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The gut microbiota has been increasingly recognized as a critical player in

maintaining human health and influencing disease development. The tumor

microenvironment (TME) is pivotal in tumor development and progression,

comprising immune cells, stromal elements, extracellular matrix components,

and cytokines. Recent studies have highlighted the promising potential of gut

microbiota-derivedmetabolites (e.g., short-chain fatty acids, bile acids, polyamines,

and tryptophan derivatives) to reshape the TME in various ways, generating

significant interest for the development of novel therapeutic strategies. Beyond

their established effects on traditional cancer treatments, emerging evidence

suggests that microbiome-based interventions can substantially enhance cancer

immunotherapy. However, the variable role of gut microbiota in modulating

therapeutic responses complicates the prediction of clinical outcomes.

Therefore, understanding the crosstalk between the gut microbiota and the TME

is crucial and holds promise for the development of personalized and

comprehensive cancer management strategies. This review aims to summarize

the reciprocal regulatorymechanisms between gutmicrobiota-derivedmetabolites

and the TME, and to explore how these interactions can be leveraged to improve

cancer immunotherapy.
KEYWORDS

gut microbiota, tumor microenvironment, gut microbiota-derived metabolites, cancer
immunotherapy, immune cells, crosstalk
1 Introduction

The gut microbiota is a complex ecosystem of microorganisms in the gastrointestinal

tract, importantly contributing to the maintenance of health and, when disrupted, to the

development of disease (1). The tumor microenvironment (TME), as a dynamic ecosystem,

encompasses the intricate cellular and acellular surroundings in which tumor cells
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proliferate, invade, and metastasize, comprising various

components (e.g., immune cells, stromal elements, extracellular

matrix components, and cytokines) that closely interact with the

tumor cells (2). The crosstalk between the gut microbiota and the

TME is increasingly recognized as an important factor in

modulating cancer development, progression, and treatment

response (3).

Evidence has accumulated to suggest different metabolites

produced by the gut microbiota, including short-chain fatty acids

(SCFAs), bile acids, polyamines, and tryptophan derivatives (4), as

important mediators facilitating the communication between the

gut microbiota and the TME. Specifically, SCFAs, as key metabolites

of gut microbiota, are produced via the fermentation of undigested

dietary fiber by specific intestinal anaerobic microbial communities

and exhibit the highest concentration within the gut, primarily

consisting of acetate, propionate, and butyrate (5). Bile acids are

primarily synthesized in the liver from cholesterol to modulate host

physiology and immune functions, and further interact with the gut

microbiota to undergo various biotransformation, generating

secondary bile acids (e.g., deoxycholic acid [DCA], lithocholic

acid [LCA]) (6, 7). Furthermore, polyamines, including spermine,

spermidine and putrescine, derive mainly from dietary protein,

which serves as the major source of intestinal polyamines (8), and

tryptophan derivatives are described as several indole-derivatives

produced by gut microflora through catabolism of dietary

tryptophan in the colon (9).

It has been shown that the TME interacts with different

microbial metabolites to modulate tumorigenesis, immune

evasion, and therapeutic responses (3), whereas microbial

metabolites are known to modulate critical pathways in the TME

such as immune cell differentiation, cytokine secretion, and tumor

cell behavior (10). Conversely, tumor-associated inflammation and

metabolic reprogramming within the TME can also influence the

composition of the gut microbiota and alter metabolite synthesis

(11). Understanding this reciprocal interplay between the gut

microbiota and the TME shows therefore significant potential for

targeting microbial metabolites to reshape the TME and improve

cancer outcomes (12).

Cancer immunotherapy has rapidly evolved, offering

transformative treatment options for patients; however, significant

challenges, such as immune resistance and immune-related adverse

events (irAEs), continue to limit its clinical efficacy and broader

application (13). The manifestations of irAEs range from mild side

effects to life-threatening complications, depending on factors such

as the affected organ, tumor histology, and individual patient

characteristics (13). IrAEs often affect the gut, skin, liver, and

lungs, compromising treatment adherence and patient quality of

life (14). Utilizing microbiota-host interactions to develop

innovative strategies, such as fecal microbiota transplantation

(FMT), pro- and prebiotics, and dietary interventions, with the

aim of enhancing the efficacy of immunotherapy while reducing its

side effects, is gaining momentum in cancer research (15). FMT is

an innovative approach to restoring gut microbial homeostasis by

transferring fecal matter from a healthy donor to a recipient (16).

To reach the full potential of such strategies, a deeper
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understanding of specific microbial metabolites is essential for

refining strategies for microbial modulation and identifying

reliable biomarkers to guide personalized therapeutic interventions.

This review aims to synthesize current knowledge on the

crosstalk between the gut microbiota and the TME, with a focus

on summarizing the roles of gut microbiota-derived metabolites

and how their interactions with the host TME may enhance

cancer immunotherapy.
2 Gut microbiota-derived metabolites
and modulation of the TME

Different gut microbiota-derived metabolites may play different

regulatory roles in modulating the TME (15). SCFAs have been

shown to significantly influence the TME by modulating the

interactions between immune cells and the production of

cytokines (17, 18). Bile acids and their metabolites could on the

other hand influence the TME through regulating diverse immune

cells (19). Polyamines may exhibit similar functional properties (8).

Moreover, indole metabolites derived from tryptophan metabolism

have demonstrated multifaceted roles within the TME, showcasing

potential utility in both chemotherapy and immunotherapy (20).
2.1 T cells

T cells are integral to the evolvement and modulation of the

TME (21). T cells engage in dynamic and context-dependent

interactions within the TME, where T cells are tightly regulated

by TME-derived signals (e.g., cytokines, metabolic stress,

checkpoint molecules), ultimately dictating the efficacy of anti-

tumor immunity or facilitating tumor immune evasion (22, 23).

SCFAs help to shape T cell differentiation into either effector or

regulatory phenotypes (24). CD8+ T cells function as core effector

cells that mediate immune responses, acting as the primary target

for various immunotherapeutic strategies (25). Specifically, SCFAs

have been shown to enhance the functions of CD8+ T cell through

inhibiting histone deacetylase (HDAC) and upregulating effector

molecules, contributing to anti-tumor immune responses,

particularly in colorectal cancer and gastric cancer (26–29). In

addition to CD8+ T cells, SCFAs also exhibit diverse effects on

other subsets of T cells. CD4+T cells exhibit an adaptive response to

the immune microenvironment, ensuring the initiation of the

optimal immune strategy in response to different types of

immune challenges (30). Stimulated by specific environmental

conditions, they differentiate into various cell subsets, such as

Th1, Th2, Th17, and Treg cells, each assuming distinct roles in

the immune response (31). Butyrate is known to attenuate CD4+ T

cell activation by simultaneously inhibiting HDAC and G protein-

coupled receptor 43 (GPR43) signaling, effectively suppressing the

proliferation of Th1, Th17, and Th22 cells (32, 33). SCFAs have also

been shown to promote regulatory T cells (Tregs), contributing to

the maintenance of intestinal homeostasis and alleviation of certain

pathological processes, such as abdominal aortic aneurysm (34–36).
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Moreover, propionate has been shown to inhibit IL-17 production

by the gd T cells during the inflammatory and tumorigenic

processes (37).

Bile acids are also natural modulators of Th17/Treg balance.

Lithocholic acid derivatives, such as 3-oxoLCA and isoalloLCA,

could exhibit reciprocal effects by inhibiting Th17/Treg

differentiation and enhancing Treg generation (38). Further,

deoxycholic acid (DCA) may negatively influence the function of

CD8+ T cells through suppressing the Ca2+-nuclear factor of

activated T cells (NFAT)2 signaling, thereby facilitating immune

evasion in colorectal cancer (39).

In addition to SCFAs and bile acids, other microbial metabolites

can also modulate T cell responses. Polyamine metabolism is

essential in T cell differentiation, e.g., spermidine has been shown

to promote Treg differentiation and attenuating Th17 responses

(40). Similarly, ornithine decarboxylase-dependent polyamine

production is crucial for maintaining the fidelity of CD4+ T cells

(41). Finally, tryptophan derivatives have been suggested to affect

the number of Treg cells and induce apoptosis in Th1/Th17 cells

(42, 43).

In summary, metabolites derived from the gut microbiota can

intricately regulate T cell responses through epigenetic, metabolic,

and receptor-mediated mechanisms, presenting significant

opportunities for therapeutic interventions in cancer. Future

studies should explore tissue-specific effects, dose-dependent

outcomes, and translational applicability of these metabolite-

based therapies.
2.2 B cells

B cells exert multifaceted roles that collectively shape anti-

tumor immunity and correlate with prognostic outcomes,

encompassing antigen presentation, antibody production,

organization of tertiary lymphoid structures, and regulation via

immunosuppressive B regulatory cells (Bregs) (44). Gut microbiota-

derived metabolites can influence B cell responses through multiple

metabolic and signaling pathways. The enhancing effect of SCFAs

on B cell antibody production essentially works by reshaping the

energy metabolism pathway of B cells and indirectly consolidating

the intestinal immune barrier (45). SCFAs enhance antibody

production in B cells by increasing levels of intracellular acetyl-

CoA and subsequently stimulating oxidative phosphorylation,

glycolysis, and fatty acid synthesis, thus bolstering intestinal and

systemic immunity (46). SCFAs can also function as epigenetic

regulators of B cell differentiation and activity, influencing both the

homeostatic and pathogen-specific antibody responses (47). For

instance, butyrate has been shown to promote the differentiation of

IL-10-producing (IL-10+) Bregs, a process associated with the

inhibition of HDAC3 activity and the reduction of mitochondrial

oxidative stress (48). Furthermore, butyrate can enhance the

immunosuppressive capabilities of Bregs, important for

maintaining immune tolerance (49).

Nonetheless, it is important to note that the immunomodulatory

effects of SCFAs on B cells are dose dependent. Low levels of butyrate
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and propionate have been shown to moderately enhance class-switch

DNA recombination in B cells whereas higher levels can inhibit

activation-induced cytidine deaminase and Blimp1 expression,

ultimately suppressing class-switch DNA recombination (CSR) and

plasma cell differentiation (50). Careful clarification of such nuanced,

dose-dependent effects is therefore important for effectively harnessing

SCFAs in the therapeutic modulation of B cell responses.
2.3 Macrophages

Macrophages are pivotal components of the TME, and their

polarization states are intricately regulated by metabolites derived

from the gut microbiota. M1 macrophages exhibit tumoricidal

activity and reinvigorates cytotoxic T-cell responses, whereas M2

macrophages foster immune evasion and tumor progression (51,

52). Different metabolites exert distinct and multifaceted effects on

macrophages. For instance, SCFAs have been shown to modulate

the dynamic balance of M1/M2 macrophages by suppressing M1

macrophage polarization and promoting M2 macrophage

polarization, thereby participating in tumor-related pathological

processes (53–55). Interestingly, B.thetaiotaomicron-derived acetic

acid was proved to improve the polarization of M1 macrophages

and further promotes the function of cytotoxic CD8+ T cells,

ultimately inhibiting the growth of hepatocellular carcinoma

tumors (56).

Other microbial metabolites also influence macrophage

function. Trimethylamine N-oxide (TMAO), a metabolite

produced by the gut microbiota, was shown to promote M1

macrophage polarization via NOD-like receptor protein 3

(NLRP3) inflammasome activation (57) and enhance the

cytotoxic capacity of M1 macrophages against tumor cells (58).

Moreover, recent studies have suggested that indole-3-acetic acid, a

tryptophan-derived metabolite, promotes the IL-35 production in

macrophages and other immune cells, subsequently alleviating

intestinal inflammation and suppressing tumorigenesis (59).

These findings collectively highlight the complex and context-

specific nature of microbial metabolite-mediated regulation of

macrophages. Further research is needed to elucidate tissue-

specific mechanisms, enabling more effective therapeutic

modulations of macrophages in cancer.
2.4 Other immune cells

In addition to T cells, B cells, and macrophages, gut microbiota-

derived metabolites also modulate the functions of other immune

cell types that are important to the immunological landscape of

the TME.

For instance, dendritic cells (DCs) uniquely orchestrate

antitumor responses through their specialized capacity for cross-

presenting tumor antigens to naïve T cells (60). SCFAs regulate the

expression of genes related to inflammation and immune-cell

recruitment through HDAC inhibition, resulting in particularly

strong modulatory effects in DCs and enhanced anti-inflammatory
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activity (61). Moreover, SCFAs promote dendrite elongation in

DCs, assisting antigen uptake and key processes for effective T cell

activation (62).Secondary bile acids have also been shown to inhibit

DC activity through inhibiting nuclear factor kB (NF-kB)-mediated

activation via the TGR5-cAMP-PKA axis (63).

Myeloid-derived suppressor cells (MDSCs) represent a

heterogeneous population of pathologically responded neutrophils

and monocytes, which exhibit a strong correlation with unfavorable

clinical prognoses in cancer and immune responses (64–67). Butyrate

has been shown to induce epigenetic and metabolic reprogramming in

MDSCs, promoting their expansion and immunosuppressive capacity

(68). In contrast, bile acid has been shown to recruit MDSCs and help

mitigate excessive immunosuppression, via the cancer-associated

fibroblast-CCL3/CCR1 axis (69).

Natural killer (NK) cells, as key innate effectors in anti-tumor

immunity (70), are also modulated by SCFAs. Recent studies have

shown that SCFAs can enhance the proliferation and function of

NK cells by promoting the release of NK-derived extracellular

vesicles and reducing the levels of anti-inflammatory cytokine IL-

10, suggesting that SCFAs can contribute the anti-tumor NK cell

responses (71). Finally, high levels of SCFAs have been shown to

impair the migration and antiviral defense of neutrophils against

human immunodeficiency virus, with potentially age- and sex-

dependent regulatory characteristics (72). Moreover, butyrate and

propionate can induce apoptosis and degranulation in basophils to

modify basophil-mediated immune responses (73).

Collectively, these findings emphasize the important role of

metabolites derived from the gut microbiota in regulating a wide

array of immune cell types within the TME. Further research is

warranted to delineate the specific molecular mechanisms by which

these metabolites exert such function under different pathological

conditions. Ultimately, these insights could guide the development

of microbiota-targeted therapies aimed at reshaping the immune

landscape in cancer (Table 1).
3 Gut microbiota-derived metabolites
and cancer immunotherapy

The dynamic interplay between the gut microbiota and the

immune system forms the foundation for how gut microbiota-

derived metabolites influence immune functions and disease

outcomes. Leveraging this interaction offers a promising strategy to

enhance immune responses and alleviate immunological disorders.

This section examines the translational implications of host-microbiota

crosstalk in improving the efficacy of cancer immunotherapy.
3.1 Immune checkpoint blockade therapy

ICB therapy has revolutionized cancer immunotherapy by

targeting inhibitory pathways, such as programmed cell death

protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) and

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which

regulate immune system homeostasis under physiological conditions
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while tumors exploit to escape immune surveillance (74, 75). Through

blocking these checkpoints, ICB reactivates T cell-mediated anti-tumor

responses (76). Emerging evidence has indicated that the gut

microbiota significantly influences the efficacy of ICB therapy,

whereas the microbial diversity and composition of the gut

microbiota contribute importantly to treatment outcomes (77). For

instance, melanoma patients responding to anti-PD-1 therapy have

been shown to exhibit higher microbial diversity and an enrichment of

specific bacterial taxa, compared with non-responders, in the gut

microbiota (78).

Microbial metabolites can also modulate ICB therapy.

Phenylacetylglutamine (PAGln) has been shown to negatively

correlate with ICB efficacy (79), whereas TMAO was shown to

synergize with immune checkpoint inhibitors to reduce tumor

burden and improve survival in a pancreatic ductal adenocarcinoma

model (58). The role of microbial metabolites in immunotherapy is not

necessarily monolithic. For example, tryptophan metabolites have been

shown to exert dual roles, namely that they enhance ICB efficacy

through modulating tumor-associated macrophages but also promote

tumor progression via IL4I1-mediated AhR activation (80, 81). A

similarly complex picture has been noted for SCFAs. For instance, high

levels of butyrate have been suggested to impair anti-CTLA-4 therapy

by increasing the frequencies of Tregs and reducing tumor-specific T

cell infiltration (82).

Regardless, existing studies suggest a potentially central role of the

gut microbiota and its derived metabolites in modulating the efficacy

of ICB therapy. Improved understanding of the interactions between

different microbial metabolites and the TME helps to develop

personalized strategies to enhance therapeutic responses (83).
3.2 Gut microbiota-derived metabolites
and adverse events of immunotherapy

Enhancing the efficacy of ICB therapy is utmost important;

however, mitigating irAEs is equally critical. The gut microbiota

and its derived metabolites have been implicated to modulate the

severity of irAEs, particularly in the gastrointestinal tract (84, 85).

The gut-liver axis further exemplifies how microbiota-mediated

immune regulation can influence systemic toxicity profiles (86).

Specific microbial metabolites have been linked to the susceptibility

of irAEs. For instance, menaquinone has been suggested as a potential

modulator of adverse immune responses (87) whereas butyrate has

been shown to reinforce intestinal barrier integrity and ameliorate

immune checkpoint inhibitors (ICIs)-induced colitis (88). Indole-3-

carboxaldehyde, a tryptophan metabolite, may exert similar regulatory

effects as butyrate (89). To better identify strategies to prevent or

alleviate irAEs, in-depth characterization of key microbiota-immune

crosstalk pathways is needed.
3.3 Fecal microbiota transplantation

FMT has been shown to reprogram the gut microbiota and the

TME among immunotherapy-refractory patients (68, 90) and to
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TABLE 1 Crosstalk of major gut microbiota-derived metabolites and the tumor immune microenvironment: clinical translational potential.

Gut Microbiota-Derived Associated
Potential for Clinical Translation References

1. Butyrate supplementation inhibits gastric
tumorigenesis and progression in animal models;
2. In vitro studies demonstrate that butyrate
suppresses gastric cancer cell proliferation and
promotes apoptosis;
3. Fecal and serum SCFA (especially butyrate)
levels are significantly low in GC patients.

(26)

1. In vitro studies demonstrate that SCFAs
enhance tumor immunogenicity;
2. In vivo studies link higher SCFA levels with
abundance of SCFA-producing gut microbiota.

(27)

1. Oral or intraperitoneal butyrate augments
oxaliplatin efficacy in animal models;
2. Clinical data show higher serum butyrate in
oxaliplatin-responsive cancer patients;
3. Preclinical combination of butyrate with anti-
programmed cell death ligand 1 (PD-L1)
immunotherapy enhances antitumor effects.

(28)

1. In vitro studies demonstrate that CD8+ T cells
treated with butyrate show stronger expansion
and IFN-g production;
2. High-fiber diet increases circulating SCFAs and
enhances recall responses of memory CD8+ T
cells.

(29)

1. High-fiber diet increases butyrate and alleviates
gut inflammation in animal models;
2. Fecal/tissue butyrate levels reflect intestinal
immune homeostasis;
3. Butyrate enemas or HDAC inhibitors are under
preclinical/early clinical investigation as adjuvant
therapy for immune-checkpoint blockade (ICB) in
IBD.

(32, 33)

Dietary SCFA or prebiotic supplementation
proposed as a theoretical basis for Treg
modulation in autoimmune diseases.

(34)

SCFA supplementation (e.g., propionate) or
modified starches to increase intestinal SCFA

(35)

(Continued)
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Metabolites
Targeting Immune Cells Immune Effects

Cancers

SCFAs CD8+ T cells

1. Enhance the cytotoxic activity of CD8+ T against
gastric cancer cells via the GPR109A/HOPX axis;
2. Up-regulate gastric cancer cell expression of SCFA
receptors (GPR109A, GPR43) and antigen-processing
genes (e.g., NLRC5, Tap1, Tap2)

Gastric cancer (GC)

SCFAs CD8+ T cells

1. Activate CD8+ T cells to produce IFN-g and
granzyme and further up-regulates tumor MHC I
expression to reinforce immune responses;
2. Activate the cGAS/STING pathway by inhibiting
histone deacetylases (HDACs) to induce DNA
damage in colorectal cancer cells, up-regulating
chemokines (CCL5, CXCL10) and ISGs

Colorectal cancer (CRC)

SCFAs CD8+ T cells

1. Promote CD8+ T cell production of IFN-g and
granzyme B in an ID2-dependent manner, enhancing
cytotoxicity and antitumor activity;
2. Up-regulate IL-12 receptor expression, boosting
CD8+ T cell responsiveness to IL-12 and promoting
effector function;
3. Enhance oxaliplatin chemotherapy efficacy

CRC, lymphoma, colitis-
associated CRC

SCFAs CD8+ T cells
Promote CD8+ T cell memory formation, modulates
cellular metabolism, and sustains memory cell
survival.

Indirectly participate in
the tumor process

SCFAs CD4+ T cells

Inhibit CD4+ T cell activation and pro-inflammatory
cytokine (IFN-g, IL-17) production in a dose-
dependent manner via HDAC inhibition and GPR43
activation, affecting Th1, Th17, and Th22

Indirectly participate in
the tumor process

SCFAs Tregs

1. Promote peripheral Treg generation;
2. Stabilize FOXP3 expression via HDAC inhibition
and increase histone acetylation at the FOXP3 locus,
enhancing Treg function

Indirectly participate in
the tumor process

Propionate Tregs
Specifically expand colonic lamina propria Tregs,
down-regulate CD69 expression, and promote Treg

Indirectly participate in
the tumor process
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TABLE 1 Continued

Gut Microbiota-Derived Associated
Potential for Clinical Translation References

levels proposed as a preventive strategy for
Abdominal Aortic Aneurysm at-risk populations.

Propionate supplementation or microbiota
modulation proposed as a novel
immunomodulatory approach for chronic
prostatitis/chronic pelvic pain syndrome (CP/
CPPS).

(36)

SCFAs (especially propionate) proposed as
potential targets for modulating gd T cell function
in IBD and CRC.

(37)

Butyrate analogues under investigation as adjunct
therapy for metabolic syndrome.

(45)

1. In vitro studies clarify the regulatory effects of
SCFAs on B cell differentiation and antibody
production.
2. HDAC inhibitors (e.g., butyrate analogs) reduce
autoreactive plasma cells in animal models.

(46)

1. Animal studies have confirmed that a high-fiber
diet/SCFA supplementation can enhance antibody
levels and SCFAs regulate B cell functions through
metabolic regulation and HDAC inhibition;
2. Antibiotic treatment can eliminate the
antibody-promoting effect of SCFAs, confirming
microbiota dependence.

(47)

Butyrate supplementation alleviates intestinal
inflammation.

(48)

1. Verified the anti - inflammatory effect of
butyrate supplements in animal models;
2. Fecal butyrate levels are decreased in
rheumatoid arthritis patients and are positively
correlated with peripheral blood Bregs.

(49)

(Continued)
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Metabolites
Targeting Immune Cells Immune Effects

Cancers

trafficking via draining lymph nodes and blood to
sites of atherosclerosis.

SCFAs Th17/Tregs

1. Gut dysbiosis reduces propionate, skewing Th17/
Treg balance (Th17↑, Treg↓);
2. Propionate supplementation restores Th17/Treg
equilibrium by promoting Treg and suppressing Th17
differentiation via GPR43 activation and HDAC6
inhibition.

Indirectly participate i
the tumor process

SCFAs Gd T cells
Directly inhibit gd T cell IL-17 and IL-22 production
via HDAC inhibition

CRC

SCFAs B cells
Drive B cell differentiation into IL-10+ IgM+

regulatory plasma cells
Indirectly participate i
the tumor process

SCFAs B cells

1. Butyrate/propionate promotes the differentiation of
IL-10+ IgM+ regulatory plasma cells and reduces
pathogenic class switching via HDAC inhibition.
2. Acetate promotes the generation of Bregs and
inhibits pro-inflammatory cytokines (e.g., TNFa);
Butyrate reduces mitochondrial reactive oxygen
species (ROS) in B cells via HDAC3 inhibition to
maintain Breg homeostasis.
3. Butyrate induces the production of TGF-b and
retinoic acid (RA), promoting IgA class switching in
B cells and enhancing the intestinal barrier function.

CRC

SCFAs B cells

1. Enhance B cell metabolism and provide energy and
material basis for plasma cell differentiation;
2. Promote the production of IgA and IgG, enhancing
the immune response against pathogens;
3. Indirectly regulate T cells by increasing the number
of Tfh cells, promoting germinal center reactions, and
assisting B cell antibody production.

Indirectly participate i
the tumor process

Butyrate Bregs
Promote IL-10 expression in Bregs, enhance their
suppressive function, and inhibit germinal-center B
cells and plasmablast differentiation

Indirectly participate i
the tumor process

SCFAs Bregs

Enhance the suppressive function of Bregs, increase
IL-10 secretion, and reduce the differentiation of
plasmablasts, decrease the production of pro-
inflammatory cytokines (TNFa, IL-6, MCP-1)

No associated cancers
mentioned
n

n

n

n
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TABLE 1 Continued

Gut Microbiota-Derived Associated
Potential for Clinical Translation References

Modulating butyrate levels inhibits autoantibody
production and alleviates lupus symptoms in
animal models.

(50)

1. Preclinical studies establish SCFAs from
Castration-Resistant Prostate Cancer-associated
microbiota as key mediators linking dysbiosis to
tumor progression;
2. CCL20 identified as a potential prognostic
biomarker for prostate cancer.

(53)

1. Preclinical evidence shows inulin increases
intestinal SCFAs; 2. SCFAs exert anti-Alcoholic
liver disease (ALD) effects by modulating M1/M2
macrophage balance, providing rationale for
inulin/SCFA-based ALD prevention and therapy.

(54)

Positive correlations between SCFAs and bone-
metabolism indices suggest novel gut-targeted
osteoporosis therapy.

(55)

1. Preclinical studies show B.thetaiotaomicron-
derived acetate inhibits HCC growth via immune-
microenvironment modulation;
2. Acetylation inhibitors (e.g., curcumin) block
acetate-mediated tumor suppression, offering
epigenetic-targeted HCC therapy.

(56)

Butyrate proposed as an anti-inflammatory agent
for modulating DC function.

(61)

Clinical application not yet addressed. (62)

1. Butyrate alleviates cholangitis in animal models;
2. Positive correlation observed between butyrate

(68)

(Continued)
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Metabolites
Targeting Immune Cells Immune Effects

Cancers

SCFAs B cells

Dose-dependently modulates B cells: low
concentrations (50–200 μM) mildly increase AID
expression and class-switch recombination (CSR);
high concentrations (≥400 μM) inhibit AID, Blimp1,
CSR, somatic hypermutation, and plasma cell
differentiation

Indirectly participate in
the tumor process

SCFAs M2 Macrophages

1. Trigger TLR3-induced autophagy in cancer cells,
activating NF-kB and MAPK pathways and
enhancing migration and invasion, autophagy induces
CCL20 release;
2. CCL20 can recruit macrophages into the tumor
microenvironment (TME) and polarizes them toward
pro-tumor M2 Macrophages, further enhancing
prostate cancer invasiveness.

Prostate cancer

SCFAs Macrophages

1. Inhibit LPS-induced M1 polarization (↓iNOS, TNF-
a) and promote IL-4–induced M2 polarization (↑Arg-
1, IL-10);
2. Down-regulate TLR4, MyD88, NF-kB, and
suppress alcohol-induced liver injury

Indirectly participate in
the tumor process

SCFAs Macrophages

1. Modulate M1/M2 balance, ↓M1, ↑M2; reduce
serum pro-inflammatory cytokines (IL-12p70, TNF-a,
CXCL1);
2. ↑tight-junction proteins (ZO-1, occludin), restore
barrier function

Indirectly participate in
the tumor process

Acetate Macrophages

1. Promote pro-inflammatory M1 polarization
(↑CD86, iNOS; ↓CD163, ARG1) via histone
acetylation-driven ACC1 transcription and increase
fatty-acid synthesis;
2. M1 macrophages enhance CD8+ T cell function
(↑IFN-g, granzyme B), increasing cytotoxicity against
hepatocellular carcinoma (HCC) cells.

HCC

SCFAs Dendritic cells (DCs)
↓ pro-inflammatory cytokine secretion (IL-6, IL-12)
by DCs and
↓ chemokines (CXCL9, CXCL10, CXCL11)

Potentially applicable to
inflammation-associated
cancers

SCFAs DCs
1. Induce DC dendrite elongation via HDAC
inhibition, promoting actin polymerization;
2. Enhance antigen uptake and presentation

Indirectly participate in
the tumor process

Butyrate
Myeloid-derived suppressor cells

(MDSCs)

1. Promote MDSC suppressive function via fatty-acid
b-oxidation (FAO) metabolic reprogramming;
2. Enhances T cell inhibition by MDSCs

Indirectly participate in
the tumor process
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TABLE 1 Continued

Gut Microbiota-Derived Associated
Potential for Clinical Translation References

levels and MDSC function/treatment response in
humans.

1. Enhancing the cytotoxicity of NK cells through
SCFA preconditioning can optimize the effect of
NK cell immunotherapy;
2. In combination with ICB, chemotherapy, etc.,
SCFAs may improve treatment response and
reduce drug resistance.

(71)

In vitro studies demonstrate that pathological
concentrations of SCFAs impair the anti-HIV
function of neutrophils.

(72)

Mechanisms of HDAC-mediated basophil
modulation by propionate and butyrate are
clarified.

(73)

1. Oral 3-oxoLCA reduces intestinal Th17 cells in
animal models;
2. Combined 3-oxoLCA and isoalloLCA feeding
increases Tregs and alleviates colitis in animal
models.

(38)

1. Bile acid sequestrants (e.g., cholestyramine)
lower DCA and inhibit tumor growth;
2. Fecal DCA concentration and microbial baiF
gene (key for DCA synthesis) abundance are
potential CRC risk biomarkers;
3. Polyamine blockade therapy combined with
PD-1 inhibitors may reverse “cold tumor”
microenvironment.

(39)

Oral DCA/LCA alleviates experimental
autoimmune uveitis (EAU) in animal models.

(63)

Potential targets (TGR5, CCL3, CCR1) proposed
but remain preclinical.

(69)

(Continued)

H
u
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.16

4
9
4
3
8

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
8

Metabolites
Targeting Immune Cells Immune Effects

Cancers

SCFAs Natural killer (NK) cells

Promote the release of extracellular vehicles (EVs),
significantly reduce the secretion of the anti -
inflammatory cytokine IL-10, and indirectly weaken
the pro - tumor effect of IL-10.

Multiple myeloma

SCFAs Neutrophils

1. Butyrate ↓CD66b, ↑CD16 and CD62L, yielding a
low-activation, long-lived mature phenotype;
propionate ↑CD54 and CXCR4, inducing a senescent
phenotype;
2. Acetate and butyrate suppress neutrophil migration
in vitro; propionate alters migratory phenotype
(↑CD62L, CD54) without affecting migration.

Indirectly participate in
the tumor process

Butyrate, propionate Basophils

1. Induce CD69 expression and shift cytokine
secretion (↓IL-4, ↑IL-13) via HDAC inhibition;
2. Induce basophil apoptosis even in the presence of
IL-3 (apoptosis inhibition);
4. Enhance IgE-mediated degranulation

Indirectly participate in
the tumor process

3-oxoLCA, isoalloLCA Th17/Tregs

1. 3-oxoLCA directly bind the Th17 transcription
factor RORgt, inhibiting its activity and reducing IL-
17 secretion;
2. IsoalloLCA promotes mitochondrial ROS
generation to induce Treg differentiation.

Indirectly participate in
the tumor process

Bile acids CD8+ T cells
Inhibit CD8+ T cell function by enhancing PMCA
activity, suppressing Ca²+-NFAT2 signaling, and
reducing IFN-g, TNF-a, and granzyme B secretion.

CRC

Secondary bile acids DCs
Inhibit NF-kB activation via the TGR5–cAMP–PKA
pathway, reducing secretion of pro-inflammatory
factors (IL-1b, IL-6, TNF-a).

Indirectly participate in
the tumor process

Bile acids MDSCs

1. Promote MDSC infiltration into liver metastases
and suppress T cell activation;
2. MDSC-derived CCL2 attenuates
immunosuppression via CCR2 signaling.

Colorectal cancer liver
metastasis (CRLM)
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TABLE 1 Continued

Gut Microbiota-Derived
Immune Effects

Associated
Cancers

Potential for Clinical Translation References

cell via MAPK/ERK pathway, reduce
ker CD69 and IL-2 production,
nd Th17 differentiation

Indirectly participate in
the tumor process

In vitro studies demonstrate that Spermidine show
preventive and therapeutic effects, offering a
potential strategy for multiple sclerosis requiring
further preclinical and clinical validation.

(40)

homing to the colon via the AhR-
y and increase colonic Tregs

Potentially reduce colitis-
associated cancer risk

L-Trp supplementation is proposed as a non-
invasive preventive therapy for ulcerative colitis
(UC).

(42)

rigger mitochondrial-dependent
h1/Th17 cells

Potentially reduce IBD-
associated CRC risk

Oral IPA alleviates colitis in animal models and is
proposed as a therapeutic strategy for IBD.

(43)

xpression, promote Treg, Breg, and M2
ifferentiation, and inhibit Th1 Colitis-associated CRC

IAA levels are low in CRC patients, suggesting
diagnostic or preventive value.

(59)

3 inflammasome, promote
ROS, activate NF-kB, induce M1
olarization, and enhance Th1 and Th17

Relevant to Graft-versus-
host disease (GVHD)
after hematopoietic stem-
cell transplantation for
hematologic malignancies

Choline analogue can alleviate GVHD, suggesting
therapeutic potential for dietary interventions or
drugs targeting the TMAO pathway.

(57)

pathway, promote M1 macrophage
nd enhance CD8+ T cell function

Pancreatic ductal
adenocarcinoma,
melanoma

1. Higher TMAO levels correlate with improved
long-term survival and immunotherapy response;
2. Dietary choline supplementation or adoptive
transfer of TMAO-conditioned macrophages
shows therapeutic potential.

(58)
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Metabolites
Targeting Immune Cells

Spermidine CD4+ T cells
Inhibit CD4+ T
activation mar
decrease Th1 a

L-Tryptophan (L-Trp) Tregs
Promote Treg
GPR15 pathwa

Indole-3-propionic acid (IPA) Th1/Th17
Bind HSP70, t
apoptosis in T

Indole-3-acetic acid (IAA) Macrophages
Induce IL-35 e
macrophage d
differentiation.

TMAO M1 Macrophages

Activate NLRP
mitochondrial
macrophage p
differentiation

TMAO Macrophages
Activate IFN-I
polarization, a
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restore anti-PD-1 sensitivity among patients with refractory

melanoma and other malignancies (91–94). Moreover, FMT has

been shown to increase the production of SCFAs and facilitate the

infiltration and activation of immune cells to the TME, thereby

improving therapeutic efficacy (95). The potential of FMT has also

been suggested in hepatocellular carcinoma, particularly in

managing intrahepatic metastases (96). Although the potential of

FMT as an add-on therapeutic strategy for immunotherapy of

diverse cancer types is clear, challenges exist regarding donor

screening, protocol standardization, and potential side effects (16,

97). Rigorously designed clinical trials and preclinical models are

needed to illuminate the trade-off between benefits and potential

harms (90).
3.4 Probiotics and prebiotics

Probiotics and prebiotics represent targeted strategies to

modulate the composition and function of the gut microbiota

(98). As a vital supplementary treatment method, probiotics have

been proved to restore the microbial imbalance caused by cancer

treatment, thereby alleviating gastrointestinal adverse reactions and

stimulating the immune system to fight against tumor cells (99,

100). Clostridium butyricum, for instance, can suppress colorectal

cancer associated with colitis and enhance efficacy of ICB therapy

(101–104). Prebiotics, which are selectively utilized by host

microorganisms (e.g., glucans and fructans), support the

colonization and functions of probiotics and enhance the

production of SCFAs (105). For example, pectin has been shown

to selectively enrich SCFA-producing taxa (e.g., Bifidobacterium

and Lactobacillus), contributing to an immunostimulatory TME

(106). Together, prebiotics and probiotics modulate the gut

microbiota to promote host health, with overlapping mechanisms

such as immune regulation and gut barrier improvement (107).

However, as various factors (e.g., strain specificity, host health

status, and diet) could influence outcomes of pro- or prebiotics

use, individualized approaches and therapeutic guidelines are

urgently needed (98, 108). Precision probiotics, tailored to specific

microbiome phenotypes, may optimize therapeutic efficacy by

promoting the growth of beneficial metabolite-producing

microbes (109). Clinical validation and standardized guidelines

are therefore essential for the integration of such interventions to

personalized oncology (110).
3.5 Dietary interventions

Dietary interventions targeting the gut microbiota have

emerged as a non-invasive strategy to improve the immune status

and support cancer immunotherapy (111). For example, high

dietary cholesterol has been revealed to result in non-alcoholic

fatty liver disease-related hepatocellular carcinoma (NAFLD-HCC)

through dysbiosis of gut microbiota and metabolites and

anticholesterol treatment has significant potential in preventing

cancer (112). Furthermore, a high-fiber diet lays a solid immune
Frontiers in Immunology 10
foundation for strengthening the intestinal immune barrier and

enhancing T cell activation to improve responses to anti-PD-1

therapy, promoting the proliferation of gut bacteria that produce

SCFAs and increases endogenous SCFA levels (113, 114), especially

propionates have been proved to alleviate lipid dysmetabolism and

enhance immune homeostasis (115–117). Other microbial

metabolites derived from dietary components also exhibit

immunomodulatory properties. Polyamines (e.g., spermidine)

derived from whole grains and fermented foods help to modulate

T cell differentiation and contribute to gut immunity (118).

Moreover, appropriate reduction in daily protein intake can

enhance the enrichment of beneficial gut bacteria and modulate

host health status through microbial-derived metabolites (119).

However, inter-individual microbiome variability and varying

adherence to dietary interventions might influence efficacy (120).

Successful clinical use of personalized dietary interventions will

require a deeper phenotyping of individual microbiota profiles and

a validation through rigorously designed clinical trials. Notably,

given their relatively minimal side effects, the significant potential of

dietary interventions in tumor immunotherapy represents a

promising avenue for further exploration.
3.6 Emerging biomarkers for cancer
immunotherapy

As the targeted modulation of the gut microbiota has emerged

as an innovative therapy for cancer, the information encoded within

the compositional and metabolic profiles of the gut microbiota is

increasingly being harnessed to develop novel biomarkers for the

prediction of risk and prognosis of cancer, indicating another

important clinical utility of the gut microbiota (121). Intestinal

microbiota exhibits a dynamic and real-time correlation with tumor

progression and therapeutic interventions, enabling a more

comprehensive and timely assessment of treatment efficacy

compared to traditional biomarkers (122). Specifically, there

appears to be notable heterogeneity between tumor types.

Decreased abundance in specific probiotic species has been linked

to a dysbiotic state associated with poor outcomes of colorectal

cancer (123).

Gut microbiota metabolites also show potential for non-invasive

screening and treatment response prediction (124). Reduced levels

and decreased abundance of SCFA-producing bacteria have been

shown to be correlated with risk markers in non-small cell lung

cancer (84, 125), while secondary bile acids (e.g., deoxycholic acid)

with elevated levels and increased abundance of related metabolizing

bacteria can act as diagnostic markers in CRC patients (126).

Moreover, tryptophan metabolites, particularly indoxyl sulfate (IS),

appear to serve as key predictors for differentiating ruptured from

unruptured intracranial aneurysms (127).

Nevertheless, owing to the individual variations caused by

factors such as diet and antibiotic use, as well as the lack of

standardized detection technologies, further verifying the

reliability of microbial biomarkers are crucial for fully realizing

clinical transformation (123).
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4 Conclusions and future perspectives

The gut microbiota plays a pivotal role in modulating the

immune responses within the TME and shaping the efficacy of

cancer therapies, especially immunotherapy. Investigating the

therapeutic potential of gut microbiota-derived metabolites is an

emerging frontier in precision oncology, presenting new

opportunities to improve clinical outcomes of cancer patients.

The convergence of microbiology, immunology, and oncology

will facilitate a holistic paradigm shift in cancer care

(128) (Figure 1).

Continued research is clearly needed to best translate bench-

side discoveries into clinical applications (129). Innovative

technologies and personalized strategies, such as AI-based

identification of immunomodulatory gene targets (130),

microbiota‐targeted nanomedicine via genetic engineering (131),

and development of novel postbiot ics or metabol i te

supplementation (132), could all potentially help improve the
Frontiers in Immunology 11
efficacy of cancer immunotherapy. Moreover, advanced

metabolomics approaches – such as untargeted metabolomics or

stable-isotope tracing – should also be leveraged to uncover

additional microbiota-derived metabolites of relevance to the

TME and efficacy of immunotherapy (133). In addition to the

identification of novel metabolites, integrative use of advanced

metagenomics and metatranscriptomics techniques can also help

identify microbial genes and pathways critical for immune

modulation (134, 135). Translational studies should on the other

hand expand to include robust, well-powered clinical trials that

evaluate different microbiota-targeted therapies such as engineered

probiotics, synthetic microbial consortia, and postbiotic

supplementation across diverse patient populations (136, 137).

Finally, integrating microbiome interventions with emerging

cancer therapies – such as CAR-T cells and cancer vaccines – also

represents a promising new frontier (138).

Despite significant advancement, several challenges remain.

The mechanisms by which microbial metabolites influence
FIGURE 1

Gut microbiota-derived metabolites play a crucial role in modulating the tumor microenvironment (TME) and influencing the efficacy of cancer
therapies. This review highlights the ability of various metabolites to mediate immune responses within the TME. Deciphering and harnessing this
crosstalk holds significant promise for advancing cancer immunotherapy, particularly in supporting tailored immune checkpoint blockade (ICB)
therapies that target specific molecules. Additionally, targeted fecal microbiota transplantation (FMT), along with other supportive measures such as
probiotics, prebiotics, and dietary interventions, may help restore gut microbial homeostasis and its associated metabolic profiles, ultimately
enhancing cancer therapy outcomes.
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immune responses within the TME need further exploration, and

their long-term health effects must be thoroughly evaluated. The

complexity of host-microbiota interactions necessitates a

comprehensive, systems-level research approach. Moreover,

population-specific variability underscores the need for large-

scale, diverse clinical studies. Personalized therapeutic strategies

tailored to individual microbiota profiles could lead to substantial

improvements in cancer care. Expanding clinical trial cohorts and

ensuring adequate statistical power are essential for generalizing

findings and implementing microbiota-based interventions across

diverse populations.
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