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Renmin Hospital of Wuhan University, Wuhan, China, 4Department of Geriatrics, Renmin Hospital of
Wuhan University, Wuhan, China
Background: Microglia, the resident immune cells of the central nervous system

(CNS), play pivotal roles in the onset and progression of various neurological

disorders. Owing to their remarkable plasticity, microglia can adopt diverse

phenotypic states in response to distinct microenvironmental cues. Over the

past decades, accumulating evidence has demonstrated that immune cell

metabolism critically regulates their polarization and effector functions through

a process termed metabolic reprogramming, in which glucose metabolism is

particularly central. Glycolytic reprogramming underlies the entire polarization

process, and elucidating its mechanisms may enable targeted modulation of

microglial activity to mitigate their deleterious effects in CNS pathologies,

thereby offering novel therapeutic avenues for these diseases.

Aim of the Review: This paper summarizes what is known about microglial

polarization and glycolytic reprogramming and explores their important roles in

the development of neurological diseases. The link between microglial

metabolomics and epigenetics in neurological disorders requires further study.

Key Scientific Concepts of the Review: Microglia exhibit distinct phenotypic

states at different stages of central nervous system (CNS) disorders, and these

polarization processes are closely coupled with glucose metabolic

reprogramming. Proinflammatory microglia predominantly rely on glycolysis,

whereas reparative or anti-inflammatory phenotypes primarily utilize oxidative

phosphorylation. Targeting glycolytic pathways to limit the polarization of

microglia toward proinflammatory states has emerged as a promising

therapeutic strategy for CNS diseases.
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1 Introduction

Microglia are common resident immune cells in the central

nervous system (CNS). Their primary functions include immune

surveillance, immune defense, phagocytosis, and nutritional support;

thus, their roles in maintaining homeostasis and repairing tissue in

the CNS cannot be ignored (1, 2). Inflammation is part of a highly

conserved endogenous response to organ injury or disease (3–5).

Thus, microglia are involved in the response to almost all types of

neurodegeneration, stroke, and brain tumors.

In the past, microglia were considered “resting” cells and were

activated only in response to stimuli such as infection or injury.

However, with further research, the surveillance function of

microglia in the CNS has gradually been recognized. When

confronted with stimuli such as foreign pathogens, abnormally

aggregated proteins, and apoptotic cells, microglia detect

homeostatic changes in the brain environment through a highly

motorized process of retraction and extension (4). They also

undergo chemotaxis and perform phagocytosis by continuously

altering the cytoskeleton; removing cellular debris and apoptotic

neurons; sensing subtle changes in the microenvironment, such as

changes in immunoglobulin and adhesion molecule levels and the

presence of inflammatory stimuli (6); performing immune

surveillance and maintaining microenvironmental homeostasis (4,

7–9); and transitioning from a highly branched resting state to an

amoeboid state (10, 11). Thus, microglia are often the primary

activated neuroglia. However, while the activation of microglia can

have a positive effect, it can also contribute to hindering nervous

system repair and exacerbating tissue damage. Microglia have

contradictory functions in different stages of nervous system

injury (12, 13).

In fact, microglia exhibit heterogeneity and are capable of

adaptively modulating their functions in response to environmental

changes (14).

Immune cells can regulate intracellular metabolic processes to

modulate the initiation, intensity, and duration of immune

responses (15). As the resident immune cells of the central

nervous system, microglia also undergo metabolic alterations

upon activation. This review focuses on alterations in glucose

metabolism, specifically glucose metabolic reprogramming. It

summarizes current advances in understanding glucose metabolic

reprogramming in activated microglia and discusses its association

with representative central nervous system diseases.
2 Neuroinflammation and microglial
polarization

The inflammatory response is an important innate immune

response to neurological disorders. Microglia constitute the first line

of defense in the innate immune response, and overactivated

microglia contribute to the progression of neurological diseases

by releasing various proinflammatory factors to create an

inflammatory microenvironment.
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Under normal circumstances, pattern recognition receptors

(PRRs) initiate the host inflammatory response. By recognizing

pathogen-associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs), PRRs enhance the

transcription of inflammation-related genes and promote the release

of pro-inflammatory cytokines, type I interferons, and chemokines

(16). Among them, tumor necrosis factor (TNF), interleukin-6 (IL-6),

and interleukin-1 (IL-1) play central roles in the inflammatory

response. They regulate cell death, alter vascular endothelial

permeability, recruit immune cells to amplify inflammation, and

induce the production of acute-phase proteins (17). Microglia can

sense inflammatory signals initiated within the central nervous system,

leading to alterations in their activation state (18, 19), and actively

respond by transmitting signals. Microglia can act on astrocytes to

induce further immune responses through the secretion of

inflammatory factors such as TNF-a and IL-1b (20). Thus,

microglia play an important role in inflammatory responses in

neurodegenerative diseases (21) (Figure 1).

Research on microglia has been ongoing for over a century.

Before the 21st century, researchers’ understanding of microglia

was largely limited to their resting state under physiological

conditions and their abruptly altered activated state in

pathological environments. In 2005, using in vivo two-photon

imaging, researchers discovered that microglia in the so-called

resting state are not truly “static.” Even under physiological

conditions, they exhibit highly dynamic synaptic activity, serving

a housekeeping role that maintains cerebral microenvironmental

homeostasis and enables rapid responses to brain injury (4). This

finding corrected earlier assumptions, revealing that microglia do

not become activated only in response to pathological stimuli, but

rather remain continuously active, enabling timely adaptation to

diverse environmental challenges (22). Initially, drawing on the

classification of macrophages, immunologists adopted a simplified

dichotomy for microglia, categorizing them into “M1” classical

activation associated with pro-inflammatory and neurotoxic effects,

and “M2” alternative activation associated with anti-inflammatory

and neuroprotective functions. Subsequently, as research advanced,

the dichotomous concept was increasingly questioned, since the

polarization process is inherently dynamic and functional overlap

exists among different phenotypes. Single-cell sequencing and

transcriptomic analyses have revealed that, in the in vivo

environment, microglia commonly co-express both M1 and M2

markers (23–25). Acutely activated microglia exhibit heterogeneity

(26), with transcriptomic profiles that differ markedly from those of

microglia in chronic neurodegenerative conditions (14). In fact,

microglia dynamically modulate multiple signaling pathways in

response to environmental cues, and their exceptionally sensitive

adaptability gives rise to complex cellular states and functions,

making the dichotomous classification inadequate for accurate

description. With technological advances, single-cell approaches,

multi-omics, and analyses of gene and protein expression have

provided new insights into the classification of microglia. Their

unique heterogeneity enables microglia to effectively adapt to

changes in the cerebral microenvironment, exhibiting diverse

functions and undergoing morphological alterations. New
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classifications of microglia are gradually being reported. In 2023,

Ma et al. classified eight subpopulations of microglia by single-cell

sequencing in a mouse model of ischemic stroke and reported that

gene expression was continuous across the different classifications,

which supports the continuity of the process of microglial

differentiation (27). New categories of microglia have been

continuously proposed, such as disease-associated microglia

(DAM) related to Alzheimer’s disease (28), microglia of

neurodegenerative disease (MGnD) (29), multiple sclerosis–

associated inflammatory microglia (MIMS) (30), and lipid

droplet–accumulating microglia (LDAM) identified in aging

models (31). The functions of microglia in different states are not

merely pro-inflammatory or anti-inflammatory but rather display

distinct characteristics. Therefore, the classification and

nomenclature of microglia across various states should adopt a

more refined and multidimensional framework (22).
3 Glycolytic reprogramming during
microglial polarization

3.1 The Warburg effect (glycolytic
reprogramming) in microglia

The central nervous system has unique metabolic energy

requirements. The brain consumes 20% of the body’s glucose and

oxygen, even though it accounts for only 2% of the body’s weight

(32). The energy needs of the brain depend on the supply provided

by the peripheral circulation. Research on energy metabolism in the

brain has focused mainly on astrocytes and neurons. Microglia, the

‘immune guardians’ of the brain, comprise only 10–15% of brain
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cells, and their energy metabolism has been poorly studied (33–36).

Microglia are responsive to external stimuli. Especially at the level of

sugar metabolism, a gene expression analysis revealed that

microglia express genes that are essential for glycolysis and

OXPHOS (37). Glycolysis involves the metabolism of glucose to

pyruvate, which enters the tricarboxylic acid cycle and usually

undergoes oxidative phosphorylation. When stimulated by

inflammation, the metabolic pathway of microglia changes, and

pyruvate metabolism tends to favor glycolysis to produce lactic acid,

even in an oxygen-rich environment. This phenomenon is

analogous to the Warburg effect in tumor cells, and with

reference to this concept, the field of immunometabolism has

introduced a new concept that is relevant to tumors: the

activation and function of immune cells can be controlled by the

regulation of cellular metabolism, termed metabolic regulation or

metabolic reprogramming (Figure 2). In 2020, Hu et al. reported

that microglia can switch from oxidative phosphorylation to

glycolysis in response to different stimuli (38). Glycolysis becomes

the dominant energy metabolism pathway in microglia in response

to injurious stimuli. Although glycolysis is capable of producing less

ATP than mitochondrial oxidative phosphorylation, it metabolizes

glucose 10–100 times faster than OXPHOS, enabling the cell to

satisfy the significant energy requirements of energy-demanding

activities such as migration, proliferation, phagocytosis, and

cytokine secretion (39, 40). Cellular experiments have shown that

cell metabolism also shifts toward the pentose phosphate pathway

(PPP) in activated BV-2 microglia (41). Microglia can activate the

PPP in parallel with glycolytic reprogramming. The PPP is a

metabolic pathway that accompanies glycolysis. Nicotinamide

adenine dinucleotide phosphate (NADPH), produced by the PPP,

is a reducing agent in anabolic reactions and can contribute to nitric
FIGURE 1

PAMPs and DAMPs drive microglia toward a pro-inflammatory, injury-promoting phenotype characterized by the secretion of TNF, IL-6, and IL-1,
whereas IL-4 and IL-13 induce a reparative phenotype that releases IL-4, IL-13, IL-10, and TGF-b to suppress inflammation and promote tissue
repair. Abbreviation: IL-1, interleukin-1; IL-4, interleukin-4; IL-6, interleukin-6; IL-10, interleukin-10; IL-13, interleukin-13; IFN-g, interferon-g. Created
with BioRender.com.
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oxide (NO) production. NO and HIF-1a inhibit pyruvate

dehydrogenase and indirectly inhibit the tricarboxylic acid cycle,

forcing cells to use glycolysis exclusively as a source of energy (42).

Upon this metabolic shift, microglia can rapidly produce large

amounts of ATP and glycolytic products. Lactic acid metabolized by

cellular glycolysis has long been considered a byproduct of energy

metabolism, and its function has not received sufficient attention. In

fact, lactate can also serve as an important substrate for energy

production (43). Intercellular lactate transport depends on

monocarboxylate transporters (MCTs), while lactate oxidation

relies on lactate dehydrogenase (LDH). Studies have shown that

microglia express MCTs (44, 45), and LDHb is among the most

highly expressed genes in these cells (46, 47). This indicates that

microglia can utilize lactate metabolism through the uptake of

environmental lactate (47). With further research, lactate has

been found to regulate inflammation-related genes, thereby

influencing the activation profile and functional state of

microglia. Several in vitro studies have shown that direct

stimulation with lactate can induce microglia to release pro-

inflammatory cytokines such as TNF-a, IL-6, and IL-1b. In

contrast, blocking these pro-inflammatory cytokines does not lead

to morphological changes associated with microglial activation (48).

This suggests that lactate can directly modulate the phenotype and

function of microglia. In 2019, in vivo experiments demonstrated

that lactate can regulate the temporal dynamics of inflammation
Frontiers in Immunology 04
through histone lactylation, promoting the expression of pro-

inflammatory genes in the early phase while shifting toward the

activation of anti-inflammatory or reparative genes in the later

phase, thereby exhibiting a transition from a “pro-inflammatory” to

a “repair” phenotype (44, 46). This process has been termed

“lactylation”. Lactylation has revealed a novel pathway of post-

translational protein modification. In 2023, Pan et al. reported that

histone lactylation at H4K12la can initiate gene transcription by

binding to the promoters of glycolytic genes, thereby enhancing the

expression of HIF-1a, PKM, LDHA, and other glycolysis-related

genes. In the context of Alzheimer’s disease, microglia undergo a

metabolic shift toward glycolysis, accompanied by increased histone

lactylation, which further promotes glycolysis and establishes a

positive feedback loop between metabolism and epigenetic

modification (49). According to the study by Wei et al. (2023),

hippocampal microglia in aging models exhibit elevated lactate

levels, leading to increased H3K18la. The H3K18la/NF-kB signaling

pathway mediates inflammation during the metabolic shift from

glucose metabolism to aerobic glycolysis, thereby exacerbating

brain aging and disease progression in patients with Alzheimer’s

disease (AD) (50). Han et al. reported that lactic acid stimulates

microglia with a proinflammatory phenotype to shift to a reparative

phenotype, which may reduce neuroinflammation, perhaps

representing a new target to improve cognitive function and

reverse AD (51). In summary, elevated intracellular lactate levels
FIGURE 2

Activated microglia accumulate around damaged brain tissue and phagocytose Ab and neurofibrillary tangles. Meanwhile, Ab protofibrils stimulate
relevant proteins on the surface of microglia, activate specific pathways to promote the secretion of inflammatory factors, thereby exacerbating the
pathological changes of AD. Abbreviation: Ab, amyloid b; CD36, cluster of differentiation36; CD47, cluster of differentiation47; NLRP3, NOD-like
receptor thermal protein domain associated protein 3. Created with BioRender.com.
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serve as the key driving force of lactylation. Increased lactate acts as

a substrate that provides the material basis for histone lactylation,

enabling specific histone modifications that target gene promoters

and regulate gene expression epigenetically. Through this

mechanism, lactate influences microglial function and thereby

contributes to disease progression.

Research on microglial metabolic reprogramming is no longer

confined to inflammation itself, but has shifted from focusing solely

on the state and functions of microglia to examining their effects on

other cells. Studies have shown that the loss of Bach1, a key

regulator of glycolysis, during microglial development suppresses

the expression of critical glycolytic enzymes such as HK2 and

GAPDH, thereby reducing lactate production. This results in

decreased H4K12la modification and diminished enrichment at

the Lrrc15 promoter. Consequently, reduced secretion of microglial

Lrrc15 attenuates activation of the JAK/STAT3 pathway, leading to

impaired astrocyte generation and a sustained decline in both

astrocyte numbers and neurogenesis (52). Studies have shown

that knockout of MCT4 impairs microglial synaptic pruning,

lactate uptake and metabolism, and lysosomal acidification. These

defects result in marked alterations in neuronal synapse number

and size, along with a significant increase in the amplitude of

spontaneous postsynaptic currents, ultimately leading to neuronal

hyperexcitability (47). In 2023, researchers showed that in the

context of multiple inflammatory stimuli, only primary microglia

exhibit an early burst of glycolysis and produce NO that interferes

with oligodendrocyte metabolism, resulting in a shift of

oligodendrocytes to glycolysis to maintain ATP levels and ensure

oligodendrocyte survival, which in turn alters the maturation of

oligodendrocytes to myelinating oligodendrocytes, thus affecting

myelin sheath regeneration (53).

Lactate in the brain is primarily produced by astrocytic glycolysis

and transported via MCT1 and MCT4 into the astrocyte–neuron

interface, where it enters neurons through MCT2. Within neurons,

lactate is utilized through the OXPHOS pathway to generate ATP, a

process known as the astrocyte–neuron lactate shuttle hypothesis (54,

55). Some scholars have proposed that, under pro-inflammatory

conditions, microglia may also shuttle lactate to neurons (46). In

2024, new research revealed that lactate mediates crosstalk between

microglia and neurons. Under neuroinflammatory conditions, lactate

produced by microglia can be transferred to neurons via the

microglia–neuron axis, leading to lipid droplet accumulation,

disruption of neuronal metabolism, and increased ferroptosis in

neurons (43). However, research on lactate shuttling between

microglia and astrocytes, as well as between microglia and neurons,

remains insufficiently explored.
3.2 Microglial polarization and glycolysis

3.2.1 Microglial polarization, inflammation, and
glycolysis

Inflammation is inextricably linked to microglial polarization,

and as unique immune cells, polarization is an important hallmark

of CNS inflammation. Glycolytic reprogramming is linked with
Frontiers in Immunology 05
microglial polarization and is an important marker of the

proinflammatory activation of microglia (56). A shift in

metabolism occurs to meet the energy requirements of microglia

after polarization. In the presence of inflammatory stimuli,

activated microglia require far more energy than resting microglia

to undergo a range of processes, such as deformation, movement,

phagocytosis, and secretion. Glycolysis can be used to meet this

specific energy need because it is very rapid. Microglial polarization

in response to neuroinflammatory stimuli is inextricably linked to

the reprogramming of cellular glucose metabolism. As early as 2013,

LPS-induced microglial activation was reported to significantly alter

metabolism, inhibit mitochondrial function, and increase

glycolysis (57).

3.2.2 Mechanisms of the interaction between
microglial polarization and glycolysis
3.2.2.1 Glucose transporter proteins

The mechanisms underlying the interplay between

inflammation and glycolytic reprogramming due to microglial cell

polarization are still under investigation. Glucose from the

peripheral circulation passes through the blood-brain barrier

(BBB) and enters the central nervous system, where glucose

transporter proteins (GLUTs) are channels that play a key role.

Microglia express a variety of GLUTs, including GLUT1, 3, 4, 5, 6, 8,

9, 10, 12 and 13 (58). Glucose uptake by microglia depends mainly

on GLUT1, and the inhibition of GLUT1 expression reduces

glucose uptake by microglia and decreases the production of

inflammatory factors. GLUT1 expression is significantly increased

after stimulation with LPS and IFN-g, which further promotes

glycolysis. Thus, modulating GLUT1 expression induces the

reprogramming of metabolic pathways and inhibits microglial

activation to alleviate inflammation and slow neurodegeneration

(59, 60).

3.2.2.2 Hexokinase 2

Hexokinase 2 (HK2) is the rate-limiting enzyme that catalyzes

the first step of glucose phosphorylation. RNA sequencing data

analysis revealed that HK2 is preferentially enriched and specifically

expressed in microglia. In vitro experiments demonstrated that

HK2-deficient microglia exhibit significantly reduced levels of

lactate and ATP, indicating that HK2 is a key regulator of

glycolysis in microglia (61). The loss of HK2 does not affect

microglial homeostasis under normal conditions; however, its

deficiency profoundly impairs microglial proliferation and

maturation (61). Previous studies have suggested that the

inhibition of HK2 suppresses the inflammatory response induced

by microglial polarization (62). However, a 2023 study revealed that

in ischemic stroke models, microglial HK2 exhibits a dual role. On

the one hand, loss of HK2 reduces glycolysis in microglia and delays

their regenerative capacity, thereby suppressing inflammation. On

the other hand, in response to cerebral ischemia and hypoxia, HK2

deficiency alters mitochondrial membrane potential and increases

mtROS, which act as pro-inflammatory activation signals,

ultimately exacerbating brain injury and behavioral deficits (61).

A 2024 study on hemorrhagic stroke found that, in the early stages
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of the disease, HK2 expression in microglia is downregulated and

glycolysis is impaired, yet this is associated with an enhanced

inflammatory response. A similar mechanism has been attributed

to mitochondrial dysfunction: inhibition of HK2 increases

mitochondrial permeability and decreases membrane potential,

leading to enhanced cytochrome c release, which in turn

promotes mtROS accumulation and exacerbates disease-related

damage (63).

3.2.2.3 Monocarboxylic acid transporter

In 2021, Cheng et al. reported that inhibition of glycolysis

suppresses the expression of proinflammatory genes in microglia at

the transcriptional level (56). Monocarboxylic acid transporter

(MCT) proteins are important transporter molecules that

transport lactic acid to the extracellular space. In 2019, Kong

et al. reported that knockdown of MCT1 significantly reduced the

expression of iNOS, IL-1b, IL-6, and STAT1, thereby inhibiting

classical microglial polarization (44). Arg1 regulates NO

production, thereby attenuating intracellular damage from

oxidative stress, and it is considered a marker of reparative

microglia, acting as a reparative agent. A lactate-induced increase

in Arg1 expression promotes reparative microglial polarization and

accelerates tissue injury recovery (46, 64).

3.2.2.4 Mitochondria

Mitochondria are the energy factories of the cell, are responsible

for energy production and a wide range of biosynthetic processes,

and are a major source of intracellular ROS. Mitochondria are

dynamically active organelles that are constantly moving to meet

the energy needs of the cell through fission and fusion. When a cell

is exposed to harmful stimuli, mitochondria undergo fission and are

degraded in the lysosome, which is known as mitochondrial

autophagy (65). In general, mitochondria can make full use of

nutrients to produce ATP while meeting the needs of growth and

division, resulting in the formation of cellular structures. When

mitochondria are damaged, harmful substances accumulate in the

cell, but the methods by which to the cell ensures a balance between

energy production and biosynthesis are unclear. Recently, new

research has revealed that the functional transformation of

mitochondria is a dynamic process. When confronted with

damaging environmental stresses, mitochondria are divided into

two subgroups by the actions of pyrroline-5-carboxylate synthase:

one responsible only for the production of ATP and the other

responsible for the production of amino acids and the synthesis of

new cellular structures. These dual functions allow cells to survive

and grow even in injurious environments (66, 67). Alterations in

mitochondrial function and metabolism have important

implications for microglial polarization and function.

Inflammatory stimuli allow microglia to shift the direction of

electron transport in mitochondrial complex I, thereby altering its

function from the generation of ATP to the generation of mtROS

that results in the sustained activation of microglia to mediate

neuroinflammation (68). Thus, mitochondria are important

organelles that influence microglial activation and function, and

mitochondria with different divisions of labor might contribute to
Frontiers in Immunology 06
the activation of microglia in different directions and with different

functions. Mdivi-1 is a mitochondrial fission inhibitor. Mdivi-1

prevents excessive LPS-stimulated microglial fission and inhibits

glycolytic reprogramming, reducing the release of cytokines and

thereby reducing the inflammatory response (69). NLRP3 is critical

for microglial activation. Accumulating evidence indicates that

mitochondrial damage can activate the NLRP3 inflammasome via

ROS (70, 71). ROS production and activation of the NLRP3

inflammasome are the most important features of injury-

associated microglia (72). NLRP3 is also a regulator of

metabolism. The NLRP3 inflammasome/IL-1b/PFKFB3 axis is a

key pathway influencing glycolysis in macrophages, and inhibition

of the NLRP3 inflammasome suppresses glycolysis and the

expression of the glycolysis regulator fructose-2,6-bisphosphatase

3 (PFKFB3). This process is mediated by IL-1b. Activating the

NLRP3 inflammasome is essential for linking immunity to

inflammation and metabolism (73). The blockade of pyruvate

kinase repair-associated microglia in the glycolytic pathway limits

NLRP3 activation in mouse macrophages (74). The role it plays in

microglia is not well researched.

3.2.2.5 PI3k/(Akt/mTOR/HIF-1a)
Dur i n g t h e r e p r o g r amm in g o f g l y c o l y s i s , t h e

phosphatidylinositol-3-kinase (PI3k)/protein kinase B (Akt)/mTOR

signaling pathway has been implicated in a variety of cellular activities,

including inflammation, autophagy and aberrant cell proliferation.

PI3k can promote HIF-1a protein translation via Akt and

downstream mTOR activation (75) and upregulate the expression of

GLUT and glycolytic enzymes, increasing the rate of glycolysis.

Inhibition of mTOR activity promotes microglial repair-associated

polarization, reduces inflammatory factor production, and inhibits

glycolysis (38, 76). The amelioration of neuroinflammation through

mTOR-mediated immunometabolic reprogramming has great clinical

significance in promoting disease recovery. HIF-1 is a key

transcription factor in cells under hypoxia and plays a very

important role in the adaptive response of cells to oxygen (77).

Increased cellular uptake of glucose is induced by the

overexpression of enzymes involved in glycolysis, and GLUT and

mediates metabolic reprogramming.

3.2.2.6 Other mechanisms, including lactylation

Although glycolytic reprogramming plays an important role in

microglial polarization, whether this process affects microglial

polarization has not yet been elucidated. In 2021, Luo and Wang

et al. reported a close temporal and spatial correlation between

surgical trauma-induced injury-associated microglial polarization

and metabolic reprogramming in aged mice. Reprogramming of

glucose metabolism is an important process in the regulation of

microglial polarization and neuroinflammation (78). In 2022, Jiang

and Wei et al. identified zinc finger E-box binding homeobox 1

(Zeb1) as a key regulator of glycolytic gene expression. Zeb1

promotes the transcription of enzyme-encoding genes through

the PI3K/Akt/HIF-1a pathway under hypoxic conditions. In

2023, Zhai et al. identified NADPH oxidase 4 (NOX4) as a

regulator of microglial metabolic reprogramming that promotes
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injury-associated microglial polarization by facilitating glycolytic

processes through ROS production (79). As research continues to

progress, the focus on the reprogramming of glucose metabolism

has shifted to the glucose metabolite lactate. As an energy source

and metabolic byproduct, lactate has unknown nonmetabolic

functions in health and disease. In 2019, Zhang and Tang et al.

reported that lactylation drives the expression of M2 genes during

M1macrophage polarization (80). Thus, glycolysis drives microglial

injury-associated polarization, and proinflammatory factors that

induce polarization also influence glycolysis. These findings suggest

that immunity and metabolism are interrelated.
4 Microglial glycolytic reprogramming
and neurological disorders

The abnormal activation of microglia leads to the loss or alteration

of their normal functions. A growing body of research has

demonstrated that microglia undergo polarization (Table 1) and

glucose metabolic reprogramming upon stimulation in

neuroinflammatory and neurodegenerative diseases. Targeting

glycolytic pathways in disease contexts may therefore represent a

novel therapeutic strategy. This article highlights representative studies

on microglial glycolysis in neuroinflammatory and neurodegenerative

diseases, as well as potential therapeutic strategies.
4.1 Ischemic stroke

Stroke is the second leading cause of death and disability

worldwide, and ischemic stroke is the most common type of

stroke. Microglia play a crucial role in the development of

ischemic stroke. They are activated in the acute stage of the

disease and have complex effects on the poststroke phase.

Ischemic brain injury activates microglia by increasing the

production of ATP, heat shock protein 60, and glutamate (81–

83). Microglia exhibit a dynamic response to ischemic brain injury.

Microglia in ischemic stroke exhibit marked heterogeneity across

different brain regions and at different stages of the disease (84).

STING is predominantly activated in microglia following ischemic

stroke. Inhibition of STING inhibits microglial polarization toward

the injury-associated phenotype and attenuates cerebral ischemia–

reperfusion-induced neuroinflammation and brain damage; it also

reduces the release of mtDNA and prevents further expansion of

brain damage after ischemia–reperfusion (85).

Modulating microglial polarization requires a large amount of

energy, and proinflammatory microglial polarization activates

glycolysis and the PPP. An experimental study revealed that

microglia from the damaged brains of mice with permanent

middle cerebral artery occlusion expressed genes related to

glycolysis for 72 hours (86). Chemokine-like factor 1 (CKLF1) is

a secreted protein. CKLF1 expression increases after cerebral

ischemia (87). The number of activated microglia after acute

stroke is reduced upon the knockdown or inhibition of CKLF1.

Cell-based experiments have shown that CKLF1 increases
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microglial glycolysis and significantly decreases the level of

OXPHOS and the maximal OXPHOS capacity of microglia.

CKLF1 activation inhibits the phosphorylation of AMPK,

increases mTOR phosphorylation, and induces the production of

IFN-1a, suggesting that inflammatory responses activated by

CKLF1 require AMPK/mTOR/HIF-1a pathway activation to

promote glycolysis (88). HK has an irreplaceable role in glycolytic

metabol i sm, and select ive inhib i t ion of HK2 blocks

neuroinflammation caused by microglial activation, preventing

ischemic brain injury and significantly reducing the infarct size 24

hours after the onset of ischemic stroke. Thus, HK2 may be a

promising therapeutic target for the treatment of ischemic stroke-

related neurological damage (62). Resolvin D1 (RvD1), a lipid

mediator, has been shown to increase microglial numbers after

ischemic stroke, enhance OXPHOS while suppressing glycolysis,

and thereby provide sufficient energy to support microglial

phagocytosis of neutrophils (89). 2-Deoxy-D-glucose (2-DG) is a

glucose analog that can be phosphorylated by hexokinase, thereby

competitively inhibiting the conversion of glucose to glucose-6-

phosphate and suppressing glycolysis. The clinical safety of 2-DG

has been thoroughly investigated (90). 2-DG has the ability to cross

the blood–brain barrier (BBB), enabling it to effectively reach lesion

sites and exert its therapeutic effects. In vivo experiments have

demonstrated that treatment with 2-DG improves motor function

in mice subjected to middle cerebral artery occlusion (MCAO) (91).

In a randomized controlled trial involving non-diabetic patients

with AD, metformin was found to improve learning and memory

abilities (92). This effect may be associated with metformin-

mediated activation of AMPK, which influences the TCA cycle;

improving microglial metabolism may represent a potential area of

interest (93).
4.2 Parkinson’s disease

PD is a chronic neurodegenerative disease characterized by a-
synuclein (a-syn) aggregation and the death of dopaminergic

neurons. However, shifts in the microglial phenotype are strongly

influenced by neuroinflammation and PD progression. Early in PD,

repair-associated microglia produce mainly anti-inflammatory

factors that reduce inflammation and promote tissue repair. As

the disease progresses, a-syn is released extracellularly by

dopaminergic neurons. The activation of NADPH oxidase,

proinflammatory factors, and ROS induces oxidative stress, which

promotes the oxidation, aggregation, and propagation of a-syn in

adjacent neurons, shifting microglia toward the injury-associated

phenotype, causing persistent neurotoxicity and exacerbating

disease progression (94, 95). Microglia can take up more glucose

than other cells in the brain. Glucose uptake and microglial activity

are positively correlated (96). Clinical evidence has shown

disturbances in cerebral glucose metabolism in PD patients (97).

a-Syn promotes glycolysis via pyruvate kinase repair-associated

and inhibits OXPHOS, which contributes to the reprogramming of

glycolysis in microglia. Preformed fibrils (PFFs) are preformed a-
syn fibers, and stimulating microglia with PFFs can recapitulate PD.
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Acute exposure to PFFs results in injury-associated microglial

polarization, increased expression of enzymes related to glucose

uptake and glycolysis, and an elevated lactate content, which may be

associated with the reprogramming of microglial metabolism from

OXPHOS to aerobic glycolysis via the Akt/mTOR/HIF-1a
pathway (98).

Methyl-4-phenyl-1,2,3,6-tetrahydropyridine is a neurotoxic

compound commonly used to create animal models of PD. The

possible mechanism could be the inhibition of mitochondrial

complex 1 activity. The mitochondrial hydroxylase Clk1 plays an

important role in electron transport and antioxidant activity in the

mitochondrial respiratory chain. An experimental study suggested

that Clk1 deficiency-induced increases in glycolysis and

inflammatory responses are mediated by the mTOR/HIF-1a
pathway. Although Ckl1 deficiency does not increase neuronal

sensitivity to methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Ckl1

deficiency contributes to the progression of PD by exacerbating
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microglia-mediated inflammation, which promotes dopaminergic

neuron death. Therefore, a potential target for treating

neuroinflammation in PD may be the regulation of Clk1 activity

(99). Melatonin receptor 1 (MT1) is widely expressed in substantia

nigra neurons and glial cells. Studies have found that activation of

MT1 can significantly suppress LPS-induced neuroinflammation

and reverse the excessive glycolysis and OXPHOS observed in

microglia under LPS stimulation. Currently, clinically used MT1

agonists such as agomelatine, ramelteon, and tasimelteon are

primarily prescribed for the treatment of sleep disorders. The

development of MT1-specific agonists, however, may hold great

potential for managing neurodegenerative diseases accompanied by

sleep disturbances (100). Studies have shown that 2-DG participates

in anti-neuroinflammatory responses via the AMPK–mTOR–IKK

signaling pathway and alleviates dopaminergic (DA) neuronal loss

in LPS- and MPTP-induced mouse models by suppressing

neuroinflammation (56). In a model of postoperative
TABLE 1 Stimulation of microglial polarization in neurological diseases.

Diseases Molecules Mechanisms References

Ischemic stroke

HMGB-1
Activating TLR-4 signaling exacerbates brain I/R injury and is a major activator of
microglia after ischemic stroke

(145)

Prx family proteins
Prx-1 is expressed in microglia and reduces microglial activation; Prx-5 reduces
ROS levels and NFkB and MAPK activation in microglia

(146)

Gal3
Activating microglia through the activation of TLR-4 amplifies the inflammatory
response

(147)

Hsp70
Intracellularly reduces pro-inflammatory factor signaling; extracellular binding to
TLRs activates microglia

(83)

ATP
The expression of the ATP receptors P2X4 and P2X7 is increased in microglia in a
cellular stroke model; P2Y6 is activated by UDP and limits postinjury
inflammation; the P2Y12 receptor is pro-inflammatory and chemotactic

(83)

AD

Aging
Activating the M1 phenotype leads to increased destructiveness in subjects with
traumatic brain injury

(148)

A-b
Aggregated Ab activates M1 microglia via receptor for advanced glycation
endproducts (RAGE) and TLRs; the induction of NLRP3 inflammasome activation
contributes to M1 microglial activation

(149, 150)

Tau protein Stimulates M1 microglia polarization through NLRP3, which mediates IL-1b release (151)

PD

a-syn
a-Syn released from degenerated DAergic neurons is an endogenous DAMP that
activates microglia, and misfolded a-syn triggers a reactive M1-like pro-
inflammatory phenotype

(152, 153)

Human neuromelanin
Dual activation of NF-kB via the classical and p38MAPK transactivation pathways
induces M1 formation

(154, 155)

ALS
Gal3

The induction of anti-inflammatory responses induces the microglial M2 phenotype
and limits neuroinflammation and disease progression

(156)

mSOD1 Stimulates M1 activation by CD14 and TLR (157)

Neuropathic pain

MAPK signaling pathway The phosphorylation of P38 MAPK stimulates M1 polarization (158)

DKK3
DKK3 blocks SNI-induced M1 microglial polarization and promotes the M2
phenotype

(159)

ATP
The ATP receptors P2X4, P2X7, and P2Y12 are associated with neuropathic pain,
and these receptors activate microglia by engaging different signals that converge to
p38 MAPK

(160)
A-b, amyloid b-protein; a-syn, a-synuclein; DKK3, Dickkopf3; Gal3, galectin-3; HMGB-1, high mobility group box-1 protein; Hsp70, heat shock protein 70; MAPK, mitogen-activated protein
kinase; mSOD1, mutant superoxide dismutase 1; Prx family proteins, peroxidase family proteins; SNI, spinal nerve injury.
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neurocognitive disorder (PND) in aged mice, administration of 2-

deoxy-D-glucose (2-DG) suppressed glucose metabolism

reprogramming, thereby reducing surgery-induced increases in

activated microglia and pro-inflammatory cytokines, ultimately

leading to significant improvement in cognitive impairment (78).
4.3 Alzheimer’s disease

AD is a neurodegenerative disease. It is characterized by the

formation of intracellular amyloid b (Ab) aggregates and extracellular
neurofibrillary tangles composed of hyperphosphorylated tau, leading

to neuronal loss and memory impairment. In individuals with AD,

activated microglia accumulate around damaged brain tissue, and

microglia maintain the homeostasis of the internal environment of the

brain by phagocytosing and removing Ab around neurons and

fragments of damaged neurons.

The phagocytic activity of microglia requires cytoskeletal

remodeling, which demands substantial energy (101). To meet the

energetic demands of Ab clearance, microglia—particularly those

surrounding Ab plaques—undergo a metabolic shift from

OXPHOS to glycolysis (102) (Figure 3). As tau proteins continue

to accumulate within neurons, affected neurons secrete neurotoxic

cytokines to induce the proinflammatory polarization of microglia.

Ab also triggers acute inflammation in microglia by activating the

NLRP3 inflammasome (2, 103, 104). Microglia are polarized toward
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the injury-associated phenotype, and the intracellular levels of the

glycolytic markers HK, glucose-6-phosphate dehydrogenase, and

phosphofructokinase 1 increase significantly. Significant decreases

in the maximal mitochondrial respiratory capacity and

mitochondrial fission indicate a shift from OXPHOS to glycolysis

in microglia (40, 105). However, in early AD, the cytokines IL-4 and

IL-10, glucocorticoids, and immune complexes polarize microglia

toward the repair-associated phenotype. Microglia prevent AD by

removing Ab deposits through phagocytosis and by secreting

insulin-degrading enzymes and other enzymes that degrade Ab
(106). These findings indicate the dual roles of microglia in AD.

A study has shown that cognitive impairment in AD patients is

associated with abnormal glucose utilization, glycolysis, and

OXPHOS in the brain (107, 108). The two most prominent

metabolism-related features of AD are altered expression of

glucose transporter proteins and insulin resistance (109, 110).

Alterations in glucose metabolism usually occur early in the

disease and can promote Ab accumulation and tau protein

phosphorylation. AD models have been used to test the effects of

treatments targeting glucose metabolism. Liraglutide is an analog of

glucagon-like peptide-1 and can enhance glucose transport (111).

Semaglutide is a novel glucagon-like peptide-1 (GLP-1) receptor

agonist. In vitro studies have demonstrated that semaglutide

enhances glucose metabolism and promotes glycolysis, exerting

its effects by regulating neuronal GLUT4 expression and

activating the glucose–SIRT1 signaling pathway (112). Mullein
FIGURE 3

Glycolytic reprogramming and damage-related polarization processes in microglia. Resting microglia can be stimulated by PAMPs and DAMPs,
undergo metabolic reprogramming (upregulated GLUT1, reduced oxidative phosphorylation, enhanced glycolysis and pentose phosphate pathway).
Phagocytosed dsDNA activates the cGAS–STING pathway, with NF-kB involvement, leading to cytokine and interferon production and promoting
microglial polarization and inflammatory responses. Abbreviation: cGAMP: cyclic GMP-AMP; cGAS: cyclic GMP-AMP synthase; ER, endoplasmic
reticulum; F-1,6-2P, fructose-1,6-bisphosphate; GLUT1, glucose transporter protein 1; G-6-P, glucose-6-phosphate; IFN, interferon; IRF3, interferon
regulatory factor 3; LDH, lactate dehydrogenase; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; OXPHOS, oxidative
phosphorylation; PPP, pentose phosphate pathway; ROS, reactive oxygen species; TBK1, TANK-binding kinase1. Created with BioRender.com
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increases the expression of GLUT3 and GLUT4 in microglia and

promotes glucose transport (113). Dimethyl malonate (DMM), an

inhibitor of succinate dehydrogenase (SDH), suppresses the

expression of IL-1b and TNF-a by reducing glycolysis and

inhibiting mitochondrial respiration in microglia (114). These

findings suggest that restoring glucose metabolism may represent

a potential therapeutic strategy for Alzheimer’s disease (AD) (115).

mTOR-dependent metabolic reprogramming is essential for

glycolysis. Metabolic reprogramming via the Akt/mTOR/HIF/1a
pathway impairs microglial energy metabolism, mitochondrial

autophagy, and phagocytosis, resulting in deficits in dopaminergic

neuron function. Metabolic reprogramming underlies the reactivity

of microglia. The modulation of metabolism may be an effective

strategy for altering microglial function and may also be a

promising approach for treating AD. Despite the lack of AD-

related studies, mTOR inhibitors are promising treatments for

AD because they modulate microglial polarization (116). IFN-g is
a potent regulator of the mTOR pathway and glycolysis (117) and

can cross the blood-brain barrier (118). Studies have shown that

sodium rutin can enhance mitochondrial OXPHOS, providing

microglia with sufficient energy to support the phagocytosis

required for Ab clearance. Moreover, it can effectively restore the

suppressed OXPHOS function in pro-inflammatory microglia,

thereby mitigating microglial glucose metabolic dysfunction

under pathological conditions (119).
4.4 Multiple sclerosis

MS is an immune-mediated neurodegenerative disease

characterized primarily by axonal demyelination in the central

nervous system, accompanied by pronounced inflammatory

immune responses and neurodegeneration within the lesion sites

(93, 120, 121). In MS, the homeostatic microglial markers

transmembrane protein 119 (TMEM119) and purinergic receptor

P2Y G-protein–coupled 12 (P2RY12) decline sharply as the disease

progresses (122). This indicates that microglia undergo state

transitions during disease progression. The number and

characteristics of microglia within lesions are often used to

distinguish stages of MS progression. In active MS, the entire

lesion area is densely populated with microglia, whereas in

inactive or mixed MS, microglia are mainly distributed along the

lesion borders (123). For a long time, MS treatment has primarily

focused on the early-stage disruption of the blood–brain barrier

(BBB), which allows peripheral B cells, T cells, and monocytes to

infiltrate the CNS parenchyma. This infiltration triggers peripheral

immune cell–mediated attacks on myelin within the central nervous

system, ultimately leading to axonal demyelination (121). In acute

MS lesions, prominent iron deposition is observed at the margins of

microglia. The accumulated iron exerts pro-inflammatory effects,

which may be related to increased intracellular ROS levels and

subsequent alterations in mitochondrial morphology and function

(124, 125). At the lesion margins, microglia predominantly rely on

glycolysis as their main energy metabolism. Emerging research

highlights another aspect of MS pathogenesis—namely, energy
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metabolism alterations in disease-associated cells. Transcriptomic

analyses have suggested that iron accumulation in microglia can

promote intracellular glycolytic activity (126, 127). This enables

microglia to generate more ATP and drives their morphological

alterations (123). Transcriptomic data indicate that the expression

of glycolysis-related genes is increased in microglia within the gray

matter of MS patients (127). A clinical study demonstrated that in

MS patients, cerebrospinal fluid lactate levels are positively

correlated with the number of MS plaques, showing a stronger

association than with general CNS inflammatory markers. This

finding suggests that inflammatory plaques may be closely linked to

the processes of lactate production and release (128).

At present, there are relatively few drugs targeting glycolytic

pathways for the treatment of MS, with dimethyl fumarate (DMF)

being the most representative. DMF can be hydrolyzed by esterases

in the small intestine into monomethyl fumarate (MMF), which is

thought to exert antioxidant and anti-inflammatory effects by

interfering with the TCA cycle. Although its precise mechanism

remains unclear, treatment with DMF has been shown to

significantly increase succinate levels. Among these metabolites,

L-carnitine and acylcarnitines have been demonstrated to activate

the Nrf2-mediated antioxidant pathway (129). In addition, both in

vivo and in vitro studies have demonstrated that DMF can catalyze

the succination of cysteine residues on the glycolytic enzyme

GAPDH, leading to its inactivation. In other words, DMF

downregulates glycolysis within cells and promotes a metabolic

shift toward oxidative phosphorylation (130).
4.5 Traumatic brain injury

TBI refers to diffuse damage and neurodegeneration of the

central nervous system caused by external mechanical forces. Its

pathological features include mild multifocal axonal injury,

microglial activation, and microhemorrhages. Microglia can

become markedly activated within one week following trauma.

Experiments in spinal cord injury models have shown that

microglia at the injury site exhibit both injury-associated and

repair-associated activation characteristics (84). In fact, microglia

in the brain after TBI display heterogeneous characteristics,

encompassing both reparative and injury-associated phenotypes.

Under pathological conditions, microglia alter their metabolic state

by redirecting glycolytic intermediates toward the pentose

phosphate pathway (PPP), thereby generating NADPH and

producing ROS via NOX (131). Fluorodeoxyglucose (FDG)

positron emission tomography (PET) has demonstrated that

significant alterations in cerebral glucose metabolism occur

following TBI (132). In the early stages of the disease, cerebral

glucose metabolism is characterized by heightened glycolysis, which

subsequently shifts toward a reduced cerebral metabolic rate of

glucose in the later stages (133). Experiments have shown that

bromovalerylurea (BU) can reduce the expression of pro-

inflammatory genes in microglia both in vivo and in vitro, while

significantly inhibiting microglial glycolytic activity (134). This

suggests that microglial glucose metabolism may play an
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important role in TBI-associated inflammation; however, current

research on this topic remains limited.
4.6 Other central nervous system diseases

ALS is a neurodegenerative disease that slowly destroys motor

neurons in the spinal cord, brainstem, and primary motor cortex,

ultimately resulting in paralysis and death. Approximately 10% of

ALS cases are familial, and superoxide dismutase 1 (SOD1) is the

most common gene mutated in patients with familial ALS.

Microglia play dual roles in ALS, exhibiting an repair-associated

phenotype and protecting motor neurons during disease onset, and

then transforming to the injury-associated phenotype and

exacerbating motor neuron damage in the terminal phase. The

intracellular and extracellular accumulation of misfolded mSOD1

may be a key factor in the conversion of microglia from the repair-

associated phenotype to the injury-associated phenotype (1, 94,

135). PET findings suggest that widespread hypoglycemia is not

associated with brain atrophy or aging in several brain regions of

the motor cortex in ALS patients (136, 137). Several possible

mechanisms underlying this phenomenon have been proposed,

including reduced cerebral blood flow and defective glucose

transport mechanisms or hexokinase activity. Data from

experiments using the TAR DNA-binding protein (TDP-43)-

overexpressing Drosophila model of ALS revealed increases in

glycolysis and PPP activity (138). Reductions in lactate marker

levels, lactate production and release, and PPP flux in SOD1 and

TDP-43 expressing neurons indicate reduced glycolysis (139).

Glycolysis defects are observed in the CNS tissues of symptomatic

mutant SOD1G93A mice, but studies of changes in glucose

metabolism in microglia are lacking (140). A model of Drosophila

overexpressing TDP-43 revealed that the activation of glycolysis via

GLUT3 results in neuroprotection and improved locomotion (138),

suggesting that the glycolytic pathway may play a beneficial role in

ALS; however, further research is needed to confirm this finding.

Somatosensory damage causes neuropathic pain; its

pathogenesis is complex, involving entire neural pathways and all

glial cell types, and it is characterized by nociceptive

hypersensitivity and abnormal pain processing due to synaptic

remodeling. Many studies have emphasized the relevance of the

neuroimmune response in neuropathic pain. Chronic nerve injury

allows microglia to be polarized toward the injury-associated

phenotype. As inflammation increases, intracellular signaling

pathways are activated and pain signaling is disrupted, resulting

in systemic inflammation. The levels of inflammatory factors and

microglial markers are reduced in repair-associated microglia,

resulting in an uncontrolled inflammatory state (141). Various

changes, such as the upregulation of proinflammatory factors, the

generation of advanced glycosylation end products, and the

activation of the mTOR/HIF/1a pathway, induce glycolysis in

microglia (142, 143). Glycolytic reprogramming is critical for pain

sensitization. Neuropathic pain is characterized by impaired

OXPHOS and enhanced mitochondrial glycolysis due to

glycolytic reprogramming. These changes induce phenotypic
Frontiers in Immunology 11
shifts in cells, contributing to increased neuroinflammation and

oxidative stress in the periphery and CNS. Changes in the NAD/

NADH ratio induced by the reprogramming of microglial glucose

metabolism alter the redox state, decreasing the ratio of activated N-

methyl-D-aspartic acid receptors and increasing Ca2+ influx,

thereby triggering a downstream inflammatory cascade response

(142, 144).
5 Conclusions

Microglia represent the first line of immune defense in the CNS,

characterized by high activity and unique sensitivity (4). Under

normal conditions, microglia maintain their own cellular

homeostasis and perform housekeeping functions, continuously

monitoring changes in the brain environment. Their unique

sensitivity enables them to detect subtle alterations within the

brain and mount active responses (6). With the advancement of

technologies such as single-cell sequencing, the classification of

microglia has gradually shifted from a simple dichotomy to a

multidimensional framework based on specific environmental

contexts. Such refined classification approaches facilitate a deeper

understanding of microglial phenotypes and functions (14, 23, 24,

25, 161).

Metabolic alterations that occur in immune cells in response to

immune stimulation are referred to as immunometabolism. As key

immune cells in the CNS, microglia also undergo corresponding

metabolic changes during the execution of their functions, among

which glucose metabolic reprogramming—directly linked to energy

supply—plays a pivotal role. On the one hand, glycolysis meets the

high energy demands of different microglial phenotypes; on the

other hand, its metabolic byproduct lactate exerts effects through

post-translational modification in the form of lactylation, showing

temporal dynamics—promoting pro-inflammatory gene expression

in the early phase while suppressing inflammation-related genes

and exhibiting reparative properties in the later phase (44, 46).

During microglial phenotypic transitions accompanied by

glycolysis, glycolysis can influence these changes through multiple

pathways—including GLUT (59, 60), MCT (46, 64)., HK2 (61),

mitochondria (69), the PI3K signaling pathway (38, 76), and

lactylation (14, 23–25, 161)—thereby enabling microglia to better

adapt to diverse pathological stimuli.

Extensive research has been conducted on microglial

immunometabolism in both acute and chronic neurological

diseases; however, current studies on microglia still face certain

limitations. At present, most studies on the pathological states of

microglia rely on LPS-stimulated BV-2 cells. In fact, studies have

already indicated substantial differences between primary microglia

and the BV-2 cell line in response to strong LPS stimulation, with

primary cells exhibiting more robust and complex responses

compared to BV-2 cells (162). In reality, stimulation with LPS alone

can hardly recapitulate the complex pathological context of disease

states. The regulatory mechanisms by which metabolic intermediates

influence disease progression and microglial phenotypic transitions

remain unclear. Strategies for reprogramming microglial glucose
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metabolism at different stages of neurological diseases remain to be

further explored. In addition, based on the hypothesis of

mitochondrial compartmentalization, it remains to be clarified

whether microglia also exhibit functional specialization across

different spatial and temporal contexts, stages, and regions in

neurological diseases. In addition to elucidating the underlying

mechanisms, drug delivery remains a critical challenge due to the

unique characteristics of the BBB. Currently, the integration of

nanomaterials with pharmacological approaches offers the potential

to enhance drug penetration across the BBB and achieve targeted

delivery to pathological sites (163, 164). Although no drugs are

currently available in clinical practice that specifically target

microgl ia l g lucose metabol i sm for the treatment of

neurodegenerative diseases, ongoing research may eventually

establish this approach as a novel therapeutic direction.
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