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Background: Invasive candidiasis, most commonly caused by Candida albicans,

poses a significant mortality risk and is challenging to treat. Non-tuberculous

mycobacterial infections are opportunistic and linked to immune impairment.

Caspase recruitment domain-containing protein 9 (CARD9) represents a class of

proteins that incorporates the caspase recruitment domain, and its deficiency

follows a strict autosomal recessive inheritance pattern, resulting in an impaired

immune response.

Case presentation: A 51-year-old male who was admitted to the hospital 3 years

ago because of recurrent fever accompanied by headache. The causative factor

remains elusive and symptomatic treatment yielded unsatisfactory results. Next-

generation sequencing (NGS) of cerebrospinal fluid (CSF) identified the fungus as

C. albicans. Following antifungal therapy, the patient experienced relief from

fever and headache; however, he subsequently developed a hydrocephalus. CSF

culture indicated NTM—Mycobacterium intracellulare, prompting the initiation

of anti-NTM treatment. Given the recurrent infections, we collected peripheral

blood for whole exome sequencing, which revealed a CARD9-deficient

homozygote with a new mutation site identified as c.175C>T (p. Arg59Trp). The

patient was hospitalized on 8 occasions for diagnostic assessment and

treatment. Presently, antifungal treatment has been discontinued after 9

months of therapy, while anti-NTM therapy is being maintained, with the

patient reporting no fever or other discomforts.
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Conclusion: The c.175C>T (p. Arg59Trp) mutation is a novel CARD9 gene

mutation and is probably damaging. Clinicians should consider immune

impairment as a contributing factor in the management of fungal infections

among non-HIV/AIDS patients. For such patients, conducting multiple CSF and

blood cultures and employing new technologies such as NGS are advisable.

Treatment of NTM and C. albicans requires personalized treatment plans.

Moreover, the long-term follow-up should not be overlooked.
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Introduction

The incidence of systemic fungal infections has notably surged

in recent years, attributable to factors such as the increasing use of

intravenous cannulas and implantable medical devices, alongside an

increasing immunosuppressed population stemming from various

causes. According to a study (1), fungal infections affect

approximately 1 billion individuals, resulting in over 1.5 million

deaths globally. Opportunistic fungal infections have emerged as an

important cause of mortality among hospitalized patients,

presenting a substantial public health challenge with significant

clinical and socioeconomic ramifications that require urgent

attention (2). Among the pathogens responsible for opportunistic

infections, Candida stands out as particularly noteworthy, given its

status as the most prevalent bloodstream infection in tertiary care

hospitals (2). Furthermore, invasive candidiasis poses significant

treatment challenges and has a high mortality rate, with C. albicans

being the most frequently encountered pathogen.
Candida albicans

C. albicans can exist harmlessly in symbiosis with the host or

transition to an opportunistic pathogen. It naturally colonizes various

parts of the human body, including the oral cavity, intestinal tract,

vagina, and skin. The growth of C. albicans is typically controlled by the

host immune system and regulatory mechanisms facilitated by normal

microbiota (3). However, when this delicate balance is disrupted, C.

albicans proliferates excessively and becomes more virulent. Factors

influencing clinical manifestations include the specific site affected, route

of infection, intrinsic characteristics of the pathogen, and underlying

health conditions of the patients. As a result, the clinical presentations

can vary widely, ranging from mild superficial infections to severe

systemic illnesses. Therefore, accurate diagnosis and appropriate

treatment are crucial for managing C. albicans infection. A 12-year

retrospective analysis of autopsies conducted at the University of

Kentucky Medical Center revealed that 54% of patients with positive

C. albicans cultures had invasive candidiasis. Among these cases, the
02
proportion of infected sites included the kidneys (80%), the brain (52%),

and the heart (48%) (4). C. albicans infection of the central nervous

system(CNS), previously thought to be rare, appears to be increasing in

incidence; in most cases, the disease typically originates from fungal

hematogenous dissemination, where the fungus spreads through the

bloodstream from distant primary sites of infection (4) and occurs

predominantly in individuals with certain types of immunodeficiencies,

often leading to neurological sequelae or death if not diagnosed and

treated in a timely manner (5). The main receptor families involved in

C. albicans recognition are C-type lectin receptors (CLR), RIG I-like

receptors (RLR), NOD-like receptors (NLR), and Toll-like receptors

(TLR), which recognize different pathogen-associated molecular

patterns (PAMPs) (6). The successful clearance of C. albicans from

host tissues largely depends on the phagocytosis of this fungal pathogen

by innate immune cells (i.e., macrophages, neutrophils, and dendritic

cells). Exposure to b-glucan of C. albicans triggers proinflammatory

innate immune responses amongCLRs, particularly those dependent on

DECTIN1/CLEC7A (C-type lectin domain family 7 member A) (7, 8).

When this pathway is impaired, it reduces the body’s clearance rate of

Candida albicans.
Non-tuberculous Mycobacteria

Non-tuberculous Mycobacteria (NTM), which are members of

the Mycobacterium genus, excluding Mycobacterium tuberculosis

and Mycobacterium leprae, are ubiquitous organisms commonly

found in natural environments such as water and soil (9). Although

NTM encompasses more than 190 species, only a small subset is

associated with human diseases, with lung diseases being the most

prevalent (10). CNS infections are relatively rare, and NTM is

traditionally viewed as an opportunistic infection closely linked to

immune impairment. Disruption of the IFN-g/IL-12 signaling

pathway has been identified as the primary cause of disseminated

NTM infection (11). A study on the US national managed care

claims database showed that the incidence rate of NTM disease in

the population ranges from 3.1 to 4.7 per 100,000 person-years (12),

with Mycobacterium avium complex (MAC: M. avium ,
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Mycobacterium intracellulare and Mycobacterium chimaera) being

the most common NTM species causing CNS diseases (13).
CARD9

Caspase recruitment domain-containing protein 9 (CARD9) is a

class of proteins containing the caspase recruitment domain (14), and

the gene encoding CARD9 is located on chromosome 9 at position

q34.3 with 13 exons. Human CARD9 transduces signals downstream

of different CLRs (e.g., DECTIN1/CLEC7A, DECTIN2/CLEC6A,

DECTIN3/CLEC4D, and MINCLE/CLEC4E) from fungal

constituents through Syk activation of ITAM, resulting in activation

of the NF-kB and MAPK pathways as well as proinflammatory

cytokine production, thereby triggering a comprehensive antifungal

immune response (15). CARD9 deficiency follows an autosomal

recessive pattern and results in an inadequate immune response to

fungi, leading to subsequent infection. However, the heterozygotes did

not exhibit abnormal phenotypes. CARD9 deficiency has been

reported worldwide, including but not limited to China (16), Iran

(17), Canada (18), Algeria (19), Morocco (20), Tunisia (21), and the

United States (22). The three regions with the most reports are China,

Algeria, and Iran. Among them, Trichophyton and Candida are the

two most prominent pathogenic fungi (23).
Case report

The patient is a 51-year-old male residing in Sichuan Province,

China. His parents were Han Chinese first cousins, and his mother

died of lung cancer in 2003.He had healthy siblings and a son with no

clear history of genetic or familial diseases. In 2018, he was diagnosed

with lumbar spine tuberculosis, underwent surgical excision, and

received antituberculosis treatment for more than 1 year, achieving a
Frontiers in Immunology 03
clinical cure. In November 2021, he experienced an unexplained fever

(highest temperature 38.8 °C) accompanied by headache. He visited

the local hospital twice, and various tests showed no significant

abnormalities. Empirical treatment was administered, however, the

fever persisted. The timeline flow chart of the patient’s symptoms and

hospitalizations is shown in Figure 1.
The first hospitalization to the Infectious
Diseases Center of West China Hospital

On December 14, 2021, upon arrival at our hospital, the patient

underwent a physical examination that revealed clear

consciousness, chronic facial features, absence of neck stiffness,

Kernig’s sign, and Brudzinski’s sign. No palpable lymph node

enlargement was observed, and cardiovascular, pulmonary, or

abdominal examination revealed no obvious abnormalities.

Further investigations included CD4/CD8 cells, neutrophils, HIV,

TB-IGRA, TB-DNA, CMV-DNA, EBV-DNA, blood CrAg, tumor

markers, PCT, and erythrocyte sedimentation rate, all of which

showed no significant abnormalities. In the initial blood test, the

only notable increase observed was in IgE level, which was 443 IU/

mL. Enhanced MRI of the head revealed a bilateral frontal lobe and

small ischemic lesions in the left central semiovale. The

cerebrospinal fluid (CSF) analysis was negative for CrAg, ink

staining, smears, and culture. However, protein and nucleated cell

counts in the CSF were significantly elevated, whereas glucose levels

were decreased (Figure 2). Despite empirical antimicrobial

treatment, the patient’s temperature remained elevated. On

December 21, 2021, the CSF was rechecked, showing similar

results, with increased protein and nucleated cells and decreased

glucose levels (Figure 2). Autoimmune encephalitis antibodies were

negative, meanwhile also ruled out the possibility of connective

tissue disease; however, Next-generation sequencing (NGS) of the
FIGURE 1

The timeline flow chart of the patient’s symptoms and hospitalizations.
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CSF revealed 387 sequences of C. albicans. Considering the

abnormal CSF test results and fever, C. albicans meningitis was

diagnosed. Consequently, fluconazole (400mg qd) and flucytosine

(1.5g qid) were administered on December 23, 2021. After

approximately 10 days of treatment, the CSF did not show

significant improvement (Figure 2). Therefore, amphotericin B

(40mg qd) was added to the treatment regimen. However, owing

to acute renal function injury, amphotericin B was discontinued

and replaced with voriconazole (200mg bid) and flucytosine (1.5g

qid) before discharge on January 24, 2022.
The second hospitalization to the
Infectious Diseases Center of West China
Hospital

After discharge, the patient adhered to antifungal therapy and

the headache and fever resolved. However, he was readmitted on

March 4, 2022, due to dizziness, visual rotation, and nausea. CSF re-

examination showed decreased protein and nucleated cell counts

and increased glucose levels compared to the previous admission.

CSF culture from the previous admission suggested non-

tuberculous mycobacteria (NTM); however, the identification and

drug sensitivity results were inconclusive. The second NGS of CSF

showed C. albicans (22 sequences), Aspergillus (6 sequences), and

Torque teno virus (4 sequences). Magnetic resonance imaging

(MRI) of the head revealed meningeal thickening and ventricular

enlargement with hydrocephalus. As CSF results improved, anti-

NTM treatment was not administered. Antifungal therapy was

continued and the patient was discharged.
Frontiers in Immunology 04
The third hospitalization to the Infectious
Diseases Center of West China Hospital

The patient was readmitted to the hospital on April 8, 2022, for

lower limb weakness with unsteady walking. Enhanced MRI of the

head showed enlarged ventricular hydrocephalus with interstitial

edema, which was aggravated from the last follow-up. CSF was

reviewed, the amount of protein and nucleated cells was

significantly decreased, and glucose was increased (Figure 2). The

symptomatic treatment of hydrocephalus yielded limited efficacy. On

April 11, with the assistance of neurosurgery, lumbar large-pool

drainage was optimized, resulting in a daily drainage flow of

approximately 120mL. Subsequently, on April 18, the patient

developed high fever (39 °C) accompanied by loss of consciousness.

Blood and CSF cultures revealed the presence of Klebsiella oxytoca,

leading to the initiation of effective antibacterial therapy. Finally,

NTM was identified as M. intracellulare (Figure 3). In accordance

with the drug sensitivity results, the patient was administered a

regimen of moxifloxacin (400mg qd), ethambutol (750mg qd), and

clarithromycin (500mg bid) for anti-NTM treatment.
Follow-up hospitalization

Subsequent hospitalizations were aimed at assessing and

monitoring the treatment efficacy. CSF analysis was conducted

during the 4th hospitalization in July 2022, 5th hospitalization in

September 2022, 6th hospitalization in February 2023, 7th

hospitalization in June 2023, and 8th hospitalization in October

2023. The results showed normalization and stabilization (Figure 2).
FIGURE 2

Cerebrospinal fluid examination results.
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Additionally, NGS of the CSF during the 5th hospitalization revealed

no C. albicans sequences, prompting the discontinuation of antifungal

medication after September 2022 (total duration>9 months). Both the

patient and his son underwent exome sequencing, which indicated

that the patient was homozygous for CARD9 deficiency, with a

mutation site at c.175C>T (p. Arg59Trp). The gene mutation was

predicted to be “probably damaging” with a score of 1.000 by

PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/).

Genomic DNA from the proband, father, two siblings, and son

was amplified by polymerase chain reaction (PCR) using the

following primers for Sanger sequencing of the identified CARD9

mi s s en s e mu t a t i on (p . A r g59T rp ) : f o rwa rd , 5 ’ - F :

GCCCTCAGCTCCTCTGCCCATTCCA-3 ’ ; reverse , 5 ’-

GGACCCAACACCACTGCCCGCTCC-3’, with an annealing

temperature of 60 °C. All gene mutations are shown in Figure 4①.

His father and son are heterozygotes; he and his brother are

homozygotes; and his sister is wild type.

To date, the patient has discontinued anti-NTM medications

for nearly a year (discontinued in August 2024, duration 2 years)

and antifungal drugs (discontinued in September 2022, duration

over 9 months) for more than two years, with no fever, headache,

dizziness, or physical impairment. Head MRI examinations

conducted during this period indicated gradual disappearance of

the hydrocephalus (Figure 4②).
Review of literature

Genetic vulnerability to fungal infections

Fungal infections are prevalent in individuals with immune

dysfunction. However, in clinical practice, greater emphasis is

typically placed on fungal infections in HIV/AIDS patients,

potentially overshadowing the significance of immune dysfunction-

related fungal infections in non-HIV/AIDS patients. In addition to
Frontiers in Immunology 05
CARD9, this review discusses several other genetic factors associated

with the susceptibility to fungal infections, including high IgE

syndrome (HIES), Autoimmune Polyendocrinopathy–Candidiasis–

Ectodermal Dystrophy (APECED) syndrome, Dendritic cell-

associated C-type lectin-1 (Dectin-1) deficiency, STAT1 mutations,

and IL-17 mutations. These factors collectively constitute the primary

immunodeficiency disorders (PIDD).
High IgE syndrome

The clinical features of HIES include markedly elevated serum

IgE levels, eczema, and recurrent skin and lung infections. HIES

presents two distinct genetic patterns, autosomal dominant

inheritance (AD) and autosomal recessive inheritance (AR).

Among these, AD-HIES is the most prevalent genetic form. It

exhibits unique clinical manifestations, including distinctive facial

features, persistent deciduous teeth, and skeletal/connective tissue

abnormalities, which are infrequently observed in AR-HIES

patients (24). Although the precise immunodeficiency

mechanisms and underlying causes of HIES remain unclear, it is

evident that immune system dysregulation contributes significantly

to the pathogenesis of the disease. This dysregulation primarily

stems from the Th1/Th2 imbalance and aberrant production of

cytokines and chemokines (25).
APECED syndrome

Autoimmune Polyendocrinopathy–Candidiasis–Ectodermal

Dystrophy (APECED) Syndrome, also referred to as Autoimmune

Polyendocrinopathy Syndrome I (APS I), is a rare autosomal

recessive autoimmune disorder arising from a single gene

mutation. It is distinguished by autoimmune polyendocrinopathy,

candidal infection susceptibility, and ectodermal dystrophy
FIGURE 3

Culture and smear of M. intracellulare. (A) Culture of M. intracellulare (Lowenstein Jensen media, 35°C, 6 weeks). (B) Smear of M. intracellulare
(Ziehl-Neelsen staining, original magnification×1000).
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(26).Caused by loss-of-function variants of the autoimmune

regulatory gene AIRE, occurring in either single or double allele

forms, which compromises the thymus’s ability to perform negative

selection against autoreactive T cells (27)and disrupts peripheral B

cell tolerance (28). Research has demonstrated that JAK inhibitors

are effective in managing these condition (29).
Dectin-1 deficiency

Dendritic cell-associated C-type lectin-1 (Dectin-1), also

recognized as the b-glucan receptor, represents an emerging PRR

within CLR family. It identifies ligands independently of calcium

ions (Ca2+), and primarily facilitates the connection between innate

and adaptive immunity. Dectin-1 is predominantly expressed in

dendritic cells, macrophages, and neutrophils and recognizes

ligands from the PAMP family, such as b-1,3-glucans. Human

Dectin-1 deficiency is associated with vaginal candida infections

(30). Additionally, Dectin-1-deficient mice are susceptible to

Candida infections (31).
STAT1 mutation

Signal Transducer and Activator of Transcription (STAT)

proteins serve as crucial components of both innate and adaptive

immune responses against pathogenic microorganisms. Upon

cytokine binding to hematopoietic receptors, signaling is initiated

through Janus kinases (JAK1, JAK2, JAK3, and Tyk2) and

subsequently via STAT proteins (STAT1, STAT2, STAT3, STAT4,

STAT5A, STAT5B, and STAT6) (32). The molecular pathway
Frontiers in Immunology 06
mediated by JAK-STAT1 has garnered significant attention in

recent years because of its involvement in the IFN-g-mediated

host defense against intracellular pathogens. A mutation in the

coiled-coil domain (CC-D) of STAT1 was identified in an index

patient from Ukraine, and has been observed in numerous patients

from different familial backgrounds worldwide (33). Individuals

with functional acquired mutations affecting STAT1 CC-D are

predisposed to develop mucosal, skin, and nail candidiasis (34).
IL-17 mutation

IL-17 is a proinflammatory cytokine that plays a pivotal role in

the activation of various proinflammatory cytokines through

signaling pathways. These include antimicrobial peptides that

possess antifungal activity and neutrophil chemotactic factors

(35). Th17 cells are a significant source of IL-17 during Candida

infections. Genetic defects affecting the IL-17 pathway may impair

the immune response against Candida, potentially leading to the

progression of Chronic Mucocutaneous Candidiasis (CMC)

disease (36).
The relationship between CRAD9 and
infection

CARD9 and fungal infections

The deficiency of CARD9 renders individuals vulnerable to

numerous fungal infections, including Cryptococcus neoformans,

Cryptococcus verrucosus, Aspergillus, Pneumocystis, Mucor
FIGURE 4

① CARD9 mutations in the patient’s family members (I-1 is the patient’s father, heterozygote; I-2 is the patient’s mother, not tested; II-1 is the
patient’s sister, wild type; II-2 is the patient’s brother, homozygote; II-3 is the patient, homozygote; II-4 is the patient’s wife, not tested; III-1 is the
patient’s son, heterozygote) and ② Magnetic resonance imaging (MRI) of head. (A) Thickened meninges, enlarged ventricles with fluid; (B) Enlarged
ventricles with fluid and interstitial hydrocephalus, worse than before; (C) Significant reduction in hydrocephalus and interstitial hydrocephalus
compared to before; (D) No significant change in ventricles compared to before; (E) Enlarged triventricles and bilateral lateral ventricles, without
significant fluid; (F) No significant change compared to previous scans).
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irregularis, Rhizopus arrhizus, among others (37–41). Susceptibility

to fungal infections in patients lacking CARD9 is primarily

attributed to impaired production of pro-inflammatory cytokines

and chemokines, compromised neutrophil recruitment, and

dysregulated activation of pathways such as NF-kB and MAPK.

Additionally, deficiencies in Th-related responses, particularly in

Th17 and Th22 cells, contribute to susceptibility. Furthermore,

emerging evidence suggests that CARD9 plays regulatory roles in B

cell-mediated humoral immunity, further emphasizing its

significance in antifungal defense mechanisms (42).
CARD9 and bacterial infections

The antimicrobial signaling cascade mediated by CARD9 is

initiated by TLRs as part of the PRRs. Among TLR family members,

TLR2 and TLR4 play pivotal roles in recognizing the components of

gram-positive and gram-negative bacteria, respectively. A study

indicates (42) that CARD9-mediated signaling is crucial for anti-

pneumococcal immunity by regulating neutrophil function and

cytokine production. Both neutrophil phagocytosis and

accumulation depend on CARD9. Although CARD9 typically

serves as a key downstream connector molecule for PRR-triggered

signaling, it is important to note that PRRs can also initiate CARD9-

independent antimicrobial signaling pathways. These pathways

often intersect with the CARD9-dependent mechanisms to

collectively exert bactericidal effects (43).
CARD9 and Mycobacterium infections

The Dectin-1-Syk-CARD9 signaling pathway plays an

important role in tuberculosis immunity (44, 45). Clecsf8 (MCL)

is a FcRg-coupled receptor (46). Cellular responses mediated by

Clecsf8 depend on the Syk/CARD9 complex and encompass a

spectrum of functions including phagocytosis, proinflammatory

cytokine production, dendritic cell maturation, and T-cell

initiation and bursts (47). Studies have demonstrated that

Clecsf8-deficient mice are more susceptible to Mycobacterium

tuberculosis infections. This susceptibility is characterized by

increased load, hyperenhanced neutrophil infiltration, enhanced

pathological injury, and early death. These findings underscore the

critical role of the Clecsf8-Syk-CARD9 pathway in tuberculosis

immunity and related immune responses (48). Similar Syk

pathways are also present in Mycobacterium bovis, which

promote the initiation of immune responses (49). Although M.

intracellulare likely exhibits similarities, targeted research on its

specific immune-mediated processes is lacking.
CARD9 and viral infections

As a pivotal downstream molecule in the signal transduction of

PRRs, CARD9 is increasingly being recognized for its significant

role in viral infections. CARD9 integrates with the DNA sensor
Frontiers in Immunology 07
Rad50 and double-stranded DNA (dsDNA), leading to assembly of

the dsDNA-Rad50-CARD9 complex. This complex ultimately

triggers the activation of NF-kB and generation of a pro-IL-1b
response to viral infections (50). Similar mechanisms have been

observed for recognition of RNA viruses via the RIG-I pathway.

RIG-I, along with the mitochondrial antiviral signaling proteins

CARD9 and Bcl-10, activates NF-kB in response to RNA virus

detection. These intricate signaling pathways highlight the

multifaceted role of CARD9 in coordinating immune responses

against both DNA and RNA viruses (51).
Discussion

Overall, only 0.5% of invasive fungal infections involve CNS

(52), with Candida meningitis being more common in newborns

and patients using intracranial instruments (53, 54). High-risk

factors primarily include abdominal surgery, intestinal

perforation, recent broad-spectrum antibiotic treatment,

intravenous drug use, extreme age, indwelling urinary catheters,

and immunosuppression (AIDS, malignancy, antitumor treatment,

and steroid use) (54). CARD9-deficient patients can eliminate

Candida through neutrophil IgG opsonization, thereby preventing

invasive Candida infections. However, when Candida appears in

CNS compartments with low IgG levels, this defect may lead to

chronic persistent Candida infection (55). One article reviewed 27

patients with invasive mycoses caused by various CARD9

mutations, primarily young individuals with a mean age of 22.1

years old. Of these, 58% were from Asia. Candida species accounted

for 21 (78%) of the 27 cases responsible for cerebral infection,

followed by Trichophyton species (11%), and Exophiala dermatitidis

(3%). CNS infections manifested as cerebral abscesses (37%),

meningoencephalitis (30%), meningitis (19%), and encephalitis

(7%) (56). In clinical practice, it is widely believed that CARD9

deficiency is primarily associated with fungal infections, affecting

various parts of the body, such as the skin, lungs, central nervous

system, urinary tract, and others (17, 57–62). However, as

mentioned earlier, it contributes to immune impairment against

multiple infections. For instance, clinical reports have documented

increased susceptibility to parasitic infections resulting from it (56).

However, there is a notable scarcity of clinical reports on

mycobacterial infections, particularly NTM infections. This study

is the first clinical report highlighting the significant correlation

between CARD9 deficiency and NTM infection globally, which

serves as an impetus for completing this work.

This article presents a rare case of C. albicans combined with

NTMCNS infection attributed to CARD9 deficiency in a middle-aged

patient. We isolated and identified the specific type of NTM as

Mycobacterium intracellulare. Through NGS, we identified the

pathogen, and whole-exon sequencing helped elucidate the patient’s

genetic defects. These findings suggest that clinicians should

thoroughly consider immune-compromising factors when managing

fungal infections in patients without HIV/AIDS, especially when IgE

levels are elevated, suggesting the possibility of immunodeficiency.

Furthermore, for immunocompromised individuals, emphasis should
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be placed on the heightened risk of multiple infections owing to their

susceptibility to various pathogens. Given the varying detection rates

of pathogens, particularlyMycobacterium with a detection rate of only

30–40% (63), employing multiple CSF cultures and utilizing novel

technologies, such as NGS, are deemed necessary. These measures can

enhance the accuracy of diagnosis and facilitate prompt and effective

management of co-infections, thereby improving patient outcomes.

The treatment of invasive candidiasis necessitates the optimization

of dosing regimens and an adequate course of therapy, considering

factors such as the site of infection, species involved, patient risk

factors, and pharmacokinetics. Currently, systemic antifungal therapy

for invasive candidiasis comprises of 4 major classes: polyenes

(including amphotericin B and its lipid-containing combinations),

triazoles (such as fluconazole and voriconazole), echinocandins

(including caspofungin and micafungin), and flucytosine. In cases of

CNS candidiasis, treatment should be continued until symptoms,

signs, cerebrospinal fluid abnormalities, and head imaging

abnormalities are resolve (64). The utilization of granulocyte-

macrophage colony-stimulating factor (GM-CSF) and granulocyte

colony-stimulating factor (G-CSF) as immunoadjuvant therapies in

conjunction with stem cell transplantation has shown promising

results in patients with CARD9 gene defects (65). Currently, there is

no consensus on antifungal treatment strategies for patients with

CARD9 deficiency. Some stress the importance of lifelong antifungal

prophylaxis (66), while others advocate secondary prevention using

oral azole drugs following the initial episode of invasive fungal disease

(IFD) (15). In cases where there is no recurrence during treatment,

long-term (at least 9–12 months) therapy should be considered (15).

In this article, the patient’s antifungal treatment was extended beyond

9 months, with medication cessation occurring following the

observation of normal CSF and head MRI results. Subsequent

follow-up examinations confirmed the efficacy of this treatment

regimen. However, there are currently insufficient high-quality

evidence-based medical data to advocate the necessity of long-term

or lifelong administration of antifungal drugs to prevent recurrence in

patients with CARD9 gene defects. Considering that over 85% of

CARD9 deficiency patients experience recurrence of fungal disease

upon treatment (15), clinical practitioners should prioritize long-term

follow-up and not overlook this aspect. A previous report (67)

described that identical twins with CARD9 deficiency both suffered

from severe CNS C. albicans infections. However, in this study, the

patient and his homozygous brother are not twins. It was learned from

the patient that his brother does not appear to have severe CNS

infections, which may be related to genetic heterogeneity. We

attempted to perform comprehensive and systematic examinations

on his brother, but he refused.

The optimal drug dosage, combination, and duration for

treating most NTM diseases have yet to be determined, and

combination therapy is recommended, although its efficacy in

clinical practice can vary. Treatment protocols recommended by

the American Thoracic Society and the British Thoracic Society (68,

69) for disseminated MAC disease primarily involve ethambutol

and clarithromycin (or azithromycin), with or without rifabutin,

continuing until 1 year after achieving culture negativity. Although

drug sensitivity testing is valuable, personalized treatment selection
Frontiers in Immunology 08
remains crucial. In this case, despite rifampin’s sensitivity in drug

sensitivity testing, we opted not to use it because of concerns that it

may not reach the minimum inhibitory concentration in CNS (70).

Instead, we decided to include moxifloxacin in addition to

ethambutol and clarithromycin as intensive treatment, which

ultimately led to a successful clinical cure.

Overall, the diagnosis and treatment of this patient were timely,

accurate, and effective. However, when reviewing the entire course

of the disease, we still identified some limitations: during the second

hospitalization, when NTM positivity was reported, we did not

provide appropriate treatment in a timely manner. Although

considering the reason of unclear drug susceptibility results, it

may led to an extension of the patient’s disease course; Secondly,

the follow-up time of this patient after stopping the treatment was

still insufficient. We need further long-term follow-up to determine

the effectiveness of the treatment.
Limitations
1. We did not conduct an in-depth investigation into the

protein alterations caused by this gene mutation.

2. Due to time and financial constraints, the patient failed to

complete the detection of cytokines.
Conclusion

In summary, c.175C>T (p. Arg59Trp) is a novel CARD9 gene

mutation and is probably damaging. C. albicans meningitis is

uncommon in clinical practice, and co-occurrence of NTM

infections is even rarer. For clinical diagnosis and treatment,

pathogenetic tests, such as whole blood and CSF analyses, should

be performed promptly. The early implementation of NGS can

facilitate early detection, diagnosis, and treatment, thereby reducing

mortality. During treatment, adherence to standardized antifungal

treatment guidelines is critical. In addition, treatment should be

personalized for patients with long-term or persistent disease,

particularly for those without HIV/AIDS. It is crucial to explore

the etiology of this condition, and whole-exome sequencing should

be considered to identify potential gene deletions.
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