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The ongoing shortage of cell, tissue, and organ donors has led to prioritizing

clinical urgency over optimal immune matching in transplantation, often at the

cost of increased reliance on immunosuppressive regimens and their associated

adverse effects. Recent advances in the use of Substances of Human Origin

(SoHOs), xenotransplantation and emerging cell-, gene-, and tissue-based

therapies have enabled the development of tailored cellular therapeutics to

enhance engraftment, long-term function, and immunological compatibility.

Within this evolving context, artificial intelligence is also increasingly

contributing to improve donor–recipient matching through predictive analytics

and integrative data modeling, assisting on immune tolerance and the durable

integration of transplanted cells into host tissues. In this review, we revisit

foundational concepts of immunocompatibility, examine current clinical

criteria in organ transplantation, and critically explore the shifting paradigms of

donor–recipient matching in the era of personalized medicine. These advances

have the potential to redefine clinical strategies in transplantation and

regenerative care while ensuring patient access and sustainability.
KEYWORDS
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GRAPHICAL ABSTRACT

Evolving paradigms in allogeneic transplantation. Part of the figure was designed using images from the NIH BIOART source (https://bioart.niaid.nih.gov/).
1 Introduction

Nowadays, the availability of donated cells, tissues, and organs

is still insufficient to meet clinical needs, despite the enormous

efforts made at many levels (medical, ethical, regulatory, logistical,

health systems, and donation). Such persistent organ, stem cell, and

tissue shortages necessitate innovative strategies aimed at the

expansion of the donor pool by exploring alternatives while

ensuring patient safety. Post-transplant complications such as

graft-versus-host disease (GvHD) in hematopoietic stem cell

transplantation (HSCT), chronic rejection, donor-specific

alloantibody (DSA) formation, and sensitization continue to

challenge the field, underscoring the need for ongoing

investigation into the critical impact of compatibility issues

between donor and recipient. This challenge can be addressed by

a combination of emerging therapies and computational tools

involving a deeper understanding of the thresholds at which

donor-patient disparity can be deemed acceptable, with improved

immunosuppressive approaches, thus offering new possibilities for

increasing transplantation rates and advancing the frontiers of

personalized medicine (1–4).

Herein we aim to introduce the major actors in donor-patient

compatibility, understand their role in graft survival and tolerance,

and discuss promising strategies aimed at a more accessible,

equitable, customized, and sustainable transplantation framework.

For clarity, Table 1 includes definitions of terminology used in

this article.
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2 Actors in graft rejection

The immunological rejection of transplanted cells, tissues, and

organs is orchestrated by a complex interplay of cellular and

humoral immune responses, primarily governed by recognition of

non-self antigens.

The major histocompatibility complex (MHC) system, known

as the human leukocyte antigen (HLA) in humans, is central to this

process and represents the most polymorphic region of the human

genome (Figure 1). This high degree of polymorphism makes each

individual almost immunogenetically unique, critically determining

graft tolerance (5). Classical MHC class I (HLA-A, -B, -C) and class

II (HLA-DP, -DQ, -DR) molecules both present alloantigens to

recipient T lymphocytes, initiating direct or indirect allorecognition

pathways that trigger effector immune responses and contribute to

chronic rejection, reduced graft survival, and severe complications.

Beyond the classical HLA loci, increasing evidence highlights the

role of non-classical MHC-I molecules such as i) HLA-G, which

exerts immunomodulatory effects and is implicated in maternal-

fetal tolerance; and ii) HLA-E, which interacts with innate and

adaptive immune cells leading to both protective and detrimental

e ffects on al lograf t surviva l (6–9) . S imi lar ly , minor

histocompatibility antigens (mHAgs), although less immunogenic

than HLA molecules, can also trigger GvHD after HSCT and

contribute to late rejection events.

Traditional HLA matching has largely focused on major

immunogenic HLA loci, namely HLA-A, -B, and -DR. Matching
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at the HLA-DR locus has been shown to have the most pronounced

effect on allograft survival and long-term graft function (10).

However, mismatches in HLA-DP and -DQ are also relevant,

especially in highly sensitized patients or those undergoing

multiple transplants.

The ABO blood group also represents another key

immunological barrier, particularly in solid organ transplantation,

where naturally occurring antibodies against non-self ABO antigens

can mediate hyperacute rejection and graft dysfunction in

incompatible set t ings . The ABO gene encodes for a

glycosyltransferase that modifies oligosaccharides on the surface of

the red blood cells (RBC), vascular endothelium, and other tissues

(11). Variations in the sequence of ABO are responsible for the major

blood group phenotypes (A, B, AB, and O). Interestingly, more than

300 RBC antigens belonging to 36 blood group systems have been

officially reported in humans by the International Society of Blood

Transfusion (ISBT) so far (12). ABO-incompatible transplantation is

feasible but requires desensitization and intensification of

immunosuppression to prevent allograft rejection (11).
Frontiers in Immunology 03
Additionally, a number of immune cell types participate in graft

acceptance or failure. Antigen-presenting cells (APCs), including

dendritic cells, macrophages, and B cells, play an initiating role by

processing and presenting alloantigens to naïve T cells, thus

bridging innate and adaptive immunity. Effector CD8+ cytotoxic

T cells and CD4+ helper T cells, along with natural killer (NK) cells,

plasma cells, and memory B cells, perpetuate graft rejection via

direct cytotoxicity, cytokine release, and alloantibody

production (13).

Finally, the interplay between these actors is further shaped by

the inflammatory milieu, the immune status of the recipient (e.g.,

pre-sensitization), and the immunogenicity of the graft itself, which

are all important factors in innovative cell-based therapies, tissue-

engineering, and xenogeneic applications. As transplantation

strategies evolve toward precision immunomodulation, a better

understanding of these actors at the cellular, molecular, and

epitope-specific levels becomes imperative to predict and prevent

rejection, tailor immunosuppression and, ultimately, enhance long-

term graft survival.
TABLE 1 Definitions.

CONCEPT DEFINITION

Antibody-mediated
rejection (AMR)

A form of graft rejection driven by the patient’s antibodies, most commonly donor-specific anti-HLA antibodies (DSAs), which target antigens on
the vascular endothelium of the transplanted organ. AMR leads to complement activation, inflammation, and vascular injury, and is the major
cause of graft dysfunction and loss, especially in kidney and heart transplants. Treatment requires intensive immunosuppression, plasmapheresis,
and/or B-cell-targeted therapies.

Donor-specific
antibodies (DSAs)

DSAs are recipient-derived antibodies that specifically recognize and bind to both HLA and non-HLA antigens expressed by the donor graft. They
may be present before transplant (pre-formed as a result of sensitization from prior transplants, transfusions or pregnancy) or may develop de novo.
DSAs are a key driver of AMR and are associated with poor transplant outcomes, including allograft rejection, dysfunction, and loss. Monitoring
DSAs is essential for risk stratification, graft surveillance, and guiding immunosuppressive therapy.

Eplet analysis

Eplet analysis is a high-resolution immunogenetic method for assessing mismatches between donor and recipient HLA alleles at the epitope level.
Unlike traditional allele-level matching, eplet analysis focuses on structural amino acid configurations on the surface of HLA molecules that are
recognized by B-cell receptors and antibodies. This approach allows the assessment of immunologic risk, predicting DSA formation and guiding
precision immunosuppression and donor selection strategies. Eplet mismatching is increasingly being used in both solid organ and HSCT to
improve long-term graft outcomes.

Graft-versus-host
disease (GvHD)

GvHD is a serious complication that can occur after allogeneic hematopoietic stem cell transplantation (HSCT), in which donor immune cells
(especially T cells) recognize the recipient’s tissues as foreign and mount an immune response against them. This immune attack can target organs
such as the skin, liver, and gastrointestinal tract. GvHD is classified as acute or chronic based on the timing of the onset and clinical features.
Although harmful, mild GvHD can also reflect a beneficial graft-versus-leukemia (GvL) effect, helping prevent cancer relapse.

Haploidentical
transplant

A type of allogeneic HSCT with a half-matched (haploidentical) related donor, typically sharing 50% of the HLA alleles with the recipient. This
approach broadens the pool of potential donors when a fully matched donor is not available and has become increasingly feasible due to
advancements in graft manipulation and post-transplant immunosuppressive strategies (such as post-transplant cyclophosphamide, PTCy) to
reduce GvHD and rejection.

Immunosuppressant
Agent that reduces or inhibits the activity of the immune system, primarily used to prevent or treat rejection in organ and tissue transplantation, or
to manage autoimmune diseases. These agents reduce the immune response to alloantigens or self-antigens but often increase susceptibility to
infections and malignancies as a consequence of generalized immune suppression.

Sensitization
Immunological process whereby an individual develops alloantibodies, particularly anti-HLA antibodies, following exposure to foreign antigens
through events such as blood transfusions, pregnancy, or previous transplants. This immune priming increases the risk of graft rejection and
complicates future transplantation by narrowing the pool of compatible donors.

Virtual
cross-matching

Virtual cross-matching is a pre-transplant immunological assessment that predicts the compatibility between a donor and recipient without
physically mixing their blood samples. It is becoming a cornerstone in modern transplant immunology, particularly in kidney and heart
transplantation. This approach relies on detailed HLA typing of both the donor and recipient, along with the recipient’s known HLA antibody
profile (typically identified through Luminex-based assays) to determine whether the recipient has pre-formed antibodies against the donor’s HLA
antigens, which could lead to hyperacute or acute AMR. A negative virtual crossmatch suggests a low immunological risk and may expedite organ
allocation, particularly in urgent or geographically distant situations.
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3 Compatibility in transplantation

Stringent HLA matching is often balanced against the urgency

of transplantation and donor availability. The entire lifespan of an

organ transplant recipient relies on efforts to maintain the delicate

balance between the risk of rejection on the one hand, and on the

other, the risk of infection and malignancy later on. Although the

current intensive immunosuppressive protocols reduce the

occurrence of severe acute rejections (ARs) to a minimum,

patients with functioning organs may later die of severe infections

or malignancies instead. In the following sections, we present

current evidence on the minimal HLA donor-recipient match

requirements as well as the influence of ABO blood types for

successful outcomes across major organs and tissues (summarized

in Table 2 and Figure 2).
3.1 Hematopoietic stem cells

HSCT is indicated for hematologic malignancies, non-

malignant blood disorders, primary immunodeficiencies, severe

autoimmune diseases, and congenital metabolic disorders, serving

as a curative or life-extending therapy by replacing dysfunctional

hematopoietic and immune systems (14). In HSCT, HLA matching

(especially at HLA-A, -B, -C, and -DR) is paramount to prevent

graft failure, GvHD, and other complications. A 10/10 match (for

both alleles of HLA-A, -B, -C, -DR, and -DQ) is preferred for
Frontiers in Immunology 04
unrelated donor transplants, while mismatches at a single locus

(e.g., 9/10) are acceptable but increase the risk of GvHD. It is worth

noting that having national and international registries enables

highly compatible donors to be identified rapidly and efficiently.

Patients lacking HLA-identical donors can be treated with

haploidentical transplants that allow the use of HSC from an

allogeneic half-matched donor (5/10 match), who is typically a

family member. However, they often require additional

interventions to mitigate risks, such as T-cell depletion or post-

transplant immunomodulation. HLA-C and HLA-DPmatching has

also been shown to improve outcomes in HSCT (15).
3.2 Kidney

Kidney transplantation is indicated for patients with end-stage

renal disease (ESRD) or advanced chronic kidney disease (CKD)

who present irreversible loss of kidney function, requiring renal

replacement therapy to improve survival and quality of life. Cross-

matching and DSA testing are crucial adjuncts to HLAmatching for

kidney transplants. Acceptable mismatches depend on sensitization

and availability of donors. HLA-A, -B and -DR matching has a

direct impact on long-term graft survival, while HLA-DR

mismatches tend to be the most immunogenic and impactful.

HLA-B mismatches also carry a strong risk due to high

polymorphism. HLA-A mismatches are important but generally

considered less immunogenic than -DR or -B. Patients with higher
FIGURE 1

Classical and non-classical HLA loci. The human major histocompatibility complex (MHC) is called the HLA (human leukocyte antigen) and is located
on the short arm of chromosome 6 (6p21.1-21.3). The class I region contains the classical HLA-A, HLA-B, and HLA-C genes that encode the heavy
chains of class I molecules, which present antigens to CD8+effector T cells, and the non-classical HLA-E, HLA-F, and HLA-G, which interact with NK
cells. The class II region consists of a series of subregions, namely DR, DQ, and DP, each containing A and B genes encoding a and b chains,
respectively. Class II reactive T cells are usually CD4+ helper cells. HLA class I molecules are expressed on the surface of almost all nucleated cells
while class II molecules are expressed only on B lymphocytes, APCs (monocytes, macrophages, and dendritic cells), and activated T lymphocytes.
The class III region does not encode HLA molecules but other important genes, including C’ (complement genes), HSP (heat shock protein) and TNF
(tumor necrosis factor).
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HLA matches require less immunosuppression and have a reduced

risk of AMR. HLA matching is often prioritized in living donor

kidney transplantation or for younger recipients where longevity of

the graft is critical (16).

Interestingly, ABO antigens are expressed on kidney endothelial

and epithelial surfaces, and their presence on allograft tissue can

lead to higher short-term hyperacute or acute AMR, although with

good management, long-term outcomes can approach those of
Frontiers in Immunology 05
compatible transplants. It is worth noting that blood group B

kidney recipients experience longer waiting times than other ABO

groups prior to transplantation (17). The prevalence of group B is

higher in African Americans and Asian Americans and thus these

ethnic minorities are the most affected populations within the group

B cohort (18).

Apart from HLA/ABO matching, the effect of other factors on

post-transplant outcomes, including viral serology, age and size
TABLE 2 Current criteria on HLA and ABO compatibility considerations in major organ transplantation. .

SoHO
Compatibility

Immunosuppression Complications Comments
HLA ABO

HSC +++ + ++ Rejection, GvHD
Registries allow for the rapid and efficient search for highly compatible
donors. Haploidentical transplants and PTCy expand donor availability.

Kidney ++ ++ ++ AMR
Crossmatching and DSA testing are crucial. Acceptable mismatches depend
on sensitization and donor availability. HLA matching is prioritized in living
donor kidney transplantation or younger recipients.

Heart – ++ +++

Rejection,
immunosuppression-
related
complications

HLA matching can improve outcomes by reducing sensitization and chronic
rejection, but logistical challenges and the urgency of these transplants often
outweigh strict HLA compatibility. Intensive use of immunosuppressants.

Liver – ++ + Rejection
The liver is immunologically privileged, so HLA matching plays a minimal
role in most cases. ABO compatibility is far more critical.

Lung – – ++
Rejection,
CLAD, BOS

HLA and ABO matching can improve outcomes. However, perfect matching
is not strictly required due to issues with organ availability.

Pancreas + ++ ++ Rejection
Success is more reliant on careful immunosuppression and ABO
compatibility. Pancreatic islet cell transplants often require less
stringent matching.

Cornea – – –

Due to the immune-privileged status of the corneal tissue, corneal transplants
are not usually influenced by HLA matching, except in high-risk cases
(vascularized tissue, previous graft rejection, or active inflammation). In such
high-risk patients, ABO compatibility is also prioritized.

Small
Intestine

– ++ +++

Rejection, GvHD,
immunosuppression-
related
complications

HLA matching is ideal to improve graft survival and reduce rejection risks.
However, due to the scarcity of donors, practical application of HLA
matching is limited, and immunosuppressive protocols play a pivotal role.
AMR (antibody-mediated rejection); BOS (bronchiolitis obliterans syndrome); CLAD (chronic lung allograft dysfunction); DSA (donor-specific antibodies); GvHD (graft-versus-host disease);
PTCy (post-transplant cyclophosphamide); SoHO (substances of human origin). Level of relevance: insignificant (-), low (+), medium (++), and high (+++).
FIGURE 2

Relevance of donor-recipient HLA loci compatibility in organ transplant success. A higher score (5, shown in red) indicates that matching at the
given HLA locus is critically important for transplant success, whereas a lower score (1, shown in dark green) indicates lower clinical impact in
current transplant settings in combination with immunosuppressive agents.
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mismatch, mismatch in other HLA antigens (e.g. HLA-C and HLA-

DQ), and eplet matching, has become increasingly recognized. Of

note, kidney transplant recipients who experience rejection can

return to dialysis, a situation that is not paralleled in other

transplantation settings.
3.3 Heart

Heart transplantation is indicated for patients with end-stage heart

failure due to conditions such as dilated or ischemic cardiomyopathy,

congenital heart disease, or refractory ventricular arrhythmias, who

have severe symptoms despite medical, surgical, or device-based

therapies and meet criteria for irreversible hemodynamic

compromise. Although, where feasible, HLA-A, -B, and -DR

matching is considered, primarily to reduce the risk of sensitization

in re-transplantation cases, no specific HLA match requirement is

universally mandatory given that transplantation may not be delayed

due to clinical urgency. Consequently, immunosuppression protocols

are heavily relied upon in heart transplants, much more than in kidney

transplantation, since graft rejection is usually fatal (19). This may

explain why no further decline in the organ survival rate was found as

the number of HLAmismatches increased from three to six (19, 20). As

a consequence of intensive immunosuppressive treatment, high rates of

malignant lymphomas are reported in heart transplant patients (21).

Transplantation of hearts from ABO-incompatible donors is

contraindicated because of the risk of hyperacute rejection. This

contraindication may not apply to infants younger than 2 years, who

do not yet produce antibodies against T-cell-independent antigens.

However, use of donors with minor ABO mismatches is also a safe

and feasible option in older children and adult patients (22–24).
3.4 Liver

Liver transplantation is indicated for patients with end-stage

liver disease, acute liver failure, or metabolic disorders affecting

hepatic function due to conditions such as cirrhosis, hepatocellular

carcinoma within transplant criteria, or genetic liver diseases, when

no alternative treatment can prevent life-threatening complications

or hepatic decompensation. In liver transplantation, no stringent

HLA matching is required since the liver is considered

immunologically privileged compared to other organs due to its

inherent tolerogenic properties. Of note, ABO compatibility is more

critical than HLA matching for liver transplants (25–27).
3.5 Lung

Lung transplantation is indicated for patients with end-stage

pulmonary disease, such as chronic obstructive pulmonary disease

(COPD), idiopathic pulmonary fibrosis, cystic fibrosis, or

pulmonary arterial hypertension, who have severe respiratory

failure and reduced life expectancy. Matching at HLA-A, -B, and

-DR may improve long-term outcomes, particularly chronic lung
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allograft dysfunction (CLAD) and bronchiolitis obliterans

syndrome (BOS). However, issues related to organ availability

mean that perfect matching is not strictly required. High levels of

pre-transplant sensitization increase the risk of rejection. Opelz and

collaborators analyzed a large series of lung transplant procedures

followed up on for 5 years, demonstrating that a high number of

HLA mismatches or, surprisingly, zero mismatches, unfavorably

impacts graft survival rates (28). Recently, HLA-C mismatches have

been described as beneficial in lung transplantation due to a reduced

incidence of CLAD in recipients with HLA-C mismatching (29).
3.6 Pancreas and pancreatic islets

Pancreas and pancreatic islet transplantation are indicated for

patients with type 1 diabetes mellitus experiencing severe glycemic

instability, recurrent hypoglycemia unawareness syndrome, or

secondary complications, particularly when simultaneous kidney

transplantation is required due to ESRD or when intensive insulin

therapy fails to achieve metabolic control. HLA-A, -B, and -DR

matching is ideal in pancreas transplantation but is not always

feasible. According to the results published by Rudolph et al., the

risk of acute rejection increases significantly at four or more

mismatches, especially when they involve the HLA-B or -DR

locus (30). In contrast, recent results suggest that HLA matching

is not associated with improved graft survival or a reduction in

acute rejection (31).

Interestingly, success in pancreas transplantation is more reliant

on careful immunosuppression and ABO compatibility. Despite

this, there have been successful cases of ABO-incompatible

pancreas transplantation, particularly in simultaneous pancreas-

kidney (SPK) procedures. These cases usually involve intensive

immunosuppressive regimens and pre-transplant antibody removal

strategies (e.g., plasmapheresis, rituximab) to lower the risk

of rejection.

Pancreatic islet cell transplants often require less stringent

matching due to i) advances in immunosuppressive options, and

ii) the infusion of a small amount of islets into the liver via the

portal vein. In this context, a recent study suggests that recipients with

HLA-DR matching, excluding diabetogenic HLA-DR3 and -DR4

alleles, maintained higher rates of insulin independence 5 years after

transplantation compared to those with mismatching (32). Of note, the

purity of islet preparations has a direct impact on rejection due to

contamination with pancreatic exocrine tissue components and acinar

tissue expressing ABH antigens (33). Additionally, certain HLA-DQ

antigens have been associated with improved graft survival (34).
3.7 Cornea

Corneal transplantation, also known as keratoplasty, can be

complete (penetrating keratoplasty) or partial (endothelial

keratoplasty) and is indicated for patients with corneal

opacification, thinning, or structural damage due to conditions

such as keratoconus, corneal dystrophies, infections, trauma, or
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scarring, when visual rehabilitation or ocular integrity cannot be

achieved through other interventions. Although no HLA matching

is typically required for low-risk corneal transplants due to the

immune-privileged status of the corneal tissue (characterized by

avascularity, low expression of HLA antigens, and presence of

immunomodulatory molecules), HLA-A, -B, and -DR matching

can reduce the risk of rejection in high-risk cases (e.g., vascularized

tissue, previous graft rejection, or active inflammation) (35–37). In

such high-risk patients, ABO compatibility is also prioritized.
3.8 Small intestine

Small bowel transplantation, which is a relatively infrequent

procedure, is indicated for patients with irreversible intestinal

failure who are unable to maintain adequate nutrition and

hydration through parenteral nutrition due to life-threatening

complications such as liver failure, recurrent sepsis, or loss of

central venous access. The small intestine is highly immunogenic

and has one of the highest rates of acute rejection among all solid

organ transplants (38). HLA-A, HLA-B, and, particularly, HLA-DR

matching is ideal to improve graft survival and reduce the risk of

rejection (39). However, due to the paucity of donors, practical

application of HLA matching is limited, and immunosuppressive

protocols play a pivotal role (38). These factors place patients at

increased risk of developing immunosuppression-related

complications, namely cellular rejection and AMR, infection,

kidney disease, lymphoproliferative disorders, and GvHD.

ABO compatibility is usually mandatory, except for pediatric

patients under 1 year old. Nevertheless, ABO-incompatible

transplants could be feasible with the appropriate management of

blood type antibodies and the use of adequate immunosuppression

in the early period (40).
4 Impact of emerging technologies

The notion of immunocompatibility in transplantation is being

redefined by a convergence of biomedical innovations, such as

advances in molecular diagnostics, gene editing, and regenerative

medicine, which go beyond traditional HLA and ABO matching

paradigms. These technologies have begun to reshape not only how

compatibility is assessed but also how immune risk is managed and

donor availability is expanded. Broadly, three strategic frameworks

have emerged: i) tools to increase compatibility precision; ii)

modalities to broaden donor resources; and iii) interventions to

mitigate adverse immune reactions. While their application varies

across transplant settings, these strategies reflect a shift toward

dynamic, tailored approaches in clinical transplantation.
4.1 Enhancing compatibility precision

A first group of technologies focuses on refining histocompatibility

assessment and improving donor–recipient matching at molecular and
Frontiers in Immunology 07
functional levels. On the one hand, RNA-based next-generation

sequencing (NGS) and advanced bioinformatics pipelines now enable

allele-specific HLA expression profiling, providing deeper insight into

immune compatibility, informing donor selection more accurately, and

improving predictive modelling for transplant outcomes. These

techniques are especially relevant in HSCT (14).Similarly, high-

resolution typing and eplet analysis have advanced compatibility

beyond antigen-level matching. Algorithms such as HLA-

Matchmaker, PIRCHE, and HLA-EMMA analyze amino acid

polymorphisms and antigen-presenting peptide predictions to

quantify mismatches more precisely, enabling clinicians to stratify

risk at the molecular interface of HLA. These tools are particularly

valuable in heart transplantation, where nuanced HLA compatibility

influences graft survival and immunosuppression needs (18).

Additionally, artificial intelligence (AI) and machine learning

(ML) have revolutionized donor matching and risk stratification. In

HSCT, predictive models integrate HLA typing with clinical

parameters such as patient comorbidities, disease stage, and

immunogenetic factors to identify optimal donors (41). In kidney

transplantation, AI and ML tools -including Chatbot- assist

throughout the transplant process, from donor selection to

postoperative monitoring (42). Other quantitative tools such as

the Living Kidney Donor Profile Index (LKDPI) empirically

compares potential living donors across multiple factors (viral

serology, age, eplet matching) to more precisely characterize

donor-recipient incompatibilities and improve long-term graft

survival (43). In liver transplantation, ML models can be used to

identify patients at high risk for developing GvHD and to predict

graft failure (44–46). For lung transplantation, InsightTx employs

XGBoost algorithms to predict outcomes based on ex vivo lung

perfusion (EVLP) data (46, 47). Similarly, pancreas transplantation

has benefited from Naive Bayesian Classifier and Support Vector

Machine-based models to estimate rejection probability in

simultaneous pancreas–kidney recipients (48). In corneal

transplants, AI applications utilizing Optical Coherence

Tomography (OCT) imaging have also demonstrated remarkable

accuracy in evaluating graft rejection (49).

Finally, gene editing technologies also serve compatibility goals

by directly modifying donor organs or cells to enhance

compatibility at the genetic level. CRISPR/Cas9 tools allow

targeted disruption of immunogenic loci (e.g., HLA, T cell

receptor TCRa), insertion of safety or regulatory transgenes (e.g.,

suicide switches, cytokine modulators), and overexpression of

immunotolerance-associated molecules (e.g., HLA-E, CD47).

These interventions are being explored in heart and lung

transplantation. In this field, Figueiredo and collaborators

proposed silencing donor MHC molecules via shRNAs to reduce

immunogenicity, while CRISPR/Cas technologies hold promise for

generating universal blood type lungs (50–52).
4.2 Expanding the donor pool

While compatibility precision improves outcomes, donor

scarcity remains a fundamental constraint, especially for time-sensitive
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organs. To address this, a spectrum of strategies has emerged to

expand transplantable resources without compromising

immunological feasibility.

In this context, xenotransplantation has made significant

strides, particularly with porcine donors genetically modified to

silence xenoantigens involved in hyperacute rejection (synthesizing

a-1,3-galactosyltransferase, GGTA1 ; and b-1,4-N-acetyl-

galactosaminyltransferase 2, B4GALNT2), and synthesizing N-

glycolylneuraminic acid (CMAH)) and express human transgenic

proteins that regulate immune response (CD47 and heme

oxygenase 1), coagulation (human thrombomodulin, hTBM), and

complement activation (CD39, CD46 and CD55). Proof-of-concept

transplants of porcine kidney, heart, and liver into human recipients

have shown early success, suggesting that compatibility can be

manufactured, rather than matched (53–56).

Bioengineering and regenerative medicine approaches, such as

tissue engineering and 3D bioprinting, are also expanding

alternatives to traditional organ replacement while enabling the

development of personalized therapies through the creation of

functional organ substitutes. These strategies reduce dependence

on donor availability and enable HLA-compatible solutions. Scaffolds

from decellularized organs repopulated with human stem or allogeneic

progenitor cells (such as in kidney and heart bioengineering) preserve

the native extracellular matrix while removing immunogenic antigens,

promoting regeneration and reducing immune rejection (57–60).

Kidney and liver organoids mimicking native tissue architecture are

also being developed to increase graft availability (61–63). Intestinal

organoids derived from adult stem cells or iPSCs show promise for

treating conditions like inflammatory bowel disease, celiac disease, and

short bowel syndrome by restoring barrier integrity, modulating

immune response, and supporting nutrient absorption. In mice,

transplanted epithelial organoids integrate and promote mucosal

healing, with some studies using hydrogels or decellularized scaffolds

to engineer functional intestinal tissue (64–67). In pancreatic

transplantation, alginate encapsulation of islets has been explored to

reduce immune rejection, even without immunosuppression, in both

allo- and xenotransplantation settings (68–72). In the kidney, 3D

bioprinting technologies aim to recreate nephron-like structures for

future renal replacement therapies (57, 73), while similar strategies in

the liver and lung are used to fabricate transplantable hepatic tissue or

airway structures, respectively (62, 74).

Lastly, ex vivo organ perfusion platforms such as normothermic

machine perfusion (NMP) and EVLP extend the viability of marginal

grafts and enable functional rejuvenation. These systems also act as

delivery routes for immunomodulatory agents (e.g., MSCs) and gene

vectors, thereby minimizing off-target effects and vector-induced

inflammation and transforming preservation into a therapeutic

window. Applied in kidney, heart, lung, and liver transplantation,

perfusion technologies help bridge immunological gaps and optimize

graft readiness (75–78).
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4.3 Mitigating immune adverse effects

When HLA or ABO compatibility cannot be strictly achieved,

technological advances aim to neutralize immunological consequences

and promote tolerance. Innovation in immunosuppressive regimens

includes post-transplant cyclophosphamide (PTCy), costimulatory

blockade, monoclonal antibodies targeting memory B and T cells,

and targeted drug delivery. In HSCT, PTCy has gained prominence as

a cost-effective method with strong GvHD prevention capacity,

significantly expanding the use of haploidentical donors and

redefining donor selection criteria (79). In lung, upregulation of

interleukin-10 (IL-10) in models of acute rejection and CLAD

has been shown to reduce inflammation and improve graft tolerance

(80, 81). In intestinal transplantation, therapies targeting key

inflammatory mediators, such as monoclonal antibodies against

TNF-a and integrins, proteasome inhibitors and purine analogs, and

modulation of the intestinal microbiome through selective antibiotics

or probiotics reduce rejection while minimizing systemic toxicity (82).

Besides pharmacological approaches, cell-based immunomodulation

is nowadays at the forefront. Regulatory T cells (Tregs) are

increasingly used in HSC, kidney, liver, pancreas, and small

intestine transplantation to prevent rejection and promote

immune adaptation (82–87). Moreover, mesenchymal stromal

cells (MSCs) exhibit immunosuppressive and anti-inflammatory

properties, with therapeutic use spanning HSC, liver, lung

(where a first-in-human study showed a slower decline in lung

function in patients with advanced CLAD after MSCs infusion),

and small intestine transplants (84, 86, 88–91). Additionally,

regulatory dendritic cells have also shown promise in liver

immunoregulation (92) and, recently, PRDM16-dependent APCs

have been described to induce tolerance to gut antigens, offering new

insights into developing therapeutic strategies for intestinal transplant

tolerance (93). Chimerism-based strategies have been also tested,

promoting immune adaptation through the co-transplantation of

donor HSCs, as demonstrated in kidney and liver transplantation

(94, 95). Finally, CAR-engineered immune cells, including CAR-T and

CAR-NK, are under investigation in HSCT for their dual role in

eliminating residual disease and modulating post-transplant immunity

(83, 84, 96). AI-assisted monitoring complements these interventions.

Tools analyzing gene expression profiles (e.g., AlloMap), donor cfDNA

levels, and longitudinal patient data help detect early signs of rejection

and guide immunosuppression tapering, thus allowing real-time

adaptation and adjusting drug regimens dynamically to avoid over-

or under-immunosuppression (42, 97–102).

These converging innovations indicate a shift from rigid antigen

matching toward a functional and personalized approach to

immunocompatibility. By integrating molecular precision,

regenerative capacity, and predictive analytics, emerging technologies

offer viable pathways to reconcile immunological complexity with

therapeutic feasibility in modern transplantation.
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5 Final remarks and outlook

Transplantationmedicine has entered a transformative phasewhere

immunocompatibility is no longer governed by a one-size-fits-all

framework. In HSCT and kidney transplantation, compatibility-

enhancing platforms are already reshaping donor selection. These fields

will likely remain at the forefront of high-resolution typing, algorithmic

matching,and integrationofgene-edited therapies. Incontrast,heartand

pancreas grafts, constrained by urgency and donor scarcity, may benefit

more from immune engineering, scaffolded tissues, and xenogeneic

sources. Although the liver is more immunotolerant, these innovations

alsooffer complementary solutionswheredonoravailability is limited. In

lung and intestinal transplantation, technologies mitigating immune

aggression (such as EVLP-based gene delivery, PRDM16-dependent

tolerance, and MSC infusions) are addressing the limitations of

conventional matching. Meanwhile, corneal transplantation and

pancreatic islets, both involving immune-privileged or

compartmentalized sites, exemplify how bioengineered constructs and

smart encapsulation can circumvent systemic immune triggers.

Looking ahead, compatibility may become a design feature rather

than a selection criterion. Organoids, bioprinted tissues, and modular

graft systems could be engineered with specific immune profiles, built

to engage host defenses intelligently or resist them entirely. AI-driven

dashboards might one day manage graft–host communication

proactively, guiding immunomodulation not by static protocols but

by continuous biological feedback. In this landscape, HLA and ABO

matching remain foundational, but no longer absolute. Compatibility is

expanding beyond genetic coincidence to include dynamic tolerability,

functional resilience, and engineered neutrality. The goal is not perfect

alignment, but sustainable integration: building transplant systems that

adapt, persist, and heal across the immunological spectrum.

By embracing this new paradigm, transplantation can move

from the constraints of biological inheritance toward the

possibilities of biomedical design, where the immune system is

not an obstacle to be overcome, but a partner to be engaged through

technology, insight, and innovation.
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Impact of human leukocyte antigen molecules E, F, and G on the outcome of
transplantat ion. Transplant Proc . (2014) 46 :2957–65. doi : 10.1016/
j.transproceed.2014.07.010

9. de Miranda BLM, Gelmini GF, Risti M, Hauer V, da Silva JS, Roxo V, et al. HLA-E
genotyping and its relevance in kidney transplantation outcome. Hla. (2020) 95:457–
64. doi: 10.1111/tan.13806

10. Zachary AA, Leffell MS. HLA mismatching strategies for solid organ
transplantation - A balancing act. Front Immunol. (2016) 7:575. doi: 10.3389/
fimmu.2016.00575

11. Joseph A, Murray CJ, Novikov ND, Velliquette RW, Vege S, Halls JBL, et al.
ABO Genotyping finds more A2 to B kidney transplant opportunities than lectin-based
subtyping. Am J Transplant. (2023) 23:512–9. doi: 10.1016/j.ajt.2022.12.017
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Corbacioglu S, et al. Hematopoietic cell transplantation and cellular therapy survey
of the EBMT: monitoring of activities and trends over 30 years. Bone Marrow Transpl.
(2021) 56:1651–64. doi: 10.1038/s41409-021-01227-8

15. Johansson T, Partanen J, Saavalainen P. HLA allele-specific expression: Methods,
disease associations, and relevance in hematopoietic stem cell transplantation. Front
Immunol. (2022) 13:1007425. doi: 10.3389/fimmu.2022.1007425

16. Lozano-Suárez N, Garcıá-López A, Gómez-Montero A, Girón-Luque F. Relación
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