments-
validated framework for
treatment optimization
Zhiyu Liu1,2†, Yuqi Li1,2†, Juan Wang1†, Yang Zeng1, Qilong Wu1,
Xinyao Zhu1, Tao Zhou2,3* and Qingfu Deng1*

1Department of Urology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,
2Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China,
3Department of Urology, Santai Hospital Affiliated to North Sichuan Medical College, Mianyang,
Sichuan, China
Background: Prostate cancer (PCa) is a commonmalignancy in males. Predicting

its prognosis and addressing drug resistance remain challenging. This study

develops a novel prognostic model focusing on lactylation and resistance,

which plays a crucial role in tumor biology.

Methods: Single-cell analysis was employed to identify subpopulations

expressing lactylation-related genes. Transcriptomic sequencing was used to

identify drug resistance-associated genes. Univariate Cox proportional hazards

models andmachine learning techniques were used to identify prognostic genes,

assisting in the development of a risk assessment framework. Additionally, we

investigated how features related to lactylation and drug resistance correlate

with clinical characteristics, the tumor microenvironment, and treatment

responses, revealing potential interconnections.

Results: In this study, a model composed of 29 biomarkers was developed by

integrating single-cell data and machine learning algorithms. The model

predictive efficacy was validated through Kaplan-Meier (KM) analysis, univariate

Cox (HR=3.59, 95%CI: 2.78-4.63) and multivariate Cox (HR=2.81, 95%CI: 1.96-

4.03) regression. Comprehensive analysis revealed significant differences in

tumor immune dysfunction and exclusion (TIDE) scores, immunophenoscore

(IPS) scores, and chemotherapy drug sensitivity between high-risk and low-risk

groups, suggesting that specific biomarkers may be closely associated with

prognosis. Furthermore, molecular docking analysis and experiments were

conducted to explore the relationship between drug resistance and risk gene-

encoded proteins.
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Conclusions: The prognostic model effectively predicts the progression-free

interval (PFI) and drug response, with accurate risk stratification for PCa patients.

Our findings highlight the potential of risk genes in the development of

personalized treatment strategies and enhancing PCa prognostic assessment.
KEYWORDS

prostate adenocarcinoma, drug resistance, lactylation, single-cell sequencing, machine
learning, biomarkers
Introduction

Prostate cancer (PCa) is one of the most prevalent malignant

tumors globally, characterized by steadily climbing diagnosis and

fatality rates that have established it as a critical public health

concern for male health (1). Despite substantial progress in early

diagnosis and therapeutic interventions, the heterogeneity and

complexity of PCa remain formidable challenges in prognosis

prediction and treatment decision-making. Targeted therapeutic

agents, including abiraterone acetate, bicalutamide, and

enzalutamide, have markedly improved patient outcomes.

However, individual responses exhibit significant variability, and

some patients will progress to castration-resistant prostate cancer

(CRPC), developing resistance to novel endocrine therapies (2–4).

Conventional clinicopathological indicators, such as the Gleason
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score and prostate-specific antigen (PSA) levels, provide limited

prognostic accuracy and fail to comprehensively assess disease risk

and therapeutic response, making them insufficient for personalized

treatment strategies (5, 6). Consequently, the development of

prognostic models for CRPC based on molecular characteristics is

essential for enhancing survival rates and optimizing treatment

outcomes in PCa patients.

Lactylation is a recently identified post-translational protein

modification that functions as a key metabolic regulator in cancer

biology. It involves the covalent attachment of lactyl groups to

histones or other proteins, thereby influencing gene expression and

cellular functions. As a result, lactylation is implicated in key

biological processes of cancer cells, including proliferation,

invasion, treatment resistance, and immune evasion (7–10).

Consequently, exploring the functions of lactylation-related genes

in PCa could provide novel insights into tumor metabolic

regulation and facilitate the identification of molecular

biomarkers for prognostic model development.

Lactylation has emerged as a critical metabolic regulatory

mechanism in cancer biology and is closely linked to the

progression of PCa. This lactate-driven post-translational

modification modulates gene expression by covalently modifying

histones like H3K18la—as well as key signaling proteins (11). In

PCa, elevated glycolytic activity results in excessive lactate

production, a hallmark of tumor aggressiveness. This

accumulation of lactate may facilitate epigenetic reprogramming

by altering the chromatin accessibility of neuronal genes, thereby

contributing to therapeutic resistance and neuroendocrine

differentiation (12, 13). Increasing evidence indicates that

lactylation levels are positively associated with resistance to

multiple chemotherapeutic agents, underscoring its potential as

both a prognostic biomarker and a therapeutic target (10, 14, 15).

In the present study, we systematically assessed the prognostic

significance of lactylation using single-cell transcriptomic analysis

combined with machine learning techniques, thereby bridging

mechanistic insights with potential clinical applications.

With the exponential progression of high-throughput

sequencing technologies, transcriptomic sequencing data has

provided crucial insights into the mechanisms underlying PCa

(16). Furthermore, the emergence of single-cell sequencing

technology has revolutionized tumor microenvironment
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characterization, offering novel perspectives on tumor progression

and mechanisms of drug resistance (17, 18).

This study integrates transcriptomic sequencing and single-cell

data to develop a prognostic model for PCa, with the goal of

improving the accuracy of patient risk stratification. Furthermore,

drug sensitivity analysis, tumor immune dysfunction and exclusion

(TIDE) scores, and immunophenoscore (IPS) are employed to

assess differences in responses to targeted therapy and

immunotherapy among patients in distinct risk groups. By

identifying novel biomarkers and establishing a theoretical

framework for personalized PCa treatment, this research

contributes to the advancement of precision medicine.
Materials and methods

Acquisition of transcriptomic data

The public genomic and transcriptomic profiles of PCa, along

with the associated clinical data, were sourced from UCSC Xena

(https://xenabrowser.net) and the study by Jianfang Liu, Tara

Lichtenberg, et al. (19). The single nucleotide variant (SNV) data

were retrieved from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov). The analysis comprised 495 prostate

adenocarcinoma (PRAD) samples, all of which had available

survival data and were used for survival-related analysis. The

validation dataset and prognostic data were primarily obtained

from the PCaDB database (http://bioinfo.jialab-ucr.org/PCaDB).
Collection of single-cell sequencing

The single-cell dataset GSE206962 was downloaded from the

Gene Express ion Omnibus (GEO) database (https : / /

www.ncbi.nlm.nih.gov/geo) and analyzed using the R package

“Seurat” (version 5.1.0) (20). A cohort analysis was conducted on

four patient samples. Gene expression counts for selected cells

ranged from 500 to 5000, with a mitochondrial gene proportion

of less than 10% (Supplementary Figure 2). The top 2000 variable

genes were normalized and selected using the “NormalizeData” and

“FindVariableFeatures” functions in Seurat. After preprocessing the

single-cell gene expression profiles, principal component analysis

(PCA) was performed for dimensionality reduction, followed by

batch effect correction using the “RunHarmony” function from the

“harmony” R package. Cell clustering was performed using the

Louvain algorithm on the k-nearest neighbor (KNN) graph. t-SNE

analysis was performed with a resolution of 0.8, generating 15

principal components and 24 clusters. Cell clusters were classified

based on cell-type-specific markers (B cells: CD79A, IGHG1; T

cells: CD3D, CD3E, CD2; macrophages: CD68, C1QA, C1QB;

fibroblasts: DCN, COL3A1, RGS5; endothelial cells: VWF,

PECAM1, ENG; epithelial cells: EPCAM, KRT8, KRT18), and a

quantitative analysis was performed on the proportions of different

cell types.
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Single-cell data scoring

To assess the expression characteristics and functional

significance of lactylation-related gene sets at the single-cell level

in prostate cancer, we performed a comprehensive analysis of

single-cell data using multiple gene set scoring algorithms.

Specifically, we employed four algorithms—AUCell, UCell,

AddModuleScore, and ssGSEA—to evaluate the activity of

lactylation-related gene sets in individual cells (21–24). The

selection of these algorithms is based on their unique advantages

in addressing the challenges associated with single-cell analysis.

AUCell detects subtle gene set enrichment based on gene expression

levels. UCell performs cell-wise scoring independently, unaffected

by random seeds or the number of cells included. AddModuleScore

calculates gene module scores by subtracting the average expression

of a background gene set from that of a target gene set. ssGSEA, on

the other hand, considers gene–gene interactions and functional

associations, thereby more accurately reflecting the activity of

biological processes and pathways. By integrating these methods,

we generated a score that enables cross-validation of lactylation

signaling activity, thereby reducing the bias inherent in any single

algorithm. The scores from each algorithm were then averaged for

each cell to generate a composite score for the lactylation-related

gene set. Using the median composite score across all single cells as

a threshold, we categorized the cells into active and non-active

groups. The “FindMarkers” algorithm was then applied to identify

marker genes in cells with high gene expression activity, based on

the median score. The R package “ggpubr” was used to visualize the

single-cell scores of each cell in tSNE plots, thereby aiding the

identification of clusters with active gene expression.
Development of a prognostic model

Data from cellular transcriptome sequencing, scRNA-seq, and

TCGA were utilized to perform univariate Cox regression analysis

for identifying prognostic-related genes (p < 0.05). Based on these

genes, TCGA served as the training data, and external datasets were

used for validation. To mitigate overfitting of MPT-driven necrosis-

related prognostic genes, Least Absolute Shrinkage and Selection

Operator (LASSO)-Cox regression was conducted using the R

package “glmnet” to select significant genes and their

corresponding regression coefficients (25). Hyperparameter

tuning was performed via 10-fold cross-validation with the

penalty parameter (l) selected from 100 candidate values

logarithmically spaced. The optimal l was determined by

minimizing the partial likelihood deviance under the “1-standard-

error rule” (1SE), ensuring a parsimonious model with robust

generalizability. The risk score for PRAD patients was calculated

using the formula: Risk Score = S (gene expression �  regression coe

fficient), where S represents the sum of all selected genes, gene

expression denotes the expression level, and the regression

coefficient reflects the weight assigned to each gene. Patients were

classified into low-risk and high-risk groups based on the median
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risk score. Several statistical methods were employed to assess the

features, including the log-rank test from the R package “survival”,

Kaplan-Meier (KM) analysis to evaluate the progression-free

interval (PFI) differences between two groups, and histograms to

assess risk score differences across clinical subgroups.
Construction of a nomogram

To identify whether the risk score can act as an independent

prognostic factor, we conducted both univariate and multivariate

Cox regression analyses. Furthermore, utilizing the TCGA-PRAD

dataset, we applied the R package “rms” to develop a nomogram

that integrates risk scores with clinical and pathological features

(26). The nomogram was designed to predict PFI outcomes at

different years.
Enrichment analysis

Differential gene expression analysis was conducted using count

data from the TCGA-PRAD cohort, employing the R package DESeq2.

Stringent filtering thresholds were applied, including an adjusted p-

value of less than 0.05 and |log2FC|>1. As a result, a set of differentially

expressed genes (DEGs) was identified between the high-risk and low-

risk patient groups. Then functional enrichment analysis was

conducted on differentially expressed genes in the cohort to annotate

biological pathways and examine enrichment patterns. Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses, as well as Gene Set Enrichment Analysis

(GSEA), were performed using the R package “clusterProfiler” (27).
Tumor mutational burden analysis

The R package “maftools” was utilized to organize and visualize

somatic mutations in TCGA-PRAD, including single nucleotide

polymorphisms (SNPs), insertions and deletions (INDELs), tumor

mutational burden (TMB), and mutation frequencies (28).
Evaluation of drug treatment

To evaluate the potential differences in responses to targeted

therapies and immunotherapies between patients in two groups, we

conducted a comprehensive analysis using multiple drug sensitivity

tools and databases. Initially, we assessed the tumor immune

dysfunction and exclusion characteristics of both groups using

TIDE data, which predicted their responses to immune

checkpoint inhibitors. Subsequently, we calculated the IPS using

the The Cancer Immunome Atlas (TCIA) database (https://tcia.at/

home) to further validate the differences in tumor responses to

various targeted therapies, with a focus on anti-CTLA-4 and anti-

PD-1 therapies (29). Furthermore, we integrated three drug

sensitivity datasets, including Genomics of Drug Sensitivity in
Frontiers in Immunology 04
Cancer (GDSC) 1.0, GDSC2.0, and Cancer Therapeutics Response

Portal (CTRP) to analyze sensitivity to various chemotherapeutic

agents between two risk groups (30, 31).
Molecular docking

Molecular docking analysis was to explore the potential binding

interactions between enzalutamide and the identified target genes. The

molecular structure of enzalutamide was retrieved from PubChem

(https://pubchem.ncbi.nlm.nih.gov), while the protein structures of

the risk genes were predicted using the AlphaFold server (https://

alphafoldserver.com). Then we performed molecular docking using

the CB-DOCK2 online platform (https://cadd.labshare.cn/cb-

dock2/php/blinddock.php), and the model exhibiting the lowest

binding energy was selected as the optimal result. A binding energy

lower than -7 kJ/mol was considered indicative of a stable

interaction (32). Lastly, a heatmap depicting the binding energies

between the risk genes and enzalutamide was generated using an

online platform (https://www.bioinformatics.com.cn) (33).
Cell lines and cell culture

The LNCaP (CL-0143), and C4-2 (iCell-h626) cell lines were

obtained from Procell Life Science & Technology Co., Ltd. (Wuhan,

China) and Cellverse Co., Ltd. (Shanghai, China), while the normal

prostate epithelial cell line RWPE-1 (BNCC341583) was sourced

from BeNa Culture Collection (Langfang, China). All cell lines were

authenticated by short tandem repeat (STR) profiling and

confirmed to be free of mycoplasma contamination. LNCaP and

C4–2 cells were cultured in RPMI 1640 medium. RWPE-1 cells

were cultured in keratinocyte medium supplemented with 1%

keratinocyte growth supplement (KGS) and 1% P/S.

To establish enzalutamide-resistant cell lines, we continuously

cultured LNCaP cells and C4–2 cells in a medium supplemented

with enzalutamide (GLPBIO, California, USA) for a duration of

four months. During this period, the cells were subjected to

incrementally increasing concentrations of enzalutamide (ranging

from 5 to 15 μM). The resultant resistant cells were maintained in a

medium containing 5 μM enzalutamide and were designated as

LNCaP-Enza cells and C4-2-Enza cells. These cells were cultured in

an atmosphere containing 5% CO2 at a temperature of 37 °C.
Cell transfection

LNCaP-Enza and C4-2-Enza cell lines were transfected with

100nM of targeted small interfering RNA (siRNA) (siDEGS1-1:

UAAUGCAACUGCCAAACGCTT, GCGUUUGGCAGUUGCAU

UATT; siDEGS1-2: GAGCAUUACAUGUUCUUAATT, UUAA

GAACAUGUAAUGCUCTT) were obtained from FENGHU

ISHENGWU in a medium without P/S. Twenty-four hours post-

transfection, the cells were further cultured in standard complete

medium supplemented with 10% FBS and 1% P/S.
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Half-maximal inhibitory concentration
assay

LNCaP-Wt, C4-2-Wt, as well as transfected or non-transfected

siRNA LNCaP-Enza and C4-2-Enza cells were seeded into 24-well

plates. The cells were treated with different concentrations of

enzalutamide for 48 hours. Then serum-free medium containing

10% CCK-8 solution was added to each well, followed by incubation

for 2 hours at 37°C. Subsequently, the absorbance at 450 nm was

measured. Each group had three replicate wells, and the experiment

was performed in triplicate.
RNA extraction and quantitative real-time
polymerase chain reaction

Total RNA was extracted from LNCaP-Enza and C4-2-Enza

cells (untreated or treated with Oxamate for 24 hours) using the Cell

Total RNA Isolation Kit (FOREGENE, Chengdu, China). Total

RNA was efficiently extracted from cultured cells using a spin-

column-based method. After complete removal of culture medium,

an appropriate volume of Buffer cRL1 was added for cell lysis. The

lysate was then mixed with Buffer cRL2 at a 1:1.6 volume ratio and

centrifuged through a DNA-Cleaning Column to remove genomic

DNA. The supernatant was subsequently loaded onto an RNA-

Only Column in batches, followed by sequential washing with

Buffer RW1 (500 mL) and Buffer RW2 (700 mL, twice) to remove

impurities. Finally, RNA was eluted using 60 mL of RNase-Free

ddH2O preheated to 65°C. All procedures were performed at

room temperature.

RT-qPCR analysis was performed with SYBR Green qPCR

Master Mix (TOYOBO, Shanghai, China). GAPDH served as the

internal reference gene. Several primers were used to perform RT-

qPCR analysis. The sequences of the gene-specific primers used are as

follows: for the AR, the forward primer is TACCAGCTC

ACCAAGCTCCT and the reverse primer is GCTTCACTGGG

TGTGGAAA; for the KLK3, the forward primer is GTCCGTGAC

GTGGATTGGTG and the reverse primer is AGACTGCCCTG

CCACGAGA; for the FOLH1, the forward primer is TCAA

GGAATGCCAGAGGGC and the reverse primer is CTGAAAA

CTTTCCCATATCTGGC. The levels of mRNA were measured

utilizing the 2−DDCT method. Samples were analyzed in triplicates.
Western blot analysis

Total protein extraction was carried out using RIPA Lysis Buffer,

supplemented with 1× Protease Inhibitor Cocktail and 1×

Phosphatase Inhibitor Cocktail (APEXBIO, Houston, USA).

Protein concentrations were quantified using the Bicinchoninic

Acid (BCA) Protein Assay Kit (CWBIO, Jiangsu, China). The

proteins were separated by sodium dodecyl sulfate-polyacrylamide

gel electrophoresis (SDS-PAGE) on a 7.5% gel (Epizyme, Shanghai,

China). Subsequently, the separated proteins were transferred onto a

polyvinylidene difluoride (PVDF) membrane (0.45 μm, Merck
Frontiers in Immunology 05
Millipore, Germany). Following the transfer, the membrane was

blocked and incubated with primary antibodies. After washing, the

bound antibodies were detected using Super ECL Plus Western

Blotting Substrate (BIOGROUND, Chongqing, China) on a

Western blot imaging system (Tanon 5200CE, Shanghai, China). b-
Tublin served as an internal control for normalization. Western blot

analyses were performed in triplicate.
Colony-formation assay

Following transfection, the enzalutamide-resistant cell lines

LNCaP-Enza and C4-2-Enza were plated in six-well plates at

densities of 5000 cells per well, respectively, and were then

cultured continuously for a period of 10 to 20 days. Following

this incubation period, the cells were fixed and subsequently stained

with a 0.1% crystal violet solution (Beyotime, Jiangsu, China).
EdU detects the proliferation of cells

LNCaP-Enza and C4-2-Enza cells were seeded into 6-well plates.

When the cell density reached 80%, EdU (Cy5) was diluted to a final

concentration of 10 mM in RPMI 1640 medium supplemented with

10% fetal bovine serum (FBS). The cells were incubated for 5 hours.

Following fixation removal, the cells were washed twice with 3% BSA

solution for 5 minutes each. Subsequently, the cells were

permeabilized with 0.3% Triton solution and incubated at room

temperature for 15 minutes. A Click reaction solution was prepared

by mixing 860 mL of 1× EdU Reaction Buffer, 40 mL of CuSO4, 1 mL of
Cy5 azide, and 100 mL of 1× EdU Buffer Additive per milliliter. The

Click reaction solution was added to each well and incubated in the

dark at room temperature for 30 minutes. After incubation, Hoechst

33342 was added to a final concentration of 5 mL/mg, and the cells

were incubated in the dark at room temperature for an additional 15

minutes. Finally, images of Cy5 azide and Hoechst 33342 were

respectively captured using a confocal microscope with excitation

wavelengths of 646 nm and 350 nm.
Glucose and lactate assays

LNCaP-Enza and C4-2-Enza cells were seeded into 6-well plates.

Once the cells reached approximately 50% confluency, they were

transfected with siRNA. Glucose and lactate concentrations were

subsequently quantified using the Glucose Content Assay Kit

(Sangon Biotech, D799408) and the Lactic Acid (L-LA) Content

Assay Kit (Sangon Biotech, D799099), respectively, according to the

manufacturers’ protocols.
Statistical analysis

Statistical analyses were performed using R (version 4.4.1) and

RStudio (version 2023.12.1 + 402), along with GraphPad Prism
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software (version 10.1.2). The KM method was applied for survival

analysis. Univariate and multivariate Cox regression analyses were

conducted to assess the prognostic significance and independence

of the risk score. Receiver operating characteristic (ROC) curves

were utilized to evaluate the robustness of the PFI prognostic model.

The Wilcoxon test was employed to compare differences in risk

scores, drug treatment scores, and drug sensitivity between different

groups within the TCGA-PRAD cohort. Experimental data are

presented as mean ± standard deviation. Comparisons of means

between two groups were conducted using the t-test, while

comparisons among multiple groups utilized one-way analysis of

variance (ANOVA). A p.value of < 0.05 was considered statistically

significant, unless otherwise specified; *p < 0.05, **p < 0.01, ***p <

0.001, ****p < 0.0001.
Results

Single-cell sequencing analysis and gene
set scoring

The workflow of this study is depicted in Supplementary

Figure 1. The PCa single-cell dataset (GSE206962) was obtained

from the GEO database, which includes four cancer samples. The

distribution of cells across samples was relatively uniform,

suggesting no significant batch effects between samples

(Figure 1A). Based on the gene expression profiles of the cells, 24

distinct clusters were identified (Figure 1B). Cell types were

annotated using cell-specific markers, revealing six distinct cell

types: T cells, B cells, macrophages, fibroblasts, endothelial cells,

and epithelial cells (Figure 1C). A bar chart illustrates the

proportion of each cell type within each PCa sample (Figure 1D).

A dot plot highlights the marker genes associated with each cell

type (Figure 1E).

Subsequently, we applied four single-cell scoring algorithms—

AUCell, UCell, AddModuleScore, and ssGSEA—to assess the activity

of lactylation-related genes. Among the four algorithms, epithelial

cells consistently exhibited the highest scores (Figures 1F, G). The

median of the average scores across all four methods was used as

the threshold to classify the cells into active and inactive groups.

In the lactylation-active group, epithelial cells accounted for the

highest proportion, followed by macrophages and fibroblasts,

indicating that the lactylation process predominantly occurs in

prostate epithelial cells.
Building a prognostic model through
machine learning

We performed differential analysis based on single-cell scoring

to identify marker genes for the active group. These genes were then

intersected with GSE137833 differential genes and GSE136129

differential genes, yielding a total of 123 genes (Figure 2A).

Subsequently, univariate Cox regression analysis was conducted

on these genes, which led to the identification of 45 prognostic-
Frontiers in Immunology 06
related genes (Figures 2B, C). Using these prognostic genes, we

developed a predictive model with TCGA-PRAD as a training data,

using LASSO regression analysis on the TCGA set was conducted to

eliminate redundant genes, identifying 29 genes significantly

associated with prognosis in patients and their coefficients

(Figures 2D, E).

Utilizing a 29-gene expression signature, we established risk

stratification for patients, dividing them into high- and low-risk

categories using median risk scores as the threshold. Survival

analysis demonstrated significant prognostic discrimination

between risk groups in both TCGA and external validation

cohorts (p < 0.05). Time-dependent ROC evaluation further

validated the model’s robust predictive performance across four

external datasets (Figures 2F–J). Furthermore, we evaluated the

prognostic performance of the model in various other cancer types,

where it demonstrated promising results in BLCA, BRCA, COAD,

ESCA, KIRP, LUAD, and MESO (Supplementary Figures 3A–J).

We further ranked the TCGA-PRAD samples according to their

risk scores and generated scatter plots to visualize the survival

status. This analysis demonstrated a positive correlation between

the risk score and mortality rate in the patients from the TCGA

cohort. The expression patterns of 29 prognostic genes were

visualized through a heatmap, revealing distinct transcriptional

profiles between risk-stratified groups (Figure 3A). Ten

upregulated genes in high-risk patients potentially function as

oncogenic drivers, while 19 elevated genes in low-risk patients

may confer tumor-suppressive effects.
Clinical feature prognostic analysis

We subsequently assessed the differences in risk scores across

various clinical feature groups. Significant disparities in risk scores

were observed between different ages, pathological T stages,

pathological N stages, biochemical recurrence (BCR), PSA levels,

and Gleason scores. Moreover, risk scores were positively correlated

with the progression and severity of these clinical variables

(Figures 3B–G).

Given the notable differences in PFI and risk scores between two

risk groups, we further explored the clinical prognostic value of the

model. We assessed the risk score’s prognostic independence

through correlation analysis with clinical features. Univariate and

multivariate Cox regression analyses yielded hazard ratios (HRs) of

3.59 (95% CI: 2.78–4.63) and 2.81 (95% CI: 1.96–4.05), respectively,

suggesting that the risk score may serve as an independent

prognostic factor (Figures 4A, B). These findings suggest that the

risk score is superior to other clinical characters in predicting

patient prognosis.

We constructed a clinical nomogram incorporating age, pN, pT,

PSA, Gleason score, and risk score for PFI prediction at 1-, 3-, and

5-year intervals (Figure 4C). The risk score emerged as the most

influential prognostic indicator, highlighting the model’s predictive

capacity for outcomes. Calibration analysis confirmed excellent

agreement between predicted and observed PFI probabilities

across different time points, validating the nomogram’s reliability
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(Figure 4D). Moreover, the concordance index (c-index) for the risk

score outperformed that of other clinical variables, further

confirming the superiority of our model in predicting patient

survival prognosis relative to other clinical parameters (Figure 4E).
Enrichment analysis

To investigate the relationship between biological processes,

signaling pathways, and risk scores, we conducted GO functional
Frontiers in Immunology 07
analysis and KEGG pathway enrichment analysis on differentially

expressed genes (DEGs) between the high-risk and low-risk groups.

DEGs were identified using a threshold of |log2FC| > 1 and

adjust.p.value < 0.05. KEGG enrichment analysis revealed the

significant involvement of the “Neuroactive ligand-receptor

interaction”, “Steroid hormone biosynthesis” and “Calcium

signaling pathway” (Figure 5A). GO analysis indicated that the

significantly affected biological processes (BP) included “neuron

projection guidance”, “C21-steroid hormone metabolic process”,

“hormone metabolic process” and “cellular glucuronidation”. The
FIGURE 1

Cell type determination and scoring in single-cell sequencing. (A) tSNE visualization of PCa sample distribution. (B) Cellular cluster mapping within
tSNE space. (C) Subpopulation annotation across tSNE coordinates. (D) Cellular composition profiling. (E) Cell-type-specific marker gene signatures.
(F) tSNE heatmap depicting the scores from four single-cell scoring algorithms, with higher brightness corresponding to higher scores. (G) Proportion of
cell subgroups in the active and inactive groups, as shown in the histogram.
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most relevant cellular components (CC) involved were

“monoatomic ion channel complex”, “GABA receptor complex”

and “postsynaptic specialization membrane”, while the prominent

molecular functions (MF) included “hormone activity” ,

“metallopeptidase activity” and “GABA-A receptor activity”

(Figure 5B). GSEA revealed significant pathway differences

between the low-risk and high-risk groups. The high-risk group

exhibited increased activity in the “E2F targets,” “G2M checkpoint,”

and “Cell cycle” pathways, whereas the low-risk group was
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predominantly enriched in the “Androgen response” and “Steroid

hormone biosynthesis” pathways (Figure 5C).
Tumor mutation burden and response to
drug therapy evaluation

TMB analysis reveals distinct mutation profiles between risk

groups, informing potential immunotherapy responses. Among the
FIGURE 2

Construction of the prognostic model. (A) Venn analysis identifies overlapping genes among lactylation-active signatures, GSE137833 and GSE136129
differential expression profiles. (B, C) Univariate Cox analysis of survival-associated genes. (D) Visualization of Lasso coefficient trajectories. (E) The partial
likelihood deviance with changing of log(l). (F–J) Survival curves and time-dependent ROC curves for training and validation sets.
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top 20 mutated genes, TP53 and SPOP predominated in high-risk

patients, contrasting with TTN’s prevalence in low-risk cases

(Figure 6A). Furthermore, TMB showed significant differences

between the high-risk and low-risk groups (p < 0.05), suggesting

that TMB may serve as a potential predictor of immunotherapy

response (Figure 6B). Additionally, we performed TIDE scoring for
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both the high-risk and low-risk groups. The high-risk group

exhibited higher TIDE scores, indicating a lower likelihood of

benefiting from immunotherapy (Figure 6C). Moreover, IPS

scoring revealed poor therapeutic responses to three

immunotherapies in high-risk patients (Figures 6D–G). As

chemotherapy remains the standard treatment for PCa, we
FIGURE 3

Distribution of risk scores and their association with clinical characteristics. (A) Left: The distribution of risk scores and PFI status for each patient.
Right: A heatmap illustrating the expression of risk genes. (B–G) Comparison of risk scores across different clinical variable groups.
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FIGURE 4

Independent prognostic factor analysis and nomogram construction. (A, B) Results of Cox regression analyses for risk scores and clinical characters.
(C) Nomogram for predicting PFI in PRAD patients. (D) Calibration curve evaluating the accuracy of PFI prediction. (E) C-index evaluation of the risk
score and clinical characters.
FIGURE 5

Enrichment analysis of different risk groups. (A) The Sankey diagram displays the KEGG pathway enrichment results. (B) The circular plot presents the
results of the GO analysis. (C) The GSEA functional enrichment results for the high-risk and low-risk groups are shown.
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utilized the GDSC 1.0, GDSC 2.0, and CTRP databases to analyze

drug sensitivity and determine whether risk scores could reliably

predict chemotherapy response. We assessed the sensitivity of

Axitinib, Erlotinib, Olaparib, and Selumetinib across different risk

groups (Figures 6H–S). The analysis indicated that Axitinib and

Olaparib showed higher sensitivity in high-risk patients, while

Erlotinib and Selumetinib showed higher sensitivity in low-

risk group.
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Molecular docking and experiments to
validate the function of DEGS1

Based on 29 risk genes, molecular docking analysis was

performed to undercover the potential binding interactions of

enzalutamide with these proteins. The results demonstrated that

enzalutamide could stably bind to the majority of the proteins.

Notably, the most stable binding interactions were observed
FIGURE 6

Differences in TMB and treatment response between high-risk and low-risk groups. (A) The top 20 genes with the highest mutation frequencies in
risk groups. (B) Differences in TMB between different risk groups. (C) TIDE scores across various risk groups. (D–G) IPS in the high-risk and low-risk
groups. (H–S) The predicted IC50 of Axitinib, Erlotinib, Olaparib, and Selumetinib in the GDSC 1.0, GDSC 2.0, and CTRP databases in two subgroups.
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between enzalutamide and DEGS1 SPAG16, MAPKAPK2,

CYP4F8, CHPT1, suggesting that these proteins may serve as

potential therapeutic targets for enzalutamide (Figure 7A).

Enzalutamide demonstrates strong and stable binding affinity to

the DEGS1 protein, with a calculated binding energy of –11.4 kcal/

mol. Specifically, its nitrogen and fluorine atoms form hydrogen

bonds with Ala171 and Phe124, respectively, while the compound

also engages in hydrophobic interactions with Tyr120, Tyr170,

Leu175, and Phe229 (Figure 7B). Moreover, the trifluoromethyl

group of enzalutamide forms halogen bonds with Asp143 and

Glu232. Additionally, p–sulfur interactions involving Phe124 and

Tyr170 further enhance the stability of the protein-ligand complex.

Multivariate Cox regression analysis combined with molecular

docking studies identified DEGS1 as a gene potentially involved in the

progression and drug resistance of prostate cancer (Supplementary

Figure 4). To validate this finding, we assessed DEGS1 expression

levels in prostate cancer cell lines. Western blot analysis revealed a

significant upregulation of DEGS1 in enzalutamide-resistant cells

(Figure 8A). To further elucidate the biological function of DEGS1,

we silenced its expression using siRNA in LNCaP-Enza and C4-2-

Enza cell lines (Figures 8B, C). We next assessed the enzalutamide

resistance of LNCaP-Enza and C4-2-Enza cells after transfection with

siRNA. Knockdown of DEGS1 significantly decreased the IC50 values

of enzalutamide in both cell lines (Figures 8D, E), underscoring the

role of DEGS1 in the acquisition of enzalutamide resistance in prostate

cancer. Colony formation and EdU proliferation assays demonstrated

that DEGS1 knockdown significantly suppressed the proliferative

capacity of both cell lines (Figures 9A–D). Furthermore, analysis of

intracellular glucose consumption and lactate production indicated

that DEGS1 enhances glycolytic activity in prostate cancer cells and

may mediate lactylation regulation (Figure 9E). Treatment of resistant

cells with the LDH inhibitor Oxamate altered the expression of AR

and its downstream targets, suggesting that lactylation may regulate

AR ac t i v i ty and i t s a s soc i a t ed s i gna l ing pa thways

(Supplementary Figure 5).
Frontiers in Immunology 12
Discussion

Various molecular features have been developed to predict

tumor prognosis and treatment response, offering significant

insights into tumor progression, cancer recurrence, and

therapeutic outcomes (34, 35). Emerging evidence has

progressively uncovered lactylation’s involvement in various

pathological conditions, including cardiovascular disorders and

inflammatory processes (36–38). Within oncological contexts, this

epigenetic modification exerts dual regulatory effects, impacting

both tumor cell metabolism and immune modulation through

modulating the tumor microenvironment (39, 40).

This study integrated transcriptomic and single-cell sequencing

to develop a prognostic model for PCa, incorporating lactylation-

related genes, drug resistance-associated genes, and genes involved

in the AR signaling pathway. Additionally, lactylation and drug

resistance-related features were identified as potential predictors of

progression-free interval PFI in PCa. The model’s stability was

evaluated using multiple methodologies, and the correlations

between risk genes, PFI, and clinical characteristics were

thoroughly analyzed. Moreover, we compared genomic variations

and drug sensitivity differences between the high-risk and low-risk

groups, offering a comprehensive understanding of the clinical

implications of the model. Finally, molecular docking analysis

elucidated the binding patterns between enzalutamide and

risk genes.

We employed univariate Cox regression and machine learning

methods to identify 29 molecular features potentially associated

with the progression of PCa, which may serve as protective or risk

factors in its progression. Subsequently, based on multivariate Cox

regression analysis, CDC42EP3, DEGS1, TACC1, and WWTR1

were identified as independent prognostic factors. Previous studies

have suggested that these molecules may promote tumor

progression and metastasis by influencing metabolic pathways or

modulating the immune microenvironment (41–44).
FIGURE 7

Molecular docking models and binding energy predictions of enzalutamide with 29 risk targets.
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ROC curves demonstrated that our prognostic model exhibited

high accuracy, effectively distinguishing between low-risk and high-

risk patients. KM curves indicated that the PFI was significantly

longer in the low-risk group. The nomogram based on risk scores

provided an intuitive visual tool for predicting PFI, while the

calibration curve further confirmed the model’s robust

performance in forecasting PFI.

Functional enrichment revealed potential regulatory mechanisms

of prognostic features in PCa. GO and KEGG analyses indicated that

differentially expressed genes between the high-risk and low-risk

groups were significantly enriched in pathways related to hormone

synthesis and neuroregulation. The nervous system regulates cellular

functions by mediating neurotransmitter binding to receptors on

target cells. During PCa progression, it may undergo neuroendocrine

transformation, leading to the development of highly invasive and

castration-resistant neuroendocrine prostate cancer. Existing studies

suggest that metabolic reprogramming in PCa increases lactylation

levels, which, in turn, upregulate neuroendocrine-associated genes in
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tumors (13, 45, 46). Moreover, resistance mechanisms in PCa partly

arise from increased intratumoral synthesis of androgens and steroid

hormones. This includes enhanced overall androgen synthesis and an

increased conversion of dehydroepiandrosterone sulfate (DHEA-S)

to dehydroepiandrosterone (DHEA) in the adrenal gland. These

alterations reduce the effectiveness of androgen receptor signaling

inhibitors (ARSI) and contribute to drug resistance. Another factor in

resistance is the conformational changes induced by point mutations

in the AR, which activate androgen-independent AR downstream

signaling pathways (47, 48). GSEA also suggested that lactylation may

promote increased hormone synthesis while inhibiting androgen

response. This indicates that lactylation could influence PCa

progression by modulating androgen levels or AR activity, and our

experimental data provide validation of this mechanism

(Supplementary Figure 5).

We evaluated the drug treatment response in both two groups

of patients. The TIDE score revealed that high-risk patients are

more susceptible to immune escape, whereas the IPS score indicated
FIGURE 8

Expression levels of DEGS1 in various cell lines and its effect on the half-maximal inhibitory concentration (IC50) of enzalutamide. (A) DEGS1
expression levels in normal prostate epithelial cells (RWPE-1), prostate cancer cells (LNCaP, C4-2), and enzalutamide-resistant prostate cancer cells
(LNCaP-Enza, C4-2-Enza). (B, C) Validation of DEGS1 knockdown efficiency following siRNA transfection. (D, E) The IC50 of prostate cancer cells
and enzalutamide-resistant prostate cancer cells, the latter with or without siRNA transfection *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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a lower response rate to immunotherapy in this group. Previous

studies have demonstrated that lactate produced by tumor cells can

impair the phagocytic activity of activated macrophages, induce

apoptosis in natural killer (NK) cells and natural killer T (NKT)

cells, and inhibit cytokine release, thus contributing to extensive

immunosuppressive effects within the tumor microenvironment

(TME) (49–51). Histone lactylation, including H3K18 lactylation,

inhibits CD8+ T cell function within the tumor microenvironment,

facilitating immune evasion (8, 51). Furthermore, Enrichment

analysis identified significantly elevated steroid hormone levels in

the high-risk group, potentially contributing to tumor

microenvironment modulation. This finding aligns with

established evidence that androgen pathway inhibition enhances
Frontiers in Immunology 14
tumor sensitivity to both immunotherapy and targeted treatment

regimens (52). Analysis of chemotherapy drug sensitivity showed

that the therapeutic efficacy of Erlotinib and Selumetinib is likely to

be better efficacy in the high-risk group. These findings highlight

the importance of the predictive model in customizing treatment

strategies for patients, enabling the identification of individuals

most likely to benefit from immunotherapy and targeted therapies,

thereby advancing the application of precision medicine.

Finally, we identified the potential therapeutic targets of

enzalutamide through molecular docking analysis. The results

demonstrated that enzalutamide could stably bind to most of the

risk-associated target proteins. Notably, the interactions with

DEGS1 SPAG16, MAPKAPK2, CYP4F8 and CHPT1 exhibited
FIGURE 9

Impacts of DEGS1 on biological behaviors in prostate cancer cells. (A, B) Colony formation assays evaluating the proliferative capacity of cells.
(C, D) EdU incorporation assays (red) assessing cell proliferation; nuclei were counterstained with Hoechst 33342 (blue). (E) Quantification of
glucose consumption and lactate production among different treatment groups.
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the lowest binding energies, indicating the most stable binding

interactions. These findings suggest that these proteins could serve

as promising therapeutic targets or key molecules for reversing

tumor resistance. Integrating previous results of multivariate Cox

analysis, DEGS1 may plays a key role in progression and drug

resistance in prostate cancer. To elucidate the biological function of

DEGS1 in prostate cancer progression, we conducted a series of

experiments. Western blot analysis demonstrated that DEGS1

expression was markedly upregulated in enzalutamide-resistant

prostate cancer cells. EdU and colony formation assays confirmed

that DEGS1 facilitates the proliferation of these resistant cells.

Additionally, assessments of glucose consumption and lactate

production revealed that DEGS1 enhances glycolytic activity,

implying a potential role in promoting lactylation.

Despite the promising outcomes of this study, several limitations

must be addressed. First, the mechanistic underpinnings of the

identified risk genes necessitate further experimental validation. Our

findings confirm the pivotal role of DEGS1 in glucose metabolism

regulation, as its knockout markedly diminishes intracellular glucose

consumption and lactate production. Nevertheless, its influence on

lactylation modification remains unresolved and warrants further

investigation. This prognostic model exhibits robust predictive

accuracy, its clinical translation necessitates additional validation.

The retrospective design and exclusive dependence on public

genomic databases, without prospective multicenter cohort

validation, may limit the generalizability of our findings.

Furthermore, the modest sample size (n=4) in our single-cell RNA

sequencing analysis warrants cautious interpretation. Although our

integrated computational and in vitro approaches including molecular

docking and cell-based assays have substantiated DEGS1’s functional

involvement in enzalutamide resistance, com prehensive in vivo

validation remains imperative to establish its therapeutic relevance.

Additionally, the molecular docking results are theoretical and may

overlook other functionally significant molecules that exhibit slightly

higher but still biologically relevant binding affinities. For instance,

SPAG16, MAPKAPK2, and CYP4F8 all demonstrated substantial

binding energies that could still mediate important pharmacological

interactions. Future research should incorporate integrated multi-

omics approaches, particularly spatial transcriptomics, to elucidate

the cellular heterogeneity of lactylation modifications at single-cell

resolution. The application of CRISPR-based screening coupled with

organoid culture systems would enable functional validation of critical

genes involved in lactylation-mediated drug resistance mechanisms.

Furthermore, comprehensive cross-cancer multi-omics analyses are

essential to systematically delineate the relationship between

lactylation regulatory networks and therapeutic outcomes. Such

multidimensional investigations would yield more conclusive

evidence to support the development of precision medicine strategies.
Conclusion

This study successfully developed a tumor prognostic model

with high predictive accuracy by integrating lactylation-related gene
Frontiers in Immunology 15
sets with machine learning techniques, and its clinical relevance was

validated through comprehensive analysis. The results

demonstrated that lactylation-associated risk features not only

impact the survival prognosis of cancer patients but also have the

potential to influence treatment outcomes by modulating tumor

metabolism and the immune microenvironment. Significant

differences were observed between high- and low-risk groups

regarding immune escape potential, immunotherapy response,

and chemotherapy drug sensitivity, offering valuable insights for

personalized therapeutic strategies. Additionally, molecular docking

analysis revealed stable binding interactions between enzalutamide

and risk gene proteins, suggesting that these genes may represent

viable therapeutic targets. Collectively, these findings provide novel

perspectives on the molecular mechanisms of lactylation

modifications in tumors and lay a theoretical foundation for

tumor survival prediction and personalized treatment approaches.
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