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Background: Non-small cell lung cancer (NSCLC) was a major cause of cancer-

related mortality globally. Despite advancements in immunotherapy and targeted

therapies, clinical outcomeswere still limited by tumor heterogeneity and treatment

resistance. The transcription factor (TF) FOS, a key component of the AP-1 complex,

was linked to tumor progression and therapy resistance in various cancers, but its

precise mechanisms remained unclear, and its role in lung adenocarcinoma (LUAD)

was unknown. We investigated the tumor microenvironment (TME) of LUAD using

single-cell RNA sequencing (scRNA-seq) to identify potential therapeutic

vulnerabilities and FOS-driven mechanisms.

Methods: We identified fourteen cell types by analyzing scRNA-seq data from

LUAD samples (GSE164789) using Seurat (v4.4.0) and Harmony for batch

correction. InferCNV was utilized to characterize the tumor cell subtypes after

they were clustered using marker genes. CytoTRACE and Monocle were used to

create pseudotime trajectories in order to map differentiation states. CellChat

revealed intercellular communication networks, while SCENIC identified TF

regulatory modules. The CCK-8, Edu, Transwell, and wound healing assays

showed that FOS knockdown functionally validated A549 and NCI-H1975 cells.

Furthermore, a prognostic model was developed.

Results: We discovered that invasive LUAD was dominated by a highly stem-like

C0 MAFF+ tumor cell subtype that produced chemokines and activated lipid

metabolism. These cells stimulated immunosuppression and tumor-associated

macrophage (TAM) differentiation by interacting with macrophages via MIF-

(CD74+CD44) signaling. Experiments using FOS knockdown demonstrated its

role in maintaining invasion, migration, and proliferation. Using the MTRS model,

patients were categorized into high- and low-risk cohorts, high-risk patients

exhibited unique drug sensitivities. Immunoprofile analysis revealed higher M1
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macrophages in high-risk patients, suggesting that FOS inhibition could

repolarize TAMs and enhance immunotherapies.

Conclusion: Our studies show that FOS is a main regulator of C0 MAFF+ TCs in

LUAD, polarizing macrophages via MIF and rewiring lipid metabolism to support

cancer. The MTRS model offers clinical value for risk assessment even if FOS

inhibition shows promise as a therapeutic approach to raise immunotherapy

efficacy. Targeting the FOS could cause TME immunosuppression to be

disrupted, thus LUAD presents a fresh precision oncology approach.
KEYWORDS

lung adenocarcinoma, MAFF, tumor microenvironment, FOS, immunotherapy,
drug sensitivity
Introduction

Across the world, the incidence of lung cancer gradually

climbed and it ultimately became the foremost reason for cancer

fatalities. In addition, smoking served as a major factor that

heightened the risk of developing lung cancer. Chronic

pulmonary diseases, pulmonary infections, occupational and

environmental exposures, and lifestyle factors were all considered

non-tobacco risk factors (1). Roughly one-third to one-half of lung

cancer cases experienced dyspnea, which could have resulted from

direct malignancy in the airways or from involvement of lung

parenchyma or pleura. Patients were also at risk of developing

pulmonary embolism, pneumothorax, pleural effusion, and/or

pericardial effusion. Other less frequent symptoms included

hoarseness brought on by involvement of the recurrent laryngeal

nerve and chest pain from local tumor infiltration (2).

Lung adenocarcinoma (LUAD) was the most prevalent

histological subtype of non-small cell lung cancer (NSCLC),

which accounted for about 85% of patient diagnoses (3). In

LUAD, it was further categorized into adenocarcinoma in situ

(AIS), minimally invasive adenocarcinoma (MIA) and invasive

adenocarcinoma (IAC). For AIS or MIA, it was defined that if

complete resection was performed, these patients could have a

disease-specific survival rate of close to 100% (4). Furthermore, in

IAC, a strong interaction induced by TGF-b signaling between

cancer cells and the tumor microenvironment (TME) was

identified, which was not observed in AIS and MIA, indicating

that IAC represented a more malignant phenotype (5).

Surgical treatment was most suitable for the initial phase of lung

cancer and was regarded as the best treatment approach (6).

Nevertheless, the majority of lung cancer patients were generally

detected only when the disease had already advanced to a later

stage, which may be linked to a poor prognosis. Clinicians also faced

difficulties due to treatment options and prognostic evaluation

limitations (7). The substantial problem of drug resistance,

whether in low-toxicity targeted therapies or conventional

chemotherapy, was one of the causes of the high death rate linked
02
to NSCLC (8). The EGFR was found to be a major gene implicated

in lung cancer, since mutations were detected in more than 40% of

adenocarcinomas. Three drugs were available for the treatment of

EGFR-mutant cancers. In 2007, researchers discovered a second

driver gene that was present in 5-7% of adenocarcinomas. This

gene, known as ALK, encoded a poorly understood signaling

protein that occasionally underwent gene rearrangements, causing

persistent activation of the protein. However, the benefits of these

targeted therapies were often temporary, with most tumors

developing resistance after approximately one year of remission

(9). Furthermore, because early-stage LUAD was usually

asymptomatic, the diagnosis was frequently delayed, resulting in

late-stage diagnoses for the majority of patients (10). Given that a

65% survival rate over five years, only 30% of patients received a

stage I cancer diagnosis, in patients with advanced stages, this rate

dropped to 5% or 6% (11). The overall survival rate for LUAD

patients remained low despite improvements in surgical resection,

chemotherapy, radiotherapy, and molecular targeted therapy (12).

Immunotherapy, including LUAD, has emerged as a recognized

cancer treatment approach in recent years (13). However, because

immunotherapy suppressed immune activity in specific TME and

caused resistance and adverse reactions, merely a minor fraction of

the diseased gained benefits, with individual differences and tumor

heterogeneity limiting its effectiveness (14). Due to the

heterogeneity of LUAD, developing effective personalized

therapies continued to pose a significant challenge (15).

Since FOS was identified among the first viral genes, it encoded

a leucine zipper protein that could associate with JUN family

members by dimerization. Through this process, the AP-1 TF

complex was formed, which in turn had a significant impact on

tumor cell growth, differentiation, survival, and how cells responded

to DNA damage (16, 17). This AP-1 complex promoted tumor

development by directly transcriptionally repressing the p53 served

as a tumor suppressor (18). Existing studies indicated that FOS was

potentially utilized as a core genetic target in the therapeutic

approach to LUAD (19). FOS was shown to disrupt cell polarity

and induce epithelial-mesenchymal transition (EMT) in breast
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cancer. Consequently, this process enhanced the ability of breast

cancer cells to invade and metastasize (20). Within tongue

carcinoma, more FOS was bound and expressed the more serious

the tongue lesions were (21). Given its proven functions in other

malignancies, FOSmay also be essential for the evolution of LUAD.

A potent technique for researching cell biology at a never-before-

seen level of resolution is single-cell RNA sequencing (scRNA-seq). It

allowed scientists not only to analyze the heterogeneity of cells but also

to detect rare, significant cell types while simultaneously exploring the

interactions and communication occurring between different cells. Its

wide range of uses included both fundamental and applied research

fields (22). In order to clarify the cellular heterogeneity and features of

the TME, we carried out a scRNA-seq investigation on LUAD cells.

New therapeutic ideas developed from this research contributed to

improve patient survival rates and prognosis. This investigation aims

at investigating the function of FOS in LUAD with an eye toward the

requirement of looking at the molecular pathways supporting

treatment resistance and tailored therapeutic methods.
Materials and methods

Origination of data

To investigate the TME of LUAD, we analyzed scRNA-seq data (23,

24) obtained from the GEO database (https://www.ncbi.nlm.nih.gov/

geo/) (GSE164789). In addition to analyzing gene expression

patterns, the study combined clinical information and mutation

data, which together provided a more comprehensive foundation

for the analysis (25). Since the data were publicly accessible, ethical

approval was not required.
Processed and visualized raw data

The Seurat package (v4.4.0), along with R software (v4.3.3), was

employed to process the raw gene expression data, thereby

facilitating robust analysis (26). The DoubletFinder package

(v2.0.3) was first employed to effectively eliminate possible

doublet cells while also filtering out cells of low quality. To

eliminate low-quality cells, we applied stringent filtering criteria:

cells with nFeature (number of detected genes) outside the range of

300-6,000 or nCount (total number of counts) beyond 500-75,000

were excluded. Eliminated also were cells with mitochondrial gene

expression more than 25% or red blood cell gene expression more

than 5%.

The “Normalize Data” function in Seurat helped us to normalize

the data, subsequently, the “Find Variable Features” tool found 2,000

extremely highly variable genes (27). The “ScaleData” tool helped to

further standardize gene expression counts so suited for principal

component analysis. Harmony R package (v1.2.0) lower sample batch

effects (28). Moreover, the “Cell Cycle Scoring” tool indicated cell cycle

phases to ensure appropriate characterizing of cellular states (29). For
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dimensionality reduction, clustering analyses were performed and

gene expression patterns were visualized using UMAP (30, 31).
Classification of cell subtypes

Cell subtypes were determined by performing clustering

analysis in Seurat, utilizing the “FindNeighbors” and subsequently

the “FindClusters” functions (32, 33). The diverse cell subtypes

within the TME were accurately classified because clusters were

annotated according to the average expression levels of established

marker genes.
Assessment of cell stemness

Stemness of cells was evaluated by computing gene set activity

scores from scRNA-seq data using the AUCell method. Gene sets

might be ranked based on degree of enrichment inside individual

cells. This approach defined the variations in tumor cell subgroups

and their stemness characteristics.
Trajectory analysis of tumor cell subtypes

We used CytoTRACE, a computational tool for predicting

developmental potential, to esitmate the differentiation status of

tumor cell subtypes (34). Pseudotime trajectories were created from

Monocle (v2.24.1), while lineage architecture was deduced from

Slingshot (v2.8.0), which used a cluster-based minimal spanning

tree (MST) (35). Smooth trajectory curves produced by the

“getLineages” and “getCurves” let differentiation paths and

branching events be seen.
Enrichment studies of cellular subtypes

Using “FindAllMarkers,” differentially expressed genes (DEGs)

were found in Seurat. We investigated their biological relevance

using Genomic Variant Analysis (GSVA) and Gene Set Enrichment

Analysis (GSEA). Kyoto Encyclopedia of Genes and Genomes

(KEGG), Gene Ontology (GO), and ClusterProfiler (v4.8.2)

derived functional annotations (36, 37). Using an adjusted P-

value threshold of 0.05, we detected a range of GO terms that

showed significant enrichment, thereby helping to elucidate the

regulatory processes associated with various tumor cell subtypes

(38, 39).
Analysis of interactions among cells

The CellChat R package (v1.6.1) was used to analyze cellular

communications within the TME (40). The “IdentifyCommunication
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Patterns” function measured discrete communication patterns, and the

variations in the intensity of interactions between cells were analyzed

using the “netVisual diffInteraction” (41). This analysis revealed key

signaling pathways and ligand-receptor pairs mediating cellular

crosstalk in LUAD. To visually examine the signals that enter and

exit every cell, we utilized scatter plots, heatmaps, and a range of other

visualization techniques. Moreover, we considered associations among

different cell types to be meaningful when the P value was less

than 0.05.
Single-cell regulatory network inference
and clustering investigation

We built clusters of TCs and single-cell regulatory networks

using Python (v3.9.19) and the pySCENIC library (v0.12.1) (42).

Using data on rankings of human gene motif from (https://

resources.aertslab.org/cistarget/), we determined the top five TFs

displaying the most notable expression changes.
Established and assessed a prognostic
prediction model

The central goal of this investigation was to determine how

effectively specific genes associated with various LUAD subtypes

could predict patient survival outcomes. After identifying the most

significant prognostic genes, we demonstrated that they served as

strong predictors for constructing reliable prognostic models (43).

This identification process was carried out through both univariate

and multivariate Cox proportional hazards analyses (44).

Thereafter, we employed a risk evaluation technique, in which the

final risk value was obtained by adding up the multiplied values of

gene expression amounts and their matching coefficients:

Risk score =on
i Xi� Yi. Furthermore, we derived optimal cut-

off values using the “surv_cutpoint” function, which enabled a

comparative analysis of prognostic differences among patient

subgroups. Survival analysis was subsequently conducted by

means of the “Survival” package in R (v4.3.3), and survival curves

were also constructed using the “ggsurvplot” function so as to

examine the predictive accuracy of our risk model (45). In addition,

we assessed the model’s reliability by constructing ROC curves (46)

with the package of “timeROC” (v0.4.0), thus offering a thorough

assessment of both the model’s accuracy and its calibration.
Analysis of immune microenvironment

To comprehensively analyze the immune landscape, we first

used the CIBERSORT R software package (v0.1.0) to estimate

immune cell scores for each patient (47, 48). Subsequently, we

investigated the infiltration of immune cells in detail and also

evaluated the differential expression of immune checkpoint-

related genes (49). We further examined associations among risk

scores, immune cell populations, and genes included in the model.
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Additionally, we made use of the Tumor Immune Dysfunction and

Rejection (TIDE) platform (http://tide.dfci.harvard.edu) to predict

patient responses to tumor immunotherapy.
Identification of malignant cells by
inferCNV

The inferCNV R software package (v1.16.0, https://github.com/

broadinstitute/inferCNV) served as our primary tool for CNV

inference, enabling us to characterize the CNV patterns within

multiple cell subtypes using the inferCNV algorithm. We assessed

both relative gene expression and chromosome location data to

infer CNV status across individual cells (50).
Analysis of drug sensitivity

To strengthen the clinical significance of our results regarding

drug applications, we evaluated the sensitivity of multiple agents.

Specifically, we employed the “pRRophetic” package (v0.5) to

estimate the half-maximal inhibitory concentration (IC50) for

every individual case and subsequently compared drug

sensitivities across the high-risk and low-risk groups.
Cellular culture

The A549 cell strain was cultured in F-12K medium under

standardized conditions, which included a temperature of 37 °C, 5%

CO2, and 95% humidity. The medium was fortified by

incorporating 10% fetal calf serum along with 1% antimicrobials.

Likewise, the NCI-H1975 cell strains were routinely preserved in

RPMI-1640 medium with similar environmental conditions, and

this medium also contained 10% fetal calf serum as well as 1%

antimicrobials to ensure the cells attained their best growth rates.
Transfection of the cells

A decrease in FOS expression was observed, which was partly a

result of RNA synthesized by GenePharma (Suzhou, China). After

introducing the FOS-targeting siRNAs (siFOS-1 and siFOS-2)

combined with a control siRNA (si-NC), cells were distributed into

6- well chambers at a coverage level of 50%. Transfection was carried

out in accordance with the instructions from the manufacturer,

utilizing Lipofectamine 3000RNAiMAX (Invitrogen, USA). Each

siRNA (RIbbio, China) was individually introduced into the cells.
Western blotting

Following achievement of 70% confluence in transfected cells,

lysis was conducted with RIPA buffer. The lysates underwent

centrifugation at 12,000 rpm for 15 minutes to clarify the extracts
frontiersin.org
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before being processed by SDS-PAGE. The separated proteins were

then transferred onto a PVDF membrane, which was blocked at

room temperature for 1.5 hours with 5% calf serum albumin. The

membrane underwent incubation throughout the night at 4°C with

an anti-FOS antibody, followed by a one-hour incubation with a

secondary antibody. Finally, the presence of FOS protein was

revealed using a chemiluminescent Western blot substrate.
Quantitative real-time polymerase chain
reaction

To extract RNA, cell lysis was achieved with Trizol reagent. All

water sources, laboratory instruments, and workspaces were

maintained RNase-free throughout the protocol to ensure RNA

stability. Once RNA was isolated, the PrimeScript™ reagent kit was

used for reverse transcription. Finally, quantitative real-time PCR

was conducted, using SYBR Green master mix as the fluorescent

indicator for the detection of amplification.
Assay of the viability of the cells

To evaluate the survival of A549 and NCI-H1975 cells following

transfection, the Cell Counting Kit-8 (CCK-8) method was applied

(51). The cells were plated into 96-well chambers at 5 × 10³ cells per

well and, following this, were left to adhere for 24 hours. Afterwards,

every well gained 10 μL of CCK-8 reagent (A311-01, Vazyme),

followed by an additional 2-hour incubation at 37°C in the absence

of light. Light absorption at 450 nm was recorded each day from the

first to the fourth day by means of a microtiter reader (A33978,

Thermo). The collected light density data were averaged and graphed

to illustrate changes in cell viability over the time course.
Experiments of 5-Ethynyl-2’-deoxyuridine
proliferation

After the transfection procedure, A549 and NCI-H1975 cells were

plated into 6-well chambers at 5 × 10³ cells per well. Cells were allowed

to incubate for 24 hours at ambient temperature before adding the EdU

working solution for another 2-hour period. Being rinsed two times

with PBS, the cells were fixed in 4% paraformaldehyde for a duration of

15 minutes. After fixation, permeabilization was performed, and the

cells were quenched for 15 minutes in a solution containing 0.5%

Triton X-100 and 2 mg/ml glycine. Following this, 1 ml of Apollo

solution and 1 ml of Hoechst stain were applied, and the cells were

incubated for 30 minutes. Finally, fluorescence microscopy was

employed at the end to image the cells and evaluate their proliferation.
Transwell assay

Initially, cells were deprived of serum for 24 hours by incubating

them in a serum-free medium. Following this, the cellular
Frontiers in Immunology 05
suspension was blended with Matrigel (BD Biosciences, USA) and

the upper well of the Costar plate was loaded with the cell

suspension, while the lower well received serum-containing

medium to form a chemotactic gradient. Then cells were allowed

to migrate and invade in a constant-temperature apparatus for a

duration of 48 hours. Afterwards, 4% paraformaldehyde solution

served to fix the cells, and crystal violet staining was employed to

evaluate their invasion capacity visually.
Wound healing assay

Cells with stable transfection were cultured in 6- well chambers

and incubated at 37°C within a moist environment supplemented

with 5% CO2 until they became confluent. Sterile 200 μL pipette tips

were then used to create straight scratches in the cell monolayer.

The wells were carefully washed with PBS to remove floating cells

and debris. Following this, the cells were incubated with serum-free

medium to facilitate migration. Photographs were captured at both

the beginning (0 hours) and after 48 hours, and scratch widths were

measured using Image-J for subsequent analysis.
Statistical procedures

The datasets were subjected to analysis using R (v4.3.3) and

Python (v3.9.19). For comparisons between groups, Wilcoxon’s test

and Pearson’s correlation coefficient were applied (52). We

interpreted the significance at the statistical level following the

criteria listed below: *P< 0.05, **P< 0.01, ***P< 0.001, and ****P<

0.0001, “ns” was used to denote results without statistical

significance. These analytical methods and cutoffs were adopted

to confirm the robustness of the findings.
Results

Single cell landscape of LUAD

To explore the ECs, we analyzed their CNVs using inferCNV

with ECs as a reference (Supplementary Figure 1). We examined the

obtained dataset to explore the single-cell profile present in the

LUAD environment. Figure 1 illustrated our procedure. By

examining five localized adenocarcinomas and twenty-six

infiltrating adenocarcinomas from GSE164789, we employed

dimensionality reduction clustering with UMAP plots. This

analysis initially exhibited how thirty-one individual samples were

distributed and subsequently identified fourteen cell types: T and

NK cells, epithelial cells (EPCs), macrophages, plasma cells,

mesenchymal cells (MCs), endothelial cells (ECs), monocytes,

fibroblasts, B cells, conventional dendritic cells type 2 (cDC2),

proliferating cells, conventional dendritic cells type 1 (cDC1),

myofibroblasts, and plasmacytoid dendritic cells (pDCs).

Furthermore, we presented the distribution of cells within three

groups (AIS, IAC, MIA) and across three different phases of the cell
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cycle (G1, G2/M, S) (Figure 2A). We examined the expression

profiles of nCount RNA, nFeature RNA, cell stemness AUC, and

pMT among the fourteen cell types and three different groups

(Figures 2B, C). Additionally, Figure 2D illustrated the cellular

distribution of the dataset. Volcano plots revealed the presence of

different genes among these cell types (Figure 2E). In EPCs,

TCP11L2, POM121C, HYAL2, HBP1, and SYNE2 were found to

be upregulated, while BCOR, LHFPL6, IKZF2, SRPK1, and SRSF8

exhibited downregulation. In macrophages, EIF5AL1, ZNF468,

AGO1, USP25, and TMEM165 showed upregulation, whereas

UPRT, PDHX, MTFR1L, TRIOBP, and TMEM141 showed

downregulation. We also provided the top five marker genes

corresponding to the fourteen cell types, as depicted in Figure 2F.

Through investigating the ratios of individual cell types in the three

groups alongside cell cycle data, we found that each cell type

distributed across separate phases within the cell cycle, with EPCs

and macrophages constituting the main components of the IAC

group, predominantly located in the differentiated G1

phase (Figure 2G).

We then conducted functional enrichment analysis. The

analysis suggested that IAC group displayed increased activity in

pathways connected to the regulation of apoptotic signaling,

negative regulation of apoptotic signaling, entry into the host,

viral life cycle, and biological processes involved in symbiotic

interaction. EPCs indicated enrichment within pathways related
Frontiers in Immunology 06
to positive regulation of cell-cell adhesion and antigen processing

and presentation, while macrophages were enriched in pathways

associated with positive regulation of leukocyte cell-cell adhesion,

antigen processing and presentation of peptide antigens via MHC

class II, peptide antigen assembly with MHC class II protein

complex, assembly of MHC class II protein complexes, and

antigen processing and presentation of exogenous antigens

(Figure 2H). Furthermore, EPCs demonstrated upregulation in

pathways related to chemical homeostasis within tissues and

surfactant homeostasis, whereas macrophages displayed

significant upregulation in antigen processing and presentation of

peptide antigens and antigen processing and presentation of peptide

antigens via MHC class II (Figure 2I).
Visualization analysis of LUAD tumor cell
subtypes

The involvement of the TME in tumorigenesis became widely

recognized, as it harbored TCs that, through their interactions with

other cells via the circulatory and lymphatic networks, played an

essential part in both the emergence and advancement of cancer

(53). We characterized the significance of TCs in the TME. Four

subtypes of LUAD TCs were classified according to the expression

of marker genes: C0MAFF+ TCs, C1 GSTA1+ TCs, C2 GOLGA8B+
FIGURE 1

Graphical abstract. Workflow demonstrated LUAD single-cell RNA sequencing analysis of the GSE 164789 dataset.
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FIGURE 2

Single-cell profiling of LUAD. (A) The UMAP plots mapped out the distribution of thirty-one samples, and additionally portrayed the allocation of
fourteen unique cell types—including T and NK cells, EPCs, Macrophages, Plasma cells, MCs, ECs, Monocytes, Fibroblasts, B cells, cDC2, Proliferating
cells, cDC1, Myofibroblasts, and pDCs—across the total cell population. In addition, these plots provided a visual of the group distributions and
various cell cycle phases (from left to right). (B) The bar graphs represented the levels of nCount RNA, nFeature RNA, cell stemness AUC, and pMT
for each of the fourteen cell types. (C) Bar graphs were utilized to display the expression analyses of three groups in terms of nCount RNA, nFeature
RNA, cell stemness AUC, and pMT. (D) The UMAP plots depicted the distribution of nCount RNA, nFeature RNA, cell stemness AUC, and pMT, with
each group identified by different symbols. (E) Volcano plots were used to present the five most significantly upregulated and downregulated genes
across the fourteen distinct cell types. (F) The heatmap presented the distribution of the top five marker gene expressions among diverse cell
populations. (G) The distribution of cell types across various phases and groups was visualized using stacked bar graphs. (H) Enrichment analysis was
visualized for EPCs, Macrophages, and the IAC group. (I) GSEA enrichment analysis revealed the upregulated pathways in EPCs and Macrophages.
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TC, and C3 CAV1+ TCs, and demonstrated the nCount RNA,

nFeature RNA, cell stemness AUC, and pMT for each subtype

(Figure 3A). Subsequently, we examined the primary distribution of

TCs across different groups using UMAP plots (Figure 3B). Bubble

plots illustrated the marker genes associated with various groups

and tumor cell subtypes (Figures 3C, D). In MIA, we found that

ATP5E, RPL11, SPINK5, MALAT1, and XIST were highly

expressed. In AIS, MALAT1, WSB1, VMP1, EMP2, and NEAT1

exhibited high expression levels. In IAC, ATF3, AREG, C16orf89,

ATP5E, and RPL11 showed elevated expression. The C0 subtype

exhibited high expression of CXCL8, CXCL2, RRAD, ATF3, and

AREG. The C1 subtype showed elevated levels of RPL11, ATP5E,

GSTA1, C16orf89, and SPINK5. The C2 subtype had increased

expression of NEAT1, MALAT1, VMP1, WSB1, and XIST. The C3

subtype displayed high expression of EMP2, CLIC5, CAV2, CAV1,

and AGER. Figure 3E visualized these different genes. We found

that JUN, ATF3, IRF1, IER5, andMAFF were upregulated in the C0

subtype. RPS1, RPL11, RPS14, RPS18, and RPL37 were upregulated

in the C1 subtype. MALAT1, NEAT1, WSB1, MT-ND3, and VMP1

showed increased expression in the C2 subtype. CAV1, CAV2,

AGER, EMP2, and NCKAP5 were upregulated in the C3 subtype.

We subsequently analyzed how the top five marker genes were

differentially expressed (Figure 3F).

Moreover, ratios within separate groups, phases of development,

and specific cell subtypes were determined, discovering that the C0

subtype represented the highest proportion within the IAC,

accounting for up to 47.2% (Figures 3G-I). Therefore, the

heterogeneity of the IAC group might be related to the C0 subtype.

Next, we presented the results of nCount RNA, nFeature RNA,

and cell stemness AUC for different subtypes using bar graphs

(Figure 3J). The findings suggested that, in these aspects, C0

demonstrated elevated levels of expression in these metrics

relative to the other subtypes. Consequently, we inferred that the

C0 subtype likely corresponded to a higher degree of malignancy.
Analysis of enrichment in LUAD TCs

To explore the biological functions of TCs in LUAD, we

conducted GSEA analysis across different subtypes. We observed

that the C0 subtype was primarily enriched in the response to lipid

(Figure 3K). Subsequently, we analyzed the biological processes

associated with the four subtypes and the C0 subtype was primarily

identified as being enriched in fat cell differentiation, the C1 subtype

in cytoplasmic translation, the C2 subtype in regulation of RNA

splicing, and the C3 subtype in cell-substrate adhesion (Figure 3L).

With regard to the biological processes, we found that the C0

subtype was associated with differentiation (Figure 3M). While

showing considerable negative regulation in pathways linked to

mitochondrial translation and spliceosomal complex assembly, the

GSEA results also revealed that the C0 subtype displayed a

significant positive regulation in pathways related with response

to lipopolysaccharide and response to molecules of bacterial origin

(Figure 3N). C0 subtype linked responses to lipid and molecules of

bacterial origin, fat cell differentiation, and hemopoiesis. These
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results greatly affected the viability and growth of TCs, so

facilitating the advancement of LUAD.
Pseudotime analysis revealed the
heterogeneity of stemness and
developmental stages among LUAD TCs
subtypes

In our investigation, we examined the expression of genes

connected to stemness in the different tumor cell subtypes and

determined that the expression levels of ATF3, CXCL2, RRAD,

AREG, and CXCL8 were significantly higher in the C0 subtype

(Figure 4A). UMAP visualization revealed how these genes were

distributed (Figure 4B). The bar graphs indicated that the

expression profiles of ATF3, CXCL2, RRAD, AREG, and CXCL8

in the C0 subtype were expressed at greater levels than in the

remaining tumor cell subtypes (Figure 4C).

In seeking to understand how LUAD tumor cell subtypes arose

and developed, we investigated both their lineage relationships and

differentiation states. In Figures 4D-G, we analyzed the results of

trajectory and CytoTRACE. CytoTRACE analysis indicated that C0

MAFF+ TCs exhibited a higher degree of stemness (Figure 4E).

Stemness was closely related to cellular differentiation, higher levels

of stemness correspond to lower degrees of differentiation, and TCs in

the latter stages of differentiation often possessed greater stemness.

In order to define how the tumor cell subtypes differentiated, we

utilized Slingshot analysis studied their developmental trajectories,

and further presented the results through UMAP visualization. We

first presented two main differentiation trajectories for the four

tumor cell subtypes: lineage 1: C2→C1→C0 and lineage 2:

C2→C1→C3. The differences between the two trajectories were

primarily observed in later stages, where C2 GOLGA8B+ TCs were

located at the initial stages of differentiation in both lineage 1 and

lineage 2, and C0 MAFF+ TCs were found at the final stage of

lineage 1 (Figure 4H). Additionally, we analyzed the dynamic trends

of marker gene expression among the four subtypes, the high

expression of MAFF+ was predominantly observed at later stages

(Figure 4I), further validating our Monocle analysis findings.

We ultimately conducted analysis of GO-BP enrichment on the

subtypes to verify the biological processes pertinent to both lineages

(Figure 4J). The dynamic timing approach demonstrated how gene

expression in TCs shifted along the two pseudotime trajectories.
The analysis of intercellular
communication along with visualization of
the MIF signaling pathway

In order to better comprehend the intricacies of cellular

responses, we sought to investigate the networks and intercellular

connections that underpin ligand-receptor signaling, which allowed

us to depict the interactions among different cell types. By

employing analysis of CellChat, we established a comprehensive

network of cell-cell interactions covering the majority of cell types,
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FIGURE 3

MAFF+ TCs specifically expressed in malignant EPCs and enrichment analysis in TCs of LUAD. (A) The arrangement of four distinct tumor cell subtypes in
LUAD was shown using a circular plot, with boundary curves outlining each subtype. The total cell numbers within each class were represented on the
outer axis using a logarithmic scale. UMAP plots placed at each of the four corners, moving clockwise from the top left, visualized the distribution of
nCount RNA, nFeature RNA, pMT, and cell stemness AUC among all TCs (B) The UMAP plots also revealed how TCs were distributed among AIS, IAC,
and MIA. (C) The bubble plot displayed the marker gene expression patterns within three groups. (D) The bubble plot presented the marker gene profiles
in the four tumor cell subtypes, with bubble diameter corresponding to the percentage of cells with expression and color reflecting the normalized
measurement. (E) Volcano plots displayed the most significantly upregulated and downregulated genes in each of the four subtypes. (F) For each
subtype, the mean values of the top five differentially expressed genes were determined were also depicted using bubble plots, where bubble size and
color denoted expression percentage and data normalization, respectively. (G) Bar graphs visualized the percentages of different groups within each
tumor cell subtype. (H) Stacked bar graphs were also used to visualize the allocation of these subtypes within different phases and groups. (I) The group
preference for each subtype was evaluated with the Ro/e score. (J) Bar graphs presented the expression levels of nCount RNA, nFeature RNA, and cell
stemness AUC across the subtypes. (K) The GSEA results for each subtype were visualized in a bubble plot. (L) Bar graphs provided insights into
biological processes across the subtypes. (M) Biological processes associated with each subtype were shown via word cloud graphs. (N) GSEA was used
to analyze both positively and negatively enriched pathways in C0 MAFF+ TCs.
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FIGURE 4

Trajectory analysis on the different tumor cell subtypes. (A) Z-scores for stemness-related marker genes across the four subtypes were displayed in a
heatmap. (B) UMAP plots further mapped the distribution of five cell stemness genes among all TCs. (C) Bar graphs illustrated the expression profiles
of these five pivotal genes across the four subtypes. (D) Left panel depicted the predicted order distribution within TCs as determined by
CytoTRACE, with color gradients reflecting the degree of cell stemness. Right panel illustrated the allocation of tumor cell subtypes, each assigned a
specific color. (E) To rank the stemness among tumor cell subtypes, CytoTRACE analysis was implemented. (F) A trajectory analysis was then
conducted to map the developmental progression of tumor cell subtypes. (G) The differentiation trajectory was color-coded according to
pseudotime (left), state (middle), and subtype (right), thereby offering comprehensive insight. (H) UMAP plot revealed the trajectory of the
differentiation among the four identified subtypes, with C0 MAFF+ TCs positioned at the endpoint of lineage 1, solid lines traced the trajectories, and
arrows denoted the progression from naive to mature. (I) Dynamic trend plots revealed the fluctuations in expression for the four marker genes
analyzed. (J) Heatmaps displayed the GO enrichment pathways active during tumor cell differentiation, and the top bar graphs annotated both
pseudotime and tumor cell subtype. Ridgeline plots outlined the density of subtype distribution across pseudotime, while trajectory plots presented
the variation of S.Score (red) and G2/M. Score (blue) as pseudotime progressed.
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such as C0MAFF+ TCs, C1 GSTA1+ TCs, C2 GOLGA8B+ TCs, C3

CAV1+ TCs, T and NK cells, macrophages, plasma cells, MCs, ECs,

monocytes, fibroblasts, B cells, cDC2, proliferating cells, cDC1,

myofibroblasts and pDCs (Figure 5A). We found that in the

outgoing signaling pattern, C0 MAFF+ TCs predominantly

exhibited pattern 1, while JAM, CADM, GDF, OCLN and

UGRP1 displayed high expression levels within this pattern.

Correspondingly, in the incoming signaling pattern, C0 MAFF+

TCs also primarily represented pattern 1, where SCT, CDH, OCLN,

DESMOSOME, and TWEAK showed elevated expression levels

(Figure 5B). The heatmaps illustrated the communication patterns

and signaling pathways of each tumor cell subtype (Figure 5C). We

found that the degree as well as the count of connections involving

C0 MAFF+ TCs and macrophages were more significant in both

afferent and efferent signals, so it could be inferred that there was a

strong interaction between C0 MAFF+ TCs and macrophages

(Figures 5D, E).

To present the results more intuitively, we employed a

hierarchical graph to depict the relationship between C0 MAFF+

TCs and macrophages. The results demonstrated that the primary

interactions between C0 MAFF+ TCs and macrophages occurred

through paracrine and autocrine signaling, leading to intense

communication (Figure 5F). Subsequently, through network

centrality analysis of the MIF signaling pathway, we examined the

roles of C0MAFF+ TCs and macrophages within this pathway. The

findings revealed that C0 MAFF+ TCs acted as senders, mediators

and influencers, whereas macrophages primarily functioned as

influencers, senders and mediators, which could have been linked

to the conversion of regular macrophages into tumor-associated

macrophages (TAMs) (Figure 5G). We compared the receptor-

ligand interactions between C0 MAFF+ TCs and other cell types,

allowing us to infer that the MIF ligand from C0 MAFF+ TCs

interacted with the CD74-CD44 receptors on macrophages

(Figures 5H, I). Further supporting our conclusions was a circular

diagram showing the interaction between C0 MAFF+ TCs and

macrophages within the MIF-(CD74+CD44) signaling

pathway (Figure 5J).

Overall, our work exposed the interactions between C0MAFF+

TCs and macrophages in LUAD, stressing their possible

relationship with the change of macrophages to TAMs, so

fostering the development of LUAD.
TFs directed the tumorigenic mechanisms
in C0 MAFF+ TCs

TFs governed gene expression through their ability to bind

specific consensus sequences located in the local chromatin setting

(54). TFs were typically considered to comprise two main domains:

a DNA-binding domain and a functional domain. Additionally,

these domains were seen as independent and separable, with the

DNA-binding domain responsible for gene targeting and the

functional domain for facilitating transcriptional regulation (55).

We employed the SCENIC method to perform two-dimensional

clustering of TCs from LUAD with reference to various subtypes and
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groups (Figure 6A). Afterwards, we generated a matrix for the

connection specificity index based on the similarity of AUCell

scores, which categorized LUAD TCs into four regulatory modules:

M1, M2, M3, and M4 (Figure 6B). A visualization analysis of these

modules was conducted, revealing that C0 MAFF+ TCs exhibited

increased expression in the M1 module compared to other subtypes.

Furthermore, UMAP visualizations were employed to examine how

each tumor cell subtype was distributed among the various modules,

indicating that C0 MAFF+ TCs were predominantly located in the

M1 module (Figures 6C, D).

Afterwards, we evaluated the top five TFs for each distinct

subtype of TCs, with a particular focus on their specificity scores

across the various modules. Notably, in M1, C0 MAFF+ TCs

displayed the highest regulatory activity score, supporting our

earlier conclusions (Figures 6E, F). Furthermore, we ranked the

TFs for each subtype and looked at the distribution of various

subtypes (Figures 6G, H). In C0 MAFF+ TCs, we examined the

distribution and expression levels of five important TFs (KLF6,

ATF3, JUN, FOS, and FOSB) in various subtypes. The findings

showed that FOS expression was considerably elevated in C0MAFF+

TCs relative to those in other subtypes (Figures 6I, J). It is still

unknown, though, exactly how FOS affects LUAD. Consequently,

validating the role of FOS in LUAD cells through in vitro functional

studies became a principal focus.
In vitro validation through experimental
approaches

We explored the role of FOS in LUAD by performing in vitro

assays using A549 and NCI-H1975 cell lines. First, we inhibited FOS

and analyzed the related mRNA and expressions of protein at

baseline and post-knockdown. Compared to the control group,

both cell lines showed substantially decreased mRNA and protein

expression (Figure 7A). Furthermore, cell viability was greatly

diminished after FOS inhibition (Figure 7B). We subsequently

examined the potential for TCs to proliferate. A significant

decrease in cell counts was observed in the colony development

assay as a result of the FOS suppression (Figures 7C, D). In the EDU

experiment, we noted a decrease in colony density following the

knockdown, data analysis indicated that siFOS impeded

proliferation (Figures 7E, F). To evaluate cell migratory and

invasive behaviors, we performed assays of transwell and wound

healing. Transwell assays depicted that siFOS TCs showed fewer

migrated cells and lower cell density compared to the si-NC group,

demonstrating that the knockdown of FOS impaired their

migration and invasion potential (Figures 7G-I). The wound

healing assays illustrated that siFOS inhibited wound healing of

TCs in both A549 and NCI-H1975 cell lines (Figures 7J, K).

Collectively, the results suggested that reducing FOS expression

impaired cell activity and significantly decreased the migratory,

invasive, and proliferative abilities of TCs. This underlined the

important tumor-promoting action of FOS, which was essential in

the evolution of TCs. Therefore, a main focus of LUAD treatment is

FOS inhibition since it might increase patient survival and prognosis.
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FIGURE 5

Analysis of the regulatory networks governing genes in C0 MAFF+ TCs. (A) The circle diagrams provided a summary of both the number and
intensity of interactions observed between the four tumor cell subtypes and thirteen different cell types, thus shedding light on their
interconnections. (B) Separate heatmaps showed the outgoing (left) and incoming (right) signaling effects of the four tumor cell subtypes and the
thirteen cell types, as well as the specific input from various proteins within three distinct cell communication patterns. (C) Bar graphs were
employed to evaluate and compare the outgoing and incoming signaling strengths among four tumor cell subtypes and thirteen types of cells.
Meanwhile, the heatmaps provided a visualization of the intensity with which these proteins, implicated in cell communication, were received among
the different groups. (D, E) These circle diagrams further illustrated the strength (top) and number (bottom) of interactions where C0 MAFF+ TCs
acted as either the source or the target in relation to other cell types. (F) The hierarchical graph depicted the network of interactions between C0
MAFF+ TCs and other cell types within the MIF signaling pathway. (G) A further heatmap presented the centrality scores for the MIF signaling
pathway. (H, I) Both the violin plot and bubble plot demonstrated that C0 MAFF+ TCs and macrophages potentially interacted through the ligand
MIF and the receptors CD74 and CD44. (J) Finally, the circle diagram outlined the communication network of MIF-(CD74+CD44) ligand-receptor
interactions with TCs receiving the signals.
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FIGURE 6

Clustering analysis of TFs and identification of the top five TFs in C0 MAFF+ TCs. (A) UMAP plots visualized all TCs, applying colors determined by
regulatory module activity scores and categorizing them by both cell subtypes and group classification. (B) Identification of four regulatory modules
among various tumor cell subtypes was visualized in the heatmap, relying on SCENIC modules and AUCell similarity assessment. (C) UMAP plots
further illustrated the unique expression signatures of TFs within the four modules of TCs. (D) Bar graphs depicted the AUC values for the four tumor
cell subtypes across modules M1, M2, M3, and M4. (E) The heatmap highlighted the top five TFs in each of the four tumor cell subtypes. (F) Scatter
plots ranked the regulatory activity scores of TFs for various tumor cell subtypes in all four modules. (G, H) UMAP plots visualized the spatial
distribution of each tumor cell, while scatter plots provided the ranking of TFs specificity scores for the top five TFs in every subtype of tumor cell.
(I, J) UMAP plots exhibited the distribution of selected TFs, and the bar graphs reported the AUC values of the top five TFs in C0 MAFF+ TCs across
different tumor cell subtypes.
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Developed a prognostic model for LUAD

We utilized univariate Cox regression analysis to explore

prognostic indicators in patients and identified twenty-five genes

that exhibited prognosis-related associations. We could observe the
Frontiers in Immunology 14
HR<1 of SEMA4A, PDE4C and GDF15, while the HR values of the

remaining genes were >1 (Figure 8A). To reduce potential

multicollinearity across genes, we further refined the list of

prognosis-related genes (Figure 8B). Following this, we performed

multivariate Cox regression analysis on twelve selected genes to
FIGURE 7

In vitro assays demonstrated the consequences of FOS knockdown. (A) The bar graphs illustrated the levels of genetically encoded proteins (left
panel) and gene mRNA (right panel) in the si-NC, siFOS-1, and siFOS-2 groups within the A549 and NCI-H1975 cells. A notable decline in both
mRNA and protein expression followed the reduction of FOS. (B) The line graph showed that all groups exhibited sustained growth in both cell lines
as time progressed. (C, D) Colony formation assays indicated that the colony numbers dropped markedly after FOS was knocked down, while
relevant bar graphs quantitatively displayed colony numbers for all groups in both cell types. (E, F) The assay using EDU staining indicated that
proliferation was notably inhibited after FOS knockdown, as further validated by the bar graphs. (G-I) Transwell assays demonstrated that suppressing
FOS expression led to decreased migration and invasion capacities in both A549 and NCI-H1975 cells. (J, K) The cell wound healing assays assessed
migration ability in C0 MAFF+ TCs after FOS knockdown, which led to a statistically significant reduction in wound healing, as illustrated by the
respective bar graphs. **P<0.01 and ***P<0.001.
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determine their respective genetic risk coefficients (Figures 8C, D).

Additionally, our analysis of the curve chart and scatter plot

demonstrated that the low MAFF+ tumor risk score (MTRS)

group exhibited lower risk scores and better survival outcomes

compared to the high MTRS group, which was linked to poorer

prognosis (Figure 8E). Heatmap further illustrated the distinct

prognostic gene expression patterns between these groups, with

SEMA4A, PDE4C, and GDF15 more strongly expressed in the low

STRS group, suggesting their potential positive impact on prognosis

(Figure 8F). Moreover, the ROC curves and corresponding AUC

values at 1-year, 3-years, and 5-years were 0.73, 0.68 and 0.63

respectively, highlighting the strong predictive power of the model

(Figure 8G). Kaplan-Meier survival analysis further corroborated

the worse prognosis observed in the high MTRS group (Figure 8H).

In summary, our analysis revealed a negative association between

the risk score and survival, supporting the observation that higher

risk scores were linked to shorter survival periods (Figure 8I).

Further examination of the expression levels of twelve

prognostic genes in the high MTRS group and low MTRS group,

the scatter plots showed that GDF15 and SEMA4A were beneficial

for patient prognosis, while DNAJA1, CEBPB, MAFF, SOX9,

HSPA1A, ERRFI1, TM4SF1, KLF4, and IER3were associated with

poor patient prognosis (Figure 8J, Supplementary Figures 2A, B).
Analyses included the investigation of
immunoinfiltration, enrichment
assessment, and examination of drug
sensitivity

The study compared gene expression levels and underlying

biological processes across groups with high and low values, we made

use of various visualization and enrichment analysis techniques. We

first illustrated the estimated proportions of cell populations in both

groups using a stacked bar graph (Figures 9A, B). Additionally, we

utilized a bubble plot to illustrate the correlations among immune

checkpoints, prognostic genes, overall survival, as well as the risk,

revealing that KLF4 generally exhibited a positive correlation with

immune checkpoint-associated genes, while HSPA1A showed a

negative relationship (Figure 9C). Upon additional examination, we

observed that higher risk scores were correlated with increased

macrophage presence (Figure 9D). Moreover, the stromal and

estimate appeared higher in the high MTRS group, while the

immune score was lower compared to the low MTRS group

(Figure 9E). Through box plot analysis, we discovered that the

majority of immune checkpoint genes had considerably increase

expression in the high MTRS group as opposed to the low

group (Figure 9F).

To shed light on the differences between the high and low

scoring cohorts, we examined genes that were differentially

expressed (Figure 9G). The volcano plot further depicted the

trends of gene upregulation and downregulation among these

DEGs (Figure 9H). Following this step, enrichment analysis was

undertaken to explore the biological processes associated with the

identified genes. We initially performed GO enrichment analysis,
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which identified significantly enriched terms in biological processes

(BP), cellular component (CC), and molecular functions (MF)

(Figure 9I). In terms of GO-BP, the genes were prominently

enriched in pathways involved the organization of intermediate

filaments, the structuring of the intermediate filament cytoskeleton,

processes based on intermediate filaments, and the differentiation of

keratinocytes. The cornified envelope, keratin filaments,

intermediate filament cytoskeleton, and intermediate filaments

were identified as the main sites of enrichment in terms of GO-

CC. GO-MF analysis revealed enrichment included structural

constituent of the skin epidermis as well as serine-type

endopeptidase inhibitor, endopeptidase inhibitor, and peptidase

inhibitor activities.

Afterwards, the heatmap offered a clear visual comparison that

further supported our earlier findings (Figure 10A). Additionally, we

performed KEGG pathway analysis, which highlighted enrichment in

pathways such as the estrogen signaling pathway, staphylococcus

aureus infection, steroid hormone biosynthesis, and retinol

metabolism (Figure 10B). To better elucidate the functionality and

enrichment of pathway associated with LUAD, further investigations

were carried out, we also conducted GSEA analysis (Figure 10C).

These results demonstrated positive enrichment trends in

keratinization, differentiation of keratinocytes, development of the

skin, and the epidermis underwent development. Conversely, negative

enrichment trends were observed for positive regulation of myoblast

fusion, peptide antigen assembly with MHC protein complex, metal

ion export, and DNA replication-dependent chromatin organization.

In conclusion, the results of our drug sensitivity analysis

indicated that the high MTRS group showed heightened

sensitivity to chemotherapeutic agents (Figure 10D), including

GSK269962A, Midostaurin, SB.216763, WH.4.023, ZM.447439,

AICAR, Pazopanib, and QS11. Furthermore, it was determined

that the low MTRS group exhibited decreased IC50 values for

VX.702 and Roscovitine compared to the high MTRS group. This

finding suggested that VX.702 and Roscovitine may have more

favorable therapeutic effects for low MTRS group patients.
Discussion

Lung cancer is the most prevalent malignant tumor in both

China and the world, with the highest incidence and mortality rates.

Among its various pathological types, LUAD is the most common,

accounting for approximately 40% of lung cancer cases (3). The

anti-tumor efficacy in LUAD patients is often limited by

chemotherapy resistance and evasion of apoptosis, leading to

tumor recurrence and poor prognosis (56, 57). As a result, the

survival duration for LUAD patients has been notably poor.

Therefore, it became urgent to develop personalized treatments

based on the progression of LUAD, necessitating a comprehensive

investigation of the tumor’s heterogeneity to improve patient

outcomes and identify potential therapeutic targets. Through

scRNA-seq analysis, the characteristics related to both cells and

molecules in LUAD tissue were studied, revealing fourteen distinct

cell types. Temporal phase, sample origin, and pathway enrichment
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FIGURE 8

The construction and validation of the model of MTRS. (A) The forest plot represented the twenty-five most prognostically significant genes
identified by univariate Cox analysis (HR<1 indicated protective factors, whereas HR>1 indicated risk factors.). (B) Each plotted line indicated the
coefficients attributed to the variables, thereby selecting those with significant prognostic implications. (C) The forest plot further presented the top
twelve prognostic genes, as determined by multivariate Cox regression. (D) The bar graph illustrated the correlation coefficients for these twelve
selected genes. (E) The curve chart contrasted risk scores between low and high MTRS patient groups, and the scatter plot visualized survival status,
marking survival with blue and death with red. (F) The heatmap illustrated the expression profiles of twelve risk genes across the two MTRS
subgroups. (G) ROC curve analysis and its corresponding AUC values assessed the accuracy in predicting survival outcomes in patients. (H) The
Kaplan-Meier method was applied to evaluate differences in survival between patients with high and low MTRS. (I) Both heatmaps and scatter plots
visualized correlations among prognostic genes, overall survival, and genes used in constructing the model. (J) Scatter plots presented the twelve
genes that were associated with overall survival.
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FIGURE 9

Immunoinfiltration differences and enrichment analysis. (A, B) Stacked bar graph, along with the box plot, demonstrated the calculated distributed
twenty-two immune cell types across various risk score groups. (C) Bubble plot illustrated the strength of correlation that existed between risk genes
and immune checkpoints. (D) Lollipop plot reflected the correlations between multiple immune-related pathways and risk scores, where bubble
diameter indicated the magnitude of association and color signified the statistical significance (p-value). (E) The violin plots showed comparisons of
immune score, stromal score, estimate score, and tumor purity between the high and low MTRS groups. (F) The box plot revealed significant
differences in immune checkpoint expression when comparing high MTRS group to low MTRS group. (G) The heatmap showed that gene expression
patterns varied distinctly between the two MTRS groups. (H) The volcano plot provided a visual summary of expression changes among DEGs. (I) The dot
plots presented the GO enrichment results for BP, CC, and MF categories, respectively. **P< 0.01 and ***P< 0.001..
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analyses were conducted for the different cell subtypes. The IAC

group primarily contained EPCs and macrophages, suggesting that

these cell types may play a key role in the development of malignant

tumors. Tumors were composed of various cell types and

components that competed with the normal microenvironment.

Consequently, the interactions among these cell types might have
Frontiers in Immunology 18
facilitated the tumor ’s aggressiveness and resistance to

treatment (58).

Enrichment analysis revealed that EPCs exhibited positive

enrichment in pathways associated with chemical homeostasis

within a tissue and surfactant homeostasis. Pulmonary surfactant,

a complex of lipids and proteins, served a key function in decreasing
FIGURE 10

Differences in immune cell infiltration, results of enrichment analysis, and findings from drug sensitivity assessments across various risk groups.
(A) Heatmap illustrated how risk scores of different immune cell types varied between the high and low MTRS groups. (B) The KEGG enrichment bar
plot reported the twenty most significantly enriched pathways. (C) The GSEA enrichment analysis thoroughly summarized the gene sets that
distinguished the high MTRS group from the low MTRS group. (D) Violin plots highlighted marked disparities in the IC50 values for different
chemotherapeutic agents between patients belonging to the high and low MTRS categories. ***P<0.001..
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the interfacial tension at the alveolar air-liquid interface, and its

production is regulated during development (59). Genes related to

pulmonary surfactant have been regarded as excellent candidate

genes for lung cancer risk due to their high expression levels in the

lungs and their role in maintaining alveolar integrity (60). Studies

demonstrated that the disruption of pulmonary surfactant

homeostasis may be linked to the onset of lung cancer, with

abnormalities in the genes and cellular processes related to

surfactant maturation and function identified as risk factors for

lung cancer (61–64). During the process of self-evolution, cancer

cells give rise to a class of tumor stem cells characterized by self-

renewal, metastatic spread, and treatment resistance, functioning as

a major driver in cancer initiation and subsequent growth (65).

Accordingly, we conducted a study focused on TCs within

LUAD. Marker gene profiles were used to assign tumor tissues to

one of four subtypes in the initial step. Notably, it was observed that

TCs with increasedMAFF expression were mainly derived from the

IAC group. CXCL8 was initially identified as an effective

chemoattractant and activator of polymorphonuclear leukocytes.

It also influenced cancer cell proliferation, migration, tumor

angiogenesis, and metastasis, being expressed in various cancer

cell types (66). CXCL2, a small secretory member of the CXC

chemokine family (67), played a critical role in maintaining

macrophage infiltration induced by cancer (68). RRAD was

associated with multiple cancer types and significantly

contributed to regulating aerobic glycolysis and cellular invasion

and metastasis (69). ATF3 having a significant impact on regulating

metabolism, immunity, and tumorigenesis (70). AREG promoted

cellular proliferation in various tumors and inhibited apoptosis

while a vital contribution was made in the extracellular matrix

environment or bloodstream (71). The synergy among these genes

effectively demonstrated the C0MAFF+ tumor cell subtype’s role in

promoting tumorigenesis. Furthermore, the C0 MAFF+ tumor cell

subtype displayed elevated levels of nCount RNA, nFeature RNA,

and stemness expression, indicating a higher degree of malignancy

and differentiation potential for these cells. All things considered,

there was a complex interaction between C0 MAFF+ TCs and the

development of LUAD.

We carried out a number of cell subtype enrichment analyses in

order to elucidate the association between cancer and C0 MAFF+

tumor cell subtype. The biological processes associated with the

response to lipid and fat cell differentiation were the main ones in

which C0 MAFF+ TCs participated. The metabolic activity of

cancer cells often exhibited specific alterations, with this

metabolic reprogramming supporting an increase in metabolic

intermediates necessary for the synthesis of proteins, nucleic

acids, and lipids, which are prerequisites for the rapid

proliferation of cancer cells. The increased rate of lipid synthesis

in tumor tissues has long been recognized as a significant aspect of

the metabolic rewiring of transformed cells (72). Abnormal lipid

synthesis and extracellular lipid uptake serve as beneficial

modifications to meet the demands of uncontrolled cancer cell

proliferation (73).

To rephrase, LUAD TCs tended to grow faster when supported

by lipids, which was also linked to a higher degree of malignancy.
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The metabolic interactions between TCs and adipocytes induced

the mesenchymal transformation of adipocytes and contributed to

the reconfiguration of the stroma into a microenvironment more

conducive to tumors. Regions of tumor-adipocyte interactions

exhibited high densities of angiogenesis, indicating that TCs were

in a more active state due to the nutrient-rich environment in these

areas (74). To summarize, processes like lipid metabolism and

adipocyte differentiation were key contributors to tumor

formation and advancement, potentially promoting the rapid

growth and spread of TCs and heightening tumor malignancy. In

short, intervening in factors such as lipid metabolism or fat cell

differentiation might have slowed the progression of LUAD.

The pseudotime analysis revealed that the C0 subtype was

located at the terminal end of lineage 1, and the C0-associated

gene MAFF was highly expressed primarily in the later stages,

indicating a more advanced developmental state and a mature

phase of differentiation. The high level of cellular stemness

suggested a low differentiation status for C0 subtype, which

correlated with higher malignancy and stronger resistance to

chemotherapy and radiotherapy. This, in turn, leads to poor

prognosis and a higher likelihood of recurrence in patients.

To further investigate the interactions between C0MAFF+ TCs

and other cells, CellChat identified that C0 MAFF+ TCs act on

macrophages via the MIF-(CD74+CD44) signaling pathway. MIF,

known as Macrophage Migration Inhibitory Factor, was a cytokine

expressed in various cell types, including HCs, EPCs, ECs, MCs, and

NCs. Altered expression of MIF was linked to various diseases,

extending from inflammatory illnesses to organ abnormalities and

different forms of malignancy (75). Enhanced expression of MIF in

tumor tissues suggested a potential oncogenic role of macrophages

(76). Studies have shown that the MIF-CD74 signaling pathway

promotes tumor cell proliferation (77). It served as a crucial

cytokine in the context of both tumorigenesis and inflammation,

MIF triggers MAPK and PI3K signaling pathways by binding to the

CD74 receptor (78). Activation of MAPK and PI3K pathways by

MIF regulated fundamental cellular functions related to

proliferation, differentiation, apoptosis, cell survival, and cancer

development (79). In normal lung tissue, MIF mRNA and protein

were expressed in bronchial epithelium, alveolar epithelium,

vascular smooth muscle, and alveolar macrophages. In LUAD

tumor tissues, levels of MIF mRNA and protein were significantly

higher than those in normal alveolar EPCs, with elevated MIF

mRNA levels in both TCs and premalignant states in LUAD (80).

These findings indicated that high expression of MIF promotes

tumor growth and metastasis in LUAD and created a TME

conducive to tumor development. C0 MAFF+ TCs might

promote the transformation of normal macrophages into TAMs

by acting on the CD74-CD44 receptor of macrophages via the MIF

ligand, thus, it blocked the natural immune response that targeted

TCs. TAMs directly influenced tumor cell communication by

transferring substances such as some non-coding RNAs through

exosomes, which affected TCs (81). Additionally, TAMs induced

immune checkpoint inhibition of T cells by upregulating PD-L1

expression and recruited Tregs via CCL22 to further suppress anti-

tumor immune responses (82). TAMs primarily exhibited M2-like
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tumor-promoting effects within the TME and regulated various

malignant processes, including angiogenesis, immunosuppression,

and tumor metastasis (83). Therefore, targeting M2-like TAMs to

deplete them in the TME or reversing M2-like TAMs to an M1-like

phenotype directly enhanced their cytotoxicity and indirectly

stimulated cytotoxic T cells to eliminate TCs, representing a

potential strategy for anti-tumor immunotherapy (84, 85). Thus,

inhibiting MIF within TCs emerged as a promising avenue for

therapeutic intervention.

For a deeper understanding of the oncogenic mechanisms of the

C0 MAFF+ tumor cell subtype, we analyzed the TFs within this

subtype and identified the top five active TFs: KLF6, ATF3, JUN,

FOS, and FOSB.

Members of the KLF protein family play vital roles in regulating

key biological activities such as cell growth, specialization,

metabolic regulation, programmed cell death, and inflammations.

Aberrant KLF function can disturb cellular equilibrium and has

been implicated in the pathogenesis of various diseases. KLF6 was

implicated in cancer, inflammatory diseases, and cardiovascular

disorders (86). As a TF induced by stress, ATF3 was vital for

modulating metabolism, immune responses, and tumorigenesis.

ATF3 expression was promoted by several extracellular stimuli,

among them endoplasmic reticulum stress, cytokines, and

chemokines. Additionally, ATF3 served as a major regulator of

metabolic homeostasis (70). JUN belonged to the most widely

analyzed elements of the AP-1 complex and was engaged in

numerous activities, including cell division, programmed cell

death, survival, cancer development, and tissue formation. Early

studies identified JUN as a basic leucine zipper TF that functioned

as a homo- or heterodimer to bind DNA and regulated gene

transcription. Subsequent research demonstrated that extracellular

signals can induce post-translational modifications of JUN, leading

to altered transcriptional activity and target gene expression (87).

Members of the FOS protein family could be divided into two

groups: transforming (c-Fos and FosB) and non-transforming (Fra-

1 and Fra-2) proteins (88). FOS encoded leucine zipper proteins

that dimerize with proteins from the JUN family to form the TF

complex AP-1, which played a key role in tumor cell growth,

differentiation, survival, and DNA damage response (16, 17).

Notably, overexpression of FOS could promote drug resistance

and enhance EMT (89, 90). FOSB, also known as FBJ murine

osteosarcoma viral oncogene homolog B, was a member of the FOS

TF family (91). FOSB was an oncogene present in various tumors

that promoted angiogenesis and regulated genes associated with

drug sensitivity and invasive activity (92, 93). In summary, these

findings provided innovative perspectives for future immunological

interventions in LUAD.

To improve patient survival rates, enhance their quality of life,

and prolong longevity, our study constructed a prognostic risk

prediction model for LUAD by employing the top twelve marker

genes of C0 MAFF+ TCs. We observed that the high MTRS group

exhibited higher risk scores, indicating increased mortality rates and

poorer prognoses. The results suggested that FOS contributed to the

progression of LUAD and was generally correlated with adverse

outcomes in cancer patients.
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In vitro assays demonstrated that knocking down FOS greatly

diminished the abilities of TCs to proliferate, migrate, and invade.

Overexpression of FOS had been shown to promote drug-resistant

phenotypes (89). Therefore, considering FOS targeting as a viable

strategy to hinder these carcinogenic processes and improve treatment

outcomes in LUAD patients appeared promising. Future studies could

explore the combination of FOS-targeted therapies with existing

treatments to enhance the efficacy of LUAD immunotherapy.

Moreover, analysis of immune cell infiltration demonstrated that the

high MTRS group exhibited significantly increased stromal scores,

estimate scores, and levels of macrophage infiltration in comparison to

the low MTRS group. Further examination of the associations in the

relationship of MTRS to immune infiltration showed that MTRS was

significantly and positively correlated with activated CD4 memory T

cells, activated mast cells, and M1 macrophages, whereas it was

negatively associated with M2 macrophages and resting mast cells.

In most cases, macrophages were divided into two principal subtypes:

the classically activated M1 and the alternatively activated M2 (94).

M1 macrophages played a role in mediating resistance against tumors.

In contrast, various forms of M2 macrophages were present in

established tumors and promoted progression, tissue repair,

remodeling, and exhibited immunoregulatory functions (95). The

higher levels of macrophage infiltration in the high MTRS group

favored the targeting of macrophages in LUAD patients, facilitating

the occurrence of normal anti-tumor effects. Targeting M2

macrophages might be a feasible therapeutic approach, and

enhancingM1 macrophages could further improve patient prognoses.

In our continued efforts to elucidate the function of macrophage

phenotype control in anti-cancer therapy, with emphasis on

promoting the transition from M2 to M1 macrophages, analysis

indicated that STING agonists promoted the local production of

anti-angiogenic factors and normalized tumor-associated

vasculature (96), suggesting that reprogramming macrophages

into anti-tumor states was promising. Additionally, previous

research showed that tetrahedral DNA nanostructures actively

entered macrophages to enhance M1 polarization (97), while

mitochondrial DNA induced macrophage recruitment and M2

polarization through the TLR9 pathway, inhibiting this pathway

reversed mitochondrial DNA-mediated M2 macrophage

polarization (98). These approaches effectively suppressed M2

polarization and promoted M1 activation, highlighting the

potential benefits of combining immunomodulatory therapies in

LUAD. In our study, the group with elevated MTRS showed notably

worse prognoses in comparison to the low MTRS group, therefore,

therapeutic strategies targeting the polarization of TAMs from the

M2 to the M1 might have offered significant benefits Furthermore,

targeting FOS might enhance the immunotherapeutic response in

patients with either high or low MTRS. Therefore, FOS could serve

as a novel target for improving the reprogramming of macrophages.

Later studies might have assessed the combination of FOS-targeted

therapies with existing treatments to improve macrophage-based

cancer immunotherapy outcomes.

Furthermore, we analyzed the samples for their sensitivity to

drugs across different risk score groups to uncover potential

differences, which also contributed to the development of
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personalized treatment strategies. Our study revealed that

GSK269962A, Midostaurin, SB.216763, WH.4.023, ZM.447439,

AICAR, Pazopanib, and QS11 demonstrated stronger efficacy in

patients within the high MTRS group.

AICAR was a pharmacological precursor in purine nucleotide

biosynthesis with antitumor properties (99). AICAR has long been

one of the most commonly used pharmacological regulators of

AMPK activity, and most early studies on the role of AMPK in

metabolic regulation and cancer pathogenesis were entirely based

on the use of AICAR as an AMPK activator (100). It was found that

patients belonging to the high MTRS category exhibited higher

sensitivity to AICAR. Studies have indicated that GSK269962A was

a selective ROCK1 inhibitor (101), which can inhibit tumor

growth (102).

Midostaurin was a multitarget kinase inhibitor initially

developed as a protein kinase C inhibitor for the treatment of

solid tumors (103). SB.216763, a drug that functioned as a Wnt

signaling pathway suppressor, was shown to suppress the

proliferation, migration, and invasion of TCs (104). WH.4.023

was a chemotherapy drug that significantly targeted the proto-

oncogene tyrosine-protein kinase SRC and the tyrosine-protein

kinase ABL1 (105, 106). ZM.447439 was an Aurora selective

ATP-competitive inhibitor that could disrupt spindle integrity

checkpoints and chromosome segregation, making it useful for

more selective cancer treatment (107). Pazopanib was an orally

administered small-molecule multitarget kinase inhibitor that

inhibited angiogenesis induced by vascular endothelial growth

factor and basic fibroblast growth factor, and could be used as a

treatment for tumors (108). QS11 influenced protein transport by

inhibiting the GTPase-activating protein ARFGAP1, thereby co-

activating the Wnt/b-catenin signaling pathway. When

overexpressed in breast cancer cells, it inhibited cell migration,

indicating that QS11 might have potential applications in tumor

regulation (109). Our findings highlighted the differences in drug

sensitivity among LUAD patients, such findings emphasized the

importance of conducting additional studies to better understand

how they functioned, enhanced efficacy, and developed

personalized treatment strategies to improve patient prognosis.

In our research, although we performed a comprehensive

evaluation of LUAD and meticulously selected our study

population, we recognized several shortcomings. Firstly, given the

restricted sample size, it is possible that this study encountered

errors in correlating the examined samples with the target genes,

thereby possibly influencing the accuracy of the analysis.

Furthermore, the limited number of samples might have resulted

in imprecisions that could challenge the reliability of the

conclusions derived from the research. Secondly, LUAD

comprised multiple subtypes. Yet, considering the high prevalence

of LUAD in lung cancer, our investigation’s specificity was possibly

limited, yielding more generalized outcomes since different LUAD

subtypes could possess unique features and respond differently to

treatments. Finally, our experimental assessment of the interplay

between TCs and macrophages was not as detailed as desired.

TAMs and other TME cellular components co-evolved with TCs, so

fostering tumor progression and resistance and contributing to
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tumor heterogeneity. Future studies should thus concentrate more

on these interactions and their effect on tumor growth. We intended

to start research on FOS and investigate cell-targeted therapy

approaches against LUAD in next projects. Clarifying the FOS

mechanisms in LUAD would help us to create fresh therapeutic

approaches to raise patient prognosis. We also sought to investigate

how different TME-targeting techniques might be combined into a

coherent approach to improve efficacy and lower side effects, so

offering more treatment choices for LUAD patients.
Conclusion

Driving lipid metabolic reprogramming and immunosuppression

through MIF-(CD74+CD44)-mediated macrophage polarization, our

work finds FOS as a master regulator of the malignant C0 MAFF+

tumor cell subtype in LUAD. The MTRS prognostic model stratifies

patients rather well, high-risk cases show increased chemosensitivity to

AICAR and Midostaurin. In vitro, functionally FOS knockdown

suppressed proliferation, migration, and invasion, so highlighting its

therapeutic potential. These results suggest FOS inhibition as a dual

approach to target immune evasion and tumor-intrinsic malignancy so

improving LUAD treatment. To maximize clinical benefit, future

research should look at FOS-directed treatments in concert with

immune checkpoint inhibitors.
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SUPPLEMENTARY FIGURE 1

InferCNV analysis. (A) The prediction of CNVs was performed using scRNA-

seq data sourced from ECs, and orange was used to indicate amplification,
whereas blue signified deletion.

SUPPLEMENTARY FIGURE 2

The analysis and expression levels of prognostic genes. (A, B) The Kaplan-

Meier survival analysis illustrated which prognostic genes were associated
with C0 MAFF+ TCs, while the gene expression profiles were further

examined in both high and low MTRS groups.
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