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The gut microbiota has been increasingly recognized as a critical player in
maintaining human health and influencing disease development. The tumor
microenvironment (TME) is pivotal in tumor development and progression,
comprising immune cells, stromal elements, extracellular matrix components,
and cytokines. Recent studies have highlighted the promising potential of gut
microbiota-derived metabolites (e.g., short-chain fatty acids, bile acids, polyamines,
and tryptophan derivatives) to reshape the TME in various ways, generating
significant interest for the development of novel therapeutic strategies. Beyond
their established effects on traditional cancer treatments, emerging evidence
suggests that microbiome-based interventions can substantially enhance cancer
immunotherapy. However, the variable role of gut microbiota in modulating
therapeutic responses complicates the prediction of clinical outcomes.
Therefore, understanding the crosstalk between the gut microbiota and the TME
is crucial and holds promise for the development of personalized and
comprehensive cancer management strategies. This review aims to summarize
the reciprocal regulatory mechanisms between gut microbiota-derived metabolites
and the TME, and to explore how these interactions can be leveraged to improve
cancer immunotherapy.
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1 Introduction

The gut microbiota is a complex ecosystem of microorganisms in the gastrointestinal
tract, importantly contributing to the maintenance of health and, when disrupted, to the
development of disease (1). The tumor microenvironment (TME), as a dynamic ecosystem,
encompasses the intricate cellular and acellular surroundings in which tumor cells
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proliferate, invade, and metastasize, comprising various
components (e.g., immune cells, stromal elements, extracellular
matrix components, and cytokines) that closely interact with the
tumor cells (2). The crosstalk between the gut microbiota and the
TME is increasingly recognized as an important factor in
modulating cancer development, progression, and treatment
response (3).

Evidence has accumulated to suggest different metabolites
produced by the gut microbiota, including short-chain fatty acids
(SCFAs), bile acids, polyamines, and tryptophan derivatives (4), as
important mediators facilitating the communication between the
gut microbiota and the TME. Specifically, SCFAs, as key metabolites
of gut microbiota, are produced via the fermentation of undigested
dietary fiber by specific intestinal anaerobic microbial communities
and exhibit the highest concentration within the gut, primarily
consisting of acetate, propionate, and butyrate (5). Bile acids are
primarily synthesized in the liver from cholesterol to modulate host
physiology and immune functions, and further interact with the gut
microbiota to undergo various biotransformation, generating
secondary bile acids (e.g., deoxycholic acid [DCA], lithocholic
acid [LCA]) (6, 7). Furthermore, polyamines, including spermine,
spermidine and putrescine, derive mainly from dietary protein,
which serves as the major source of intestinal polyamines (8), and
tryptophan derivatives are described as several indole-derivatives
produced by gut microflora through catabolism of dietary
tryptophan in the colon (9).

It has been shown that the TME interacts with different
microbial metabolites to modulate tumorigenesis, immune
evasion, and therapeutic responses (3), whereas microbial
metabolites are known to modulate critical pathways in the TME
such as immune cell differentiation, cytokine secretion, and tumor
cell behavior (10). Conversely, tumor-associated inflammation and
metabolic reprogramming within the TME can also influence the
composition of the gut microbiota and alter metabolite synthesis
(11). Understanding this reciprocal interplay between the gut
microbiota and the TME shows therefore significant potential for
targeting microbial metabolites to reshape the TME and improve
cancer outcomes (12).

Cancer immunotherapy has rapidly evolved, offering
transformative treatment options for patients; however, significant
challenges, such as immune resistance and immune-related adverse
events (irAEs), continue to limit its clinical efficacy and broader
application (13). The manifestations of irAEs range from mild side
effects to life-threatening complications, depending on factors such
as the affected organ, tumor histology, and individual patient
characteristics (13). IrAEs often affect the gut, skin, liver, and
lungs, compromising treatment adherence and patient quality of
life (14). Utilizing microbiota-host interactions to develop
innovative strategies, such as fecal microbiota transplantation
(FMT), pro- and prebiotics, and dietary interventions, with the
aim of enhancing the efficacy of immunotherapy while reducing its
side effects, is gaining momentum in cancer research (15). FMT is
an innovative approach to restoring gut microbial homeostasis by
transferring fecal matter from a healthy donor to a recipient (16).
To reach the full potential of such strategies, a deeper
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understanding of specific microbial metabolites is essential for
refining strategies for microbial modulation and identifying
reliable biomarkers to guide personalized therapeutic interventions.

This review aims to synthesize current knowledge on the
crosstalk between the gut microbiota and the TME, with a focus
on summarizing the roles of gut microbiota-derived metabolites
and how their interactions with the host TME may enhance
cancer immunotherapy.

2 Gut microbiota-derived metabolites
and modulation of the TME

Different gut microbiota-derived metabolites may play different
regulatory roles in modulating the TME (15). SCFAs have been
shown to significantly influence the TME by modulating the
interactions between immune cells and the production of
cytokines (17, 18). Bile acids and their metabolites could on the
other hand influence the TME through regulating diverse immune
cells (19). Polyamines may exhibit similar functional properties (8).
Moreover, indole metabolites derived from tryptophan metabolism
have demonstrated multifaceted roles within the TME, showcasing
potential utility in both chemotherapy and immunotherapy (20).

2.1 T cells

T cells are integral to the evolvement and modulation of the
TME (21). T cells engage in dynamic and context-dependent
interactions within the TME, where T cells are tightly regulated
by TME-derived signals (e.g., cytokines, metabolic stress,
checkpoint molecules), ultimately dictating the efficacy of anti-
tumor immunity or facilitating tumor immune evasion (22, 23).
SCFAs help to shape T cell differentiation into either effector or
regulatory phenotypes (24). CD8+ T cells function as core effector
cells that mediate immune responses, acting as the primary target
for various immunotherapeutic strategies (25). Specifically, SCFAs
have been shown to enhance the functions of CD8+ T cell through
inhibiting histone deacetylase (HDAC) and upregulating effector
molecules, contributing to anti-tumor immune responses,
particularly in colorectal cancer and gastric cancer (26-29). In
addition to CD8+ T cells, SCFAs also exhibit diverse effects on
other subsets of T cells. CD4+T cells exhibit an adaptive response to
the immune microenvironment, ensuring the initiation of the
optimal immune strategy in response to different types of
immune challenges (30). Stimulated by specific environmental
conditions, they differentiate into various cell subsets, such as
Thl, Th2, Th17, and Treg cells, each assuming distinct roles in
the immune response (31). Butyrate is known to attenuate CD4+ T
cell activation by simultaneously inhibiting HDAC and G protein-
coupled receptor 43 (GPR43) signaling, effectively suppressing the
proliferation of Th1, Th17, and Th22 cells (32, 33). SCFAs have also
been shown to promote regulatory T cells (Tregs), contributing to
the maintenance of intestinal homeostasis and alleviation of certain
pathological processes, such as abdominal aortic aneurysm (34-36).
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Moreover, propionate has been shown to inhibit IL-17 production
by the 0 T cells during the inflammatory and tumorigenic
processes (37).

Bile acids are also natural modulators of Th17/Treg balance.
Lithocholic acid derivatives, such as 3-oxoLCA and isoalloLCA,
could exhibit reciprocal effects by inhibiting Th17/Treg
differentiation and enhancing Treg generation (38). Further,
deoxycholic acid (DCA) may negatively influence the function of
CD8+ T cells through suppressing the Ca*"-nuclear factor of
activated T cells (NFAT)2 signaling, thereby facilitating immune
evasion in colorectal cancer (39).

In addition to SCFAs and bile acids, other microbial metabolites
can also modulate T cell responses. Polyamine metabolism is
essential in T cell differentiation, e.g., spermidine has been shown
to promote Treg differentiation and attenuating Th17 responses
(40). Similarly, ornithine decarboxylase-dependent polyamine
production is crucial for maintaining the fidelity of CD4+ T cells
(41). Finally, tryptophan derivatives have been suggested to affect
the number of Treg cells and induce apoptosis in Th1/Th17 cells
(42, 43).

In summary, metabolites derived from the gut microbiota can
intricately regulate T cell responses through epigenetic, metabolic,
and receptor-mediated mechanisms, presenting significant
opportunities for therapeutic interventions in cancer. Future
studies should explore tissue-specific effects, dose-dependent
outcomes, and translational applicability of these metabolite-
based therapies.

2.2 B cells

B cells exert multifaceted roles that collectively shape anti-
tumor immunity and correlate with prognostic outcomes,
encompassing antigen presentation, antibody production,
organization of tertiary lymphoid structures, and regulation via
immunosuppressive B regulatory cells (Bregs) (44). Gut microbiota-
derived metabolites can influence B cell responses through multiple
metabolic and signaling pathways. The enhancing effect of SCFAs
on B cell antibody production essentially works by reshaping the
energy metabolism pathway of B cells and indirectly consolidating
the intestinal immune barrier (45). SCFAs enhance antibody
production in B cells by increasing levels of intracellular acetyl-
CoA and subsequently stimulating oxidative phosphorylation,
glycolysis, and fatty acid synthesis, thus bolstering intestinal and
systemic immunity (46). SCFAs can also function as epigenetic
regulators of B cell differentiation and activity, influencing both the
homeostatic and pathogen-specific antibody responses (47). For
instance, butyrate has been shown to promote the differentiation of
IL-10-producing (IL-10+) Bregs, a process associated with the
inhibition of HDAC3 activity and the reduction of mitochondrial
oxidative stress (48). Furthermore, butyrate can enhance the
immunosuppressive capabilities of Bregs, important for
maintaining immune tolerance (49).

Nonetheless, it is important to note that the immunomodulatory
effects of SCFAs on B cells are dose dependent. Low levels of butyrate
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and propionate have been shown to moderately enhance class-switch
DNA recombination in B cells whereas higher levels can inhibit
activation-induced cytidine deaminase and Blimpl expression,
ultimately suppressing class-switch DNA recombination (CSR) and
plasma cell differentiation (50). Careful clarification of such nuanced,
dose-dependent effects is therefore important for effectively harnessing
SCFAs in the therapeutic modulation of B cell responses.

2.3 Macrophages

Macrophages are pivotal components of the TME, and their
polarization states are intricately regulated by metabolites derived
from the gut microbiota. M1 macrophages exhibit tumoricidal
activity and reinvigorates cytotoxic T-cell responses, whereas M2
macrophages foster immune evasion and tumor progression (51,
52). Different metabolites exert distinct and multifaceted effects on
macrophages. For instance, SCFAs have been shown to modulate
the dynamic balance of M1/M2 macrophages by suppressing M1
macrophage polarization and promoting M2 macrophage
polarization, thereby participating in tumor-related pathological
processes (53-55). Interestingly, B.thetaiotaomicron-derived acetic
acid was proved to improve the polarization of M1 macrophages
and further promotes the function of cytotoxic CD8+ T cells,
ultimately inhibiting the growth of hepatocellular carcinoma
tumors (56).

Other microbial metabolites also influence macrophage
function. Trimethylamine N-oxide (TMAO), a metabolite
produced by the gut microbiota, was shown to promote M1
macrophage polarization via NOD-like receptor protein 3
(NLRP3) inflammasome activation (57) and enhance the
cytotoxic capacity of M1 macrophages against tumor cells (58).
Moreover, recent studies have suggested that indole-3-acetic acid, a
tryptophan-derived metabolite, promotes the IL-35 production in
macrophages and other immune cells, subsequently alleviating
intestinal inflammation and suppressing tumorigenesis (59).

These findings collectively highlight the complex and context-
specific nature of microbial metabolite-mediated regulation of
macrophages. Further research is needed to elucidate tissue-
specific mechanisms, enabling more effective therapeutic
modulations of macrophages in cancer.

2.4 Other immune cells

In addition to T cells, B cells, and macrophages, gut microbiota-
derived metabolites also modulate the functions of other immune
cell types that are important to the immunological landscape of
the TME.

For instance, dendritic cells (DCs) uniquely orchestrate
antitumor responses through their specialized capacity for cross-
presenting tumor antigens to naive T cells (60). SCFAs regulate the
expression of genes related to inflammation and immune-cell
recruitment through HDAC inhibition, resulting in particularly
strong modulatory effects in DCs and enhanced anti-inflammatory
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activity (61). Moreover, SCFAs promote dendrite elongation in
DCs, assisting antigen uptake and key processes for effective T cell
activation (62).Secondary bile acids have also been shown to inhibit
DC activity through inhibiting nuclear factor kB (NF-kB)-mediated
activation via the TGR5-cAMP-PKA axis (63).

Myeloid-derived suppressor cells (MDSCs) represent a
heterogeneous population of pathologically responded neutrophils
and monocytes, which exhibit a strong correlation with unfavorable
clinical prognoses in cancer and immune responses (64-67). Butyrate
has been shown to induce epigenetic and metabolic reprogramming in
MDSCs, promoting their expansion and immunosuppressive capacity
(68). In contrast, bile acid has been shown to recruit MDSCs and help
mitigate excessive immunosuppression, via the cancer-associated
fibroblast-CCL3/CCR1 axis (69).

Natural killer (NK) cells, as key innate effectors in anti-tumor
immunity (70), are also modulated by SCFAs. Recent studies have
shown that SCFAs can enhance the proliferation and function of
NK cells by promoting the release of NK-derived extracellular
vesicles and reducing the levels of anti-inflammatory cytokine IL-
10, suggesting that SCFAs can contribute the anti-tumor NK cell
responses (71). Finally, high levels of SCFAs have been shown to
impair the migration and antiviral defense of neutrophils against
human immunodeficiency virus, with potentially age- and sex-
dependent regulatory characteristics (72). Moreover, butyrate and
propionate can induce apoptosis and degranulation in basophils to
modify basophil-mediated immune responses (73).

Collectively, these findings emphasize the important role of
metabolites derived from the gut microbiota in regulating a wide
array of immune cell types within the TME. Further research is
warranted to delineate the specific molecular mechanisms by which
these metabolites exert such function under different pathological
conditions. Ultimately, these insights could guide the development
of microbiota-targeted therapies aimed at reshaping the immune
landscape in cancer (Table 1).

3 Gut microbiota-derived metabolites
and cancer immunotherapy

The dynamic interplay between the gut microbiota and the
immune system forms the foundation for how gut microbiota-
derived metabolites influence immune functions and disease
outcomes. Leveraging this interaction offers a promising strategy to
enhance immune responses and alleviate immunological disorders.
This section examines the translational implications of host-microbiota
crosstalk in improving the efficacy of cancer immunotherapy.

3.1 Immune checkpoint blockade therapy

ICB therapy has revolutionized cancer immunotherapy by
targeting inhibitory pathways, such as programmed cell death
protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) and
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which
regulate immune system homeostasis under physiological conditions
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while tumors exploit to escape immune surveillance (74, 75). Through
blocking these checkpoints, ICB reactivates T cell-mediated anti-tumor
responses (76). Emerging evidence has indicated that the gut
microbiota significantly influences the efficacy of ICB therapy,
whereas the microbial diversity and composition of the gut
microbiota contribute importantly to treatment outcomes (77). For
instance, melanoma patients responding to anti-PD-1 therapy have
been shown to exhibit higher microbial diversity and an enrichment of
specific bacterial taxa, compared with non-responders, in the gut
microbiota (78).

Microbial metabolites can also modulate ICB therapy.
Phenylacetylglutamine (PAGIn) has been shown to negatively
correlate with ICB efficacy (79), whereas TMAO was shown to
synergize with immune checkpoint inhibitors to reduce tumor
burden and improve survival in a pancreatic ductal adenocarcinoma
model (58). The role of microbial metabolites in immunotherapy is not
necessarily monolithic. For example, tryptophan metabolites have been
shown to exert dual roles, namely that they enhance ICB efficacy
through modulating tumor-associated macrophages but also promote
tumor progression via IL4I1-mediated AhR activation (80, 81). A
similarly complex picture has been noted for SCFAs. For instance, high
levels of butyrate have been suggested to impair anti-CTLA-4 therapy
by increasing the frequencies of Tregs and reducing tumor-specific T
cell infiltration (82).

Regardless, existing studies suggest a potentially central role of the
gut microbiota and its derived metabolites in modulating the efficacy
of ICB therapy. Improved understanding of the interactions between
different microbial metabolites and the TME helps to develop
personalized strategies to enhance therapeutic responses (83).

3.2 Gut microbiota-derived metabolites
and adverse events of immunotherapy

Enhancing the efficacy of ICB therapy is utmost important;
however, mitigating irAEs is equally critical. The gut microbiota
and its derived metabolites have been implicated to modulate the
severity of irAEs, particularly in the gastrointestinal tract (84, 85).
The gut-liver axis further exemplifies how microbiota-mediated
immune regulation can influence systemic toxicity profiles (86).

Specific microbial metabolites have been linked to the susceptibility
of irAEs. For instance, menaquinone has been suggested as a potential
modulator of adverse immune responses (87) whereas butyrate has
been shown to reinforce intestinal barrier integrity and ameliorate
immune checkpoint inhibitors (ICIs)-induced colitis (88). Indole-3-
carboxaldehyde, a tryptophan metabolite, may exert similar regulatory
effects as butyrate (89). To better identify strategies to prevent or
alleviate irAEs, in-depth characterization of key microbiota-immune
crosstalk pathways is needed.

3.3 Fecal microbiota transplantation

FMT has been shown to reprogram the gut microbiota and the
TME among immunotherapy-refractory patients (68, 90) and to
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TABLE 1 Crosstalk of major gut microbiota-derived metabolites and the tumor immune microenvironment: clinical translational potential.

Gut Microbiota-Derived ] Associated 3 . :
. Targeting Immune Cells Immune Effects Potential for Clinical Translation = References
Metabolites Cancers
1. Butyrate supplementation inhibits gastric
1. Enhance the cytotoxic activity of CD8" T against tumorigenesis and progression in animal models;
gastric cancer cells via the GPR109A/HOPX axis; 2. In vitro studies demonstrate that butyrate
SCFAs CD8" T cells 2. Up-regulate gastric cancer cell expression of SCFA Gastric cancer (GC) suppresses gastric cancer cell proliferation and (26)
receptors (GPR109A, GPR43) and antigen-processing promotes apoptosis;
genes (e.g., NLRC5, Tapl, Tap2) 3. Fecal and serum SCFA (especially butyrate)
levels are significantly low in GC patients.
1. Activate CD8" T cells to produce IFN-y and
d furth -regulates t MHC I
granzy@e an 1.“ er uP reguiates tumor 1. In vitro studies demonstrate that SCFAs
expression to reinforce immune responses; enhance tumor immunogenicity:
SCFAs CD8" T cells 2. Activate the cGAS/STING pathway by inhibiting Colorectal cancer (CRC) R L -g ty; . 27)
. . 2. In vivo studies link higher SCFA levels with
histone deacetylases (HDACs) to induce DNA . . .
. K abundance of SCFA-producing gut microbiota.
damage in colorectal cancer cells, up-regulating
chemokines (CCL5, CXCL10) and ISGs
1. Promote CD8" T cell production of IFN-y and 1. Oral or intraperitoneal butyrate augments
granzyme B in an ID2-dependent manner, enhancing oxaliplatin efficacy in animal models;
X cytotoxicity and antitumor activity; ‘ . CRC, lymphoma, colitis- 2. C?inic:.al data sho-w higher serum butyrate in
SCFAs CD8" T cells 2. Up-regulate IL-12 receptor expression, boosting associated CRC oxaliplatin-responsive cancer patients; (28)
CD8" T cell responsiveness to IL-12 and promoting 3. Preclinical combination of butyrate with anti-
effector function; programmed cell death ligand 1 (PD-L1)
3. Enhance oxaliplatin chemotherapy efficacy immunotherapy enhances antitumor effects.
1. In vitro studies demonstrate that CD8" T cells
treated with b te sh 1 i
Promote CD8" T cell memory formation, modulates Indirectly participate in arr: fFNWl rol:itZZ:iZnS' oW stronger expansion
SCFAs CD8" T cells cellular metabolism, and sustains memory cell VP P i vp Y . . (29)
survival the tumor process 2. High-fiber diet increases circulating SCFAs and
' enhances recall responses of memory CD8" T
cells.
1. High-fiber diet increases butyrate and alleviates
gut inflammation in animal models;
Inhibit CD4" T cell activation and pro-inflammatory 2. Fecal/tissue butyrate levels reflect intestinal
SCEAs CDA* T cells cytokine (IFN-v, IL- 1.7) produc.tior'l m a dose- Indirectly participate in immune homeostasis; o (32, 33)
dependent manner via HDAC inhibition and GPR43 the tumor process 3. Butyrate enemas or HDAC inhibitors are under
activation, affecting Th1, Th17, and Th22 preclinical/early clinical investigation as adjuvant
therapy for immune-checkpoint blockade (ICB) in
IBD.
1. Promote peripheral Treg generation; . L. .
Dietary SCFA biot 1 tat]
2. Stabilize FOXP3 expression via HDAC inhibition Indirectly participate in wetary or pre ,10 ' su.pp ementation
SCFAs Tregs . . . proposed as a theoretical basis for Treg (34)
and increase histone acetylation at the FOXP3 locus, the tumor process L R K
. . modulation in autoimmune diseases.
enhancing Treg function
. Specifically expand colonic lamina propria Tregs, Indirectly participate in SCFA supplementation (e.g., propionate) or
Propionate Tregs ) . . L (35)
down-regulate CD69 expression, and promote Treg the tumor process modified starches to increase intestinal SCFA
(Continued)
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Gut Microbiota-Derived ] Associated ] - .
. Targeting Immune Cells Immune Effects Potential for Clinical Translation References
Metabolites Cancers
trafficking via draining lymph nodes and blood to levels proposed as a preventive strategy for
sites of atherosclerosis. Abdominal Aortic Aneurysm at-risk populations.
1. Gut dysbiosis reduces propionate, skewing Th17/ i X i X
Propionate supplementation or microbiota
Treg balance (Th171, Tregl); i
R i . . . modulation proposed as a novel
2. Propionate supplementation restores Th17/Treg Indirectly participate in . .
SCFAs Th17/Tregs L i i immunomodulatory approach for chronic (36)
equilibrium by promoting Treg and suppressing Th17 | the tumor process rostatitis/chronic pelvic pain syndrome (CP/
differentiation via GPR43 activation and HDAC6 P P pain sy
o CPPS).
inhibition.
. A . SCFAs (especially propionate) proposed as
Directly inhibit ¥ T cell IL-17 and IL-22 duct
SCFAs T3 T cells AlI‘CC Vi _l l_ Y . e an production CRC potential targets for modulating Y3 T cell function (37)
via HDAC inhibition .
in IBD and CRC.
SCFAs B cells Drive B cell differentiation into IL-10" IgM* Indirectly participate in Butyrate analogues under investigation as adjunct 45)
regulatory plasma cells the tumor process therapy for metabolic syndrome.
1. Butyrate/propionate promotes the differentiation of
IL-10" IgM" regulatory plasma cells and reduces
pathogenic class switching via HDAC inhibition.
2. Acetate promotes the generation of Bregs and 1. In vitro studies clarify the regulatory effects of
inhibits pro-inflammatory cytokines (e.g., TNFo); SCFAs on B cell differentiation and antibody
SCFAs B cells Butyrate reduces mitochondrial reactive oxygen CRC production. (46)
species (ROS) in B cells via HDAC3 inhibition to 2. HDAC inhibitors (e.g., butyrate analogs) reduce
maintain Breg homeostasis. autoreactive plasma cells in animal models.
3. Butyrate induces the production of TGF-3 and
retinoic acid (RA), promoting IgA class switching in
B cells and enhancing the intestinal barrier function.
1. Enhance B cell metabolism and provide energy and 1. Animal studies have confirmed that a high-fiber
material basis for plasma cell differentiation; diet/SCFA supplementation can enhance antibody
2. Promote the production of IgA and IgG, enhancing . - . levels and SCFAs regulate B cell functions through
. . Indirectly participate in . . o
SCFAs B cells the immune response against pathogens; metabolic regulation and HDAC inhibition; (47)
) K R the tumor process o L
3. Indirectly regulate T cells by increasing the number 2. Antibiotic treatment can eliminate the
of Tfh cells, promoting germinal center reactions, and antibody-promoting effect of SCFAs, confirming
assisting B cell antibody production. microbiota dependence.
Promote IL-10 expression in Bregs, enhance their X . i X . i X
. . . . Indirectly participate in Butyrate supplementation alleviates intestinal
Butyrate Bregs suppressive function, and inhibit germinal-center B . . (48)
. . the tumor process inflammation.
cells and plasmablast differentiation
1. Verified the i - infl ffect of
Enhance the suppressive function of Bregs, increase Verified the anti H,l am'matory eflect o
. K o X butyrate supplements in animal models;
IL-10 secretion, and reduce the differentiation of No associated cancers .
SCFAs Bregs . . 2. Fecal butyrate levels are decreased in (49)
plasmablasts, decrease the production of pro- mentioned . . . -
inflammato okines (TNF, IL-6, MCP-1) rheumatoid arthritis patients and are positively
1 » 1L-0, -
Rk correlated with peripheral blood Bregs.
(Continued)
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Gut Microbiota-Derived ] Associated " - .
- Targeting Immune Cells Immune Effects Potential for Clinical Translation = References
Metabolites Cancers
Dose-dependently modulates B cells: low
trati 50-200 puM) mildly i AID
concen -ra fons ( AP ) mi yAchease . - . Modulating butyrate levels inhibits autoantibody
expression and class-switch recombination (CSR); Indirectly participate in . . .
SCFAs B cells i X . i production and alleviates lupus symptoms in (50)
high concentrations (=400 uM) inhibit AID, Blimpl, the tumor process .
K K animal models.
CSR, somatic hypermutation, and plasma cell
differentiation
1. Trigger TLR3-induced autophagy in cancer cells,
activating NF-kB and MAPK pathways and 1. Preclinical studies establish SCFAs from
enhancing migration and invasion, autophagy induces Castration-Resistant Prostate Cancer-associated
CCL20 release; icrobiota as ke diators linking dysbiosis t
SCEAs M2 Macrophages release ' ' Prostate cancer microbiota as 'ey mediators linking dysbiosis to 53)
2. CCL20 can recruit macrophages into the tumor tumor progression;
microenvironment (TME) and polarizes them toward 2. CCL20 identified as a potential prognostic
pro-tumor M2 Macrophages, further enhancing biomarker for prostate cancer.
prostate cancer invasiveness.
1. Inhibit LPS-induced M1 polarization (}iNOS, TNE- 1. Preclinical evidence shows inulin increases
o) and promote IL-4-induced M2 polarization (fArg- i . i intestinal SCFAs; 2. SCFAs exert anti-Alcoholic
Indirectly participate in . . .
SCFAs Macrophages 1, IL-10); the tumor process liver disease (ALD) effects by modulating M1/M2 (54)
2. Down-regulate TLR4, MyD88, NF-kB, and P macrophage balance, providing rationale for
suppress alcohol-induced liver injury inulin/SCFA-based ALD prevention and therapy.
1. Modulate M1/M2 balance, | M1, 1M2; reduce
serum pro-inflammatory cytokines (IL-12p70, TNF-a, . - . Positive correlations between SCFAs and bone-
Indirectly participate in L
SCFAs Macrophages CXCL1); the tumor process metabolism indices suggest novel gut-targeted (55)
2. ftight-junction proteins (ZO-1, occludin), restore P osteoporosis therapy.
barrier function
1. Promote pro-inflammatory M1 polarization . . . .
1. Preclinical stud how B.thetaiot -
(1CD86, iNOS; |CD163, ARG1) via histone rec Hnical sticues sow 2 fetaioraomicron
X K . R derived acetate inhibits HCC growth via immune-
acetylation-driven ACCI transcription and increase . X .
. . microenvironment modulation;
Acetate Macrophages fatty-acid synthesis; HCC 2. Acetylation inhibitors (e.g, curcumin) block (56)
2. M1 macrophages enhance CD8" T cell function ’ 4 . & . .
. . . . acetate-mediated tumor suppression, offering
(1IFN-y, granzyme B), increasing cytotoxicity against epigenctic-targeted HCC thera
hepatocellular carcinoma (HCC) cells. Pig 8 pY:
-infl t ki ti IL-6, IL-12 Potentiall licable t
» { pro-inflammatory cytokine secretion ( ) . orentt Y appica 'e ° Butyrate proposed as an anti-inflammatory agent
SCFAs Dendritic cells (DCs) by DCs and inflammation-associated for modulating DC function (61)
ulati ion.
J chemokines (CXCL9, CXCL10, CXCL11) cancers 8
1. Induce DC dendrite elongation via HDAC Indirectly participate in
SCFAs DCs inhibition, promoting actin polymerization; 7P P Clinical application not yet addressed. (62)
i K the tumor process
2. Enhance antigen uptake and presentation
1.P te MDSC ive functi ia fatty-acid
Myeloid-derived suppressor cells r'om(‘> ¢ Supp ress-we netion VI? atty-acl Indirectly participate in 1. Butyrate alleviates cholangitis in animal models;
Butyrate (MDSCs) B-oxidation (FAO) metabolic reprogramming; the tumor process 2. Positive correlation observed between butyrate ©8)
2. Enhances T cell inhibition by MDSCs P ' ¥
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Metabolites Cancers
levels and MDSC function/treatment response in
humans.
1. Enhancing the cytotoxicity of NK cells through
Promote the release of extracellular vehicles (EVs), SCFA preconditioning can optimize the effect of
ignificantly reduce th tion of the anti - NK cell i th ;
SCFAs Natural killer (NK) cells '51gn1 cantly e uce' ¢ secretion 0_ 'e antt Multiple myeloma e 1m.mur'1o er.ap t (71)
inflammatory cytokine IL-10, and indirectly weaken 2. In combination with ICB, chemotherapy, etc.,
the pro - tumor effect of IL-10. SCFAs may improve treatment response and
reduce drug resistance.
1. Butyrate |CD66b, 1CD16 and CD62L, yielding a
low-activation, long-lived mature phenotype;
propionate 1CD54 and CXCR4, inducing a senescent . . . In vitro studies demonstrate that pathological
i Indirectly participate in . . . .
SCFAs Neutrophils phenotype; the tumor process concentrations of SCFAs impair the anti-HIV (72)
uj
2. Acetate and butyrate suppress neutrophil migration P function of neutrophils.
in vitro; propionate alters migratory phenotype
(1CD62L, CD54) without affecting migration.
1. Induce CD69 expression and shift cytokine
secretion (|IL-4, 11L-13) via HDAC inhibition; X . i Mechanisms of HDAC-mediated basophil
. . . . . Indirectly participate in . .
Butyrate, propionate Basophils 2. Induce basophil apoptosis even in the presence of modulation by propionate and butyrate are (73)
s the tumor process .
IL-3 (apoptosis inhibition); clarified.
4. Enhance IgE-mediated degranulation
1. 3-0xoLCA directly bind the Th17 transcription 1. Oral 3-0x0LCA reduces intestinal Th17 cells in
factor RORYt, inhibiting its activity and reducing IL- Indirectly particivate in animal models;
3-0x0LCA, isoalloLCA Th17/Tregs 17 secretion; the tum(z,rp roceslz 2. Combined 3-0xoLCA and isoalloLCA feeding (38)
2. IsoalloLCA promotes mitochondrial ROS P increases Tregs and alleviates colitis in animal
generation to induce Treg differentiation. models.
1. Bile acid sequestrants (e.g., cholestyramine)
lower DCA and inhibit tumor growth;
2. Fecal DCA trati d microbial baiF
Inhibit CD8" T cell function by enhancing PMCA eneec(ke for g(gl;e: ;at}::;s;r;blizj:r(;c;aareal
Bile acids CD8" T cells activity, suppressing Ca®'-NFAT2 signaling, and CRC 8 <y i (39)
reducing IFN-y, TNF-0, and granzyme B secretion potential CRC risk biomarkers;
& ’ ? granzym ) 3. Polyamine blockade therapy combined with
PD-1 inhibitors may reverse “cold tumor”
microenvironment.
Inhibit NF-xB activati ia the TGR5-cAMP-PKA
. . ALY ‘ac v 10n‘v1a ¢ G ¢ Indirectly participate in Oral DCA/LCA alleviates experimental
Secondary bile acids DCs pathway, reducing secretion of pro-inflammatory . . . . (63)
the tumor process autoimmune uveitis (EAU) in animal models.
factors (IL-1f, IL-6, TNF-o).
1. Promote MDSC infiltration into liver metastases
Bile acids MDSCs and suppress .T cell activation; Colorecte-il cancer liver Potential 'targets .("ITGRS, CCL3, CCR1) proposed 69)
2. MDSC-derived CCL2 attenuates metastasis (CRLM) but remain preclinical.
immunosuppression via CCR2 signaling.
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it CDI” T ol i MAPKIERK pathwa, edice i proventne and heapente el oo s
ir rticipate i ventive a rapeuti \ i
Spermidine CD4" T cells activation marker CD69 and IL-2 production, yP P p R P . X 8 . (40)
. . the tumor process potential strategy for multiple sclerosis requiring
decrease Th1 and Th17 differentiation o o o
further preclinical and clinical validation.
. . . . L-Trp supplementation is proposed as a non-
Promote Treg homing to the colon via the AhR- Potentially reduce colitis- i i i i .
L-Tryptophan (L-Trp) Tregs ) . . X invasive preventive therapy for ulcerative colitis (42)
GPR15 pathway and increase colonic Tregs associated cancer risk o)
Indole-3-propionic acid (IPA) Thi/Th17 Bind H?P?O, trigger mitochondrial-dependent Poter{tially reduc? IBD- Oral IPA alleviates colitis in animal models and is 43)
apoptosis in Th1/Th17 cells associated CRC risk proposed as a therapeutic strategy for IBD.
Induce IL-35 expression, promote Treg, Breg, and M2 . . .
TAA level 1 CRC patients, t
Indole-3-acetic acid (IAA) Macrophages macrophage differentiation, and inhibit Th1 Colitis-associated CRC . eve' s are fow m' patients, suggesting (59)
i o diagnostic or preventive value.
differentiation.
Relevant to Graft-versus-
Acti LRP3 infl 5
C,tlvate N R 3 in amr'nasome pl‘o]’TlOte host disease (GVHD) Choline analogue can alleviate GVHD, suggesting
mitochondrial ROS, activate NF-kB, induce M1 o K K R i §
TMAO M1 Macrophages s after hematopoietic stem- | therapeutic potential for dietary interventions or (57)
macrophage polarization, and enhance Thl and Th17 . .
. Lo cell transplantation for drugs targeting the TMAO pathway.
differentiation . . .
hematologic malignancies
1. Higher TMAO levels correlate with improved
. Pancreatic ductal long-term survival and immunotherapy response;
Activate IFN-I pathway, promote M1 macrophage R ; . . .
TMAO Macrophages L. N . adenocarcinoma, 2. Dietary choline supplementation or adoptive (58)
polarization, and enhance CD8" T cell function .
melanoma transfer of TMAO-conditioned macrophages
shows therapeutic potential.
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restore anti-PD-1 sensitivity among patients with refractory
melanoma and other malignancies (91-94). Moreover, FMT has
been shown to increase the production of SCFAs and facilitate the
infiltration and activation of immune cells to the TME, thereby
improving therapeutic efficacy (95). The potential of FMT has also
been suggested in hepatocellular carcinoma, particularly in
managing intrahepatic metastases (96). Although the potential of
FMT as an add-on therapeutic strategy for immunotherapy of
diverse cancer types is clear, challenges exist regarding donor
screening, protocol standardization, and potential side effects (16,
97). Rigorously designed clinical trials and preclinical models are
needed to illuminate the trade-off between benefits and potential
harms (90).

3.4 Probiotics and prebiotics

Probiotics and prebiotics represent targeted strategies to
modulate the composition and function of the gut microbiota
(98). As a vital supplementary treatment method, probiotics have
been proved to restore the microbial imbalance caused by cancer
treatment, thereby alleviating gastrointestinal adverse reactions and
stimulating the immune system to fight against tumor cells (99,
100). Clostridium butyricum, for instance, can suppress colorectal
cancer associated with colitis and enhance efficacy of ICB therapy
(101-104). Prebiotics, which are selectively utilized by host
microorganisms (e.g., glucans and fructans), support the
colonization and functions of probiotics and enhance the
production of SCFAs (105). For example, pectin has been shown
to selectively enrich SCFA-producing taxa (e.g., Bifidobacterium
and Lactobacillus), contributing to an immunostimulatory TME
(106). Together, prebiotics and probiotics modulate the gut
microbiota to promote host health, with overlapping mechanisms
such as immune regulation and gut barrier improvement (107).
However, as various factors (e.g., strain specificity, host health
status, and diet) could influence outcomes of pro- or prebiotics
use, individualized approaches and therapeutic guidelines are
urgently needed (98, 108). Precision probiotics, tailored to specific
microbiome phenotypes, may optimize therapeutic efficacy by
promoting the growth of beneficial metabolite-producing
microbes (109). Clinical validation and standardized guidelines
are therefore essential for the integration of such interventions to
personalized oncology (110).

3.5 Dietary interventions

Dietary interventions targeting the gut microbiota have
emerged as a non-invasive strategy to improve the immune status
and support cancer immunotherapy (111). For example, high
dietary cholesterol has been revealed to result in non-alcoholic
fatty liver disease-related hepatocellular carcinoma (NAFLD-HCC)
through dysbiosis of gut microbiota and metabolites and
anticholesterol treatment has significant potential in preventing
cancer (112). Furthermore, a high-fiber diet lays a solid immune
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foundation for strengthening the intestinal immune barrier and
enhancing T cell activation to improve responses to anti-PD-1
therapy, promoting the proliferation of gut bacteria that produce
SCFAs and increases endogenous SCFA levels (113, 114), especially
propionates have been proved to alleviate lipid dysmetabolism and
enhance immune homeostasis (115-117). Other microbial
metabolites derived from dietary components also exhibit
immunomodulatory properties. Polyamines (e.g., spermidine)
derived from whole grains and fermented foods help to modulate
T cell differentiation and contribute to gut immunity (118).
Moreover, appropriate reduction in daily protein intake can
enhance the enrichment of beneficial gut bacteria and modulate
host health status through microbial-derived metabolites (119).

However, inter-individual microbiome variability and varying
adherence to dietary interventions might influence efficacy (120).
Successful clinical use of personalized dietary interventions will
require a deeper phenotyping of individual microbiota profiles and
a validation through rigorously designed clinical trials. Notably,
given their relatively minimal side effects, the significant potential of
dietary interventions in tumor immunotherapy represents a
promising avenue for further exploration.

3.6 Emerging biomarkers for cancer
immunotherapy

As the targeted modulation of the gut microbiota has emerged
as an innovative therapy for cancer, the information encoded within
the compositional and metabolic profiles of the gut microbiota is
increasingly being harnessed to develop novel biomarkers for the
prediction of risk and prognosis of cancer, indicating another
important clinical utility of the gut microbiota (121). Intestinal
microbiota exhibits a dynamic and real-time correlation with tumor
progression and therapeutic interventions, enabling a more
comprehensive and timely assessment of treatment efficacy
compared to traditional biomarkers (122). Specifically, there
appears to be notable heterogeneity between tumor types.
Decreased abundance in specific probiotic species has been linked
to a dysbiotic state associated with poor outcomes of colorectal
cancer (123).

Gut microbiota metabolites also show potential for non-invasive
screening and treatment response prediction (124). Reduced levels
and decreased abundance of SCFA-producing bacteria have been
shown to be correlated with risk markers in non-small cell lung
cancer (84, 125), while secondary bile acids (e.g., deoxycholic acid)
with elevated levels and increased abundance of related metabolizing
bacteria can act as diagnostic markers in CRC patients (126).
Moreover, tryptophan metabolites, particularly indoxyl sulfate (IS),
appear to serve as key predictors for differentiating ruptured from
unruptured intracranial aneurysms (127).

Nevertheless, owing to the individual variations caused by
factors such as diet and antibiotic use, as well as the lack of
standardized detection technologies, further verifying the
reliability of microbial biomarkers are crucial for fully realizing
clinical transformation (123).
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4 Conclusions and future perspectives

The gut microbiota plays a pivotal role in modulating the
immune responses within the TME and shaping the efficacy of
cancer therapies, especially immunotherapy. Investigating the
therapeutic potential of gut microbiota-derived metabolites is an
emerging frontier in precision oncology, presenting new
opportunities to improve clinical outcomes of cancer patients.
The convergence of microbiology, immunology, and oncology
will facilitate a holistic paradigm shift in cancer care
(128) (Figure 1).

Continued research is clearly needed to best translate bench-
side discoveries into clinical applications (129). Innovative
technologies and personalized strategies, such as Al-based
identification of immunomodulatory gene targets (130),
microbiota-targeted nanomedicine via genetic engineering (131),
and development of novel postbiotics or metabolite
supplementation (132), could all potentially help improve the
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efficacy of cancer immunotherapy. Moreover, advanced
metabolomics approaches — such as untargeted metabolomics or
stable-isotope tracing - should also be leveraged to uncover
additional microbiota-derived metabolites of relevance to the
TME and efficacy of immunotherapy (133). In addition to the
identification of novel metabolites, integrative use of advanced
metagenomics and metatranscriptomics techniques can also help
identify microbial genes and pathways critical for immune
modulation (134, 135). Translational studies should on the other
hand expand to include robust, well-powered clinical trials that
evaluate different microbiota-targeted therapies such as engineered
probiotics, synthetic microbial consortia, and postbiotic
supplementation across diverse patient populations (136, 137).
Finally, integrating microbiome interventions with emerging
cancer therapies — such as CAR-T cells and cancer vaccines - also
represents a promising new frontier (138).

Despite significant advancement, several challenges remain.
The mechanisms by which microbial metabolites influence

Tumor microenvironment (TME)
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Gut microbiota-derived metabolites play a crucial role in modulating the tumor microenvironment (TME) and influencing the efficacy of cancer
therapies. This review highlights the ability of various metabolites to mediate immune responses within the TME. Deciphering and harnessing this
crosstalk holds significant promise for advancing cancer immunotherapy, particularly in supporting tailored immune checkpoint blockade (ICB)
therapies that target specific molecules. Additionally, targeted fecal microbiota transplantation (FMT), along with other supportive measures such as
probiotics, prebiotics, and dietary interventions, may help restore gut microbial homeostasis and its associated metabolic profiles, ultimately

enhancing cancer therapy outcomes.
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immune responses within the TME need further exploration, and
their long-term health effects must be thoroughly evaluated. The
complexity of host-microbiota interactions necessitates a
comprehensive, systems-level research approach. Moreover,
population-specific variability underscores the need for large-
scale, diverse clinical studies. Personalized therapeutic strategies
tailored to individual microbiota profiles could lead to substantial
improvements in cancer care. Expanding clinical trial cohorts and
ensuring adequate statistical power are essential for generalizing
findings and implementing microbiota-based interventions across
diverse populations.
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