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Professional antigen-presenting cells (APCs) represent a crucial link between the

innate and the adaptive immune response. APCs express specific surface

receptors which are primarily involved in “non-self” and/or “self” ligand

recognition. Upon ligand binding, these receptors can trigger cell signalling

leading to the production of pro-inflammatory cytokines, chemokines and

Type 1 interferons, supporting antimicrobial and inflammatory responses.

Recently, two major families of receptors, C-type lectin receptors and

immunoglobulin receptors, are emerging as potential therapeutic targets to

activate and modulate immune system through different intracellular signalling

motifs upon binding with endogenous and exogenous ligands. The chemical

characterization of the molecular determinants necessary for the receptors/

ligands binding promotes the design and optimization of small molecules crucial

for the comprehension of biological functions and for the therapeutic treatment

of specific receptor-associated disorders. This review focuses on the description

of these ligands together with their biological evaluation and their impact on the

modulation of the immune response.
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1 Introduction

The innate immune response constitutes the first barrier against

various pathogens. Along with the immediate action of cytotoxic

cells, such as natural killer (NK) cells and granulocytes, a more

complex response is provided by antigen-presenting cells (APCs),

able to initiate the processes pivotal for the antigen-specific

adaptive immunity.

Antigen recognition is mediated by receptors families known as

pattern recognition receptors (PRRs), manly located at the surface

of innate immune cells such as macrophages, dendritic cells (DCs),

neutrophils, granulocytes, mast cells, monocytes, basophils, natural

killer cells, and epithelial cells (1–3).

PRRs are uptake receptors capable of recognizing molecules

associated with pathogens (Pathogen-Associated Molecular Patterns,

PAMPs) or released by damaged cells (Damage-Associated Molecular

Patterns, DAMPs), to allow their internalization and subsequent

processing and presentation to T cells (4).

PRRs are broadly categorized based on their cellular location,

structures and functions in different sub-families including Toll-like

receptors (TLRs), nucleotide-binding oligomerization domain-like

receptors (NLRs), retinoic acid-inducible gene-I-like receptors (RLRs),

AIM2-like receptor (ALR) and C-type lectin receptors (CLRs) (5).

In particular, CLRs recognize pathogen-derived ligands, but

also natural endogenous ligands such as self-carbohydrates,

proteins, or lipids, with implications in the control of tissue

damage, autoimmune diseases and tumorigenesis (6, 7).

Circumstantial evidence indicates that DAMPs and PAMPs

could also bind immunoglobulin-like receptors such as the

triggering receptor expressed on myeloid cells (TREM-1 and

TREM-2) (8),. even though they are not yet fully identified as

PRRs. Given their tissue and cell-specific expression, there is

considerable evidence that immunoglobulin-like receptors could

be pivotally implied in modulation of the innate immune response,

intracellular signal transduction, and interactions with other

signalling cascades, as well as those involving TLRs (9, 10).

Recently, the interest to study and understand the mechanism

of either CLRs and immunoglobulin-like receptors families has

been growing, given their ability to positively and/or negatively

regulate immune cell activation following interaction with a variety

of endogenous and exogenous ligands (7, 11). The identification of

chemical characteristics of these ligands could improve the

understanding of the intracellular downstream signalling and

facilitate the study of their physiological role and development in

the research of new vaccines or therapeutic treatments. In addition,

identification of the endogenous ligands can accelerate the synthesis

and optimization of organic compounds, resulting in potentially

higher efficiency for further developments.

This review will focus on the functional mechanisms of the most

studied CLRs and immunoglobulin receptors, particularly in

relation to their interaction with specific ligands and the possible

cross-talk among different immune receptors. Special attention will

be given to the recognition of small molecules.
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Small molecules, characterized by a molecular weight

approximately less than 1000 dalton and often of lipophilic

nature, are generally easily identifiable, synthesizable, chemically

modifiable and potentially suitable for the development of new

drugs due to their ability to selectively interact with specific

biological targets. (Figure 1).

Previous studies on amphiphilic drugs have, in fact, highlighted

how specific structural features of small ligands can profoundly

influence interaction with immune receptors, providing a rationale

for the design of novel immunomodulatory molecules (12).
2 Receptors families

2.1 Immunoglobulin-like receptors

Immunoglubulin-like receptors are a family of receptors

possessing extracellular immunoglobulin domains. They are

known to exert immunomodulatory effects on a wide range of

immune cells. Based on their cellular-specific expression, they can

be classified as leukocyte mono-immunoglobulin-like receptors

(LMIRs), triggering receptors expressed on myeloid cells

(TREMs), Signal regulatory proteins (SIRPs) or sialic acid binding

Ig-like lectins (SIGLECs). These receptors can have both activating

and deactivating immunological characteristics.

Activating receptors generally associate with an immunoreceptor

tyrosine-based activation motif (ITAM or hemITAM) or a

transmembrane adaptor protein containing a related activation motif,

such as DNAX-activating Protein 10 (DAP10), DNAX-activating

Protein 12 (DAP12), or the Fc-gamma receptor (FcRg). DAP10,
DAP12, and FcRg act as substrates and docking sites for kinases,

enabling the amplification of intracellular signalling reactions (13). In

contrast, inhibitory receptors contain an immunoreceptor tyrosine-

based inhibitory motif (ITIM) in their cytoplasmic domain (14–17),

which facilitates the recruitment of phosphatases (Figure 2). In this

regard, ‘self’ or ‘non-self’ molecules, able to interact and activate these

receptors, enclose the enormous potential for controlling and

modulat ing the immune response and the result ing

cellular homeostasis.

Although in fact, some receptors display distinct specificity

profi les , they may exhibit overlapping ligand-binding

patterns (Table 1).

2.1.1 LMIR/CD300 family members
The LMIR (also called CD300) (18, 19) family belongs to the

paired immune receptors. Lipids or lipid-binding proteins have

been identified as ligands for several CD300/LMIR members.

Despite the similarity in the extracellular Ig-like domains, there

are relevant structural differences between activating and inhibitory

receptors, pivotal for the fine tuning of immune response.

Therefore, we can distinguish them into two main groups:

inhibiting receptors, LMIR-1 and LMIR-3, and activating

receptors, LMIR-2, LMIR-4, LMIR-5 and LMIR-7.
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2.1.1.1 Inhibitory LMIR receptors
2.1.1.1.1 LMIR-1/CML8/CD300a

LMIR-1 (also called CML8 or CD300a) is an inhibitory

receptor, containing several ITIM motifs in the cytoplasmic

domain (10, 19). LMIR-1 is expressed in myeloid and lymphoid

cells, particularly in mast cells, eosinophils, and basophils, the three
Frontiers in Immunology 03
most important cell types involved in the initiation and regulation

of allergic responses. Indeed, evidence indicates that inhibition of

LMIR-1 induces mast cell degranulation by SCF in a murine model

of cutaneous anaphylaxis (20). Targeting LMIR-1 was shown to

inhibit, through the regulation of eosinophil and mast cell signalling

in vivo, the bronchoalveolar lavage fluid inflammation, lung
FIGURE 1

(a) Summary of the main classes of immunoglobulin like receptors and CLRs recognizing small molecules and their immunological response.
Receptors are represented based on their biological ability to induce inflammatory or anti-inflammatory responses. For TREM-1 and TREM-2 the
evaluation is more complex. Both TREM-2 can sustain the cell energetic by the activation of mTOR pathway. (Created with online software
BioRender.com); (b) Small ligands and ligands structural motifs of immunoglobulin-like and C-type lectin receptors.
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remodelling and inflammation in a model of chronic established

asthma (21).

Phosphorylated ITIM motifs are able to recruit different

phosphatases depending on the cell type where LMIR-1 is

expressed (22). It was demonstrated that the corresponding

LMIR-1 in humans, when cross-linked, inhibits IgE-induced

degranulation and SCF-mediated survival on mast cells, through a

mechanism that involves tyrosine phosphorylation and

phosphatase recruitment (20, 23). These results highlight a new

role for the regulation of human allergic response through LMIR-1,

even though the endogenous ligand involved in such mechanisms

must be still revealed.

Interestingly, knockdown of LMIR-1 in a mice model of acute

septic peritonitis showed prolonged survival, given the greater

expression of chemoattractants in peritoneal mast cells, leading to

increased neutrophil recruitment and a better bacterial clearance

(24). This evidence indicated a new regulatory role of LMIR-1 for

mast cell inflammatory responses to microbial infections. LMIR-1

was also identified as a new marker for acute lymphoblastic

leukemia, as differentially expressed compared to the wild type

(25). In HIV infection, LMIR-1 is deregulated on B cells, suggesting

the possibility that this receptor may contribute to the B-cell

dysfunction observed in HIV-infected patients (26). Moreover,

LMIR-1 has been associated with susceptibility to psoriasis (27).

Lack of LMIR-1 increases the secretion of pro-inflammatory

cytokines produced by TLR4/MyD88 in macrophages and impaired

wound healing (28, 29). LMIR-1 is able to bind phospholipidmolecules

as phosphatidylserine (PS) and phosphatidylethanolamine (PE),
Frontiers in Immunology 04
exposed as ‘eat me’ signals on the outer leaflet of the plasma

membrane of apoptotic cells, forming cavity for the ligands polar

heads insertion (30, 31). More selectively, human chimeric LMIR-1

exhibits a binding stronger to PE than PS, modulating the ingestion of

dead cells (31).

Interestingly, considering that aluminum salts (alum) have been

widely used as vaccine adjuvant, it was demonstrated that LMIR-1

expression was upregulated on inflammatory DCs after injecting

mice with alum, and involved in the generation of dead cells in the

peritoneal cavity. In this regard, inflammatory DCs bound dead

cells via LMIR-1/PS interaction, resulting in Th2 lymphocytes

responses and enhanced allergic airway inflammation, thus

suggesting the involvement of LMIR-1 in alum-induced Th2

skewing (32). Furthermore, blocking LMIR-1/PS interaction may

have therapeutic applications for the prevention or treatment of

vaccine-involved pathologic conditions and allergic airway

inflammation (32).

These studies demonstrated a novel pathway of cell regulation

which modulate allergic responses and microbial infections,

indicating LMIR-1 as a candidate target. Therefore, further

investigation aimed at discovering possible antagonists for LMIR-

1 will be useful for future treatment or for understanding the

underlying molecular mechanism of associated diseases.

2.1.1.1.2 LMIR-3/CLM1/CD300f

The receptor LMIR-3 (also called CD300f or CLM1) is another

inhibitory receptor which delivers its inhibitory signal via two

ITIMs and a single immunoreceptor tyrosine-based switch motif
FIGURE 2

Representation of ITAM- and ITIM-mediated activation and inhibition pathways.
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TABLE 1 Overview of ligands of Immunoglobulin-like receptors.

Receptor Ligand Biological function Reference

LMIR-1
Phosphatidylserine

Apoptosis (24, 31)
Phosphatidylethanolamine

LMIR-2 Unknown – –

LMIR-3

Ceramide, sphingomyelin Activation of mast cell (41)

Sphingosylphosphorylcholine
Activation of mouse bone-marrow-derived mast
cells (BMMCs)

(38)

Phosphatidylserine Apoptosis (42)

LMIR-4 Unknown, maybe same as LMIR-3 – (34)

LMIR-5

TIM1 bound to phosphatidylserine Cytokine production by peritoneal macrophage (48)

Phosphatidylserine

– (43)Phosphatidylethanolamine

Phosphorylcholine

Glycolipids GD1a, GQ1b, and crude gangliosides – (52)

3-O-sulfo-D-galactosylceramide
NFAT activation pathway; MCP-1 production, but not the
production of proinflammatory cytokines

(52)

Glycoconjugates – (53)

LMIR-7 Unknown – –

TREM-1

High Mobility Group Box 1 Activation of inflammatory response (87, 89)

Heat Shock Protein 70
Activation of TNFa and IFNg mRNAs expression in
monocytes and of IL-2 secretion by PBMCs

(88)

Peptidoglycan recognition protein 1 – (91)

TREM-2

Dextran sulfate, LPS, and LTA – (110)

Lipoligosaccharides (LOS) from N. Gonococcusan Interleukin-6 production in HeLa cervical carcinoma cells (113)

unknown ligand in C. jejuni – (113)

Phosphatidylserine

Sustaining of the microglial response to Ab accumulation (43, 103)Phosphatidylethanolamine

Cardiolipin

Nucleic acids released by ischemic brain
Microglial activation to amoeboid phenotype and increase
phagocytosis of injured neurons in brain ischemia

(115)

Escherichia coli – (112)

Apolipoprotein Increase of phagocytosis in microglia (111)

Aminophospholipids
Regulation of microglial function by transducing
intracellular signals on apoptotic cells

(115)

Beta amyloid forms
Activation of NFAT signaling and internalization of beta
amyloid forms

(114)

Glycolipids and sulfoglycolipids – (52, 117, 126)

Non-glycosylated mycolic acid-containing lipids – (118, 119)

Sphingosine-1-phosphate – (120)

SIRP-a

CD47
Downregulation of innate and adaptive anti-tumor
immune response

(141)

surfactant proteins A and D
Stimulation of anti-inflammatory response
in macrophages

(144)

(Continued)
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(ITSM) that can recruit Src homology 2 domain-containing protein

phosphatase-1 (SHP-1) and/or SHP-2 (33). LMIR-3 is highly

expressed in myeloid cells, particularly mast cells (34).

Interestingly, LMIR-3 is weakly expressed in monocyte-derived

DCs, but is strongly upregulated when cultured in the presence of

1,25-dihydroxyvitamin D3, which reprograms DCs toward a

tolerogenic phenotype, suggesting an important role for this

receptor in the maintenance of immune tolerance (35).

LMIR-3 has been shown to have a neuroprotective role in a rat

model of acute brain injury (36). Indeed, LMIR-3 is a negative

regulator of myeloid effector cells in autoimmune demyelination,

therefore implied in multiple sclerosis and autoimmune

encephalomyelitis (37). Furthermore, LMIR-3 plays a pivotal role

in regulating the mast cell-dependent allergic responses in

mice (38).

Downregulation of LMIR-3 in DCs enhances T cell proliferation

initiated by DCs, as well as antigen-specific T cell responses, both in

vitro and in vivo, leading to effective protection against tumor

challenge in mice (39). Block of LMIR-3 significantly reduced the

engraftment of primary human acute myeloid leukemia cells,

highlighting the potential LMIR-3 in tumor immunotherapy (40).

As possible ligands, several extracellular lipids including

ceramide, sphingomyelin and sphingosylphosphorylcholine (SPC)

were found (38, 41). The binding with these lipids results into an

inhibition of the high-affinity IgE receptor (FceRI)-mediated

activation of mouse bone-marrow-derived mast cells (BMMCs)

(38). Particularly, it was evident that the ceramide-LMIR-3

interaction was pivotal in LMIR-3-mediated inhibition of mast

cell activation in vivo, through a not fully understood mechanism.

Indeed, a deeper examination is required to comprehend how

LMIR-3 could influence FceRI signalling via colocalization of

ceramide lipids and FceRI itself in mast cells. The influence of

ceramide is supported by different research groups, but there is

contrasting evidence about the binding affinity of other lipids

proposed as possible ligands. Choi proposed PS and PE to be

potential ligands for chimeric LMIR-3, resulting in increased

phagocytosis (42). However, given that both PS and PE were

expressed on dead cells, it was unclear how an inhibitory receptor

as LMIR-3 could promote phagocytosis. These observations of Choi

were not confirmed by Izawa, who showed that LMIR-3 on mast

cells only bound membrane immobilized ceramide, but not other

phospholipids as PS, PE, or phosphatidylcholine (PC) (38). The

latter, however, appeared to be a ligand for LMIR-3 in the reporter

cells but not in mast cells (38), possibly due to slight structural

difference of recognition domain between endogenous LMIR3 and

the chimera receptor LMIR3-CD3z used in reporter cell assay and/
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or for possible surface components-induced interference of PC-

LMIR3 interaction on mast cells. Therefore, with the aim to identify

other possible relevant ligands for LMIR-3, more in depth studies

and analysis should be performed.

Notably, both LMIR-1 and LMIR-3 can bind to dead cells in a

calcium dependent manner, suggesting that these two receptors

must interact with evolutionary conserved ligands (10).

Circumstantial evidence suggests possible similarities among

LMIR-1, LMIR-3 and the immunoglobulin-like receptor TREM-2

due to the high conservation of their domain architecture and the

structural motifs, that could allow the binding with similar ligands

or classes of ligands (e.g. PS and PE) (43).

2.1.1.2 Activating LMIR receptors
2.1.1.2.1 LMIR-2/CLM4/CD300C

The receptor LMIR-2 (also called CD300C or CLM4) is an

activating receptor which is mainly expressed on macrophages and

a subset of B cells in the spleen and the peritoneal cavity (19).

LMIR-2 mediates an activating signal through the association with

FcRg or DAP12, for the production of the proinflammatory

cytokines tumour necrosis factor (TNF)-a and interleukin (IL)-6

in macrophages (44). LMIR-2 regulates TLR4-mediated cell

adhesion to VCAM-1 in highly purified inflammatory monocytes

in response to TLR ligands alone (45). These data suggest that a

ligand for LMIR-2 could be expressed after TLR ligand stimulation,

resulting in cis-binding between LMIR-2 and the unknown ligand.

Even though its physiological role is not fully understood, Totsuka

et al. suggested that activation of LMIR-2 by TLR4/MyD88-

mediated signalling is essential for the transmigration of

inflammatory monocytes from the blood to sites of infection

puncture (CLP)-induced peritonitis. The authors proposed that

LMIR-2 may be able to bind phospholipids as functional ligands,

similarly to the other CD300 family members and the TREM family

proteins (45). As phospholipids are dynamically remodelled on

stimulation with innate stimuli such as TLR ligands (46), its

activation depends on TRL4/MyD88 axis. However, unlike LMIR-

1, LMIR-2 does not bind PS (24).

Further efforts and studies are in progress to identify possible

ligands that could potentially interact with LMIR-2 and unravel its

function in vivo. Moreover, it will be interesting to discover if other

ligands, able to interact with LMIR-1 or TREM-2, besides PS, could

potentially bind also LMIR-2.

2.1.1.2.2 LMIR-4/CLM5/CD300ld

LMIR-4 (also called CD300ld or CLM5) is a further activating

receptor which is physically associates with ITAM-bearing adaptor
TABLE 1 Continued

Receptor Ligand Biological function Reference

SIRP-b Unknown Activation of phagocytosis in macrophages (140)

SIRP-g
CD47–Interaction 10 times weaker compared to
SIRP-a

Downregulation of innate and adaptive anti-tumor
immune response

(142)

Siglecs
Sialic acids or sialylated structures of HIV- Porcine
reproductive and respiratory syndrome virus–tumors

Immune response suppression in favour of pathogen-
tumor survival

(164–166)
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FcRg. LMIR-4 is preferentially expressed on neutrophils in the

peripheral blood, bone marrow, peritoneal cavity and spleen (47).

LMIR-4 is considered a counterpart of the inhibitory receptor

LMIR-3 (34). It has been shown that intraperitoneal

administration of the TLR4 agonist lipopolysaccharide (LPS)

strikingly up-regulates LMIR-3 and down-regulates LMIR-4,

whereas granulocyte colony-stimulating factor up-regulates both

LMIR-3 and LMIR-4 in granulocytes. These results suggest that

innate immune system is partially regulated by the qualitative and

quantitative balance of the paired receptors LMIR-3 and LMIR-4

(34). However, truly little is known about LMIR-4 function in

immune disease. We could speculate that, as counterpart receptor of

LMIR-3, LMIR-4 could be involved in similar mechanisms

pathways of LMIR-3.

LMIR-4 synergistically enhanced TLR4 signalling in mast cells

and granulocytes, allowing a robust cytokine production in

accordance with enhanced activation of ERK. Upon binding with

unknown ligand, LMIR-4 could positively regulate various signalling

pathways, affecting the inflammatory responses of myeloid cells (34).

Taking into consideration that LMIR-3 and LMIR-4 share high

homology in the Ig-like domain, these receptors may share the same

ligands, with consequence that these molecules could be able to

engage simultaneously the two receptors, mimicking cell

physiological conditions (34). Moreover, their identification is

pivotal for any further understanding of LMIR-3 and LMIR-4

functions as they could represent a fine balance between the

inhibiting-activating mechanisms. Elucidation of the role of

LMIR-4 could unravel its contribution to inflammatory processes,

crucial for future strategic therapies.

2.1.1.2.3 LMIR-5/CLM7/CD300lb

LMIR-5 (also called CD300lb or CLM7) is an activating

receptor coupled to DAP-12. LMIR-5 is mainly expressed in

myeloid cells, such as neutrophils, peripheral macrophages, and

mast cells (10).

LMIR-5 can interact with T cell Ig mucin 1 (TIM1) but similarly

also with TIM4. Interestingly, the binding site of LMIR-5 to TIM1 is

located in proximity of TIM1 PS-binding site, which per se is not able

to bind PS (48). These results are in contradiction with previous

reports which showed LMIR-5 able to independently bind to PS, PE,

and PC (43). Importantly, soluble form of LMIR-5 (sLMIR-5) upon

binding to an unidentified ligand, other than TIM-1 and TIM-4, is

involved in induced cytokine production by peritoneal macrophage

(49). LMIR-5 deficiency profoundly reduced systemic cytokine

production and septic mortality in LPS-administered mice,

pointing out a peculiar relation with the triggering receptor

expressed on myeloid cells-1 (TREM-1), an inflammatory receptor

(49). Indeed, stimulation with TLR agonists increased the release of

both soluble forms sLMIR-5 and sTREM-1. Although sTREM-1

attenuates excessive inflammatory response by counter-regulating

TREM-1, inflammatory amplifier in sepsis, sLMIR-5 amplifies LPS-

induced lethal inflammation (50, 51). The relation with TREM-1 is

pivotal for further comprehension of its role, as well as the discovery

of new ligands possibly shared by LMIR-5 and TREM-1, also justified

by the strong similarities of the LMIR and TREM families (43).
Frontiers in Immunology 07
LMIR-5 interacts with glycolipids GD1a, GQ1b, and crude

gangliosides (52). In particular, LMIR-5 can bind with highest

affinity to 3-O-sulfo-b-D-galactosylceramide C24:1, recognizing

the 3-O-sulfo-D-galactose moiety, which resulted in DAP12-

mediated NFAT activation (53). It was shown that the bacterium

C. jejuni activates NFAT through DAP12 by interaction with

LMIR-5, whose activators were identified as protein components,

RNA-associated proteins, and 150-kDa high-molecular-weight

glycoconjugates (53). However, the identities of these LMIR-5

activators should be further investigated.

LMIR-5 plays a key role in increasing acute kidney damage,

characterized by tubular necrosis and cast formation. Indeed,

LMIR-5, as described above, strongly binds to TIM1 (48), which

was identified as both marker of acute kidney injury (54) and

marker in renal carcinoma and generally associated with immune

dysfunction. Therefore, hampering LMIR-5-TIM1 interaction

might be a novel therapeutic strategy for acute renal tubular

damage (48).

LMIR-5 is one of the most well studied LMIR receptors from

the ligand binding prospective. However, most of its ligands are still

unknown, and their discovery is crucial for further investigation of

the role in the activation of immune response and in macrophage

activation. Given the strong similarity that LMIR-5 shares with

TREM-1 as an inflammatory amplifier, it may be interesting to

study the similarities of activation pathways and possible shared

ligands. Peculiarly, both receptors present soluble forms similarly

formed under TLR stimulations, but with opposite functions.

Therefore, the fine control and balance between soluble and

transmembrane forms of TREM-1 and LMIR-5 seems to be

extremely important to sort out the complex ways of

immunomodulatory regulation.

2.1.1.2.4 LMIR-7/CLM3/CD300lh

LMIR-7 (also called CD300lh or CLM3) is an activating

receptor highly expressed in mast cells, monocytes and

macrophages (55). LMIR-7 synergizes with TLR4 in signalling

and binds to FcRg, but with lower affinity compared with LMIR-

4-FcRg (55). It has been shown that LMIR-7 functions as a positive

regulator of TLR9 (56). LMIR-7 upregulates TLR9-mediated

production of the proinflammatory cytokines TNF-a and IL-6

but does not affect type I-IFN expression (56).

Interestingly, LMIR-7 shares high homology similarity with

LMIR-4 in the amino acid sequences of Ig-like and transmembrane

domain (55). Therefore, it is possible that LMIR-7, as well as LMIR-4,

modulates the innate immune responses in a cell type-dependent

manner. Overall, with the aim to improve the understanding of in

vivo functions of LMIR receptors, both analysis of the knock-out mice

and identification of the ligands for each LMIR are necessary (55).

Considering that LMIR-4 is a counterpart of inhibitory receptor

LMIR-3 and that LMIR-7 shares a high degree of homology with

LMIR-4, it is crucial to better understand the peculiar function of

LMIR-7 in relation to LMIR-4 and understand its possible

analogous role to LMIR-3. The LMIR-3-LMIR-4-LMIR-7 axis

could be, potentially, a new immunomodulatory regulation

mechanism that needs to be further explored.
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2.1.2 TREM family members
TREM receptors are a class of cell surface receptors

characterized by a single V-type immunoglobulin domain in their

extracellular region (57).

TREM family members are expressed by granulocytes,

monocytes and tissue macrophages. These receptors participate in

diverse cell processes, including inflammation, bone homeostasis,

neurological development and coagulation (58). In this family,

TREM1 and TREM2 are the best characterized proteins. The

growing interest for the elucidation of the cell signalling pathways

of these receptors with high therapeutic potential, raised the focus

on the identification of endogenous TREM ligands.

2.1.2.1 TREM-1 and TREM-2 receptors

TREM-1 and 2 proteins are structurally related, consisting in a

single extracellular variable-type immunoglobulin (Ig) domain; a

shorter stalk region; a transmembrane domain and a short

cytoplasmic tail not containing any activation, signalling or

trafficking motifs (59).

The transmembrane domain includes a charged lysine residue

that enables the interaction with DAP12 (58). Upon binding with

DAP12, TREM receptors can potentially have activating and/or

inhibitory roles in innate immune responses. Although this

hypothesis remains highly speculative, TREM-1 and -2 proteins

show different and specialized functional roles, especially in

myeloid cells (60).

TREM-1 and TREM-2 extracellular domains can also be found

in a soluble forms (sTREM-1 and sTREM-2), which can be released

by a proteolytic cut within the protein stalk region (61) or by

alternative splicing (62). Due their intrinsic structural

characteristics, TREM-1 and TREM-2 can act in a dependent

manner via its interactor protein by which initiate intracellular

signalling or in independent manner as a soluble protein.

The involvement of these receptors in inflammation,

neurodegenerative diseases and in cancer is widely recognized

and further studies are pivotal for the definition of their

biology (57).

2.1.2.1.1 TREM-1 receptor

TREM-1 is mainly expressed on myeloid cells such as

monocytes, macrophages and granulocytes (63), but is also

detected on parenchymal cell types such as bronchial, corneal,

gastric epithelial cells, and hepatic endothelial cells (64–66).

TREM-1 expression is upregulated during septic shock, in a

number of infectious diseases, such as pneumonia (67) and

suppurated cholangitis (68), in obstructive nephropathies (69)

and chronic kidney diseases (70). TREM-1 can be also

upregulated on macrophages in lung cancer with subsequent

inflammatory response, inducing complications and death (71).

Furthermore, TREM-1 plays a pivotal role in cardiovascular

diseases, such as atherosclerosis pathogenesis (72), acute

myocardial infarction (73), coronary artery diseases (74),

myocardial dysfunction in septicaemia (75) and infective

endocarditis (76). TREM-1 ameliorates neuroinflammatory

responses in Parkinson disease, and this neuroprotective effect
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might occur via the activation of autophagy and anti-

inflammatory pa thways (77) . TREM-1 can promote

mitochondrial integrity and cell survival (78, 79), as well as

induce rearrangement of the actin cytoskeleton (80), and release

of pro-inflammatory cytokines and chemokines, such as MCP-1,

MIP1-a, IL-1b, IL-6, IL-8, TNFa (81).

For several years since the discovery of TREM-1 in 2000, no

endogenous TREM-1 ligands have been identified. Two studies

have proposed peptidoglycan recognition protein 1 as a ligand for

TREM1 in in vitro assays conducted on PBMCs and linked to the

secretion of pro-inflammatory cytokines (82, 83).

The presence of TREM-1 ligand on human platelets could be

related to neutrophil activation in the occurrence of microbial

stimuli like LPS (84), but also in this case the chemical

characterization of the putative implied ligand was unsuccessful.

During the last years, some progress has been made to better

understand the role of TREM-1 during chronic tissue damage. It

has been reported that extracellular actin co-localizes with TREM-1

in lung tissue sections from septic mice, suggesting that TREM-1

recognizes actin during activation in sepsis (85). Furthermore, actin

is considered as TREM-1-interacting protein on platelets (85),

although the receptor could be able to recognize other various

molecules. High Mobility Group Box 1 (HMGB1) and heat shock

proteins, secreted by activated myeloid cells and released by dying

and necrotic cells, thus functioning as a DAMP molecule (86–88),

were suggested as TREM-1 ligands (89). HMGB1 alone seems

unable to induce TREM-1 activation, therefore suggesting the

presence of other co-activating molecules (87). In addition,

overstimulation of TREM-1 can lead to cell death and release of

both actin and HMGB1. This process can provide a large number of

ligands for activation of TREM-1 signalling and thus induce some

progressive systemic inflammatory response, resulting in

sepsis (85).

New findings suggest that the extracellular cold-inducible RNA-

binding protein (eCIRP), a recently characterized DAMP, is an

endogenous ligand for TREM-1 (90). The binding between eCIRP

and TREM-1 can dramatically enhance inflammation during sepsis

in macrophages and a peptide-mediated blocking of this interaction

significantly improves the outcome, increasing the survival

rate (90).

TREM-1 also binds to peptidoglycan recognition receptor 1

(PGLYRP1/Tag7), mainly found in granulocytes and known for its

bactericidal properties (91). Interestingly, PGLYRP1 alone was not

able to induce TREM-1 activation. In this regard, it is not known

whether PGLYRP1 signalling is TREM-1 mediated and if the

binding is responsible for the bactericidal properties (87).

Recently, a deep characterization of the multifunctional protein

PGLYRP1 led to the identification of the peptide (called N3)

responsible for the interaction with TREM-1. The N3 peptide

corresponds to the N-terminal 24 amino acids domain

RYVVVSHTAGSSCNTPASCQQQAR (isolated and synthetized).

Its interaction with TREM-1 causes the protein dimerization and

activation of cytotoxic lymphocytes (83).

TREM-1 does not appear to participate in recognition of lipids,

in contrast to other TREM family members (43, 92).
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All these results suggest that the identification of an endogenous

ligand for TREM-1 is of pivotal importance to fully understand its

mechanism of activation and signalling in different inflammatory

diseases (87).

In humans, TREM-1 is involved in the amplification of pro-

inflammatory innate immune response for the elimination of

pathogens (81). The receptor can amplify TLRs response such as

TLR4 or TLR2 signalling and synergistically increase the

production in pro-inflammatory cytokines such as TNF-a and

IL-6 (93). TREM-1 appears to play a crucial role during the

initiation of cytokine response in septic shock as well as in other

infections (51), through common signalling pathway activation

including PI3K, ERK1/2, IRAK1 and Nf-kB (94).

TREM-1 blockade is considered a potential therapeutic

procedure, as this strategy could present the peculiar advantage to

not fully abolish the inflammatory response required for a proper

immune response. For this reason, TREM-1 inhibitors could be

safer in treating inflammatory diseases compared to any other

immune receptors (87).

2.1.2.1.2 TREM-2 receptor

TREM-2 is mainly expressed in microglia, in DCs, osteoclasts,

Kuppfer cells and alveolar macrophages, and is an important

negative regulator of autoimmunity (95, 96). TREM-2 activity or

dysfunction are strictly connected to the induction of

neurodegenerative disorders. Indeed, recent genetic studies have

found that TREM2 mutations represent a significant genetic risk

factor in Nasu-Hakola Disease (97), frontotemporal dementia
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(FTD) (98), Parkinson’s disease (PD) (99), and amyotrophic

lateral sclerosis (ALS) (100). Recently, the importance of TREM-2

has been highlighted by the identification of coding variants, such as

the TREM2-R47H form, that increase risk for Alzheimer’s disease

(Figure 3) (101, 102). Also, cytokines released by TREM-2

activation are essential for maintaining microglial metabolic

fitness besides enabling microglial activation, migration and

phagocytosis, and allowing differentiation into a cell mature

profile (103, 104). TREM-2 expression rises during various forms

of liver injury in both mice and humans, attenuating TLR4-driven

proinflammatory responses (105). TREM-2 is also expressed by

adipose tissue macrophages and is extremely important in the

regulation of inflammation during obesity. This protein is

upregulated in the adipose tissue of dogs on a high-fat diet

(HFD) and in the mesenteric adipose tissue of insulin-resistant-

diabetic mice, TREM2 promotes adipogenesis by upregulating

adipogenic regulators and inhibiting the Wnt10b/b-catenin
signaling pathway (106).TREM-2 also sustains cell energetic and

biosynthetic metabolism modulating ATP levels and biosynthesis

thought the mTOR pathway (107, 108). TREM-2 knockout animal

model showed a dramatic reduction of glucose metabolism

throughout the brain (109).

The first ligands that have been identified to bind to TREM-2

were bacterial, poly-anionic molecules and anionic bacterial

carbohydrates, particularly dextran sulfate, LPS, and LTA (110)

and lipid-binding proteins (111). TREM-2 can also directly bind to

lipoligosaccharides from Neisseria gonorrhoeae and to unknown

ligand in Campylobacter jejuni, gram-negative bacteria, causative
FIGURE 3

Involvement of TREM-2, SIRP-b1 and Siglec-3 in the development of Alzheimer disease. Representation of TREM-2 and SIRP-b1 in inducing
phagocytosis, actin reorganization and reduction of LPS-TLR induced response. Whereas TREM2 genetic modification’s R47H-TREM2, as well as
Siglec-3, can inhibit b-amyloid uptake by suppressing the phagocytosis genes. (Created with online software BioRender.com).
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fimmu.2025.1648691
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fioretto et al. 10.3389/fimmu.2025.1648691
agent for food poisoning (112, 113). Additional studies showed that

TREM-2 was able to interact with different beta amyloid forms,

increasing their internalization (114), unlike TREM2 missense

variants, highlighting the potential crucial role of the protein in

the developments of new pharmacological treatment for

neurodegenerative pathologies (Figure 3) (102).

TREM-2 binds the phospholipids PE, PS, and cardiolipin (CL)

(43, 103) as anionic molecules frommammalian cells. In addition to

phospholipids, also nucleic acids released by ischemic brain lysate

bind to TREM-2. Only cellular fractions containing nuclei or

purified DNA, but not cytosolic fractions, were able to induce the

signalling through TREM-2 (115). Finally, TREM-2 is able to bind

also aminophospholipids that are on apoptotic Neuro2a cells as well

as some normal cultured cells (116), glycolipids and sulfoglycolipids

(52, 117).

Several studies report the presence of different ligands class of

molecules that bind TREM-2, and analogously other immunoglobulin

like receptors previously described, as LMIR-1, able to recognize PS

and PE. Moreover, those common features further confirm the link

between TREM2 and LMIR-1, helping to understand how they could

synergise or differ their signalling pathway. More generally, a

correlation between TREM and LMIR receptor families was

highlighted by Cannon et al (43), suggesting that the TREM/LMIR

system may discriminate immunological stimuli based on lipid

signatures, thereby influencing downstream responses.

It must be pointed out that LMIR-1 and LMIR-3 are inhibitory

receptors which deliver their signal via ITIM domain. Furthermore,

TREM-2, similarly to the other activating receptor acts via DAP12,

but it can deliver inhibitory signals also. These information could

highlight a more singular activating/modulating role of TREM-2 in

comparison to the other immunoglobulin like receptors.

Considering the importance of TREM-2 and the peculiar

similarity with other receptors described in this review, the

identification of a unique and specific ligand for this receptor

is fundamental.

Recently, interesting advancement concerning the development

of new TREM-2 ligands have been done. Lately, non-glycosylated

MA-containing lipids of mycobacteria were identified as TREM-2

ligands with the activation of TREM-2-DAP12 signalling. In

particular, long (C60–C90) and branched alkyl chains are required

for the TREM-2 recognition (118, 119). Moreover, another study

reported Sphingosine-1-phosphate (S1P) and an its analogue as

endogenous ligand of TREM-2 able to promote phagocytosis (120).

A recent crucial progress concerning the essential finding of a

small ligand of TREM-2 is represented by Sulfavant A (121, 122), a

small nature-inspired sulfo-containing glycolipid with a promising

adjuvant property (Figure 4a) (123–125). The interaction of

Sulfavant A with TREM-2 resulted in a novel cell regulatory

function, contributing to immune homeostasis and preserving

lymphocyte activation and immune response. Sulfavant A elicited

an unconventional hDCs maturation with up-regulation of the

costimulatory molecules without production of conventional

inflammatory cytokines (117, 126).

Natural monoterpenoid indole alkaloids, hecubine and

dehydroervatamine (Figure 4b), isolated from Ervatamia
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hainanensis and Tabernaemontana bovina plants, respectively,

induced neuroinflammation reduction through TREM2 targeting

in LPS-stimulated microglia model, preventing pro-inflammatory

cytokines release and favouring anti-inflammatory factors

expression, with the consequent regulation of the immune

response towards a neuroprotective cellular state. In silico and

cellular thermal shift assay (CETSA) experiments highlighted the

direct binding of these molecules with TREM2 (127, 128).

Finally, Alpinia oxyphylla fructus extracts, main constituents of

some Chinese medicines, have proven to be effective in improving

cognitive ability, anti-oxidative stress and protecting neurons,

thanks to flavon Chrysin (Figure 4c), able to determine a

neuroprotective microglia M2 polarization via TREM2. Docking

experiments supported the ability of the flavon to bind the

protein (129).

Albeit the progress concerning the characterization of new

TREM-2 ligands, the involvement of this receptor in

neurodegenerative disease made necessary the development of

new strategies of ligand-screening and synthesis. In this regard,

the promiscuous character of this receptor also explains the fact that

different ligands, with greater or lesser avidity, were able to activate

different signalling pathways leading to different cellular responses

(130), with subsequent and respective activation or deactivation of

the cell functions for which this protein was responsible.

2.1.2.1.3 TREM-3 receptor

TREM-3 is an activating receptor presenting strong similarity to

TREM-1 and TREM-2, regarding DAP12 mediated signalling

pathway. TREM-3 is mainly expressed on macrophage, but low

level of protein transcripts could also be detected in mouse T cell

lines. However, in humans, TREM-3 is a pseudogene (58).

Although little is known about TREM-3, recent findings suggest

that it may play a role in modulating TLR signalling. In

macrophages, TREM-3 transcripts were upregulated by LPS

(131), IL-1b and TNFa (65), and down-regulated by IFN-gamma

(131). These observations were confirmed in TLR4 mutant mice,

where LPS injection failed to alter the expression of TREM-1 and

TREM-3, indicating that this response is dependent on TLR4

signalling (65). Evidence also suggest that TREM-3 may

contribute to the inflammatory response of hepatic macrophages

and endothelial cells during acute endotoxemia (65), and may play a

protective role in host defence against Klebsiella pneumoniae

infection in vivo (132).

However, the discovery of possible ligands that bind to TREM-3

could help the understanding not only of its physiological role but

also highlight the insights of the TREM receptors regulation system.

2.1.3 TREM-like receptors
TREM-like receptors, TREM-like-1 (TREML-1), TREML-2 and

TREML-3, are encoded within the TREMs gene cluster in humans.

It must be pointed out that the TREM-like proteins have distinct

structural and functional properties compared to TREM-1 and

TREM-2 (133). Particularly, TREML-1 can enhance the calcium

signalling in an SHP2 (PTPN11)-dependent manner, whereas some

genetic variant of TREML-2 have been identified to be protective for
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1648691
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fioretto et al. 10.3389/fimmu.2025.1648691
Alzheimer’s disease, contrary to TREM-2 genetic variants. The role

of TREML-3 remains to be investigated (133).

TREML-1 is widely expressed in microglia and its levels in the

brain have been associated with decreased risk of developing

Alzheimer disease in humans (134). This receptor shows similar

binding affinity with Ab oligomers as TREM-2 (114). TREM-2

knockout showed a dramatic increase of TREML-1 expression in

the brain (135). Interestingly, the expression of an alternative

transcript of TREML-1 (TREM like-1s) has been found to

interact with TREM-2 via an immunoprecipitation assay and its
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over-expression inhibited osteoclast differentiation of bone

marrow-derived macrophages (136). Therefore, TREML-1s could

be a negative regulator of TREM-2 function.

These data suggest a plausible role of TREML-1 as TREM-2

antagonist, in both physiological and pathological conditions.

Moreover, finding new molecules that can act via TREML-1

could modulate the activity of TREM-2, and vice-versa On the

other hand, also targeting TREML-2 could open to new strategies

for the treatment of Alzheimer’s disease, highly enhancing the rate

of success. Considering its protective role, an activating molecule
FIGURE 4

Chemical structure of some Immunoglobulin-like receptors ligands: (a) Sulfavant A; (b) Hecubine and Dehydroervatamine; (c) Chrysin; (d) Sialic acid.
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could represent a possible preventive treatment for individuals with

specific genetic variations already known to greatly increase the risk

of Alzheimer’s disease.

2.1.4 SIRP family members
SIRP (also called signal regulatory proteins) are mainly present

in myeloid cells. There are three main SIRP receptors: SIRP-a,
SIRP-b and SIRP-g. All SIRPs members present an extracellular

region that consists of three immunoglobulin superfamily (IgSF)

domains and have different cytoplasmic regions (137). SIRP-a does

contain an ITIM motifs, which mediate its association with the

phosphatase SHP2 (138). SIRP-b has a very short cytoplasmic

region of only 6 amino acids which binds to the adaptor protein

DAP12 and transmit activating signals (139). Whereas SIRP-g has a
shorter cytoplasmic region (of only 4 amino acids), lacking a

charged amino-acid side chain that allows the association with

DAP12 (137, 140). Recently, it was shown that SIRP-b1 acts as a

phagocytic receptor on microglia in amyloid precursor protein

transgenic mice and in patients with Alzheimer’s disease. Indeed,

activation of SIRP-b1 on cultured microglia induced reorganization

of the cytoskeleton protein b-actin, increased phagocytosis of

fibrillary amyloid-b (Ab) (Figure 3), and suppressed LPS-induced

gene transcription of TNF-a and nitric oxide synthase-2 (139).

The first ligand identified for SIRP-a was CD47 (141), an

immune checkpoint molecule that downregulates key aspects of

both the innate and adaptive antitumor immune response. CD47 is

also a ligand for SIRP-g (10 times weaker), but not for SIRP-b (142).
An automated quantitative TR-FRET-based high-throughput

screening assay platform reports the screening of large diverse

drug-like chemical libraries to discover novel small molecules able

to inhibit CD47-SIRP-a interaction (143). Five compounds were

identified, whose structural identification is still under investigation

(143). SIRP-a has also been shown to bind to the surfactant

proteins A and D (SP-A and SP-D), the first at high levels in the

lungs, the second in all mucosal surfaces, but with less affinity than

CD47 (144). Most likely, SIRP-a recognize the globular heads

glycosylated groups of surfactant proteins SP-A and SP-D. It has

been proposed that SP-A and -D present a dual function, both

helping to maintain an anti-inflammatory response by stimulating

SIRP-a during the interaction with phagocytosis-stimulating

PAMPS and inducing a pro-inflammatory response (144).

Stimulation by SIRP-b monoclonal antibody triggers SYK

phosphorylation, MAPK activation, phagocytosis on macrophages

(140) and migration of neutrophils (145). The natural ligand of

SIRP-b is unknown and yet its biological significance

remains unresolved.

Finally, several interesting questions for SIRP receptors remain

to be answered, especially linked to their extracellular and

intracellular ligands, and the research of new binding molecules

could be extremely helpful in cancer and inflammation field.

2.1.5 Siglecs family members
Siglecs (sialic acid binding immunoglobulin-like lectins) are I-type

(Ig-type) lectins characterized by an Ig domain that mediates sialic

acid binding. Sialic acids are a large family of 9-carbon sugars that are
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all derivatives of neuraminic acid (Neu) or keto-deoxynonulosonic

acid (KDN) (Figure 4d) (146). They are typically added at the end of

the glycosylation process, capping a diverse array of glycosylation

structures (146). Therefore, they are present on a variety of proteins

and lipids attached to a wide of mammalian cell surfaces, including all

human cells (147), playing key roles in Siglecs-mediated immune

regulation and maintaining self-tolerance. Siglecs are a family

of 14 different receptors which can be divided into two main

groups based on their genetic similarity. The first group is present

in all mammals consisting of Siglec-1 (Sialoadhesin), Siglec-2 (CD22),

Siglec-4 (MAG), and Siglec-15 (148). The second group includes the

CD33-related Siglecs, named Siglec-3 (also called CD33), −5, −6, −7,

−8, −9, −10, −11, −14, and −16 (149). They are mainly expressed on

monocytes, monocyte-derived macrophages and monocyte-derived

DCs but also in B cells, basophils, neutrophils, and NK cells, with

different expression patterns for every cell subset (150).

Each Siglec presents a specific role in the regulation of immune

cell function in infectious diseases (151), inflammation,

neurodegeneration, autoimmune diseases and cancer (152).

Siglec-8 is involved in the development of asthma and Siglec-9

chronic lung inflammation (151). Whereas, Siglec-3, with ITIM

motif, inhibits microglial uptake of amyloid beta and genetic

variation could increase the development of Alzheimer’s disease

susceptibility (153–155). Collectively the data report that Siglec-3

can inhibit the clearance of amyloid plaque in microglial cell

cultures and in vivo (155), considering that its knockdown could

mitigate amyloid-b pathology (Figure 3) (154). Interestingly, both

Siglec-3 and TREM-2 have been associated with increasing the risk

of Alzheimer’s disease, but in an opposite way. Indeed, conversely to

Siglec-3, TREM-2 reduces plaque load and upregulates

phagocytosis genes (Figure 3) (156). The Alzheimer-linked

genetic R47H variant of TREM-2 acts similarly to Siglec-3,

impairing amyloid-b–induced microgliosis and microglial

activation (157). The link between TREM-2 and Siglec-3 has been

straightened by knockdown experiments, which have shown that

TREM-2 acts downstream of Siglec-3 and that loss of microglial

clearance capacity might be reversed by therapeutic inhibition of

Siglec-3 or activation of TREM-2 (158). Therefore, targeting those

receptors could facilitate therapeutics to treat neurodegenerative

pathologies as Alzheimer’s disease.

R e c e n t l y , c u r c um in h a s b e e n p r opo s e d a s a n

immunomodulatory treatment capable of emulating anti-b-
amyloid vaccine in stimulating phagocytic clearance by reducing

Siglec-3 and increasing TREM2 (159). However, even if curcumin

does not represent a new ligand for neither TREM2 or Siglec-3,

these findings suggest the huge potential that could derive by

controlling both TREM2 or Siglec-3 pathways involved in

developing Alzheimer’s disease (Figure 3).

The scientific interest has been so far focused on finding Siglec-

3 inhibitors that might be effective against disease progression.

Microparticles of subtype-selective trisaccharide containing 2,5,9-

trisubstituted sialic acid mimetic, called P22, increases the uptake of

the toxic Alzheimer’s disease peptide and amyloid-b into microglial

cells (160), evidencing Siglec-3 as promising target for therapeutics

favouring clearance of amyloid-b.
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Siglec-4 and Siglec-14 till Siglec-16 do not have ITIM or ITIM

like motifs. Their signals are mediated by DAP12, and, therefore,

called activating Siglecs (161). Upon ligand binding, Siglecs-DAP12

system can recruit PI3K thus promoting an inflammatory response

through activation of MAPK pathway (162). Other Siglecs, and in

particular CD33-related Siglecs, have an ITIM and/or ITIM-like

motif in their intracellular domain and can mediate an inhibitory

signal (151).

As described above, the presence of sialic acids structures on cell

surface could function as a self-associated molecular pattern

(SAMP) and thus, Siglecs can act to dampen leukocyte activation

under homeostatic conditions (162, 163).

Interestingly, several pathogenic bacteria also use the sialic acid-

Siglec axis to dampen the immune system in favour of their survival.

In this regard, they could have acquired the ability to take sialic

acids or sialylated structures from the host, to synthetize “mimic”

structures or even perform de novo synthesis of sialic acids, giving

them a survival advantage (161). The same strategy is also used in

case for the Human immunodeficiency virus (HIV) and the Porcine

reproductive and respiratory syndrome virus (PRRSV) (164, 165). It

has been demonstrated an increased sialylation, a2,3; a2,6, and
a2,8 linked sialic acids, in multiple tumour tissues like renal cell

carcinoma, prostate cancer, colon cancer, breast cancer, head and

neck squamous cell carcinoma and oral cancer (166).

Finally, Siglecs participate in the discrimination between self

and non-self sialic acid motifs, triggering endocytosis, pathogen and

dysfunction recognition and regulating, both by activation and

deactivation, the function of innate and adaptive immune cells.

The research, finding and develop of sialyl-based small chemical

entities could pave the way for new therapeutic treatments in

different pathological conditions like infectious diseases,

inflammation, neurodegeneration, autoimmune diseases

and cancer.
2.2 C-type lectin receptors

C-type lectin receptors (CLRs) is a family of receptors which

possess one or more carbohydrate-recognition domains, thanks to

which they usually bind carbohydrate moieties through a Ca2+

dependent conserved motif, although some of them lack the Ca2+

binding site. These proteins differ in the kind of pathogen-derived or

self-expressed ligands that they are able to recognize. Among these

ligands, there are not only glycans but also proteins or lipids,

triggering functions as adhesion, phagocytic, and signalling

pathways and directing the cell towards homeostasis following the

activation of innate and adaptive immunity. CLRs represent a huge

group of proteins divided into seventeen subgroups (167).

Considering the ability of these proteins to recognize polymeric

structures, some members of this family are able to also interact

with small structural motifs, as DC-Specific Intercellular adhesion

molecule-3-Grabbing Non-integrin (DC-SIGN) and Macrophage-

inducible C-type lectin (Mincle) (Table 2), two members

particularly studied and crucial in the immune response modulation.
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DC-SIGN receptor (or DC specific Intercellular adhesion

molecule-3-Grabbing Non-integrin) is expressed by myeloid DCs

and subpopulations of macrophages (168). DC-SIGN is highly

expressed, and considered as marker, in cancer-associated

fibroblasts and M2 macrophages, which are involved in the

malignancy of different tumours (169). It has been reported that

the expression of DC-SIGN in serum and cancer tissues may affect

the survival time for colon cancer patients, representing also a

valuable target for cancer treatment (170). Even though, DC-SIGN

can induce IL-10 pathways, such as those including ERK and PI3K

(171), whether the receptor is relevant to the induction of diseases

like asthma remains to be determined.

DC-SIGN recognizes specific carbohydrate structures (high

mannose or fucose) on the surface of pathogens and self-

glycoproteins. This protein is particularly known to be the

receptor that captures HIV-1 at sites of entry, enabling its

transport to lymphoid tissues, where DC-SIGN efficiently

transmits low amounts of HIV-1 (172).

Besides HIV-1, DC-SIGNwas also shown to bind other viruses like

cytomegalovirus (173), Ebola (174), Dengue (175), and hepatitis C

(176, 177), as well as microorganisms as Leishmania (178) and

Candida albicans (179). The protein is able to bind Mycobacterium

tuberculosis and thus mediating its entry in DCs in vivo. In this

scenario, it does not only allow Mycobacterium Tubercolosis to infect

DCs but also suppresses the cellular immune responses of both

immature DCs and mature DCs (180). Indeed, DC-SIGN specifically

binds to the lipoglycan lipoarabinomannan (LAM), a major

component of the mycobacterial cell wall, which contains a

carbohydrate backbone composed of D-mannan and D-arabinan

(181, 182). Interestingly, DC-SIGN does not bind to all

mycobacterium similarly, suggesting that it may act through selective

recognition. In fact, Mycobacterium smegmatis-derived LAM, capped

by phosphoinositide residues (PILAM), or Mycobacterium fortuitum

and Mycobacterium chelonae-derived AraLAM, Arabian domain

uncapped, does not bind to DC-SIGN. Also, Mycobacterium avium

derived ManLAM, capped with single mannose residues, was also

poorly recognized by DC-SIGN (181). All the data suggest that this

receptor recognizes a specific motif domain. DC-SIGN is also able to

bind small chemical entities like glycolipids derived from Schistosoma

Mansoni cercariae and their excretory or secretory such as

carbohydrate moieties of both glycosphingolipid species with Galb1–
4(Fuca1–3)GlcNAc (LewisX) and Fuca1–3Galb1–4(Fuca1–3)
GlcNAc (pseudo-LewisY) determinants (183). Recently, it was shown

that Galactofuranose (Galf) can interact with DC-SIGN and induce the

secretion of the pro-inflammatory cytokines IL-6 and TNF-a (184).

Interestingly, DC-SIGN is organized in plasma membrane

microdomains (with average diameter of 200nm) crucial for

binding and internalization of virus particles, acting as a docking

site for pathogens (185). It was also suggested that cholesterol-

dependent membrane properties, rather than lipid rafts per se, are

responsible to promote efficient HIV-1 infection in T cells (186).

DC-SIGN is also an essential co-receptor for TLR4-induced

activation of human DCs. Indeed, fucosylated glycan, upon binding
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with DC-SIGN in DCs, primed naïve T cells towards a Th1 profile,

while inducing TLR4-activation (187). Interestingly, upon

mycobacterium bovis ManLAM binding, DC-SIGN impairs LPS-

induced maturation of DCs and increases the production of the

immunosuppressive cytokine IL-10, highlighting a possible

pathogen strategy to escape immune surveillance (188). Notably,

this receptor, encountering and recognizing a pathogen, is able to

stimulate the kinase Raf-1, inducing acetylation of the NF-kB
subunit p65 and increasing anti-inflammatory cytokines

expression, all this only after TLRs-induced activation of NF-kB.
This evidence shows a receptor ability to induce adaptive immunity

by DCs against pathogenic microorganisms (189).

Considering DC-SIGN specific ligand mediated immune

response, polyvalent carbohydrate ligands have been proposed in
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the design of novel immunomodulants and vaccine adjuvants (190).

Finally, DC-SIGN is an important player in the recognition of

pathogens by dendritic cells and uncover more functional aspects of

its activation mechanisms will be extremely important for the

treatment of life-threatening infection disease, such as Dengue or

Ebola, also considering that this protein seems to be able to

recognize small structural motifs as well as polymeric structures.

Moreover, new molecules that bind with more affinity to DC-SIGN

could be used as antagonists to prevent the binding of other

pathogens or as vaccine adjuvants.

2.2.2 Mincle
Mincle (also called macrophage-inducible C-type lectin) is

mainly expressed on monocytes, macrophages, neutrophils and
TABLE 2 Overview of DC-SIGN and Mincle ligands.

Receptor Ligand Biological function Reference

DC-SIGN

Carbohydrate structures (high mannose or fucose) on the surface of pathogens like:

a) HIV Transmission of viral pathogen transport to lymphoid tissues (172)

b) CMV
Transmission of infectious viral particles to different permissive
cells and enhancement of infection and CMV replication in
DC-SIGN-expressing THP-1 cells

(173)

c) Ebola
Binding to Ebola virus and transmission of the infection to
susceptible cells

(174)

d) Dengue
Binding to four serotypes of Dengue and transmission of the
infection to susceptible cells

(175)

e) hepatitis C
Capture and delivery of the hepatitis C virus to the liver and
modulation of dendritic cell function

(176, 177)

f) Leishmania
Leishmania uptake by dendritic cells and immunoregulation of
cutaneous leishmaniasis

(178)

g) Candida albicans
Internalization of C. albicans in specific DC‐SIGN‐
enriched vesicles

(179)

Galactofuranose Secretion of the pro-inflammatory cytokines IL-6 and TNF-a (184)

Lipoglycan lipoarabinomannan of the
Mycobacterium Tubercolosis

Cellular immune response suppression of both immature DCs
and mature DCs

(180–182)

Mannone lipoglycan lipoarabinomannan of
Mycobacterium bovis

Impairment of LPS-induced maturation of dendritic cells and
increase of immunosuppressive cytokine IL-10 production

(188)

Glycolipids and glycosphingolipid from Schistosoma
mansoni cercariae

– (183)

Mincle

Trehalose 6,6′-dimycolate Immunostimulatory activity (203)

Trehalose dibehenate Activation Syk-Card9 signaling in APCs; Th1/Th17 response (204)

Glyceroglycolipid and a mannosyl fatty acids linked to
mannitol from Malassezia species extracts

– (206)

Glycolipids from Mycobacterium tuberculosis Activation of the Syk-Card9 signaling pathway in macrophages (207)

Cholesterol crystals Production of pro-inflammatory cytokines (210)

b-glucosylceramide Immunostimulatory activity in myeloid cells (212)

Cholesterol sulfate
Production of proinflammatory mediators, severe local
inflammatory response

(194)

Desmosterol – (211)

Sitosterol – (211)
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DCs (191). However, in macrophages and DCs, its expression can

be strongly upregulated by PAMPs, such as the TLR4 ligand LPS or

by a Mincle ligand (192). Mincle has been reported to be associated

with rheumatoid arthritis (193), but also to other inflammatory-

mediated diseases. Indeed, this receptor is also involved in allergic

skin inflammation (194) and post-ischemic inflammation (195),
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and other experimental inflammatory models such as chronic

alcoholic liver disease (196). Given the roles that Mincle plays in

a (chronic) immune reaction, it has been suggested both as adjuvant

for the treatment of pathogenic immune of Crohn’s disease (197)

and also for foot-and-mouth disease virus infection (198). Recent

studies show that Mincle also contributes to neuropathic pain in the
FIGURE 5

Chemical structure of some C-type lectin receptors ligands: (a) Trehalose 6,6′-dimycolate (TDM); (b) Trehalose dibehenate (TDB); (c) Glucosyl-
based glyceroglycolipid (44-1); (d) Mannosylated fatty acids linked to mannitol (44-2).
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dorsal root ganglia and spinal dorsal horn (199). Furthermore,

Mincle promotes and maintains inflammatory phenotypes of M1

macrophages in acute renal inflammation (200).

The protein is an activating receptor coupled with the ITAM–

bearing adaptor FcRg chain (201). Its expression is sensitive to

various inflammatory stimuli, such as LPS, TNF-a, IL-6, and IFN-

gamma, activated downstream of the nuclear transcription factor

NF-IL6 in macrophages (202).

Mincle specific ligand is trehalose 6,6′-dimycolate (TDM)

(Figure 5a), a mycobacterial cell wall glycolipid and its most

studied immunostimulatory component (203). Mincle is also able

to recognize analogs like trehalose dibehenate (TDB) (Figure 5b)

but not the non-glycosylated mycolate or trehalose molecules (204).

Though TDM is also present into cell wall of other mycobacteria,

corynebacteria, nocardia and fungi, Mincle is not able to bind all of

them, suggesting more specific and complex recognition

mechanisms. Also, the Mincle ligand in Malassezia species fungi

has not yet been identified, suggesting the existence of ligands rather

than TDM (205). Ishikawa et al. were able to identify two ligands

after fractionation of Malassezia extracts: a glucosyl-based

glyceroglycolipid (named 44-1) (Figure 5c) and a unique

mannosylated fatty acids linked to mannitol (named 44-2)

(Figure 5d) (206). Moreover, Mincle is also able to recognize

glycolipids of Mycobacterium tuberculosis (207). Recently, it has

been designed an alkyl 6-O-acyl-b-D-glucosides that resulted to be

an effective agonist of Mincle, with a potency comparable to the

prototypical ligand TDM (208).

Furthermore, it was found that L. prolificans and S. boydii a-
glucan polysaccharides were recognized by Mincle through the a-
(1→4) and a-(1→6)-linked glucopyranoside moiety, and Mincle

deficiency impacts the phagocytosis dynamics (209).

Notably, Mincle recognizes cholesterol crystals producing

pro-inflammatory cytokines (210) and cholesterol sulfate of

the epithelial layer inducing local secretion of different

proinflammatory mediators (194). The receptor can also signal

through other sterols including, desmosterol and sitosterol (211).

Mincle has further crucial function in regulating the immune

system, being capable to sense and react to tissue damage. Indeed,

b-glucosylceramide, identified as endogenous ligand for Mincle

upon cell damage, enables an immunostimulatory activity in

myeloid cells and the induction of inflammatory cytokine

production (212).

Block of TLR4 or NF-kB suppressed LPS-induced Mincle

expression in macrophages (Figure 3) and maintained M1

phenotype through Syk pathway (213). Furthermore, Mincle acts in

synergism with TLR7/8 by inducing NF-kB signalling in monocyte-

derived DC, thereby enabling the production of Th1-polarizing

cytokines and promoting autologous Th1 polarization (200).

Although Mincle shows binding ability to different classes of

ligands influencing the innate immune system, such as lipids and

cholesterol derivatives (Figure 1b), there is a broad spectrum of

potential further agonists for Mincle, with some ligands already

exhibiting potential as vaccine adjuvants. Nevertheless, much

remains to be unanswered in terms of better understanding the

pathways involved in Mincle activation upon ligand interaction.
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3 Conclusions

The innate immune system senses microbial infection, cell

dysfunction and self-ligands by pathogen recognition receptors

(PRRs), such as TLRs and regulatory receptors, usually associated

with different ITAM-bearing signalling units, as FcRg and DAP12.

The rapid activation of PRRs signalling must be followed by

counterbalanced regulatory inhibitory action, aimed to make the

immune reaction effective and non-harmful, so preventing

cytotoxic effects related to excessive activation. Recently

immunoglobulin-like and C-type lectin receptors have gained

interest as targets for vaccine development and immune therapies

for their ability to activate and finely modulate the immunological

functions. These processes are mediated by endogenous and

exogenous molecules, most of which are not yet known, often

structurally characterized by small size and lipidic nature.

For this reason, small chemical entities represent a target for the

characterization of biological mechanisms determining receptor-

mediated cell functions along with the development of specific

receptor-associated disorders therapies. The main topic of this

review is, in fact, the description of the main immunoglobulin

receptors and CLRs, seen not only from a biological and functional

point of view, but also considering their binding with small

associated specific ligands. In this regard, LMIR, TREM, Siglec,

SIRP and the most studied CLRs receptors were analysed for

their ability to recognize and functionally act upon small

molecules interactions.

Different classes of molecules such as phospholipids, glycolipids

and sulfolipids can bind to several immunoglobulin-like receptors, like

LMIRs and TREMs, characterized by activating/tuning/inhibitory

roles. The sharing of ligand families suggests strong evidence of a

complex mechanism of regulation though TREMs-LMIRs-axis. This

cellular dynamic represents a finely tuned immunomodulatory

mechanism, that needs further investigation to better understand

the fine level of complexity of these receptors in response to

endogenous and/or external stimuli (43). Indeed, the signalling

pathway activated upon binding of the two receptors families could

synergise or even bifurcate their signalling pathways in opposite

biological effects, because of different cellular and physiological

states that can potentially cause expression of different ligand

molecular entities. Furthermore, considering that Siglec and SIRP

receptors share similar downstream pathophysiological effects as

TREM family members, and since little is known about their

endogenous ligands, a more detailed study of a possible synergism

between these receptors should be highlighted. In addition, Siglec and

SIRP are involved in the antitumor immune response, so further

studies on their possible binding partners could be extremely useful in

both cancer and inflammatory research. Several common features

were evident also among CLRs sub-families. In this regard, yeast

mannans appear to possess same immunostimulatory properties,

which are selectively recognized by DC-SIGN and Mincle, also

capable of mediating an immunomodulatory activity thanks to the

interaction with small glycoconjugates (107).

Interestingly, a close similarity or structural equality of some

ligands can also be highlighted for some immunoglobulin-like
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receptors and CLRs. In particular, glycolipids and sulfolipids, but

also ceramide compounds, have shown binding affinities for LMIRs,

TREM-2 and Mincle receptors. However, there are other common

feature among this class of receptors. As previously described,

despite the structural similarity among the immunoglobulin like

receptor family, there are relevant difference between activating and

inhibitory receptors. Similarly, Mincle but also other CLRs, behave

more like the activating immunoglobulin-like receptors, which

engage kinases indirectly, through association with ITAM-bearing

signalling chains of DAP-12 or FcRg (13, 214). Thus, although our

review highlights the classification into two main classes of

receptors, they may have distinct signalling requirements based

on activation by distinct or similar ligands, which could lead to

subtle differences in their downstream responses.

Interestingly, TLRs act in synergism with most of the receptors

described. Indeed, the TLR/CLR antagonist combinations is one of

the most well know adjuvation systems to enable early-life

immunization against intracellular pathogens (200), already

investigated for Dectin-1, Dectin-2, DC-SIGN and Mincle (190,

197, 215–217). To this end, it would be very interesting to identify

new ‘adjuvant’molecules based on other receptors described in this

review, such as receptors belonging to the immunoglobulin like

receptors family, and thus amplify the opportunity to enhance

strategies for patient-immunization.

Currently, the exact structure of many ligands that interact with

those receptors is yet not fully characterized and further

investigation must be performed to better understand the

functional mechanism underlying the receptor activation. In

general, small molecules offer a unique advantage to maximize

the therapeutic benefits, especially targeting membrane protein,

with potential low production costs and huge possibility to

modulate and optimize activity by chemical synthesis and

structural modification. Therefore, deciphering the biological

activity of these ligands, together with medicinal chemistry and

molecular biology, could lead to the identification and optimization

of novel small molecules able to inhibit or enhance the function of

the receptor of interest. However, there are also disadvantages, as

small molecule ligand could reveal sub-micromolar affinities for

several targets besides the target of interests (218). Therefore,

conducting more preclinical studies and enhancing efforts before

the clinical phases are of extreme importance. This approach will

help to develop more effective drugs and reduce financial

consequences of failure (219). A fine study of each receptor

family could at least reduce unwanted in vivo side effect and

interchangeable ligand-receptor affinity.

Finally, mastering the binding specificity of each receptor could

advance disease understanding and improve the evaluation of

biomarker-guided treatment strategies.
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Cartágenes-Pinto AC, et al. An Alpha-Glucan from Lomentospora prolificans Mediates
Fungal–Host Interaction Signaling through Dectin-1 and Mincle. J Fungi. (2023) 9:291.
doi: 10.3390/jof9030291

210. Kiyotake R, Oh-hora M, Ishikawa E, Miyamoto T, Ishibashi T, Yamasaki S.
Human mincle binds to cholesterol crystals and triggers innate immune responses. J
Biol Chem. (2015) 290:25322–32. doi: 10.1074/jbc.M115.645234

211. Williams SJ. Sensing lipids with mincle: structure and function. Front Immunol.
(2017) 8:1662. doi: 10.3389/fimmu.2017.01662

212. Nagata M, Izumi Y, Ishikawa E, Kiyotake R, Doi R, Iwai S, et al. Intracellular
metabolite b-glucosylceramide is an endogenous Mincle ligand possessing
immunostimulatory activity. PNAS . (2017) 114:E3285–94. doi: 10.1073/
pnas.1618133114

213. Lv LL, Tang PM-K, Li CJ, You YK, Li J, Huang X-R, et al. The pattern
recognition receptor, Mincle, is essential for maintaining the M1 macrophage
phenotype in acute renal inflammation. Kidney Int. (2017) 91:587–602. doi: 10.1016/
j.kint.2016.10.020

214. Isakov N. Immunoreceptor tyrosine-based activation motif (ITAM), a unique
module linking antigen and Fc receptors to their signaling cascades. J Leukoc Biol.
(1997) 61:6–16. doi: 10.1002/jlb.61.1.6

215. Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E, Suzukawa M, et al.
Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria.
Immunity. (2014) 41:402–13. doi: 10.1016/j.immuni.2014.08.005

216. Chen J, Zhao Y, Chu X, Lu Y, Wang S, Yi Q. Dectin-1-activated dendritic cells:
A potent Th9 cell inducer for tumor immunotherapy. Oncoimmunology. (2016) 5:
e1238558. doi: 10.1080/2162402X.2016.1238558

217. Zhao Y, Chu X, Chen J, Wang Y, Gao S, Jiang Y, et al. Dectin-1-activated
dendritic cells trigger potent antitumour immunity through the induction of Th9 cells.
Nat Commun. (2016) 7:12368. doi: 10.1038/ncomms12368
218. Glauner H, Ruttekolk IR, Hansen K, Steemers B, Chung Y, Becker F, et al.

Simultaneous detection of intracellular target and off-target binding of small molecule
cancer drugs at nanomolar concentrations. Br J Pharmacol. (2010) 160:958–70.
doi: 10.1111/j.1476-5381.2010.00732.x

219. Hughes J, Rees S, Kalindjian S, Philpott K. Principles of early drug discovery. Br
J Pharmacol. (2011) 162:1239–49. doi: 10.1111/j.1476-5381.2010.01127.x
frontiersin.org

https://doi.org/10.1002/immu.200310029
https://doi.org/10.1084/jem.20021229
https://doi.org/10.1084/jem.20021229
https://doi.org/10.1074/jbc.C200586200
https://doi.org/10.1084/jem.20021468
https://doi.org/10.1074/jbc.M507100200
https://doi.org/10.1021/cb4008265
https://doi.org/10.1083/jcb.200306112
https://doi.org/10.1074/jbc.M207371200
https://doi.org/10.1016/j.molimm.2010.01.014
https://doi.org/10.1038/nri1182
https://doi.org/10.1016/j.immuni.2007.03.012
https://doi.org/10.1038/srep35373
https://doi.org/10.3389/fimmu.2014.00288
https://doi.org/10.3389/fimmu.2016.00423
https://doi.org/10.3389/fimmu.2016.00423
https://doi.org/10.1002/art.22813
https://doi.org/10.1073/pnas.1611665114
https://doi.org/10.1073/pnas.1611665114
https://doi.org/10.1038/srep03177
https://doi.org/10.1002/hep.28811
https://doi.org/10.1002/hep.28811
https://doi.org/10.3389/fimmu.2017.01304
https://doi.org/10.3389/fimmu.2019.02509
https://doi.org/10.1038/s41598-018-37318-8
https://doi.org/10.4049/jimmunol.1600282
https://doi.org/10.1038/ni.1651
https://doi.org/10.4049/jimmunol.163.9.5039
https://doi.org/10.1084/jem.20091750
https://doi.org/10.4049/jimmunol.0904013
https://doi.org/10.1073/pnas.0805177106
https://doi.org/10.1016/j.chom.2013.03.008
https://doi.org/10.1016/j.chom.2013.03.008
https://doi.org/10.1007/s00408-016-9915-y
https://doi.org/10.1007/s00408-016-9915-y
https://doi.org/10.1039/D0CC00670J
https://doi.org/10.3390/jof9030291
https://doi.org/10.1074/jbc.M115.645234
https://doi.org/10.3389/fimmu.2017.01662
https://doi.org/10.1073/pnas.1618133114
https://doi.org/10.1073/pnas.1618133114
https://doi.org/10.1016/j.kint.2016.10.020
https://doi.org/10.1016/j.kint.2016.10.020
https://doi.org/10.1002/jlb.61.1.6
https://doi.org/10.1016/j.immuni.2014.08.005
https://doi.org/10.1080/2162402X.2016.1238558
https://doi.org/10.1038/ncomms12368
https://doi.org/10.1111/j.1476-5381.2010.00732.x
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.3389/fimmu.2025.1648691
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Small molecules as ligands in the tuning of immune regulatory receptors
	1 Introduction
	2 Receptors families
	2.1 Immunoglobulin-like receptors
	2.1.1 LMIR/CD300 family members
	2.1.1.1 Inhibitory LMIR receptors
	2.1.1.1.1 LMIR-1/CML8/CD300a
	2.1.1.1.2 LMIR-3/CLM1/CD300f

	2.1.1.2 Activating LMIR receptors
	2.1.1.2.1 LMIR-2/CLM4/CD300C
	2.1.1.2.2 LMIR-4/CLM5/CD300ld
	2.1.1.2.3 LMIR-5/CLM7/CD300lb
	2.1.1.2.4 LMIR-7/CLM3/CD300lh


	2.1.2 TREM family members
	2.1.2.1 TREM-1 and TREM-2 receptors
	2.1.2.1.1 TREM-1 receptor
	2.1.2.1.2 TREM-2 receptor
	2.1.2.1.3 TREM-3 receptor


	2.1.3 TREM-like receptors
	2.1.4 SIRP family members
	2.1.5 Siglecs family members

	2.2 C-type lectin receptors
	2.2.1 DC-SIGN
	2.2.2 Mincle


	3 Conclusions
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


