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Characteristics and mechanisms
of liver injury caused by
emerging infectious diseases
Yi Cheng and Xin Zheng*

Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
Abnormal liver function has become a common phenomenon in emerging

infectious diseases caused by viruses, with incidence rates ranging from 2.5%

to 98.6% across different pathogens. This review summarized the characteristics

of liver injury caused by SARS-CoV-2, MERS-CoV, H7N9, SFTSV, DENV, and

EBOV viruses. Viral infection initiates liver injury through direct attack, ischemia,

and microthrombosis, triggering an exaggerated immune response often

exacerbated by drug toxicity. Core mechanisms involve interconnected

mitochondrial dysfunction (causing energy failure, ROS/mt-DNA release),

endoplasmic reticulum stress (with dual roles in adaptation and apoptosis), and

aberrant inflammation. These pathways form a vicious cycle, culminating in

hepatocyte death, metabolic disruption, and severe hepatic damage. An in-

depth exploration of the causes and mechanisms of liver injury also provides

diversified strategies for treating and preventing these infectious diseases.
KEYWORDS

liver injury, COVID-19, dengue, SFTS, Ebola, mitochondrial damage, endoplasmic
reticulum stress, apoptosis
1 Introduction

Emerging infectious diseases are defined as rapidly spreading contagious diseases caused

by new or existing but not widely recognized pathogens. In the past 30 years, a variety of

emerging infectious diseases have emerged worldwide, including Corona Virus Disease 2019

(COVID-19), Middle East Respiratory Syndrome (MERS), H7N9 avian influenza, dengue

fever (Dengue), severe fever with thrombocytopenia syndrome (SFTS) and Ebola, which pose a

serious threat to human health.Sars-CoV-2, MERS-CoV, H7N9, DENV (Dengue Virus),

SFTSV (Severe Fever with Thrombocytopenia Syndrome Bunyavirus), EBOV (Ebola virus)

infection can cause flu-like symptoms, including fever, fatigue, dyspnea, and other symptoms.

In addition to flu-like symptoms, these infections share a common feature—liver injury, which

plays a critical role in disease progression. Studies have shown that liver injury is highly

prevalent in emerging infectious diseases, with the incidence of abnormal liver function in

2.5%-96.8% (1), 31.4% (2), 29% (3), 60-90% (4), 96.6-98.6% (5, 6) and >70% (7) of COVID-19,

MERS, H7N9 avian influenza, dengue fever, SFTS, and Ebola patients, respectively. This

suggests that liver injury plays a vital role in emerging infectious diseases. However, the
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mechanisms by which these infectious diseases cause liver injury and

their relationship to disease progression remain controversial.

However, a comparative and integrative understanding of how these

diverse pathogens converge on common host pathways to drive

immunopathological liver injury remains lacking. This review aims

to fill this critical knowledge gap by proposing a unified framework

centered on keymechanisms includingmitochondrial dysfunction, ER

stress, and immune imbalance.

This review focuses on emerging and re-emerging viruses—

including SARS-CoV-2, MERS-CoV, H7N9 influenza, dengue, and

Ebola—selected for their significant public health threat, well-

documented but diverse liver injury patterns, and sufficient

mechanistic literature. We excluded viruses such as yellow fever

(YFV) and hepatitis E (HEV), whose hepatic involvement is a

primary feature, to better analyze indirect and extra-hepatic

mechanisms of liver dysfunction in systemic infections.
2 Characteristics of liver injury in
emerging infectious diseases

Although liver injury is a common feature after SARS-CoV-2,

MERS-CoV, H7N9 avian influenza, DENV, SFTSV, and EBOV

infection, the characteristics of liver injury caused by different viral

infections vary. The clinical and pathological characteristics of liver

injury caused by the above six emerging infectious diseases are

summarized in Tables 1 and 2.

In addition to abnormal liver function, the interaction between

concurrent liver diseases and the above infectious diseases has also

aroused high concern (Table 3). SARS-CoV-2 has been well studied

in combination with prior liver disease. Relatively speaking, studies

on co-infection of other liver diseases with MERS-CoV, H7N9, and

SFTS are limited. There are no systematic studies between Ebola

and hepatic complications.
3 Primary causes of liver injury caused
by emerging infectious diseases

The primary causes of liver injury converge into a coherent

narrative of pathogenesis (Figure 1). The initial direct viral attack on

hepatocytes and the endothelial damage that disrupts microcirculation

create the foundation for injury. This is dramatically amplified by

systemic processes—namely hypoxia and a hypercoagulable state—

and by the host’s own robust counterattack through inflammatory

mediators. Finally, drug-induced injury often represents a

compounding iatrogenic factor. It is the interplay between these

direct, indirect, and iatrogenic mechanisms that dictates the ultimate

severity of hepatic dysfunction.
3.1 Hepatotropic effects of the virus

SARS-CoV-2 binds to ACE-2 via its S protein and enters host cells

in concert with TMPRSS2 and FURIN (8). However, few hepatocytes
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express both ACE2 and TMPRSS2 and no viral inclusion bodies were

observed in liver biopsies from COVID-19 patients (9). It has,

therefore, been speculated that liver injury in COVID-19 patients

may be caused by cholangiocyte injury rather than directly by

hepatocytes. ACE2, TMPRSS2, and FURIN expression in

hepatocytes are also variable under different disease conditions. Cells

expressing ACE2 and TMPRSS2 in the liver were significantly

increased in cirrhotic patients, uninfected obese nonalcoholic

steatohepatitis patients, and liver transplant recipients and donors,

but significantly decreased in untreated HBV-infected patients (10).

Taken together, SARS-CoV-2 itself may not directly contribute to liver

injury but is associated with increased susceptibility of hepatocytes

under pathological conditions.

Unlike SARS-CoV-2, MERS-CoV uses dipeptidyl peptidase-4

(DPP-4) as its functional receptor to enter cells and cause infection.

DPP-4 is expressed at higher levels in the liver; therefore, the liver

may be its target organ. A transgenic mouse model expressing

codon-optimized human DPP-4 (hDPP4) was constructed, and

MERS-CoV was observed to invade hepatocytes and cause

hepatocyte injury through DPP-4 (11).

DENV enters cells by binding to receptors on the surface of

hepatocytes and Kupffer cells via membrane protein E on their

surface (12). This process is associated with the serotype of the

virus, with DEN1 passing through a 37/67-kDa high-affinity

laminin (13), while DEN2 enters hepatocytes via GRP78 (14).

EBOV binds to cell surface-specific receptors via its surface

glycoprotein (GP) to guide virions into cells, and vesicles formed by

endocytosis are transported to endosomes (15). GP interacts with

intracellular receptors in endosomes to promote viral entry and

complete host cell invasion (16).

H7N9 avian influenza virus can invade cells by binding SAa-2,
3-GAL and SAa-2, 6-GAL receptors. Among them, a-2,6 SA

receptors are mainly expressed in ciliated cells of the human

upper respiratory tract. In contrast, a-2,3 SA receptors are

primarily expressed in non-ciliated cells and type II pneumocytes

of the lower respiratory tract (17). Using CRISPR-Cas9 technology,

chemokine receptor 2 (CCR2) was identified as a receptor for

SFTSV entry into host cells (18). However, CCR2 expression is

mainly restricted to bone marrow, hematogenous cells, and

secondary lymphoid organs and is not expressed in hepatocytes

(19). Therefore, H7N9 and SFTSVmay not be hepatotropic, and the

liver injury they cause may be associated with secondary injury. In

addition, these two viruses may enter hepatocytes through other

receptors and require further experimental studies.
3.2 Ischemia-hypoxia and reperfusion
injury

The liver has a dual blood supply to the portal vein and hepatic

artery. It has a specific buffering capacity for hypoxia. Still, when the

degree of hypoxia exceeds its regulatory range, hepatocytes suffer

acute hypoxic injury (also known as hypoxic hepatitis), which can

be caused by a variety of causes, more than 90% of which are caused

by respiratory failure, sepsis, and heart failure. First, patients with
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TABLE 1 Clinical characteristics of liver injury caused by emerging infectious diseases.

Virus Disease Incidence of liver injury Manifestations of liver injury Relationship to severity and poor prognosis

ALT (20-80.22%), AST (3.1-52.1%), TBIL (23-54%), g-GGT (1-
58.5%), ALP (54.78%) increased and ALB decreased (1, 67).

ALT, AST, ALP, DBIL, CRP, ferritin, IL-6, -10, and ALB were
independent indicators of severity and mortality (1).

Increased ALT (11-33.2%), AST (15-67.1%), LDH (47-88.4%),
BIL (12.4%) and decreased ALB (49.3%) levels (68, 69).

Elevated transaminases were significantly associated with
disease severity and high risk of mortality (68). Decreased ALB
levels are an independent risk factor for severe infections and
intensive care (2).

Increased ALT, AST, TBIL, and LDH levels (70). The incidence
of ALT elevations > 20 × ULN was 1.8% (3).

ALT levels correlate with disease severity. Elevated AST and
LDH, on the other hand, are associated with a risk of death
(3).

ALT (45-96%), AST (63-97%), ALP (19.1%) increased,
hyperbilirubinemia (12-48%), hypoalbuminemia (12.9-67%),
INR > 1.5 (11%) (71, 72).

Elevated transaminases are associated with disease severity, and
ALT, AST, INR, bilirubin, ALP, ALB are predictors of acute
liver failure or death (72, 73). INR ≥ 1.5 is associated with a
high risk of mortality in dengue (73).

6)
Elevated LDH (98.8%), AST (93.5-98.4%), and ALT (79.0-
90.4%) levels (5, 74).

Patients with ALT > 1 ULN, ALP > 2 ULN, GGT > 2 ULN,
and ALB < 30 g/L are associated with an increased risk of
death (6).

ALT or AST > 5 ULN in 70% of patients, and AST > 15 ULN
occurred in 44% of non-fatal cases and increased to 93% of
fatal cases (7).

ALT, AST, LDH, APTT, and INR levels correlated with
viremia levels. ALT, AST, BIL, APTT, and INR were
significantly associated with prognosis. High levels of AST were
significantly associated with death (75).
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COVID-19, MERS, H7N9 avian influenza, SFTS, dengue fever, and

Ebola can show varying degrees of hypoxemia, and ARDS is also

common in critically ill patients. Second, secondary infection is a

common complication in critically ill patients. In the early stage of

sepsis, increased hepatic oxygen demand and decreased oxygen

utilization are some of the causes of hypoxic hepatitis. Sepsis

develops and causes hemodynamic changes, leading to shock. In

addition, viruses such as SARS-CoV-2, DENV, and EBOV can

directly damage sinusoidal endothelial cells and aggravate

tissue hypoxia.

Most early changes in hypoxic hepatocytes occur in

mitochondria. Hypoxia immediately interrupts electron transport

in the respiratory chain, rapidly consumes ATP, accelerates

glycolysis, increases lactate formation, changes in H+, Na+, and

Ca2+ homeostasis, increases ROS production, and damages

hepatocytes. Subsequently, lipid accumulation, glycogen depletion,

and adenosine triphosphate depletion in hepatocytes can inhibit cell

survival signaling and rapidly lead to hepatocyte death. Reperfusion

following ischemia also exacerbates metabolic disturbances: In the

early reperfusion phase, Kupffer cells rapidly activate and release

ROS, inducing oxidative stress and vascular injury (20). ROS and

their peroxidation products produced during ischemia and

reperfusion injury can activate redox-sensitive transcription

factors, release various pro-inflammatory factors, and induce liver

injury. In the late phase, neutrophils accumulate in the liver after

reperfusion and cause damage to hepatocytes through oxidants and

proteases (20).
Frontiers in Immunology 04
3.3 Liver sinusoidal endothelial damage
and hypercoagulable state

Endothelial dysfunction is a common consequence of multiple

viral infections and one of the causes of liver injury. ACE2 and

TMPRSS2 are expressed in sinusoidal endothelial cells, and SARS-

CoV-2 has been shown to infect endothelial cells and induce diffuse

endothelial inflammation (21). SFTSV can target endothelial cells in

vitro, disrupt their intercellular junctions, and trigger inflammatory

responses, increasing permeability (22). Vacuolization following

sinusoidal endothelial cell injury has been observed in DENV-

infected mouse models (23). In ultrastructural analysis of fatal cases

of EBOV infection, numerous inclusions and viral particles were

found within endothelial cells (24). Although there are no reports

on sinusoidal endothelial injury directly caused by MERS and

H7N9 avian influenza, based on the fact that severe hypoxia can

lead to sinusoidal endothelial injury, it can be inferred that

sinusoidal endothelial injury also exists in MERS and H7N9

avian influenza.

In the injured area, endothelial cells change from anticoagulant

to procoagulant phenotype, release vWF, bind to GPIb/IX complex

on the platelet surface, and promote platelet adhesion, aggregation,

and formation of a large number of platelet thrombi to the injured

site. After platelets adhere to the injured site, they release fibrinogen,

VWF, PAI, TXA2, coagulation factors, etc., while endothelial cells

release ADP, PAF and other substances to promote platelet

activation and aggregation. Thus, procoagulant activity increases
TABLE 2 Pathological characteristics of liver injury caused by emerging infectious diseases.

Disease
Pathological characteristics

Reference
Liver cells Liver structure

COVID-19
mild steatosis of hepatocytes, mitochondrial swelling, and
decreased glycogen granules; punctate and patchy
necrosis of hepatocytes

Sinusoidal congestion, mild dilatation, and a small
amount of lymphocyte infiltration

(67, 76)

MESR hepatocyte edema, steatosis
sinusoidal congestion, and hemorrhage; mild lymphocyte
infiltration in portal vein and lobules

(77)

H7N9 avian influenza
hepatocyte micro- and macrovesicular steatosis;punctate
liver necrosis, mid-lobular cardio-hepatic necrosis without
inflammation

sinusoidal congestion, and mild hepatocellular atrophy (3)

Dengue

Hepatocyte swelling, increased lysosomes, mitochondria
swelling. Hepatocyte nuclei were pyknotic, divided, and
lysed, with occasional eosinophilic bodies. Hyperplasia of
Kupffer cells. Deposition of membrane attack complex C9
and DENV antigens was observed in hepatocytes, Kupffer
cells, and macrophages

No obvious infiltration of immune cells. (78)

SFTS Hepatocyte steatosis
there were multiple lobular necrosis, mild portal fibrosis,
mild periportal lymphocytic infiltration, and focal
cholestasis

(79)

Ebola

Hepatocyte dot-like to large patchy necrosis. Mild to
moderate steatosis of hepatocytes. Hyperplasia of Kupffer
cells. Quite a few viral inclusions were present in
hepatocytes and bile ducts

Dilated sinusoids, congestion. Plenty of inflammatory
cells infiltrated around the portal vein and necrosis.

(24)
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after endothelial injury, anticoagulant substances decrease, and the

fibrinolytic system is relatively inhibited, which induces a

hypercoagulable state. In addition, the development of a

hypercoagulable state is also associated with immunity. High

levels of IL-6 can induce megakaryopoiesis and platelet

formation. In the later stages of hepatic ischemia-reperfusion

injury, many neutrophils accumulate, releasing neutrophil traps

and activating platelets.
3.4 Immune damage caused by
inflammatory mediators

Cytokine storm is a severe clinical phenomenon in which

immune cells proliferate excessively and inflammatory cytokines

are released in large amounts, resulting in multiple organ system

failures and tissue damage. Although cytokine storm caused by

different viral infections has unique characteristics, IFN-g, IL-1, IL-
6, TNF, and IL-18 are critical to the elevation in cytokine storms

and are thought to have central immunopathologic effects (25).

First, cytokines can damage hepatocytes through local effects.

Cytokine storm activates Kupffer cells even in the absence of viral

antigens in the liver (1), which, upon activation, release cytokines,

ROS, and NO, inducing sinusoidal endothelial injury and

perpetuating hepatocellular injury (26). TNF-a can directly

stimulate hepatocytes to produce IL-6, promote the production of

caspase-3, and induce hepatocyte apoptosis. Typically, IL-6 has the

effects of protecting the liver and regulating liver regeneration;

however, high levels of IL-6 disturb liver regeneration, stimulate

hepatocytes to produce various pro-inflammatory factors, promote

hepatocyte steatosis, and exacerbate sinusoidal endothelial cell

injury (27). Following sinusoidal endothelial injury, leukocytes

can be recruited by expressing adhesion molecules such as

ICAM1, further increasing the release of inflammatory factors

(28). NO produced by neutrophil activation can induce the

formation of peroxynitrite (potent ROS), damage mitochondria,

and promote hepatocyte necrosis and apoptosis. Second, cytokines

can trigger vascular dysfunction so that the liver is in a state of

hypoperfusion. TNF-a can alter endothelial cell morphology and

affect NO-mediated vasodilation of the vascular bed (26). The

interaction between sinusoidal endothelial cells, Kupffer cells, and

leukocytes following injury leads to the redistribution of

intrahepatic blood flow, resulting in decreased sinusoidal

perfusion. Finally, cytokines can also cause liver damage via the

renin-angiotensin-aldosterone system. The S protein of SARS-CoV-

2 binds ACE2 and causes a significant increase in Ang II levels in

serum, which in turn mediates trans-signaling of the IL-6/sIL-6

receptor complex, and ultimately upregulates the expression of a

variety of inflammation-related genes, including NF-kB (29). While

Ang II levels increase, Ang (1–7) levels decrease, while Ang (1–7)

can down-regulate the expression of p38 MAPK and NF-kB, has
anti-proliferative, anti-thrombotic and anti-inflammatory

functions, and can improve tissue injury (29). In summary,

cytokines can damage the liver through local effects, changes in

vascular function, and the RAAS system.
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3.5 Drug-induced injury

Antibiotics, antivirals, antipyretic and analgesic drugs, and

steroids are widely used to treat emerging infectious diseases, all

potential factors for liver injury. To date, antiviral drugs widely used

to treat the above contagious diseases include ribavirin, favipiravir,

lopinavir/ritonavir, chloroquine, interferon, and monoclonal

antibodies, and their characteristics and mechanisms of causing

liver injury are shown in Table 4.
4 Key mechanisms of liver injury
caused by emerging infectious
diseases

Recent studies have shown that although different viruses have

specific molecular strategies, they can all cause liver cell damage by

intervening in mitochondrial function, endoplasmic reticulum

homeostasis, and immune response pathways (Figure 2). This

section systematically summarizes the common mechanisms of

mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and

abnormal inflammatory response across viruses, and compares the

specific regulatory modes of representative viruses in them, providing

an integrated mechanism perspective for virus induced liver injury.
Frontiers in Immunology 06
4.1 Mitochondrial dysfunction

In the pathogenesis of liver damage caused by viruses,

mitochondrial dysfunction, as a highly conserved pathophysiological

link, constitutes a common molecular basis for various viral

pathologies. This mechanism is mainly reflected in three interrelated

biological processes: energy metabolism disorders, mitochondrial

autophagy mechanism disorders, and abnormal activation of

mitochondrial dependent immune signaling pathways. Viral

infection affects the function of the electron transport chain, reduces

membrane potential, and disrupts the oxidative phosphorylation

process, leading to severe damage to ATP synthesis and significant

accumulation of reactive oxygen species, thereby triggering oxidative

stress. At the same time, the virus intervenes in the mitochondrial

quality control system, damaging the mitochondrial autophagy

process including PRKN dependent and non-dependent pathways,

resulting in the inability to effectively eliminate functionally defective

mitochondria. More importantly, the mitochondrial DNA and other

molecules released by damaged mitochondria can serve as

endogenous danger signals, recognized by cytoplasmic pattern

recognition receptors, thereby activating the RIG-I/MAVS signaling

axis and downstream NF - k B and interferon regulatory factor

pathways, driving excessive production of inflammatory factors and

type I interferons, ultimately exacerbating liver cell damage and death.

This series of cascading reactions is not only prevalent in various viral
FIGURE 1

Primary causes of liver injury caused by emerging infectious disease. Viral hepatitis-related liver injury involves multiple interconnected mechanisms,
including: (1) direct hepatotropic effects of the virus; (2) ischemia–hypoxia and reperfusion injury; (3) sinusoidal endothelial cell injury and systemic
hypercoagulability; (4) immune-mediated damage via inflammatory mediators; and (5) drug-induced liver injury. (LESC, liver sinusoidal endothelial
cell; ARDS, acute respiratory distress syndrome; APC, antigen-presenting cell).
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infections, but also highlights the core role of mitochondria in natural

immune regulation and maintaining cellular homeostasis.

Viral infection significantly impacts mitochondrial energy

metabolism. In SARS-CoV-2, the viral dsRNA contributes to

altered mitochondrial membrane potential and ROS generation

(30), while its structural protein M impairs electron transport

through interactions with host mitochondrial proteins including

ACADM, PMPCB, PITRM1, PMPCA, and COQ8B (31). NSP1 of

MERS-CoV significantly inhibits the expression of ribosomal and

oxidative phosphorylation genes expression, further compromising

mitochondrial function (32). DENV infection can induce lipophagy

to mobilize fatty acids for mitochondrial b-oxidation and enhance

ATP production, promoting viral replication (33). H7N9 (34) and

SFTSV (35) infection also leads to loss of membrane potential and

oxidative stress. The effect of EBOV infection on mitochondrial

energy metabolism has not yet been thoroughly investigated.

Mitophagy, selective autophagy of mitochondria, is a critical

mechanism in quality control and rapid turnover of damaged

mitochondria. It can be triggered by factors such as hypoxia,

mitochondrial depolarization, and viral infection. Mitophagy

mechanisms in mammalian cells can be divided into two

categories according to the dependence of the E3 ligase PRKN:

PRKN-dependent and PRKN-independent (36). PRKN-dependent

mitophagy is usually associated with alterations in mitochondrial
Frontiers in Immunology 07
transmembrane potential, whereas PRKN-independent mitophagy

is usually associated with autophagic receptors and LC3 interactions

in the outer mitochondrial membrane. Viral infections have evolved

sophisticated strategies to disrupt these protective mechanisms.

SARS-CoV-2 infection activates the PINK1-Parkin-p62 signaling

axis but simultaneously inhibits both PRKN-dependent and

independent pathways by preventing the critical p62-LC3

interaction, thereby blocking autophagosome encapsulation of

damaged mitochondria (30). Similarly, DENV employs its NS4B

protein to suppress DRP1-mediated mitochondrial fission and

impair both PRKN-dependent and independent pathways,

resulting in accumulated dysfunctional mitochondria (37).

Furthermore, DENV infection downregulates nuclear-encoded

mitochondrial proteins and suppresses mitochondrial biogenesis,

creating an irreversible disruption of cellular homeostasis that

ultimately leads to cell death (37).

Following mitochondrial damage, mt-DNA is released into the

cytoplasm and extracellular environment. It acts as damage-

associated molecular patterns (DAMPs) by RIG-I-like receptors

(RLRs). This triggers the RLR/MAVS signaling cascade, leading to

formation of the MAVS signalosome, activation of IRF3 and NF-

kB, and subsequent production of type I interferons and

proinflammatory cytokines, resulting in antiviral effects. SARS-

CoV-2 utilizes orf3b, orf8, and orf9b to suppress IFN-I signaling
TABLE 4 Characteristics and mechanism of liver injury induced by drugs for infectious diseases.

Drugs Indications
Characteristics of liver
injury

Mechanism of liver
injury

Nucleotide and
Nucleoside Analogue
Inhibitors

Radexivir
Paramyxoviruses, Filoviruses, and
Coronaviruses infection

Transaminases increased (89).

Inhibition of human mitochondrial
RNA polymerase, induction of
reactive oxygen species production
(90).

Farpiravir
SARS-CoV-2, H7N9, SFTSV and
EBOV infection

Transaminases increased,
cholestasis (rare) (91).

Mt-DNA damaged (92).

Ribavirin
SARS-CoV-2, H7N9 and SFTSV
infection

Not associated with significant liver
injury (93).

Cause a dose dependent red cell
hemolysis (93).

HIV protease inhibitors Lopinavir/ritonavir
HIV, SARA-CoV2 and MERS-CoV
infection.

AST, ALT and TB increased (94).

It disrupts the integrity of cell
membranes, affects the function of
mitochondria and endoplasmic
reticulum, and exacerbates
oxidative stress (95).

IL-6 inhibitor Tocilizumab
COVID-19 patients with high
inflammatory response.

Transient mild transaminase
elevations (96).

Blocks IL-6 pathway associated
with liver regeneration (97).

JAK/STAT inhibitors Baritinib
COVID-19 patients with high
inflammatory response.

Transient mild transaminase
elevations (98).

CYP3A4 related (99).

Immunomodulators

Interferon
SARS-CoV-2, MERS-CoV and
EBOV infection.

Elevated transaminases and
autoimmune hepatitis (100).

Activate inflammatory pathways
(100).

Hydroxychloroquine and
chloroquine

SARS-CoV-2 and DENV infection. Rarely.
Its metabolites accumulate in the
liver (101).

Glucocorticoid
Patients with severe COVID-19;
H7N9, SFTSV and DENV
infection.

Hepatic steatosis and glycogen
degeneration (102).

Affects the metabolism of
triglycerides and glucose (102).

non-steroidal anti-
inflammatory drugs
(NSAIDs)

Acetaminophen Virus-induced fever.
Excessive intake can induce severe
liver damage or failure (103).

Induction of mitochondrial
oxidative stress and dysfunction,
depletion of GSH (104).
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(38). N protein of MERS-CoV (39) and NS1 of H7N9 (40) inhibit

RIG-I-induced IFN production by interacting with TRIM25. H7N9

PB1-F2 disrupts MAVS recruitment of TRAF6, TBK1, and IKKe
(34, 41). EBOV VP35 inhibits IKKe and TBK1 activation, binds

viral dsRNA to block RIG-I sensing (42), and VP24 suppresses IFN

expression downstream of RIG-I/MAVS (43). In contrast, SFTSV

evades immunity independently of MAVS, as MAVS deletion does

not affect IL-1b induction (35). (Figure 3) We explicitly

acknowledge that the mechanistic data for EBOV and SFTSV in

our study are limited. Although we observe above findings, the exact

immune evasion pathways are not fully resolved.
4.2 Endoplasmic reticulum stress

The endoplasmic reticulum is a key organelle for protein synthesis

and folding, playing a vital role in maintaining cellular homeostasis.

As the central organ of metabolism, hepatocytes possess a highly

developed endoplasmic reticulum system to support complex

functions such as protein synthesis, modification, and lipid

metabolism. When hepatocytes are exposed to adverse conditions

such as viral infection, hypoxia, or oxidative stress, the accumulation

of unfolded and misfolded proteins in the endoplasmic reticulum

triggers the unfolded protein response (UPR). This stress response

operates through three highly conserved signaling pathways—IRE1a-
XBP1, PERK-eIF2a, and ATF6—which work in coordination to

enhance the protein-folding capacity of the endoplasmic reticulum
Frontiers in Immunology 08
and reduce the protein load, thereby restoring cellular homeostasis. In

the short term, the UPR alleviates stress through adaptive mechanisms

such as upregulating chaperone expression and halting protein

translation. However, prolonged or severe ERS shifts toward pro-

apoptotic signaling, ultimately leading to hepatocyte death. Multiple

viruses can specifically exploit or interfere with different branches of

the UPR and downstream endoplasmic reticulum quality control

pathways—such as ER-associated degradation (ERAD) and

endoplasmic reticulum autophagy—not only creating a favorable

intracellular environment for viral replication but also exacerbating

metabolic dysregulation and inflammatory responses in hepatocytes,

thereby forming a common pathophysiological axis in the

development and progression of virus-induced liver injury.

The mechanism of UPR activation by different viral infections is

not the same. For example, SARS-CoV-2 activates the UPR via the

IRE1a and ATF6 pathways (44), MERS-CoV via the PERK pathway

(45), avian influenza virus (46), and EBOV (47) via the IRE1a
pathway. Three canonical pathways of the UPR are activated during

SFTSV and DENV infection (48, 49).

UPR activation facilitates viral spread and replication and

increases the severity of viral infection. In vitro studies have

found that SARS-CoV-2 can maintain intracellular NUAK2

kinase levels through the IRE1a pathway, allowing the virus

to enter cells through the secretion of soluble messengers and

enhance viral transmission between cells (50). In addition, serum

levels of GRP-78, an alternative receptor for SARS-CoV-2, increase

following UPR activation (51), further promoting viral replication.
FIGURE 2

Key mechanisms of liver injury caused by emerging infectious disease. This figure illustrates the key mechanisms of hepatocyte injury triggered by
emerging viruses: (1) Mitochondrial Dysfunction, featuring impaired ATP production, ROS release, and mt-DNA leakage; (2) Endoplasmic Reticulum
Stress (ERS), showing ER dilatation and the UPR’s dual role in adaptation and apoptosis; and (3) Aberrant Inflammatory Response, where released mt-
DNA activates inflammasomes and transcription factors (NF-kB/IRF3), driving a detrimental cytokine storm. These interconnected pathways
culminate in cell death, steatosis, and amplified inflammatory liver damage. (ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDH,
lactate dehydrogenase; g-GGT, gamma-glutamyl transferase; TBIL, total bilirubin; ALP, alkaline phosphatase; ALB, albumin).
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In SFTSV infection, activation of the UPR prolongs the lifespan of

infected cells, thereby increasing levels of progeny viruses (48).

DENV then regulates BIP expression by binding to the UPR sensor,

favoring viral survival and proliferation (49). EBOV hijacks all three

protein inhibitory mechanisms in ER phagocytosis and

downregulates GP1, 2, increasing viral fitness (52).

During endoplasmic reticulum stress (ERS), the unfolded

protein response (UPR) not only promotes correct protein folding

but also activates two major quality control systems: the ERAD

pathway and the autophagy-lysosome system (53). ER, autophagy is

another key process to maintain ER quality, involving three

pathways: ER macroautophagy, ER microautophagy, and LC3-

dependent vesicle trafficking, driving the degradation of

intracellular substances such as proteins and membranes (54).

SARS-CoV-2 orf3a induces ER-phagy via the HMGB1–BECN1

pathway (55), while orf7a prevents autophagosome–lysosome

fusion by cleaving SNAP29 (56), enhancing viral replication.

DENV NS2B–NS3 protease cleaves the ER-phagy receptor

FAM134B, disrupting ER stability and promoting viral

proliferation (57). The degradation of viral proteins GP and VP40

of EBOV is associated with FAM134B-mediated autophagy

processes (58). Although the relationship between MERS-CoV,

H7N9, and SFTSV infection and ER autophagy is equally of
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concern, relevant studies are currently insufficient and require

further exploration in the future (Figure 4).
4.3 Abnormal inflammatory response

During virus-induced liver injury, aberrant inflammatory responses

serve as a key shared mechanism, primarily characterized by

metabolism dysregulation-induced hepatocyte damage and activation

of multiple programmed cell death pathways. Mitochondrial

dysfunction and endoplasmic reticulum stress collectively lead to

reduced ATP synthesis, disruption of ion homeostasis, and abnormal

lipid metabolism, resulting in hepatocyte edema and steatosis.

Meanwhile, viruses trigger apoptotic signaling through various

mechanisms: on one hand, activating the extrinsic caspase-8 pathway

via death receptors, and on the other hand, inducing cytochrome c

release and caspase-9 activation through the mitochondrial pathway.

Endoplasmic reticulum stress further synergistically promotes apoptosis

through signaling molecules such as CHOP, JNK, and caspase-12.

Although different viruses may preferentially utilize distinct apoptotic

pathways, they ultimately converge on caspase-3 activation, leading to

hepatocyte death and further amplification of inflammatory responses,

creating a vicious cycle.
FIGURE 3

Mitochondrial dysfunction caused by virus infection. Viral infections disrupt mitochondrial function through diverse strategies: (1) Energy metabolism
dysregulation: SARS-CoV-2 dsRNA and protein M alter membrane potential and disrupt electron transport; MERS-CoV NSP1 suppresses oxidative
phosphorylation genes; DENV induces lipophagy to enhance b-oxidation and ATP production; H7N9 and SFTSV cause membrane depolarization and
oxidative stress. (2) Mitophagy disruption: Viruses inhibit mitochondrial quality control—SARS-CoV-2 blocks p62-LC3 interaction impairing both
PRKN-dependent and independent pathways; DENV NS4B suppresses DRP1-mediated fission and biogenesis. (3) Innate immune activation and
evasion: mt-DNA release triggers RLR/MAVS-mediated IFN and inflammation, but viruses evade immunity: SARS-CoV-2 inhibits IFN-I signaling;
MERS-CoV and H7N9 suppress RIG-I/TRIM25; H7N9 PB1-F2 disrupts MAVS complex; EBOV VP35/VP24 block RIG-I sensing and IFN expression;
SFTSV uses MAVS-independent IL-1b activation. (DYm, Mitochondrial membrane potential).
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Viral infection induces mitochondrial damage in hepatocytes,

leading to reduced ATP production and impaired sodium-potassium

pump function, which causes hepatocyte edema (32, 38).

Additionally, viruses promote intracellular fatty acid accumulation

and steatosis through distinct mechanisms: SARS-CoV-2 activates

mTOR signaling to enhance de novo lipogenesis (59), while DENV‐

induced TNF‐a secretion triggers insulin resistance via IRS-1

suppression, promoting gluconeogenesis and lipid accumulation

(60). Although inducing host lipogenesis is detrimental to the host,

nascent fat can provide the virus with sufficient lipids to produce the

vesicular system required for viral replication and exocytosis.

The final stage of aberrant inflammatory response is programmed

cell death, or apoptosis, in hepatocytes (61). Hepatocyte apoptosis

includes two basic pathways: extrinsic pathway and intrinsic pathway.

In hepatocytes, apoptotic signals from death receptors are often

insufficient to initiate the caspase cascade, thus generally allowing a

mitochondria-mediated pathway to amplify it. SARS-CoV-2 orf3a

activates caspase-8 and caspase-3 via the extrinsic route, with

subsequent mitochondrial cytochrome c release amplifying apoptosis

through caspase-9 (62). H7N9 virus activates caspases-8, caspases-9,

and caspases-3 in monocytes, and H7N9 may also induce endogenous

and exogenous apoptosis in hepatocytes through the exact mechanism

(63). SFTSV promotes intrinsic apoptosis through BAK/BAX

activation and mt-DNA release (35), while DENV primarily induces

intrinsic apoptosis characterized by mitochondrial depolarization and
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caspase-9/3 activation (64). Limited studies are available on promoting

hepatocyte apoptosis by EBOV.

The ER pathway is now of great interest and is regarded as a

third apoptotic pathway in parallel with the intrinsic and extrinsic

pathways. The UPR in the ERS state is primarily a cell survival

mechanism, but apoptosis mediated by crosstalk between the ER

and mitochondria is activated during sustained stress. ER stress is

mainly involved in apoptosis through four pathways: caspase-12,

CHOP, JNK, and Ca2+. For example, orf3a of SARS-CoV-2 also

promotes caspase-12-mediated ER-specific apoptosis while

inducing ER stress (55). In DENV2 infection, CHOP and JNK

pathways induce hepatocyte apoptosis; PERK is also involved in

mitochondria-associated apoptosis (65). PERK also plays a critical

role and is a significant regulator during MERS-CoV infection (66).
5 Discussion

Liver injury caused by emerging infectious diseases is usually

characterized by elevated transaminase and bilirubin levels and

decreased ALB levels, but the specific manifestations vary according

to the pathogen. Liver damage is often associated with rapid disease

progression and poor prognosis. More severe disease, slower rate of

recovery, and worse prognosis are usually observed in patients with

concurrent disease in the liver. In terms of liver pathology, hepatocyte
FIGURE 4

Endoplasmic reticulum stress caused by virus infection. Viral infections differentially activate the UPR and exploit ER quality control pathways to
promote replication and evade host defenses. (1) Virus-specific UPR activation: SARS-CoV-2 activates IRE1a and ATF6 pathways; MERS-CoV induces
PERK signaling; avian influenza and EBOV trigger the IRE1a pathway; SFTSV and DENV activate all three UPR branches. (2) Subversion of ER quality
control: Viruses manipulate ER-associated degradation (ERAD) and autophagy—SARS-CoV-2 ORF3a induces ER-phagy via HMGB1–BECN1, while
ORF7a blocks autophagosome-lysosome fusion; DENV cleaves FAM134B via NS2B–NS3 to disrupt ER stability; EBOV utilizes FAM134B-mediated
autophagy to degrade GP and VP40. (3) Functional outcome: UPR activation enhances viral replication and spread through various mechanisms,
including upregulation of viral entry factors, modulation of chaperone expression, and prolongation of host cell survival.
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necrosis, inflammatory infiltration, and steatosis were prevalent, and

ultrastructure showed destruction such as mitochondrial swelling and

endoplasmic reticulum deformation.

Liver injury caused by viral infection is a complex process involving

multiple factors. It begins with direct infection, leading to ischemia and

microvascular thrombosis, which in turn triggers an excessive immune

inflammatory response, with potential additional injury conferred by

hepatotoxic drugs. Mitochondrial dysfunction, ERS, and aberrant

inflammatory responses constitute interconnected core pathological

mechanisms in virus-induced liver injury. Mitochondrial damage leads

to an energy crisis, ROS accumulation, and mt-DNA release, which in

turn activates inflammatory pathways; meanwhile, ERS attempts to

restore homeostasis through the UPR, yet prolonged stress shifts toward

pro-apoptotic and pro-inflammatory signaling. Ultimately, these

intracellular stress signals and the extracellular cytokine storm form a

vicious cycle, collectively contributing to hepatocyte death, metabolic

dysregulation, and severe inflammatory damage. Furthermore, the

impact of pre-existing liver conditions on patient outcomes in SFTS

and EBOV, as well as the specific mitochondrial and ER mechanisms

underlying hepatotoxicity in these infections, remain poorly understood

and represent important avenues for future investigation.

This review has several limitations. First, available research is

unevenly distributed, with abundant studies on COVID-19 but far

fewer on viruses like EBOV and SFTSV. Second, the lack of

standardized criteria for defining liver injury across studies limits

direct comparison of results. Finally, mechanistic insights for some

pathogens rely heavily on in vitro or animal models, which may not

fully represent human disease.

Importantly, the delineation of these convergent pathways shifts

the therapeutic perspective from solely targeting the virus to also

protecting the host. The core mechanisms of mitochondrial

dysfunction, ER stress, and aberrant inflammation are highly

druggable. Pharmacological modulation of these pathways with

organelle-protective or senolytic compounds offers a compelling

strategy for mitigating collateral liver damage, potentially improving

patient outcomes across diverse viral infections.

This review establishes that viral hepatic injury is a self-perpetuating

cycle of organelle stress and inflammatory amplification, thereby

advocating for therapeutic strategies that target these convergent host

pathways to mitigate collateral damage and improve outcomes.
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