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The metastatic tumor microenvironment (TME) is a highly dynamic and
heterogeneous ecosystem that plays a critical role in promoting cancer cell
colonization, immune escape, and resistance to therapy. Recent advances in
multi-omics technologies—including genomics, transcriptomics, epigenomics,
proteomics, and metabolomics—have enabled a systems-level understanding of
the molecular reprogramming that occurs in the TME following metastasis. In this
review, we systematically summarize emerging findings from recent multi-omics
studies that dissect cellular composition, signaling pathways, immune landscape,
and metabolic rewiring within the metastatic TME. We highlight key molecular
signatures and intercellular interactions that drive metastatic progression and
therapy resistance. Furthermore, we discuss how integrative multi-omics data
are being leveraged to identify actionable targets and to design novel
immunotherapeutic and molecular precision strategies tailored to the
metastatic niche. These insights provide a scientific rationale for the
development of TME-targeted approaches in the treatment of advanced-
stage cancers.
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1 Introduction

Tumor metastasis remains the leading cause of cancer-related
deaths, accounting for over 90% of cancer mortalities (1, 2). While
early-stage cancers often have favorable prognoses through surgery
and adjuvant therapies, the occurrence of metastasis significantly
increases treatment complexity and drastically reduces patient
survival rates (3). In addition to their invasiveness and migratory
capabilities, tumor cells actively transform the local milieu at
metastatic sites, creating a “metastatic niche,” as the cancer spreads
(4-6). This metastatic microenvironment is composed of tumor cells,
immune cells, fibroblasts, the vascular system, and various
extracellular matrix components, collectively forming a complex
ecosystem that supports tumor cell survival, proliferation, and
immune evasion.

Traditional single-omics approaches, such as relying solely on
genomic or transcriptomic analyses, often fall short in capturing the
multidimensional interactions within the metastatic tumor
microenvironment (7, 8). This is mainly because no single omics
layer can provide a complete understanding of the many molecular
regulatory mechanisms involved in tumor metastasis, such as genetic
mutations, epigenetic alterations, protein expression control, and
metabolic reprogramming (9, 10). A comprehensive picture of the
metastatic tumor microenvironment is now possible thanks to the
advent of multi-omics technologies that combine information from
genomes, transcriptomics, epigenomics, proteomics, and metabolomics
(11-13). In addition to illuminating the complex networks of
communication between tumor cells, stromal cells, and immune cells
in the surrounding area, this multi-dimensional molecular view also
provides insight into the ever-changing functional states of immune
cells and how they impact the therapeutic response.

Theoretically and technically, the development of
immunotherapies and precision molecular-targeted medicines can be
supported by the integrated application of multi-omics technologies
(14-16). By identifying metastasis-specific molecular markers and key
driver pathways, more targeted therapeutic strategies can be devised to
overcome resistance and recurrence associated with conventional
treatments (17-19). Further, by identifying patient-specific
neoantigens and immune suppression mechanisms, multi-omics
analysis can personalize immunotherapy, which in turn improves the
efficacy of immunotherapies such immune checkpoint inhibitors (20-
23). Therefore, a comprehensive elucidation of the multi-omics
characteristics of the metastatic tumor microenvironment is essential
for advancing therapeutic paradigms in late-stage cancers and for
improving patient survival and quality of life.

The purpose of this article is to provide a comprehensive
overview of the latest developments in multi-omics technologies
that have been developed to better understand the intricate
workings of the tumor microenvironment after metastasis, to
discuss these technologies’ possible uses in molecularly targeted
modeling and immunotherapy optimization, and to draw attention
to the obstacles and opportunities that exist in the field of clinical
translation. Our goal in directing this study is to help develop cancer
precision treatment by shedding light on hitherto unexplored
scientific questions and offering strategic backing for this field.
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2 Multi-omics profiling of the tumor
microenvironment after metastasis

2.1 Insights from genomics and
transcriptomics

Genomic studies provide critical scientific evidence for
revealing the molecular mechanisms underlying tumor metastasis.
Through whole-genome sequencing (WGS) and targeted
sequencing technologies, researchers have identified numerous
key genes that frequently undergo mutations or copy number
variations (CNVs) during the metastatic process (24, 25). These
genes play crucial roles in tumor initiation, progression, and
metastatic potential. For instance, TP53, a classical tumor
suppressor gene, is highly mutated across various cancer types
(26-28). Genomic instability is reduced when TP53 activity is lost
because it causes cell cycle dysregulation and defective DNA
damage repair pathways. The result is an increase in tumor cell
migration, invasiveness, resistance to apoptosis, and proliferation
(29, 30). Additionally, activating mutations in oncogenes such as
KRAS and PIK3CA play pivotal roles in metastasis. KRAS
mutations cause constitutive activation of the MAPK signaling
pathway, promoting cell proliferation, survival, and motility (31,
32). Tumor cells have an advantage in their ability to invade and
metastasize when PIK3CA mutations activate the PI3K/Akt
signaling pathway, which controls cellular metabolism,
proliferation, and cytoskeletal remodeling (33, 34). Abnormal
activation of these pathways not only accelerates local tumor
growth but also facilitates tumor cells breaching the basement
membrane, entering the bloodstream or lymphatic system, and
metastasizing to distant organs (35, 36). Another important group
of genetic changes is copy number variation, which controls the
amounts of tumor suppressor and oncogene gene expression by
means of gene amplification and deletion (37, 38). Amplification of
oncogenes can markedly enhance malignant phenotypes such as
proliferation, apoptosis resistance, and angiogenesis, whereas
deletion of critical tumor suppressors weakens cellular defense
mechanisms, facilitating metastasis (39, 40). To add insult to
injury, CNVs can affect how tumor cells interact with their
surroundings by influencing how tumor cells adapt to and avoid
immune cells, stromal cells, and the extracellular matrix. Genomic
studies that systematically analyze gene mutations and copy
number variations (CNVs) provide valuable information for
developing tailored treatment strategies by shedding light on the
molecular causes of tumor metastasis and identifying promising
therapeutic targets and biomarkers.

Transcriptomic studies employing RNA sequencing (RNA-seq)
have uncovered extensive and dynamic alterations in gene
expression profiles within metastatic tumor tissues compared to
their primary counterparts (41-43). Tumor cells adapt, survive, and
prosper in distant microenvironments by sophisticated molecular
reprogramming, which is reflected in these transcriptome changes.
Metastatic tumor cells are able to avoid being destroyed by the
immune system because they show a marked increase in the
expression of pathways that regulate the immune system (44, 45).
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Key immune checkpoint molecules, such as PD-L1 (programmed
death-ligand 1) and CTLA-4 (cytotoxic T-lymphocyte-associated
protein 4), are frequently overexpressed, serving to suppress T cell
activation and promote immune tolerance (46, 47). In addition, the
tumor immune microenvironment is transformed by the
recruitment of regulatory T cells (Tregs) and myeloid-derived
suppressor cells (MDSCs), which allows for the increased
expression of immunosuppressive cytokines like IL-10, TGE-f,
and IL-6. This creates an immunosuppressive niche that
promotes tumor survival and metastasis (48-51). At the same
time, metastatic areas show a dramatic increase in genes related
to angiogenesis. Neovascularization is driven by vascular
endothelial growth factor (VEGF) family members such as
VEGFA and VEGFC, which stimulate migration, proliferation,
and new vessel formation in endothelial cells. This increased
angiogenic activity sustains the growth and spread of the
metastatic tumor mass by ensuring that it receives an appropriate
amount of oxygen and nutrients (52-54). Moreover, the
transcriptomic landscape of metastatic tumors shows pronounced
upregulation of genes involved in extracellular matrix (ECM)
remodeling, which is essential for tumor invasion and migration.
Elevated expression of structural ECM components such as various
collagen isoforms (e.g., COL1A1, COL3A1) accompanies increased
levels of matrix metalloproteinases (MMPs), including MMP2,
MMP9, and MMP14 (55, 56). By hydrolyzing ECM proteins,
these proteolytic enzymes make it easier for physical barriers to
break down and alter the tumor microenvironment in a way that
cancer cells can invade more easily (57, 58). Additionally, the
increased expression of integrins and other adhesion molecules
supports enhanced tumor cell motility and interaction with stromal
components. These transcriptome changes, when taken as a whole,
show how tumor cells communicate with the stroma, immune cells,
and vasculature around them in a way that promotes metastasis.
Gaining a grasp of these alterations in gene expression can shed
light on the processes of metastasis and identify possible treatment
targets to halt the growth of metastasis.

The advent of single-cell RNA sequencing (scRNA-seq)
technology has profoundly deepened our understanding of the
cellular heterogeneity and complexity within tumors and their
associated microenvironments (59, 60). One advantage of single-
cell RNA-seq over bulk RNA-seq is that it allows for high-resolution
cell dissection, which is essential for identifying and characterizing
different subpopulations of tumor cells, stromal components, and
immune cells (61-63). This technology has become instrumental in
unraveling the dynamic cellular ecosystem that drives tumor
metastasis. The tumor microenvironment is functionally varied
and extremely heterogeneous in metastatic situations, according
to scRNA-seq. One example is the enrichment of regulatory T cells
(Tregs) and M2-polarized macrophages within metastatic niches in
breast cancer bone metastasis models. These cells have
immunosuppressive features. A variety of immunosuppressive
cytokines, including IL-10 and TGEF-, are released by these
subsets of immune cells. These cytokines reduce the activity of
cytotoxic T cells and make immunological escape easier (64-66).
Moreover, M2 macrophages and Tregs contribute to angiogenesis
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by releasing pro-angiogenic factors like VEGF, thereby promoting
neovascularization essential for metastatic tumor growth and
sustenance (67, 68). Concurrently, during metastasis, tumor cells
display extensive transcriptional plasticity. scRNA-seq studies have
shown that tumor cells that have spread to other parts of the body
increase the expression of genes related to drug resistance
mechanisms, extracellular matrix remodeling, improved
migratory potential, and epithelial-to-mesenchymal transition. A
key component of both metastatic spread and treatment failure is
the ability of cancer cells to invade distant regions and resist
therapeutic stresses, which is achieved by transcriptional
reprogramming (69, 70). Importantly, such single-cell resolution
analyses allow the tracking of rare subpopulations, such as cancer
stem-like cells or drug-tolerant persister cells, which may drive
relapse and metastasis. Beyond descriptive profiling, transcriptomic
data derived from scRNA-seq facilitate the discovery of prognostic
biomarkers and predictive signatures for therapeutic response.
Differential gene expression analyses can pinpoint gene modules
tightly correlated with patient outcomes, enabling risk stratification
and guiding clinical decision-making (42, 71, 72). Particularly, these
data provide critical insights into the mechanisms of resistance to
therapies such as immune checkpoint inhibitors (ICIs). Metastatic
and immune evasion traits can be better understood by combining
gene regulatory network analysis with the identification of critical
transcription factors and signaling cascades. Metastatic tumors
often activate NF-kB and STAT3 transcription factors, which lead
to the activation of genes related to inflammation and maintain an
immunosuppressive tumor microenvironment (73-75). Targeting
these pathways holds promise to disrupt the metastatic niche and
enhance therapeutic efficacy. Collectively, genomic and
transcriptomic studies—especially at single-cell resolution—have
markedly expanded our understanding of the molecular and
cellular landscape of tumor metastasis (76, 77). Critical driver
mutations, alterations in gene expression, and complicated cell-
cell interactions within the metastatic ecology have been uncovered
by these techniques. This information not only improves our
understanding of tumor biology in general, but it also lays the
groundwork for precision medicine approaches, such as improved
immunotherapy regimens and new targeted medicines. Figure 1
shows that one effective way to enhance cancer patients’ clinical
results is to integrate multi-omics data at the single-cell level. This
allows us to better understand tumor heterogeneity and the
complexities of metastasis.

Although multi-omics technologies have demonstrated great
potential in tumor metastasis research, significant advantages and
limitations exist among different techniques, necessitating
systematic comparison and analysis. Single-cell omics
technologies, such as single-cell RNA sequencing, offer high
resolution and finely reveal cellular heterogeneity, making them
powerful tools for dissecting the complexity of tumors and their
microenvironments (12, 78). It is challenging for single-cell omics
to faithfully portray the geographical distribution of cells inside
tissues and their physical interactions with nearby cells due to the
frequent absence of spatial information. Spatial omics technologies,
on the other hand, (e.g., spatial transcriptomics and spatial
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proteomics) maintain tissue structure, which allows for the
mapping of spatial relationships between tumor cells and
surrounding immune and stromal cells. This mapping provides
crucial insights into microenvironment formation and intercellular
signaling (16, 79). However, current spatial omics methods have
certain limitations in spatial resolution, detection sensitivity, and
data volume, and their high costs restrict widespread application.
Furthermore, integrating different omics data faces multiple
challenges, including heterogeneous data formats, batch effects,
noise interference, and the complexity of biological interpretation.
Effectively combining single-cell omics with spatial omics,
balancing cellular functional states and spatial localization,
remains a research hotspot and challenge. Meanwhile, the
heterogeneity and dynamic nature of proteomics and
metabolomics data add further complexity to data integration (80,
81). In summary, a deep understanding of the strengths and
limitations of various omics technologies aids in the rational
selection and optimization of research strategies. Moving forward,
leveraging the synergistic advantages of multi-omics and developing
efficient data integration and analysis methods will advance the
study of the tumor metastatic microenvironment toward more
precise and comprehensive insights, providing a robust scientific
foundation for clinical translation.
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2.2 Epigenomic and proteomic
characteristics

The molecular regulation of tumor metastasis is not limited to
genetic mutations and changes in gene expression levels; epigenetic
regulation also plays a crucial role. Epigenomics primarily involves
mechanisms such as DNA methylation, histone modification, and
chromatin remodeling (82-84). The spreading potential of tumor
cells and the creation of the tumor microenvironment are impacted
by these alterations, which dynamically regulate gene activity
without changing the DNA sequence. Tumor metastasis is
facilitated by DNA methylation in two ways (85-88). On one
hand, hypomethylation of promoter regions of pro-metastatic
genes can lead to their overexpression—for example, matrix
metalloproteinases (MMPs) and genes related to epithelial-
mesenchymal transition (EMT)—thus promoting tumor cell
invasion and migration (89-91). On the other hand,
hypermethylation-induced silencing of tumor suppressor genes,
such as CDHI1 (encoding E-cadherin), weakens intercellular
adhesion and facilitates EMT, a critical step in the metastatic
cascade (92, 93). Epigenetics also plays a role in regulating the
expression of immunological checkpoint molecules. As an example,
the tumor cell’s capacity to evade immune surveillance is impacted
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by the methylation state of the PD-L1 gene promoter, which
controls its expression. Tumor cells can quickly adjust to changes
in their microenvironment, control immunosuppressive pathways,
and become more resistant to immunotherapy because epigenetic
modifications are very malleable (94-97). Histone modifications—
such as acetylation, methylation, and phosphorylation—also play
significant roles in tumor metastasis. Histone acetylation is
generally associated with gene activation, while histone
methylation may either activate or repress gene expression,
depending on the site and type of modification (98, 99). For
example, trimethylation of histone H3 at lysine 27 (H3K27me3)
is typically linked to gene silencing. Aberrant increases in
H3K27me3 observed in some metastatic tumors suppress tumor
suppressor gene expression and promote tumor progression (100-
102). Chromatin remodeling complexes can alter chromatin
structure and thus affect the accessibility of genes to transcription
machinery, thereby mediating metastatic capability. Techniques
such as ChIP-seq and whole-genome methylation sequencing
have gradually uncovered the mechanistic roles of these
modifications in shaping the metastatic microenvironment.
Proteomics complements genomic and transcriptomic data,
offering unique advantages in revealing protein expression and
post-translational modifications (PTMs) (103, 104). In order to
regulate the signaling and functional states of tumor cells, post-
translational modifications (PTMs) such phosphorylation,
ubiquitination, glycosylation, and methylation have a substantial
impact on protein stability, activity, subcellular localization, and
interactions. One example is the role of phosphorylation
modifications in signaling pathway proteins in tumor cell
migration, proliferation, and survival. These alterations are
particularly important in the MAPK/ERK and PI3K/Akt
pathways (105-107). Ubiquitination regulates protein degradation
and signaling networks and is particularly important for tumor cells
adapting to microenvironmental stress and immune evasion.
Proteomic studies have also revealed complex signaling crosstalk
between tumor cells and immune cells. For example, changes in the
expression and modification states of immunosuppressive cytokines
such as TGF-B and IL-10, and their receptors, modulate immune
cell functions, promoting immune escape and tumor metastasis
(108-110). Altered protein expression profiles in tumor-associated
macrophages and regulatory T cells reflect the immunosuppressive
status of the tumor microenvironment and provide new insights for
discovering immunotherapy targets. In recent years, the emergence
of spatial proteomics—especially techniques based on mass
spectrometry—has enabled researchers to analyze protein
expression and localization with high spatial resolution at the
tissue section level. These technologies have revealed that the
spatial distribution of specific protein modifications correlates
with the degree of immune infiltration in metastatic lesions and
the response to therapy, offering a more precise molecular basis for
the implementation of personalized immunotherapy. In conclusion,
the complex regulatory mechanisms of tumor metastasis and
associated microenvironment are uncovered by combining
epigenomics and proteome investigation. Both the control of gene
expression and the modification of protein function are involved in
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these processes. To better understand tumor metastasis and its
complex biological aspects, as well as to speed up the development
of new immunotherapeutic techniques and molecularly targeted
medications, integrative multi-omics studies are essential. These
studies will provide patients with advanced cancer better treatment
alternatives(Figure 2).

2.3 Metabolomic features

Tumor metastasis involves not only alterations at the genomic and
proteomic levels but also profound metabolic reprogramming. Within
the metastatic microenvironment, tumor cells and surrounding
supportive cells adjust metabolic pathways to meet the demands of
rapid proliferation and adaptation to hostile conditions, while
simultaneously shaping an immunosuppressive environment that
facilitates sustained tumor growth and immune evasion (3, 111, 112).
These metabolic regulators play a pivotal role in metastasis, as shown
by metabolomics’ thorough profiling of metabolite alterations.
Metastatic tumor cells exhibit elevated glycolysis, a metabolic
characteristic known as the Warburg effect, which is highly
noticeable (113, 114). Even under aerobic conditions, tumor cells
preferentially utilize anaerobic glycolysis to generate energy,
producing large amounts of lactate. The accumulation of lactate
acidifies the tumor microenvironment, suppressing the activity of
effector immune cells such as cytotoxic T lymphocytes and natural
killer cells, while promoting the recruitment and polarization of
immunosuppressive cells like regulatory T cells and tumor-associated
macrophages (TAMs), thereby establishing an immune “cold”
environment (115, 116). Moreover, lactate also induces angiogenesis,
supporting the blood supply of metastatic lesions and enhancing tumor
cell dissemination and survival (117, 118). Another important factor in
tumor spreading is the reprogramming of lipid metabolism. Metastatic
tumor cells speed up their migration and proliferation by acquiring the
energy and membrane components they need through fatty acid
production and oxidation. Fatty acid and cholesterol abnormal
buildup regulates signaling pathway activation, improves cell
motility, and promotes epithelial-mesenchymal transition (119, 120).
Additionally, lipid metabolism regulates immune cell function—for
example, TAMs promote immunosuppressive states via lipid-mediated
signaling, contributing to immune escape. Changes to the metabolism
of amino acids are just as important as those involving glucose and
lipids. Tumor cells are able to resist oxidative stress because of
improved glutamine uptake and metabolism, which supply nitrogen
supplies necessary for biosynthesis and aid in regulating antioxidant
capability. Tumor immune microenvironment modulation is thought
to be mostly mediated by tryptophan metabolism, which promotes
immunological tolerance and immune evasion through activation of
the indoleamine 2,3-dioxygenase (IDO) pathway. Metabolomic
research has also shown that immunotherapy effectiveness is
strongly correlated with metabolic alterations in the metastatic
microenvironment. Tumor cells deplete essential nutrients such as
glucose and amino acids through metabolic competition, impairing the
function of tumor-infiltrating lymphocytes and limiting the
effectiveness of immune checkpoint inhibitors (120-122). As a result,
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FIGURE 2

targeting metabolism has emerged as a novel approach for
combination immunotherapy. For example, inhibitors of lactate
dehydrogenase (LDH) and regulators of fatty acid metabolism, when
combined with immune checkpoint blockade, have shown enhanced
anti-tumor efficacy in preclinical models. Researchers have recently
been able to study metabolic heterogeneity at spatial and cellular
resolutions using cutting-edge methods like mass spectrometry
imaging (MSI) and single-cell metabolic analysis. This has led to a
better understanding of how metabolic cooperation among cell types
within metastatic lesions promotes tumor progression. Precision in
detecting metabolic problems and creation of individualized metabolic
intervention plans are both greatly facilitated by these technological
advancements. In summary, metabolic reprogramming in metastatic
tumors not only fulfills the energy demands of growth and
dissemination but also regulates the immune microenvironment
through multiple mechanisms, facilitating immune escape.
Integrating metabolomic data with multi-omics approaches will
enhance our understanding of tumor biology and support the
development of metabolism-targeted combination therapies,
ultimately improving the prognosis of patients with advanced
cancer (Figure 3).

To provide a clear overview of multi-omics approaches in the
metastatic TME, Table 1 summarized major methods,
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representative assays, key findings, and clinical applications.
Genomics identifies metastasis-associated mutations and clonal
evolution, guiding targeted therapy; transcriptomics reveals
immune remodeling and stromal heterogeneity, informing
immunotherapy; proteomics and metabolomics capture
metastasis-specific signaling and metabolic adaptations, offering
biomarkers and therapeutic targets; epigenomics uncovers
regulatory mechanisms in immune and stromal cells; and multi-
omics integration highlights interactions and heterogeneity across
tumor, immune, and stromal compartments. This table illustrates
the translational value of multi-omics in precision medicine for
metastatic cancer.

3 Implications for molecular targeting
and immunotherapy

3.1 Optimizing molecular targeting models

Integrating data from genomes, transcriptomics, epigenomics,
proteomics, and metabolomics to build accurate and dynamic
molecular targeting models is a state-of-the-art approach in cancer
treatment research, thanks to the fast development of multi-omics
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technology. Offering a more evidence-based and individualized
foundation for molecular targeted therapy, this integrative
approach uncovers the genetic and phenotypic traits of tumor cells
while simultaneously delving deeper into the intricate networks of
interactions between tumors and their microenvironment (11, 13).
First, the integration of multi-omics data allows for the systematic
capture of tumor heterogeneity. Genetic mutations, gene expression
changes, epigenetic modifications, and protein functional states often
vary significantly between patients and even among different regions
of the same tumor. By integrating data across these dimensions, it
becomes possible to accurately identify key molecular markers and
regulatory networks driving tumor progression and metastasis. For
example, targeted kinase inhibitors can be developed by merging
genomic mutation data with transcriptome profiles, which can reveal
overexpression or activating mutations in specific kinase genes.
Theoretically, epigenetic data can aid in the creation of inhibitors
of epigenetic enzymes by revealing aberrations in DNA methylation
or histone changes that mute critical tumor suppressor genes (123,
124). Second, network analysis driven by multi-omics data can
simulate signal transduction pathways between tumor cells,
immune cells, and stromal cells, capturing dynamic intercellular
communication. For instance, integrating proteomics data with
transcriptomic profiles of immune cell infiltration can help identify
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key signaling pathways involved in immune evasion, such as the
upregulation mechanisms of immune checkpoints like PD-1/PD-L1
and CTLA-4, thereby informing strategies for immunomodulatory
molecular targeting. In addition, Metabolomics data can shed light on
the ever-changing nutritional and metabolic product levels within
tumor microenvironments, allowing for the identification of
metabolic enzymes as possible therapeutic targets and providing
necessary information for the development of integrated molecular
targeting and metabolic intervention approaches. Integrating data
from several omics studies has also become much smarter and more
efficient with the help of machine learning and artificial intelligence.
The development of individualized treatment programs can be
facilitated by building prediction models using multi-omics
features, which allow for the accurate forecasting of patient
reactions to different targeted medications. For example, using data
on a patient’s tumor mutation profile, protein expression levels, and
metabolic status, the model can identify the most likely effective drug
combinations, avoiding ineffective treatments and drug side effects.
Moreover, multi-omics integration facilitates drug repurposing and
the discovery of novel targets. Through horizontal comparisons and
longitudinal tracking of large-scale patient data, previously
overlooked molecular factors can be identified as critical players in
specific metastatic types, driving the development of novel targeted
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TABLE 1 Multi-omics approaches in the metastatic tumor microenvironment (TME).

Omics approach

Representative assays

Whole-exome sequencing (WES),

Genomics targeted gene panels,
ctDNA sequencing
. . Bulk RNA-seq, single-cell RNA-
Transcriptomics . ; .
seq, spatial transcriptomics expression programs
M t try-based
Proteommics ass spe'c rometry-base:
proteomics, CyTOF
ATAC-seq, bisulfite sequencing,
Epi .
pigenomics ChIP-seq
Metabolomics LC-MS/MS, NMR spectroscopy

Key findings in metastatic TME

Identification of metastasis-associated drivers (e.g., TP53,
KRAS), clonal evolution, mutational signatures

Immune remodeling (exhausted T cells, immunosuppressive
macrophages), stromal heterogeneity, site-specific gene

Altered signaling pathways, cytokine/chemokine networks,
immune checkpoint protein expression in metastases

Epigenetic reprogramming of immune and stromal cells,
enhancer remodeling promoting metastasis

Metabolic adaptation of metastatic niches (e.g., hypoxia-driven
rewiring, lactate accumulation)

Clinical utility

Biomarker discovery for prognosis;
stratification for targeted therapy

Patient stratification for
immunotherapy; prediction of
immune checkpoint response

Identification of therapeutic targets;
biomarker panels for
treatment monitoring

Development of epigenetic therapies;
patient selection for
combination strategies

Predicting drug resistance; targeting
metabolic vulnerabilities

Computational modeling,

Multi-omics integration .
network analysis

drugs. Combined with clinical data, such models can also evaluate
mechanisms of resistance to targeted therapy, guiding the design of
second-line or combination treatment strategies to overcome
therapeutic resistance. In summary, the core of optimizing
molecular targeting models lies in comprehensively integrating
multi-dimensional molecular information to reveal dynamic
changes in the tumor microenvironment and multilayer regulatory
mechanisms. This approach not only enhances the precision and
efficacy of targeted therapies but also paves new pathways for
personalized cancer treatment. As the volume of multi-omics data
and computational capabilities continue to grow, systems biology-
based molecular targeting models are poised to drive revolutionary
advances in advanced cancer therapy.

3.2 Enhancing the efficacy of
immunotherapy

Immunotherapy, particularly immune checkpoint inhibitors
(ICIs), has emerged as a breakthrough in the treatment of various
cancers. However, the clinical efficacy of ICIs shows significant
heterogeneity across patients, with some individuals exhibiting no
response or developing resistance (125, 126). Immunotherapy has
progressed from empirical methods toward precision and tailored
tactics, thanks to the integrated application of multi-omics
technologies, which provide powerful tools for thoroughly
studying the tumor immune milieu and its dynamic evolution
(127-129). First, multi-omics data facilitate the identification and
validation of immune-related biomarkers. Genomic sequencing can
reveal the generation of tumor neoantigens—mutant tumor-specific
antigens critical for eliciting T cell-mediated immune responses. By
integrating transcriptomic and proteomic data, researchers can
identify immunogenic proteins highly expressed on the tumor cell
surface, guiding personalized cancer vaccine development and
neoantigen-targeted therapies (130-132). Moreover, by analyzing
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Cross-talk between immune, stromal, and tumor
compartments; spatial and temporal heterogeneity

Precision medicine approaches;
identification of combination
therapy strategies

epigenomes, we can learn how immune checkpoint genes (such as
PD-L1 and CTLA-4) are regulated, which aids in evaluating
immunosuppressive pathways and gives molecular proof for the
use of checkpoint inhibitors (133, 134). Second, insights into T cell
functionality and exhaustion, derived from multi-omics data, are
pivotal for assessing immunotherapy responsiveness (135-137).
Transcriptomic analyses enable detailed profiling of tumor-
infiltrating lymphocyte (TIL) subpopulations and their activation
states, identifying exhausted T cell subsets that express markers
such as PD-1, LAG-3, and TIM-3 (138, 139). Potential targets for
immune cell reactivation have been identified by proteomics, which
provides additional validation of the expression levels and
functional states of these surface molecules. Metabolomics
research also shows that metabolites (such as lactate and
adenosine) produced by tumors inhibit T cell activity, which can
guide tactics that integrate metabolic regulation with
immunological activation. Thirdly, immunotherapy resistance
mechanisms can be better understood with the use of multi-
omics methods. Immune evasion, antigen presentation
abnormalities, and pathway activation are some of the failure-
related variables that can be identified by tracking multi-omics
alterations in tumors and immune cells before and after therapy.
For example, genomic and transcriptomic data may reveal
mutations in B2-microglobulin (B2M) that lead to antigen
presentation loss, while epigenetic alterations can result in the
downregulation of immune checkpoint targets. Uncovering these
resistance mechanisms supports the rational design of combination
therapies involving immune stimulators, epigenetic modulators, or
metabolic interventions to overcome the limitations of
monotherapy (140, 141). Furthermore, multi-omics technologies
contribute to the development of immune-based stratification
models for patient selection and efficacy prediction. By integrating
tumor mutational burden (TMB), immune cell infiltration levels,
immune gene expression profiles, and metabolic states, such models
can predict a patient’s likelihood of responding to ICIs, thereby
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reducing unnecessary side effects and financial burden. The
combination of multi-dimensional biomarkers also provides tools
for real-time monitoring of treatment response and early detection
of relapse. Lastly, immunometabolic crosstalk has become a
research hotspot. Tumor metabolic reprogramming not only
supports tumor cell survival but also modulates immune cell
function through its metabolites. For instance, enhanced
glycolysis in tumor cells leads to lactate accumulation, which
suppresses the activity of effector T cells and natural killer cells.
Multi-omics analyses help unravel these complex metabolic-
immune networks, offering a scientific foundation for the design
of immunometabolic combination therapies—such as using
metabolic enzyme inhibitors in conjunction with immune
checkpoint inhibitors to enhance antitumor immune responses.
In summary, the integrated application of multi-omics technologies
has deepened our understanding of the tumor immune
microenvironment and provides valuable insights for optimizing
immunotherapy strategies. With continued advancements in data
analysis methods and bioinformatics tools, multi-omics-driven
personalized immunotherapy is expected to significantly improve
treatment response rates and survival outcomes for patients with
advanced cancers.

4 Progress of existing clinical research

In recent years, clinical research integrating multi-omics data to
understand and treat metastatic tumors has made significant strides.
Numerous clinical trials have incorporated genomic, transcriptomic,
proteomic, and metabolomic analyses to stratify patients,
predict therapeutic responses, and identify novel biomarkers for
personalized treatment. For example, tumor mutation burden
(TMB) and specific gene expression profiles have been employed as
predictive biomarkers to select patients likely to benefit from immune
checkpoint inhibitors (ICIs), improving the efficacy of
immunotherapy in metastatic cancers. Clinical trials such as
KEYNOTE-158 and CheckMate-227 have demonstrated the utility
of these biomarkers in guiding patient selection (142, 143).
Additionally, targeted therapies guided by genomic alterations, such
as EGFR mutations in non-small cell lung cancer and HER2
amplifications in breast cancer, have shown improved outcomes in
metastatic settings (144-147). Ongoing studies are expanding the
application of proteomic and metabolomic profiling to uncover
resistance mechanisms and to design combination therapies.
Moreover, integrated multi-omics approaches have been applied in
clinical trials to monitor treatment response dynamically and to
understand immune evasion mechanisms. For instance, the use of
circulating tumor DNA (ctDNA) combined with proteomic markers
enables real-time assessment of tumor evolution and therapeutic
resistance (148, 149). Despite these advances, challenges remain in
translating multi-omics findings into routine clinical practice,
including data standardization, cost, and clinical validation.
Nevertheless, the ongoing clinical research efforts are progressively
bridging these gaps, paving the way for more precise and effective
personalized therapies for patients with metastatic cancers.
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5 Translational potential and clinical
applications

The application of multi-omics technologies in clinical
oncology is gradually maturing, significantly advancing the
development of precision medicine. Large public databases such
as The Cancer Genome Atlas (TCGA) and the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) integrate genomic,
transcriptomic, proteomic, and clinical data from thousands of
tumor samples, providing invaluable resources for researchers
and clinicians. These databases not only reveal the molecular
heterogeneity of various cancers but also aid in identifying
potential therapeutic targets and biomarkers. With continuous
advancements in omics technologies, an increasing number of
clinical trials have begun incorporating multi-omics data into
patient stratification and therapeutic response prediction. For
example, some clinical trials select patients eligible for immune
checkpoint inhibitor therapy based on tumor mutation burden
(TMB), immune gene expression profiles, or specific metabolic
markers. Such omics-based precision stratification not only
improves treatment efficacy but also reduces adverse effects and
the economic burden associated with ineffective therapies.
However, several challenges remain in the clinical application of
multi-omics. First, data standardization is an urgent issue.
Differences in sequencing platforms, sample processing
workflows, and data analysis methods across laboratories
compromise data consistency and reproducibility. In order to
achieve interoperability across platforms and centers, it is
essential to establish uniform bioinformatics pipelines and
common quality control techniques. Second, there are substantial
challenges to clinical interpretation due to the complexity and high
dimensionality of omics data. Single indicators fall short in properly
capturing the complex networks formed by interactions across
many omics layers in tumor tissues, which contain heterogeneous
cell types. Deep data mining and pattern recognition made possible
by AI and ML are essential components of the multidisciplinary
effort needed to convert these complicated datasets into useful
biomarkers or tools for clinical decision-making. Also, omics
signatures must be validated in clinical settings. Lacking large-
scale, multi-center clinical validation, many omics results are still in
the preliminary discovery phase. The clinical application of omics
biomarkers requires rigorous validation to ensure sensitivity,
specificity, and predictive accuracy. Furthermore, transforming
complex multi-omics signatures into simple, rapid, and cost-
effective clinical assays is an important direction for broader
implementation. Finally, ethical and privacy concerns must not be
overlooked. Strict adherence to rules and regulations regarding data
storage, distribution, and use is essential when dealing with omics
data because of the large amounts of personally identifiable genetic
information that is typically involved. In order to advance precision
oncology, it is crucial to protect patient privacy while encouraging
appropriate data consumption. Multi-omics analyses have
identified numerous potential biomarkers and therapeutic targets
in the metastatic TME, providing valuable insights into tumor
progression and the development of precision therapies (150).
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However, the functional validation of the majority of these
candidate molecules remains insufficient, limiting their clinical
translational potential. In vitro cell lines and three-dimensional
organoid models, in vivo animal models such as patient-derived
xenografts (PDX), and clinical cohort association studies are key
approaches for validating multi-omics discoveries. Some studies
have employed in vitro functional assays to verify the roles of
candidate molecules in cell proliferation, migration, and immune
regulation (151, 152). Moreover, PDX models are widely used to
recapitulate the biological characteristics of metastatic tumors,
providing important evidence for the in vivo functions of
molecular targets (153, 154). Clinical cohort analyses, based on
large-scale sample databases, have validated the prognostic value
and treatment response associations of these candidate molecules.
Overall, there is great potential for multi-omics technologies in
clinical oncology. However, there are several problems that need to
be addressed during translation, including issues with
standardization, data interpretation, clinical validation, and
ethical security. Precision diagnosis and therapy made possible by
multi-omics will bring in a new age in cancer treatment, thanks to
ongoing interdisciplinary collaboration, technical progress, and the
creation of regulatory frameworks.

6 Conclusion and future perspectives

The rapid development of multi-omics technologies is profoundly
reshaping our understanding of the tumor metastatic
microenvironment and influencing therapeutic strategies. The
intricate molecular pathways and immunological regulatory
networks inside metastatic tumor microenvironments can be better
understood by combining information from the genome, epigenome,
transcriptome, proteome, and metabolome. Not only does this
improve our knowledge of tumor biology, but it also lays the
groundwork for developing more targeted, efficient, and
individualized methods of treatment. In the field of immunotherapy
in particular, the integration of multi-omics data facilitates decoding of
immune evasion mechanisms, immune cell dynamics, and
interactions with tumor cells, greatly promoting the discovery of
novel immunotherapeutic targets and combination strategies. Future
research should focus on several key areas: First, developing more
efficient and intelligent tools for multi-omics data integration and
analysis is essential. Given the vast volume and structural complexity
of omics data, leveraging cutting-edge technologies such as machine
learning and artificial intelligence to achieve efficient data integration,
deep mining, and dynamic model construction is foundational to
advancing the field. Establishing unified platforms capable of handling
multi-dimensional data will enable the full exploitation of
complementary information across omics layers and facilitate the
discovery of clinically meaningful biomarkers and therapeutic targets.
Second, systematic clinical validation of multi-omics biomarkers is a
core component of translational medicine. Future efforts must involve
more large-scale, multi-center clinical trials to rigorously evaluate
biomarker stability, sensitivity, and predictive power. Moreover,
emphasis should be placed on translating omics discoveries into
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clinically accessible, cost-effective diagnostic tools to enable
widespread application in real-world healthcare settings and fulfill
the promise of precision medicine. Third, promoting interdisciplinary
and inter-institutional collaboration is essential to accelerating the
clinical translation of multi-omics technologies. The heterogeneity and
complexity of tumors mean that no single institution can address all
key issues independently. Multi-center cooperation not only provides
access to diverse sample resources but also facilitates the unification of
research standards and methodologies, enhancing the generalizability
and credibility of findings. In addition, establishing open-access multi-
omics databases and bioinformatics platforms to foster data sharing
and collaboration will significantly drive innovation and development
in precision oncology. Finally, ethical and privacy concerns remain
critical. To strike a compromise between protecting patients” privacy
and making responsible use of data, strong data protection systems are
required to accommodate the massive amounts of multi-omics data
being created and used. For omics technologies to be used consistently
and in a way that is acceptable to society, lawmakers, clinical
researchers, and tech developers must collaborate to establish rules
and recommendations based on solid science. In conclusion, multi-
omics technologies offer a new perspective and pathway for
investigating metastatic tumor microenvironments and advancing
precision therapies. As analytical tools improve, clinical validation
progresses, and collaborative efforts expand, multi-omics will play an
increasingly central role in cancer immunotherapy and targeted
therapy. This advancement promises to usher in a new era of more
precise, effective, and personalized cancer treatment, offering new
hope and improved quality of life for patients with advanced-
stage cancer.
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