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Background: Malignant tumors remain a major threat to global human health.

This study aimed to systematically integrate multi-omics data to identify a

candidate gene with biomarker potential across diverse cancer types and to

evaluate its possible clinical applications in oncology.

Methods: We first performed Mendelian randomization based on summary

statistics to integrate blood expression quantitative trait loci data with

genome-wide association study results from esophageal adenocarcinoma,

stomach cancer, and clear cell renal cell carcinoma. A comprehensive series of

multi-omics bioinformatics analyses was subsequently conducted to assess the

gene’s expression patterns, genomic alterations, prognostic relevance, and

associations with the tumor microenvironment (TME) across various cancer

types. In addition, single-cell transcriptome data were analyzed to explore the

gene’s functional roles in the TME. The key findings were further validated

through in vitro experiments.

Results:Mendelian randomization identified peptidylprolyl isomerase H (PPIH) as

a potential biomarker across multiple malignancies. Single-cell transcriptome

analysis suggested that this gene may enhance the proliferative ability of

malignant cells and participate in communication between immune and

stromal components in the TME. Multi-omics analyses revealed that the gene

is abnormally expressed and significantly correlated with patient prognosis in

several cancer types. Consistently, in vitro assays demonstrated that increased

expression of PPIH promotes the proliferation, migration, and invasion of

hepatocellular carcinoma (HCC) cells.

Conclusion: This study highlights PPIH as a candidate biomarker with pan-

cancer relevance and potential clinical value. These findings offer new directions

for cancer diagnosis and provide a foundation for further development of

targeted therapeutic approaches.
KEYWORDS

PPIH, pan-cancer , mult i-omics, tumor microenvironment , biomarker ,
hepatocellular carcinoma
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1 Introduction

Cancer has become the leading cause of premature death

worldwide and is projected to surpass cardiovascular diseases as

the primary cause of premature mortality in most countries during

this century (1). According to the World Health Organization,

approximately 10 million cancer-related deaths occurred globally in

2020 (1). Despite advancements in multimodal therapies, including

surgery, chemotherapy, and targeted treatments, the five-year

survival rate for patients with advanced-stage cancers remains

dismal. For example, HCC has a post-treatment five-year

recurrence rate as high as 70% (2), and distant metastasis occurs

in 35–55% of cancer patients (3), both of which contribute

significantly to poor clinical outcomes. Therefore, identifying

novel biomarkers and therapeutic targets is critical to improving

the overall prognosis for cancer patients.

The Summary data-based Mendelian Randomization (SMR)

approach integrates summary statistics from genome-wide

association studies (GWAS) with expression quantitative trait loci

(eQTL) data to systematically prioritize candidate genes that may

have a causal effect on disease phenotypes (4). Previous studies have

demonstrated that SMR has notable advantages in distinguishing

true causal genes from merely associated loci (5–9). However, most

current SMR analyses have focused on individual cancer types,

lacking a comprehensive investigation into common pathogenic

genes across multiple cancers. Given that different cancer types may

share similar genetic drivers during tumor initiation and

progression (10, 11), pan-cancer multi-omics analyses based on

SMR could facilitate the identification of key genes relevant to

cancer development from a broader perspective.

In this study, we performed SMR analyses across multiple

cancers originating from distinct organ systems to elucidate the

causal relationships between specific genes and various

malignancies. Specifically, we selected three histologically and

anatomically distinct cancers—esophageal adenocarcinoma,

stomach cancer, and clear cell renal cell carcinoma—and

conducted SMR analyses to identify shared causal genes. Among

the candidates, PPIH emerged as a potentially causal gene common

to all three cancers. We then conducted a comprehensive pan-

cancer characterization of PPIH using multi-omics data from public
Abbreviations: SMR, Summary data-based Mendelian Randomization; eQTL,

Expression Quantitative Trait Loci; GWAS, Genome-Wide Association Study;

TME, Tumor Microenvironment; HCC Hepatocellular Carcinoma; TCGA, The

Cancer Genome Atlas; GEO, Gene Expression Omnibus; CPTAC, Clinical

Proteomic Tumor Analysis Consortium; HEIDI, Heterogeneity in Dependent

Instruments; t-SNE, t-distributed Stochastic Neighbor Embedding; CNV, Copy

Number Variation; GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto

Encyclopedia of Genes and Genomes; CHOL, Cholangiocarcinoma; COAD,

Colon Adenocarcinoma; ESCA, Esophageal Carcinoma; LIHC, Liver

Hepatocellular Carcinoma; READ, Rectal Adenocarcinoma; STAD, Stomach

Adenocarcinoma; KICH, Kidney Chromophobe; KIRC, Kidney Renal Clear

Cell Carcinoma; TGCT, Testicular Germ Cell Tumors; ACC, Adrenocortical

Carc inoma ; BRCA, Brea s t Inva s i ve Carc inoma ; OV, Ovar i an

Serous Cystadenocarcinoma.
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resources including The Cancer Genome Atlas (TCGA), Gene

Expression Omnibus (GEO), XENA, and the Clinical Proteomic

Tumor Analysis Consortium (CPTAC), aiming to assess its

prognostic relevance and underlying molecular mechanisms.

Cross-validation with analytical platforms such as GEPIA2,

TIMER2, and UALCAN further reinforced the robustness and

reliability of our findings. Additionally, we explored the pan-

cancer landscape of PPIH through analyses of DNA methylation

patterns, somatic mutation profiles, immune infiltration

characteristics, protein–protein interaction networks, and

functional enrichment pathways. Lastly, by integrating single-cell

transcriptomic data, we investigated the regulatory role of PPIH

within the TME, revealing its involvement in cancer cell

proliferation and dynamic crosstalk between immune and

stromal cells.

In conclusion, there is a lack of systematic research applying SMR

approaches to investigate the causal roles of key genes in cancer

susceptibility and progression from a pan-cancer perspective. This

study represents a novel attempt to employ SMR for identifying

cross-cancer oncogenes and characterizing their clinical and

molecular features via multi-omics pan-cancer analyses. Our

findings offer promising insights into the development of universal

cancer biomarkers and therapeutic targets.
2 Methods

2.1 SMR analysis

To investigate the causal relationship between blood gene

expression levels and a variety of cancers, GWAS and blood

eQTL data analyzed by SMR were obtained from the GWAS

Catalog, respectively (Supplementary Table S1). We included only

gene expression probes containing at least one cis-eQTL with a P-

value <5 × 10−8. The cis-eQTL with the lowest P-value was selected

to distinguish it from other cis-eQTLs within the gene. For each

probe, we tested the association between the trait and the probe

using effect estimates from the eQTL study and the top cis-eQTL

from the GWAS. The analysis process is implemented by SMR

software version 1.03, with the default parameter recommended by

the developer (27019110). For sensitivity analyses, we implemented

the heterogeneity in dependent instruments (HEIDI) test to

evaluate potential pleiotropic effects underlying observed gene-

cancer associations, with significance thresholds being set at

pSMR < 0.05 and pHEIDI > 0.05. Specifically, SNPs in linkage

disequilibrium (LD) with lead cis-eQTLs (r² > 0.9) were

systematically excluded from HEIDI testing, as in nearly perfect

LDS with top cis-EQTL, single nucleotide polymorphisms failed to

provide information for the HEIDI test.
2.2 PPIH expression analysis

The Human Protein Atlas (HPA, https://www.proteinatlas.org/)

provides comprehensive protein expression data in normal and
frontiersin.org

https://www.proteinatlas.org/
https://doi.org/10.3389/fimmu.2025.1647722
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lv et al. 10.3389/fimmu.2025.1647722
cancerous tissues (12). We extracted PPIH expression profiles

across diverse tissues from HPA. Tumor-specific expression

patterns were analyzed using TIMER2 (http://timer.cistrome.org/)

to compare PPIH levels between tumor and adjacent normal tissues

across TCGA cohorts (13). To address the limited normal samples

in TCGA, we integrated normal tissue data from the GTEx

database. Violin plots were generated via the “Pathological Stage

Plot” module in GEPIA2 illustrated PPIH expression dynamics

across tumor stages (I–IV) using log2(TPM + 1)-transformed data.

Differential expression of PPIH among molecular subtypes was

further interrogated using TISIDB. Moreover, the protein

expression profiles of PPIH across different cancer types were

obtained from CPTAC database for protein-level validation.
2.3 Survival analysis

Univariable Cox regression analysis was performed using the

“ezcox” R package to assess the prognostic impact of PPIH

expression levels on four survival endpoints across all TCGA

tumors: overall survival (OS), disease-specific survival (DSS),

disease-free interval (DFI), and progression-free interval (PFI).

Kaplan-Meier curves were generated via the “survminer” R

package to compare median survival times between PPIH high

and low expression cohorts, with statistical significance evaluated by

the log-rank test.
2.4 Genetic alteration analysis

We systematically analyzed the genetic alteration landscape of

PPIH via the cBioPortal (14) platform by selecting the “TCGA Pan-

Cancer Atlas Study” via its “Quick Select” feature. The “Cancer

Types Summary” provided detailed information of tumor-type-

specific mutation frequencies, mutation spectra, and copy number

alterations (CNAs) across TCGA cohorts. For immunological

correlations, the TISIDB database (15) facilitated systematic

exploration of associations between PPIH mutation profiles and

both immune-related gene signatures and immune cell infiltrations.
2.5 Single-cell transcriptome analysis

All analyses in the present study were performed using R

software (version 4.1.1). The scRNA-seq data were analyzed using

Seurat package (version 4.2) (16). Cells with fewer than 500 genes

and fewer than 1,000 total RNA counts were excluded from further

analysis. We used harmony to correct for batch effects across

datasets. Principal component analysis (PCA) were performed

with the highly variable genes after Z-score normalization. t-

Distributed Stochastic Neighbor Embedding (t-SNE) dimension

reduction was performed with the top 20 significant principal

components (PCs). Clusters were determined using the

FindClusters function (resolution = 0.6). Malignant cells were

identified using the CopyKAT algorithm, which estimates
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genome-wide copy number variations (CNVs) from scRNA-seq

data. Cells with aneuploidy were classified as malignant, while

diploid cells were considered normal. We analyzed intercellular

communications using CellChat package (version 1.5.0) for scRNA-

seq (17). The Monocle package was used to analyze the

differentiation trajectory of hepatocytes into malignant cells and

to generate a heatmap.
2.6 DNA methylation analysis

We obtained PPIH methylation profiles across TCGA tumors

and systematically evaluated the correlation between site-specific

promoter methylation levels and gene expression via Spearman’s

correlation analysis. Heatmap visualization of methylation-

expression relationships was generated via the “pheatmap” R

package. Additionally, comparative analysis of pan-cancer

promoter methylation differences between tumor and normal

tissues was performed in UALCAN website.
2.7 Analysis of tumor microenvironment

We implemented systematic immune infiltration profiling

through the “Immune-Gene” module of the TIMER2 website to

interrogate the associations between PPIH expression and immune

cell infiltrations across different TCGA malignancies. Immune cell

fractions were quantified using a consortium of algorithms

including TIMER, CIBERSORT, CIBERSORT-ABS, XCELL, and

EPIC. Purity-adjusted Spearman’s rank correlation analysis was

employed to compute partial correlation coefficients (cor) and the p

values. The results were visualized in the form of heatmap.
2.8 Functional enrichment analysis

We first queried the STRING database (https://string-db.org/)

to identify proteins interacting with PPIH. Subsequently, Gene

Ontology (GO) enrichment analysis of the interacting genes was

conducted using the “clusterProfiler” R package. In addition, the

potential biological functions of PPIH were further explored

through the Metascape platform. Finally, gene set enrichment

analysis (GSEA) based on the Kyoto Encyclopedia of Genes and

Genomes (KEGG) was performed in hepatocellular carcinoma

(HCC) patients to identify biological pathways enriched in

individuals with high or low PPIH expression.
2.9 Cell Culture

The human hepatocellular carcinoma (HCC) cell lines Huh7

and Hep3B were obtained from the Cell Bank of the Chinese

Academy of Sciences (Shanghai, China). Cells were cultured

under standardized conditions (37 °C, 5% CO2 humidified

atmosphere) in DMEM medium (Gibco, Thermo Fisher
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Scientific) supplemented with 10% fetal bovine serum (FBS; Procell,

China) and 1% penicillin-streptomycin solution. All cell lines were

rigorously authenticated using short tandem repeat (STR) profiling

and screened for mycoplasma contamination to ensure genetic

fidelity and sterility.
2.10 Acquisition of clinical specimens

Primary hepatocellular carcinoma (HCC) tissues and matched

adjacent non-tumorous liver tissues were obtained from patients

who underwent surgical resection at the Second Hospital of

Shandong University. All patients provided written informed

consent prior to sample collection. The diagnosis of HCC was

independently confirmed by two senior pathologists based on

histopathological examination. This study was conducted in

accordance with the Declaration of Helsinki and approved by the

Ethics Committee of the Second Hospital of Shandong University.

The collected tissue samples were used for Western blot analysis,

qRT-PCR, and immunohistochemical staining, and all specimens

were stored at −80°C in an ultra-low temperature freezer for

subsequent experiments.
2.11 Lentiviral transduction and
establishment of stable cell lines

Lentiviral vectors for PPIH overexpression and CRISPR/Cas9-

mediated knockout were purchased from GeneChem (Shanghai,

China). The overexpression lentivirus carried the full-length human

PPIH coding sequence, while the knockout lentivirus was based on

the CRISPR/Cas9 system targeting specific loci of the PPIH gene.

Huh7 and Hep3B cells were seeded in 6-well plates and infected

with the corresponding lentiviral particles when cell confluency

reached 30%–50%. Polybrene (8 mg/mL; Santa Cruz Biotechnology,

USA) was added to enhance transduction efficiency. After 48 hours

of incubation, cells were subjected to puromycin (7 mg/mL;

Solarbio, Beijing, China) selection for 5–7 days until all

uninfected control cells were eliminated. To ensure experimental

rigor and eliminate non-specific effects, appropriate negative

controls were included. For overexpression experiments, an

empty vector lentivirus (LV-NC) was used as a control. For

CRISPR/Cas9 knockout, a non-targeting sgRNA control (sg-NC)

was employed to account for any potential off-target or vector-

related effects. The puromycin concentration and selection duration

were optimized in advance through kill curve assays for both Huh7

and Hep3B cells, ensuring effective elimination of non-transduced

cells without compromising the viability of stably transduced

populations. Stably transduced cell lines with either PPIH

overexpression or knockout were established and maintained in

puromycin-containing medium. The efficiency of PPIH modulation

was verified by quantitative reverse transcription PCR (qRT-PCR)

and Western blot analysis.
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2.12 RNA Extraction and qRT-PCR

Total RNA was extracted from cells using TRIzol reagent

(Vazyme, Nanjing, China) according to the manufacturer’s

instructions. RNA purity was assessed by measuring the 260/280

nm absorbance ratio using a spectrophotometer, and RNA integrity

was confirmed by agarose gel electrophoresis. Genomic DNA was

removed, and first-strand cDNA was synthesized using the HiScript

II Q RT SuperMix (Vazyme). Quantitative real-time PCR (qRT-

PCR) was performed using ChamQ Universal SYBR qPCR Master

Mix (Vazyme) on an ABI QuantStudio system or equivalent

platform. All reactions were run in triplicate, and b-actin was

used as the internal control. Relative expression levels were

calculated using the 2^−DDCt method. The primer sequences

used for qRT-PCR were as follows:

PPIH

Forward: 5′- CTGTGGTGATCTCGCAGTGT-3′
Reverse: 5′- CTTGATCAAATGGGGCAGCAG-3′
b-actin
Forward: 5′- CATGTACGTTGCTATCCAGGC-3′
Reverse: 5′- CTCCTTAATGTCACGCACGAT-3′
2.13 Western Blot Analysis

Cells were lysed using RIPA buffer (Beyotime, China)

containing a protease inhibitor cocktail, and the supernatant was

collected after centrifugation. Protein concentrations were

measured using the BCA protein assay kit (Beyotime). Equal

amounts of protein (20–30 mg per lane) were separated by SDS–

polyacrylamide gel electrophoresis (SDS–PAGE) and transferred

onto polyvinylidene difluoride (PVDF) membranes (Millipore,

Bedford, MA, USA). Membranes were blocked with 5% non-fat

milk at room temperature for 1 hour and incubated overnight at 4 °

C with primary antibodies against PPIH and b-actin. After washing
with TBST, membranes were incubated with horseradish

peroxidase (HRP)-conjugated secondary antibodies for 2 hours at

room temperature. Protein bands were visualized using an

enhanced chemiluminescence (ECL) detection system (Vazyme,

Nanjing, China). b-actin was used as the loading control. All

antibodies used in the present study is listed in Supplementary

Table S2.
2.14 Immunohistochemistry

Paraffin-embedded tissue sections (4 mm thickness) were

mounted on glass slides, deparaffinized in xylene, and rehydrated

through graded ethanol. Antigen retrieval was performed using

citrate buffer, followed by blocking of endogenous peroxidase

activity with 3% hydrogen peroxide. Sections were incubated with

primary antibodies and subsequently with HRP-conjugated

secondary antibodies using the UltraSensitive™ S-P kit
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https://doi.org/10.3389/fimmu.2025.1647722
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lv et al. 10.3389/fimmu.2025.1647722
(Beyotime, Shanghai, China) according to the manufacturer’s

protocol. DAB was used for color development, and hematoxylin

was used for counterstaining. The sections were dehydrated,

mounted, and imaged.
2.15 Cell proliferation assay

Cell proliferation was measured using the Cell Counting Kit-8

(CCK-8; Vazyme, Nanjing, China). Cells were seeded into 96-well

plates at a density of 2,000 cells per well and allowed to adhere. At

the indicated time points, 10 mL of CCK-8 reagent was added to

each well, followed by incubation for 2 hours in the dark.

Absorbance at 450 nm was measured using a microplate reader to

assess cell viability.
2.16 Colony formation assay

Log-phase cells were trypsinized, resuspended into single-cell

suspensions, and seeded into 6-well plates at a density of 500 cells

per well. After incubation for 10–14 days, with medium replaced as

needed, cell colonies were fixed with 4% paraformaldehyde

(Solarbio, Beijing, China) for 15 minutes and stained with 0.1%

crystal violet for 30 minutes. Plates were gently washed,

photographed, and the number of colonies was counted.
2.17 Transwell migration assay

Cell migration ability was assessed using Transwell chambers

with 8 mm pore polycarbonate membranes (Corning, USA). Cells

were resuspended in serum-free medium and seeded into the upper

chambers at a density of 1 × 105 cells per well. The lower chambers

were filled with complete medium containing 10% fetal bovine

serum (FBS; Procell, Wuhan, China) as a chemoattractant. After

incubation at 37 °C with 5% CO2 for 48 hours, non-migrated cells

on the upper surface were removed using cotton swabs. The

migrated cells on the underside of the membrane were fixed with

4% paraformaldehyde (Solarbio) for 15 minutes and stained with

0.1% crystal violet. After washing, five random fields were imaged

and the number of migrated cells was quantified.
2.18 EdU-555 cell proliferation assay

Log-phase cells were seeded into confocal culture dishes at a

density of approximately 1.5 × 105 cells per well and allowed to

adhere for 12–16 hours. When cells reached ~80% confluency, they

were incubated with EdU working solution from the BeyoClick™

EdU-555 Cell Proliferation Kit (C0075S, Beyotime, China) for 2

hours. After labeling, cells were fixed with 4% paraformaldehyde

and washed with PBS containing 3% BSA. Permeabilization was
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performed using immunostaining permeabilization buffer

(Beyotime) for 10–15 minutes. Cells were then incubated with the

Click reaction mixture for 30 minutes at room temperature in the

dark. Finally, nuclei were counterstained with DAPI (Solarbio), and

images were acquired using a confocal microscope.
2.19 Wound Healing Assay

For the wound healing assay, 1 × 106 cells per well were seeded

into 6-well plates and allowed to adhere and grow until the cell

monolayer reached approximately 90% confluency, which typically

required 24 hours. The culture medium was then replaced with

serum-free medium and cells were incubated for an additional 24

hours to suppress proliferation. A sterile 200 mL pipette tip was used
to create a straight-line scratch through the cell monolayer.

Detached cells were gently removed by washing twice with PBS.

Images of the wound area were captured at 0, 24, 36, and 48 hours

post-scratch using a phase-contrast microscope to evaluate cell

migration and wound closure.
2.20 Statistical analysis

Statistical analyses were performed using GraphPad Prism 10

(GraphPad Software, San Diego, CA, USA). All results were based

on at least three independent experiments and are presented as

mean ± standard error of the mean (SEM). Chi-square test,

Student’s t-test, and one-way analysis of variance (ANOVA) were

used for parametric analyses. P-values are indicated as *p < 0.05,

**p < 0.01, and ***p < 0.001. A P-value less than 0.05 was considered

statistically significant.
3 Results

3.1 SMR analysis of blood eQTLs reveals
pan-cancer candidate genes

In this study, we conducted a systematic analysis of established

blood eQTL maps, which encompass cis-eQTL associations with

gene expression derived from populations of American and

European ancestry. To further investigate the potential pathogenic

roles of these genes in malignancies, we performed SMR analysis on

GWAS datasets of three distinct cancer types: esophageal cancer,

gastric cancer, and clear cell renal cell carcinoma. Candidate genes

were selected based on the criteria of P_SMR < 0.05 and P_HEIDI >

0.05. As shown in Figures 1A–C, a total of 674, 463, and 544 genes

were identified to be significantly associated with esophageal cancer,

clear cell renal cell carcinoma, and stomach cancer respectively.

Notably, PPIH exhibited consistently significant associations across

all three cancer types, suggesting that its expression levels may be

closely linked to the risk of multiple cancers, thereby implying a
frontiersin.org
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potential role in tumorigenesis. To visually illustrate the SMR

analysis results of PPIH, locus plots were generated for the three

cancers (Figures 1D–F). Further characterization revealed that the

cis-eQTL effects of PPIH showed a positive correlation with the

GWAS effects in esophageal cancer but negative correlations in

gastric cancer and clear cell renal cell carcinoma (Figures 1G–I).

This divergent pattern suggests that PPIH may exert distinct

mechanisms of action across different cancer types. The repeated

significant association of PPIH across multiple cancer types

suggests that it may serve as a key gene with pan-cancer

relevance. In summary, our findings reveal a potential oncogenic

role of PPIH in multiple malignancies and lay a foundation for

further investigation of PPIH as a pan-cancer key gene.
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3.2 Pan-cancer expression profile and
clinical significance of PPIH

We performed a comprehensive pan-cancer analysis of PPIH

expression using the TIMER2.0 platform. The results revealed that

PPIH was significantly upregulated in various cancer types,

i n c l ud ing cho l ang i o c a r c inoma (CHOL) , co l o r e c t a l

adenocarcinoma (COAD), esophageal carcinoma (ESCA),

hepatocellular carcinoma (LIHC), and stomach adenocarcinoma

(STAD) (Figure 2A). In addition, elevated PPIH expression was also

observed in several tumors of other organ systems. Considering the

limited number of normal tissue samples in the TCGA database, we

incorporated the GTEx dataset to improve the reliability of the
FIGURE 1

SMR Analysis of Cancers and the SMR effects of PPIH expression in blood on cancers. (A–C) The volcano plots illustrate the SMR results for
esophageal carcinoma, kidney renal clear cell carcinoma, and stomach adenocarcinoma. (D–F) SMR locus plots show the association between PPIH
and esophageal carcinoma, kidney renal clear cell carcinoma, and stomach adenocarcinoma. (G–I) SMR effect plots demonstrate the correlation
between blood-derived PPIH expression and the risk of esophageal carcinoma, kidney renal clear cell carcinoma, and stomach adenocarcinoma.
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analysis. The integrated TCGA and GTEx data further confirmed

that PPIH expression was consistently elevated in tumors compared

with corresponding normal tissues (Figure 2B). Moreover,

proteomic data from the CPTAC database demonstrated

significant differences in PPIH protein levels between tumor and

normal tissues across multiple cancer types (Figure 2C).

Clinicopathological correlation analysis using the GEPIA2

platform revealed that PPIH expression was significantly

associated with tumor stage in several cancer types, including

CHOL, kidney chromophobe (KICH), kidney renal clear cell

carcinoma (KIRC), LIHC, and testicular germ cell tumors

(TGCT) (Figure 2D). Detailed tumor stage associations are

provided in Supplementary Figure S1. Furthermore, molecular

subtype analysis based on the TISIDB database uncovered

subtype-specific expression patterns of PPIH. For instance, the

basal-like subtype of breast cancer exhibited the highest PPIH

expression; in head and neck squamous cell carcinoma,

expression was significantly higher in HPV-positive cases than in

HPV-negative ones; and in gastric cancer, the genomically stable

(GS) subtype showed the lowest PPIH expression (Figures 2E–J).

The elevated expression of PPIH across multiple cancer types
Frontiers in Immunology 07
suggests its potential involvement in key oncogenic processes. Its

positive correlation with tumor stage in specific malignancies

indicates that aberrant PPIH expression may be closely associated

with tumor progression and aggressiveness. Moreover, the subtype-

specific expression patterns observed across various cancers imply

that PPIH may exert tissue- or context-dependent biological

functions, providing a potential basis for patient stratification and

precision therapy. Collectively, these findings underscore the

clinical relevance of PPIH as both a biomarker and a putative

oncogenic contributor in cancer.
3.3 Pan-cancer survival analysis of PPIH

We first performed univariate Cox regression analyses to

investigate the association between PPIH expression and various

survival outcomes, including overall survival (OS), disease-specific

survival (DSS), disease-free interval (DFI), and progression-free

interval (PFI), across multiple malignancies. As shown in Figure 3A,

elevated PPIH expression was predominantly associated with poor

prognosis, acting as a potential risk factor in numerous cancer
FIGURE 2

Pan-cancer expression analysis of PPIH. (A) Boxplots showing the aberrant RNA expressions of PPIH between tumor and normal tissues based on
TIMER2 database. (B) Boxplots showing the aberrant RNA expressions of PPIH between tumor and normal tissues based on TCGA and GTEx
database. (C) Boxplots showing the aberrant protein expressions of PPIH between tumor and normal tissues based on CPTAC database. (D) Violin
plots showing the expression variations of PPIH across different tumor stages. (E–J) Violin plots showing the expression variations of PPIH across
different tumor molecular subtypes. ns, not significant; *p < 0.05; **p < 0.01 and ***p < 0.001.
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FIGURE 3

Pan-cancer survival analysis of PPIH. (A) Univariate Cox regression analysis of PPIH for OS, DSS, DFI and PFI. (B, C) Kaplan-Meier curves showing the
differences in OS and DSS between patients with high and low PPIH expressions.
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types. Notably, high PPIH expression was significantly correlated

with shorter OS, DSS, and PFI in pancreatic adenocarcinoma.

Similarly, negative correlations were observed between PPIH

expression and all four survival indicators in liver hepatocellular

carcinoma (LIHC), adrenocortical carcinoma (ACC), and prostate

adenocarcinoma (PRAD). Interestingly, PPIH overexpression was

paradoxically associated with favorable prognosis in stomach

adenocarcinoma (STAD) and ovarian serous cystadenocarcinoma

(OV), suggesting a potential context-dependent or stage-specific

dual role of PPIH in tumor progression (18, 19). Subsequent

Kaplan–Meier survival analyses further illustrated the clinical

impact of PPIH expression. In terms of OS and DSS, high PPIH

expression predicted significantly worse outcomes in multiple

cancers, including LIHC, ACC, and breast invasive carcinoma

(BRCA), while indicating improved survival in OV and select

other cancer types (Figures 3B, C). Given the complex nature of

cancer prognosis, we further explored the effect of PPIH

dysregulation on DFI and PFI. The results demonstrated that

PPIH expression may also significantly influence DFI and PFI in

several tumor types (Supplementary Figures S2A, B). Additional

Kaplan–Meier analyses for other cancer types are provided in

Supplementary Figure S3. The survival analysis in this study

highlights the clinical significance of PPIH as a prognostic

biomarker across various cancer types. In multiple malignancies,

elevated PPIH expression is closely associated with unfavorable

survival outcomes, suggesting its potential involvement in

promoting tumor progression, therapeutic resistance, or immune

evasion. Conversely, in certain cancers, high PPIH expression is

linked to improved prognosis, indicating a possible dual role that

may depend on tumor subtype-specific contexts.
3.4 Significant heterogeneity of PPIH in the
tumor microenvironment of hepatocellular
carcinoma

To further investigate the heterogeneity of PPIH expression

within the tumor microenvironment of HCC, we analyzed single-

cell RNA sequencing (scRNA-seq) data from the GEO database

(GSE166635). All samples were derived from patients diagnosed

with HCC. Following stringent quality control procedures, 29,000

high-quality cells were retained for downstream analysis. We

performed principal component analysis (PCA) and t-distributed

stochastic neighbor embedding (t-SNE) for dimensionality

reduction and clustering, resulting in the identification of 20

distinct cellular clusters (Figure 4A). Cell types were annotated

using well-established marker genes, including CD3D for T cells,

CD79A for B cells, CD68 for monocytes and macrophages, CD1C

for dendritic cells, ENG for endothelial cells, ACTA2 for fibroblasts,

KRT18 for epithelial cells, CPA3 for mast cells, and MKI67 for

proliferating cells (Figure 4B). To identify malignant cells, we

applied the Bayesian segmentation algorithm from CopyKAT,

which infers genome-wide copy number variation (CNV) profiles

from scRNA-seq data at a resolution of approximately 5 Mb. Based

on CNV patterns, epithelial cells were classified as either aneuploid
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(malignant) or diploid (non-malignant) (Figure 4C), and the full

dataset was ultimately annotated into 11 major cell types

(Figure 4D). PPIH expression demonstrated pronounced

intercellular heterogeneity, with particularly high levels observed

in malignant epithelial cells and proliferative monocyte/

macrophage subsets (Figure 4E). This pattern was further

validated by violin plots showing distinct, cell type-specific

expression profiles of PPIH (Figure 4F). The variable expression

of PPIH within the HCC microenvironment carries potential

biological significance. First, its preferential enrichment in tumor

cells suggests a possible involvement in tumor cell proliferation or

maintenance, consistent with its previously reported oncogenic

roles. Second, its elevated expression in proliferating monocytes

and macrophages raises the possibility that PPIH may be involved

in modulating tumor-associated immune responses. Together, these

findings underscore the complexity of PPIH regulation in HCC and

highlight its potential relevance in both tumor cell-intrinsic and

microenvironmental contexts.
3.5 PPIH Promotes malignant proliferation
of tumor cells and modulates the tumor
microenvironment

To dissect the functional heterogeneity of PPIH in malignant

cells, we stratified tumor cells into eight subclusters (Figure 5A).

Nuclear density analysis using the Nebulosa package revealed

significant PPIH enrichment in subclusters C3 and C5

(Figure 5B). Subsequent Gene Set Variation Analysis (GSVA)

indicated stronger proliferative activity in these subclusters, with

C3/C5 exhibiting higher scores in cancer-related pathways—

including E2F targets, G2M checkpoint, and MYC targets V2—

compared to other subclusters (Figure 5C). These results suggest

that PPIH is a key regulator of tumor cell proliferation and may

drive HCC progression. Meanwhile, we observed a significant

overlap in the expression patterns of key cell cycle regulators,

including CDC25C, CCNB1, and CDK1, with PPIH in malignant

cells (Figure 5D–E), further suggesting that PPIH may promote

tumor cell proliferation by modulating cell cycle progression.

Pseudotime trajectory analysis based on Monocle2 reconstructed

a continuous differentiation process from hepatocytes to malignant

cells, identifying five distinct states. According to two branching

points, cellular states were defined; with advancing pseudotime,

cells progressively differentiated from states 4 and 5 to states 1 and 3

(Figure 5F). Visualization of this trajectory confirmed progressive

malignant transformation (Figures 5G, H). Notably, PPIH

expression showed pseudotime-dependent upregulation during

hepatocyte-to-malignant cell transition (Figure 5I). Branch point

analysis identified key regulators of this process (Figure 5J), and

Spearman correlation analysis revealed significant positive

associations between PPIH and multiple branch-defining genes

(Figure 5K). These multilayered analyses demonstrate that PPIH

serves not only as a biomarker but is also potentially involved in the

process of hepatic malignant transformation, although further

mechanistic validation is warranted.
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To investigate how PPIH overexpression remodels the TME, we

performed cell-cell communication analysis using CellChat, focusing

on ligand-receptor (LR) interactions mediated by PPIH-enriched

malignant cells and proliferative monocyte/macrophage subsets.

Bubble plots visualized the directional signaling roles of 11 cellular

subtypes in outgoing and incoming pathways (Supplementary

Figures S4A, B). Malignant cells acted as primary signaling sources

for midkine (MK), targeting diverse immune and stromal

populations. Proliferative monocytes/macrophages predominantly

activated the secreted phosphoprotein 1 (SPP1) pathway.

Quantitative circle diagrams delineated interaction network

topology and signaling strength across cell types (Supplementary

Figures S4C, D). Pathway decomposition revealed selective targeting
Frontiers in Immunology 10
of stromal components by both MK and SPP1 signaling pathways

(Supplementary Figures S4E, F). Detailed LR mapping identified

ITGB1 as the core receptor enabling malignant cells to regulate

fibroblasts and endothelial cells (Supplementary Figure S4G)—a

mechanism associated with epithelial-mesenchymal transition

(EMT) and poor prognosis in multiple cancers (20, 21). Similarly,

proliferative monocytes/macrophages engaged stromal cells via

ITGB1 while activating mast cells through SPP1-CD44 interactions

(Supplementary Figure S4H), which promote tumor stemness and

immunosuppression (22–24). These findings delineate a dual

mechanistic framework: 1) PPIH-enriched malignant cells may

potentiate EMT through MK/ITGB1-mediated stromal

reprogramming, and 2) cycling myeloid populations could
FIGURE 4

Heterogeneous Expression of PPIH in the Tumor Microenvironment of Hepatocellular Carcinoma. (A) t-SNE plot showing distinct cell clusters in
HCC. (B) Feature plots illustrating cell type–specific marker genes in HCC tissues. (C) Identification of malignant cells in HCC samples using
CopyKAT. (D) t-SNE plot displaying the major cell types within the HCC tumor microenvironment. (E) Feature plots showing the distribution of PPIH
expression across different cell types in HCC tissues. (F) Violin plot demonstrating the prominent enrichment of PPIH expression in malignant cells,
proliferative monocytes/macrophages, and proliferative T cells.
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reinforce immunosuppression via SPP1-CD44 network. Collectively,

these pathway-specific perturbations provide a plausible explanation

for PPIH-associated TME dysregulation, contributing to unfavorable

clinical outcomes in HCC. Through single-cell analyses, we identified

a potential role of PPIH in malignant cell proliferation. The

pseudotime analysis suggests that further studies are necessary to

validate the relationship between PPIH and hepatocyte malignant

transformation. Additionally, cell-cell communication analysis

reveals dual roles of PPIH-high malignant cells and proliferative

myeloid cells in remodeling the tumor microenvironment.

Collectively, these findings elucidate the important functions of

PPIH in promoting hepatocellular carcinoma progression and

modulating the tumor microenvironment.
3.6 PPIH in tumor immunity and genomic
alterations

We performed a comprehensive multi-omics analysis to

elucidate the potential role of PPIH in cancer immunity and

tumorigenesis. Immune infiltration analysis based on XCELL,

CIBERSORT-ABS, and EPIC algorithms revealed that PPIH

expression was significantly correlated with the infiltration levels

of various immune cell subsets across cancer types (Figures 6A–C).

Notably, strong associations were observed between PPIH

expression and lymphocyte populations such as Th1, Th2

(XCELL), and natural killer (NK) cells (EPIC), suggesting a key

role for PPIH in shaping the tumor immune microenvironment

(TME). In parallel, PPIH expression was also significantly

correlated with multiple immune checkpoint molecules,

implying its involvement in immune escape mechanisms and its

potential as a predictive biomarker for immunotherapeutic

responsiveness (Figure 6D).

Epigenetically, we identified DNA methylation as a critical

regulatory mechanism governing PPIH transcription. Integration of

expression and methylation data demonstrated a significant negative

correlation between PPIH mRNA levels and promoter methylation at

multiple CpG sites (Figure 6E), implicating promoter hypomethylation

in PPIH overexpression. UALCAN-based pan-cancer analysis further

confirmed that tumor tissues in several malignancies—including

BLCA, HNSC, LUAD, PRAD, READ, TGCT, THCA, and UCEC—

exhibited significantly lower methylation levels compared to normal

controls (Supplementary Figure S5B). Interestingly, PPIH methylation

was also strongly associated with both immune cell infiltration and

immune checkpoint gene expression, indicating its potential dual role

in tumor progression and immune modulation (Supplementary

Figure S5A). On the genomic level, PPIH alterations were profiled

across 33 cancer types using the cBioPortal platform. Gene

amplification emerged as the dominant alteration in OV, ESCA, and

BRCA, while SKCM exhibited a mixed pattern of mutations and

amplifications (Supplementary Figure S6A). Mutation frequency was

notably elevated in UCEC and CESC (Supplementary Figure S6B), and

survival analysis showed that patients with PPIH mutations had

significantly worse overall survival compared to those without
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(Supplementary Figure S6C). Structural mapping indicated that

mutation hotspots were mainly located within the functional

peptidyl-prolyl isomerase domain (Supplementary Figure S6D).

Furthermore, CNV analysis revealed that increased PPIH copy

number was positively correlated with immunoregulatory genes,

including immune checkpoints , MHC molecules, and

immunosuppressive cytokines in KICH, LGG, and UVM

(Supplementary Figure S6E), reinforcing the notion that genetic

alterations in PPIH contribute to TME remodeling. Overall, multi-

omics analyses demonstrate that PPIH plays a pivotal role in cancer

immune regulation and tumor progression. Its expression is

significantly correlated with the infiltration of various immune cells

and immune checkpoint molecules, highlighting its involvement in

modulating the tumor immune microenvironment. Promoter

hypomethylation and frequent genomic alterations further support

its role in tumorigenesis and immune evasion. These findings suggest

that PPIHmay serve as an important biomarker and therapeutic target

for cancer immunotherapy.
3.7 Functional enrichment analysis of PPIH

To gain insights into the potential molecular functions of PPIH in

tumor progression, we first constructed its protein–protein

interaction (PPI) network using the STRING database. This

approach yielded a set of proteins with putative functional

associations with PPIH (Figure 7A). Subsequent functional

enrichment analysis of these candidate genes, performed using

Gene Ontology (GO) and Metascape, revealed that they are

significantly involved in biological processes such as RNA splicing,

DNA replication, and cell cycle regulation (Figures 7B–D). To further

explore the biological relevance of PPIH expression in HCC, we

conducted gene set enrichment analysis (GSEA) based on HCC

transcriptomic profiles. The results revealed a clear functional

divergence associated with PPIH expression levels: low PPIH

expression was predominantly correlated with enrichment of

hepatic metabolic pathways, while high PPIH expression was

significantly associated with activation of DNA replication and cell

cycle–related pathways (Figure 7F). In addition, we explored the

therapeutic implications of PPIH by predicting potential drug

interactions. Using DSigDB and DrugMatrix, we identified

candidate compounds targeting PPIH and its highly co-expressed

genes (Figure 7E). These findings suggest that PPIH may contribute

to poor cancer prognosis by promoting malignant proliferation of

tumor cells through the regulation of cell cycle–related pathways.
3.8 PPIH was upregulated in HCC

To validate the results from public database analyses, we assessed

PPIH expression in hepatocellular carcinoma (HCC). qRT-PCR

analysis of 14 randomly selected paired HCC tissues and adjacent

normal liver tissues from the sample database of the Second Hospital
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FIGURE 5

PPIH overexpression significantly promotes malignant proliferation of tumor cells and may contribute to hepatocyte transformation. (A) Distinct
subpopulations of tumor cells. (B) Enrichment of PPIH expression in the C3 and C5 subclusters of tumor cells. (C) Tumor cells in the C3 and C5
subclusters exhibit a higher proliferative tendency compared to other tumor cell populations. (D, E) The expression patterns of CDC25C, CCNB1,
and CDK1 in malignant cells were visualized using the Nebulosa package and violin plots. (F–H) Pseudotime analysis reveals the differentiation
trajectory from hepatocytes to malignant cells. (I) PPIH expression gradually increases along the differentiation axis from hepatocytes to malignant
cells. (J) Cluster heatmap showing genes highly correlated with pseudotime trajectory nodes. (K) PPIH expression is significantly positively correlated
with multiple node-associated genes.
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of Shandong University revealed that the transcriptional level of

PPIH was significantly upregulated in HCC tissues (Figure 8A). This

upregulation at the protein level was further confirmed by Western

blotting and immunohistochemistry (Figures 8B, C). Consistently,

both mRNA and protein levels of PPIH were elevated in four HCC
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cell lines compared to the normal human hepatic cell line THLE-2,

with especially pronounced expression in Huh7 and Hep3B cells

(Figure 8D). Subsequently, we established PPIH knockout and

overexpression cell lines and validated PPIH expression at both

mRNA and protein levels (Figures 8E, F).
FIGURE 6

Immune and epigenetic associations of PPIH in pan-cancer. (A–C) Correlations of PPIH expressions with immune cell infiltraion levels quantified by
XCELL, CIBERSORT-ABS and EPIC algorithms. (D) Expression correlations of PPIH and various immune checkpoint genes. (E) Correlations of PPIH
expressions with its methylation levels at different CpG sites within the promotor region.
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FIGURE 7

Functional enrichment analysis of PPIH. (A) The PPI network of PPIH. (B, C) Enrichment analysis of PPIH’s interactive proteins. (D) MetaScape
enrichment analysis of PPIH’s interactive proteins. (E) The potential drug targets of PPIH predicted by DsigDB and DrugMatrix. (F) GSEA analysis of
PPIH.
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FIGURE 8

PPIH is upregulated in HCC. (A) Relative mRNA expression of PPIH in normal liver tissues and HCC tissues. (B) Western blot analysis of PPIH protein
levels in normal liver and HCC tissues. (C) Immunohistochemical staining showing PPIH protein expression in normal liver and HCC tissues.
(D) Expression of PPIH in immortalized hepatocytes and HCC cell lines. (E) Knockout and overexpression of PPIH in Huh7 cells. (F) Knockout and
overexpression of PPIH in Hep3B cells. *p < 0.05; **p < 0.01 and ***p < 0.001.
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3.9 Overexpression of PPIH enhances the
proliferation, invasion, and migration of
hepatocellular carcinoma cells

To investigate the biological role of PPIH in HCC, we

systematically evaluated the effects of PPIH on the proliferation,
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invasion, and migration of Huh7 and Hep3B cells through a series of

in vitro experiments. CCK-8 assays revealed that stable

overexpression of PPIH significantly promoted the proliferation of

HCC cells (Figure 9A), while PPIH knockout markedly suppressed

cell viability (Figure 9B). Colony formation assays further confirmed

that PPIH overexpression significantly enhanced the colony-forming
FIGURE 9

Functional effects of PPIH on hepatocellular carcinoma cells. (A, B) CCK-8 assays revealed that PPIH overexpression or knockout significantly
affected HCC cell proliferation. (C, D) Colony formation assays showed significant differences in clonogenic potential between the PPIH-
overexpression or knockout groups and the corresponding control (Vector or WT) groups. (E, F) Transwell migration assays demonstrated that PPIH
overexpression enhanced, while knockout suppressed, the migratory capability of HCC cells. (G, H) EdU assays indicated that PPIH overexpression
and knockout significantly influenced the proliferative activity of HCC cells. (I, J) Wound healing assays showed that PPIH overexpression
accelerated, while knockout impaired, cell migration dynamics over a 48-hour period. Data are presented as mean ± SEM from three independent
experiments. Statistical significance was assessed by two-tailed Student’s t-test: ***p < 0.001, **p < 0.01, * p < 0.05.
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ability of both Huh7 and Hep3B cells, whereas PPIH knockout

substantially reduced this capacity (Figures 9C, D). To further

explore the effect of PPIH on the migratory capacities of HCC

cells, Transwell and wound healing assays were performed.

Transwell assays showed that PPIH overexpression markedly

increased the migratory potential of Huh7 and Hep3B cells, while

PPIH knockout significantly suppressed their migration (Figures 9E,

F). EdU incorporation assays demonstrated that PPIH

overexpression significantly increased the proliferation index of

HCC cells, whereas PPIH knockout led to a decrease in

proliferative activity (Figures 9G, H). Consistent with these

findings, wound healing assays revealed that PPIH overexpression

promoted cell migration, while knockout of PPIH significantly

impaired the migratory ability of HCC cells (Figures 9I, J).

Statistical analysis indicated that PPIH overexpression significantly

enhanced tumor-associated biological behaviors in all functional

assays, whereas PPIH knockout led to a marked reduction in

cellular activity (p < 0.05).
4 Discussion

In recent years, bioinformatics approaches such as MR have

emerged as powerful tools for identifying aberrant genomic

alterations involved in carcinogenesis. However, traditional MR

methods face limitations in establishing causal relationships due to

confounding factors and reverse causation. Against this backdrop,

SMR has been developed as a more robust analytical framework.

SMR leverages genetic variants as instrumental variables to infer

causal associations between exposure biomarkers and disease

outcomes while effectively minimizing environmental

confounding (25, 26). Given the advantages of SMR, we

employed this approach to systematically screen for potential

cancer driver genes. Among the three malignant tumor GWAS

datasets included, PPIH was identified as a common critical gene

across different cancer types and was therefore selected as a

candidate target for further in-depth investigation.

PPIH, a member of the cyclophilin family, catalyzes the cis-

trans isomerization of proline residues, inducing local

conformational changes in surrounding protein structures (27).

Emerging evidence indicates that PPIH is closely implicated in the

pathogenesis of multiple malignancies, with notably elevated

expression observed in LIHC and COAD (28). Furthermore,

PPIH expression correlates significantly with immune cell

infiltration in HCC, gastric cancer (GC), and CHOL, suggesting

that its pro-tumorigenic effects may be mediated via modulation of

the TME (29–32). Our study corroborates these findings by

demonstrating that PPIH is overexpressed in multiple cancer

types and is associated with poor clinical outcomes, thereby

strengthening its credibility as a pan-cancer biomarker. Notably,

prior studies have primarily focused on the context-dependent

functions of PPIH within individual cancer subtypes, often

relying on single-cohort analyses with limited sample sizes and

lacking systematic evaluation. Consequently, the broader biological

relevance of PPIH across diverse malignancies remains to be fully
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elucidated, particularly regarding its epigenetic regulation,

biological functions, and interactions with TME components.

To address these gaps, we first conducted a comprehensive

analysis of PPIH’s genetic alteration landscape across multiple

cancers, including somatic mutations, copy number variations

(CNVs), and DNA methylation patterns. Our results indicate that

PPIH overexpression is largely attributable to its high mutation

frequency, copy number amplification, and promoter

hypomethylation. Subsequent functional enrichment analyses

revealed that PPIH is primarily involved in RNA splicing, DNA

replication, and cell cycle regulation. It is worth mentioning that

previous studies have reported that precursor RNAs of numerous

oncogenes require selective splicing to generate mature mRNA

transcripts with oncogenic activity (33–35). Moreover, the

significant enrichment of DNA replication and cell cycle-related

pathways further suggests that PPIH may promote tumor cell

proliferation by facilitating cell cycle progression. Collectively,

these findings provide novel insights into the molecular

mechanisms underlying PPIH-mediated tumorigenesis and offer

new directions for future mechanistic investigations.

In addition to cancer cells, the TME comprises diverse cellular

components such as immune and stromal cells, as well as non-

cellular elements including vascular structures, ECM, and a variety

of signaling molecules. This dynamic and highly heterogeneous

ecosystem plays a pivotal role in malignant progression (36).

Utilizing multiple computational algorithms, our study

demonstrated a significant correlation between PPIH expression

and infiltration of various immune cell types. Integration with

hepatocellular carcinoma single-cell RNA sequencing data further

elucidated the potential regulatory role of PPIH within the TME.

Key findings include: (1) marked enrichment of PPIH in malignant

cells and proliferative monocyte/macrophage subclusters; (2)

enhanced proliferative capacity of high PPIH-expressing

malignant cell subpopulations relative to others; (3) pseudotime

trajectory analysis revealing a progressive increase of PPIH

expression during hepatocyte malignant transformation, implying

its involvement in driving malignant evolution; (4) cell–cell

communication analysis identifying MK and SPP1 signaling

pathways as major mediators between PPIH-high malignant/

proliferative monocyte/macrophage cells and other TME

constituents. The oncogenic roles of these pathways have been

previously validated in various cancers (37–39), thereby reinforcing

the credibility of our single-cell findings. Importantly, in vitro

experiments confirmed significant upregulation of PPIH in HCC

tissues, with overexpression markedly enhancing HCC cell

proliferation, invasion, and migration, whereas PPIH knockdown

suppressed these malignant phenotypes, supporting its oncogenic

function in HCC.

Admittedly, our study has several limitations. First, despite

leveraging GWAS datasets of multi-cancers, we did not identify

genetic variants significantly associated with PPIH protein

expression. Second, the GWAS data predominantly derive from

European ancestry populat ions, which may limit the

generalizability of our findings to other ethnic groups. Finally,

although preliminary in vitro assays verified the pro-tumorigenic
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role of PPIH, its precise molecular regulatory network remains to be

fully characterized. In particular, future studies are warranted to

dissect its interactions with key signaling molecules and clarify its

functional role in TME remodeling.
6 Conclusions

In summary, this study first identified PPIH as a candidate

biomarker of different system-derived malignancies through SMR

analysis. Further multi-omics analyses confirmed the potential

utility of PPIH as a pan-cancer diagnostic and prognostic

biomarker gene. Importantly, we systematically elucidated the

potential role of PPIH in tumorigenesis and revealed its

functional correlation with the TME through scRNA-seq analysis.

These findings deepen our understanding of PPIH’s multifaceted

roles in cancer progression and provide novel insights for the

research and development of targeted therapeutic strategies.
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