
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Afza Ahmad,
Babu Banarasi Das University, India

REVIEWED BY

Nemat Ali,
King Saud University, Saudi Arabia
Harshverdhan Sirohi,
University of California, San Diego,
United States

*CORRESPONDENCE

Yingcai Hong

yingcai_hong0706@163.com

Haihao Zhu

zhhaoi0224@126.com

Li Peng

13883679297@163.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 18 June 2025

ACCEPTED 21 July 2025

PUBLISHED 25 August 2025

CITATION

Peng L, Li H, Yan W, Liu Y, Zhu H and Hong Y
(2025) Integrative profiling of lung cancer
biomarkers EGFR, ALK, KRAS, and PD-1
with emphasis on nanomaterials-assisted
immunomodulation and targeted therapy.
Front. Immunol. 16:1649445.
doi: 10.3389/fimmu.2025.1649445

COPYRIGHT

© 2025 Peng, Li, Yan, Liu, Zhu and Hong. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 25 August 2025

DOI 10.3389/fimmu.2025.1649445
Integrative profiling of lung
cancer biomarkers EGFR, ALK,
KRAS, and PD-1 with emphasis
on nanomaterials-assisted
immunomodulation and
targeted therapy
Li Peng1*†, Hongmei Li2†, Wencai Yan3, Yingjie Liu2,
Haihao Zhu2* and Yingcai Hong4*

1Chongqing Emergency Medical Center, Chongqing, China, 2Shanghai Labway Clinical Laboratory,
Shanghai, China, 3Jiangsu Danyang Traditional Chinese Medicine Hospital, Danyang, Jiangsu, China,
4Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern
University of Science and Technology; The Second Clinical Medical College, Jinan University),
Shenzhen, Guangdong, China
Background: Lung cancer remains the leading cause of cancer-related mortality

globally, primarily due to late-stage diagnosis, molecular heterogeneity, and

therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have

revolutionized precision oncology; however, comprehensive structural and

clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from

UniProt and modeled using SWISS-MODEL to generate high-confidence 3D

structures. Protein–protein interaction (PPI) networks were constructed via

STRING to explore functional associations and signaling networks. Molecular

docking using SwissDock evaluated the binding affinities of established inhibitors.

Transcriptomic validation was conducted using RNA-seq datasets from GEPIA2,

TNMplot, and UALCAN to assess differential expression and clinical subgroup

relevance. Experimental validation was performed via qRT-PCR in NSCLC cell

lines (A549, H1975, H520).

Results: Robust 3D models were obtained, with MolProbity scores between 0.67

and 2.09, confirming structural reliability. Key mutations, including EGFR T790M

and KRAS G12C, were localized to ATP-binding clefts and allosteric pockets

respectively, based on structural mapping using SWISS-MODEL. PPI analysis

revealed EGFR’s integration into ERBB and MAPK/PI3K pathways, ALK’s fusion-

driven activation via EML4 and PI3K-AKT signaling, KRAS’s links to MAPK

effectors, and PD-1’s interaction with immune checkpoint ligands PD-L1/PD-

L2. Docking results showed strong EGFR–Gefitinib affinity (−5.94 kcal/mol, Kd

4.38 × 10-5 M), while KRAS inhibitors Adagrasib and Sotorasib demonstrated

moderate binding (−3.94 and −3.72 kcal/mol, respectively). Transcriptomic

analyses revealed significant overexpression of EGFR (2.8-fold), KRAS (2.3-fold),

ALK (1.9-fold), and PDCD1 (2.1-fold) in NSCLC tissues (p < 0.01). qRT-PCR

corroborated these findings, with H1975 cells displaying elevated EGFR (3.2-
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fold) and KRAS (2.4-fold), and H520 cells showing increased ALK (2.7-fold) and

moderate PDCD1 expression.

Conclusion: This integrative study combining structural modeling, molecular

interaction analysis, and transcriptomic validation confirms EGFR, ALK, KRAS, and

PD-1 supports their relevance as clinically actionable and structurally druggable

biomarkers in NSCLC. These findings support their continued use in targeted

therapy design and precision diagnostics, highlighting nanomaterials as ideal

carriers due to their ability to enhance immune checkpoint blockade and drug

bioavailability in NSCLC.
KEYWORDS

lung cancer biomarkers, structural bioinformatics, molecular docking, transcriptomic
validation, precision oncology
1 Introduction

Lung cancer remains the leading cause of cancer-related

mortality worldwide, accounting for an estimated 2.21 million

new cases and 1.8 million deaths in 2020, which represents 11.4%

of all new cancer diagnoses and 18% of all cancer deaths, according

to GLOBOCAN data (1). This burden is projected to rise to over 3.6

million new cases annually by 2040, largely driven by population

ageing, continued tobacco use in developing regions, rising urban

pollution, and sustained exposure to occupational and

environmental carcinogens (2, 3). While cigarette smoking

remains the predominant risk factor—linked to approximately

87% of global lung cancer cases—the incidence among never-

smokers is rising significantly, especially in East Asia, where up to

60% of lung cancer cases in women occur in non-smokers (4–6).

Additional contributors include radon exposure, ambient

particulate matter (PM2.5), second-hand smoke, occupational

hazards such as asbestos and silica, and genetic predispositions

through polymorphisms or germline mutations (7). Despite

advances in treatment, the overall five-year survival rate remains

dismal at around 19.8%, dropping to below 5% for stage IV disease,

compared to over 60% for early-stage, localized tumors (8). More

than 70% of patients are diagnosed at an advanced stage, reflecting

the inadequacy of symptom-based diagnosis and limitations of

current screening such as low-dose CT, thus underscoring the

need for molecularly precise diagnostics (9). This underscores the

urgent need for early, non-invasive, and molecularly precise

diagnostic approaches. Molecular biomarkers have transformed

the landscape of lung cancer treatment, enabling targeted and

personalized therapeutic strategies. Key biomarkers such as EGFR,

ALK, KRAS, and PD-1 have been instrumental in guiding tyrosine

kinase inhibitors and immune checkpoint blockade therapies (10,

11). EGFR mutations, common in non-smokers and East Asian

populations, predict response to TKIs like Osimertinib (12). ALK

rearrangements, prevalent in younger, non-smoking patients, are
02
responsive to agents like crizotinib and alectinib. KRAS mutations,

particularly G12C, represent historically “undruggable” targets that

are now actionable with inhibitors such as sotorasib.

Immunotherapy, particularly targeting PD-1/PD-L1 , has

revolutionized lung cancer management, offering durable

responses in biomarker-selected populations (13). Nanomaterials

have emerged as transformative tools in immunotherapy due to

their ability to enhance pharmacokinetics, target tumor

microenvironments, and modulate immune checkpoint responses

at nanoscale resolution. Recent advancements in cancer

nanomedicine have enabled the targeted del ivery of

immunomodulatory agents using functionalized nanomaterials.

Nanoparticles engineered to interfere with the PD-1/PD-L1 axis

offer the potential to overcome immune evasion mechanisms in

NSCLC (14). Understanding the structural architecture of PD-1 and

associated immune ligands is crucial for designing nanoscale

immune checkpoint inhibitors and for developing hybrid

diagnostic-therapeutic platforms. However, the structural

heterogeneity and dynamic mutation landscape of these

biomarkers necessitate deeper investigation into their

conformational properties, interaction networks, and clinical

expression patterns. This study adopts a structure-guided and

expression-validated approach to characterize EGFR, ALK, KRAS,

and PD-1—four of the most clinically actionable targets in lung

cancer. Using homology modeling via SWISS-MODEL, we

constructed high-fidelity three-dimensional representations to

identify key functional domains, mutation hotspots, and drug-

binding interfaces. Complementing this, molecular docking was

employed to evaluate inhibitor interactions, and protein–protein

interaction (PPI) analysis via STRING provided insights into

pathway integration and oncogenic networks. Importantly, we

validated the clinical relevance of these targets using

transcriptomic expression data from public qPCR datasets

(GEPIA2, UALCAN, TNMplot), confirming their differential

expression in tumor versus normal tissues. By integrating
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structural bioinformatics with molecular and expression data, this

study aims to reinforce the role of EGFR, ALK, KRAS, and PD-1 as

precision targets in lung cancer, providing a foundation for future

diagnostics, therapeutic design, and personalized oncology

strategies (15).
2 Methods and materials

This study was conducted in compliance with the Declaration of

Helsinki and was approved by the Institutional Ethics Committee of

Shenzhen People’s Hospital, Shenzhen communicate through letter

no. LL-KY-2024162-01. All analyses were performed using publicly

available bioinformatics databases web-based tools and human-

derived cells but without the use of human or animal

experimental subjects.
2.1 Accession of protein sequences

The amino acid sequences of four lung cancer biomarkers—

EGFR (P00533), ALK (Q9UM73), KRAS (P01116), and PD-1

(PDCD1, Q15116)—were retrieved in FASTA format from the

UniProt Knowledgebase (https://www.uniprot.org/) between

December 2024 and May 2025. These targets were selected based

on their high clinical relevance in non-small cell lung cancer

(NSCLC) and their roles in therapy resistance, tumor progression,

or immune evasion. Additional biomarkers reviewed during

selection are listed in Supplementary Table S1.
2.2 Homology modeling via SWISS-MODEL

SWISS-MODEL (server- https://swissmodel.expasy.org/,

version updated January 2024) was selected for its template-based

precision and user-defined control, which was essential for

mutation-specific modeling; AlphaFold’s models, while highly

accurate, do not currently allow mutation-guided customizations

or ligand-ready conformations. Template identification was carried

out using BLAST and HHblits searches against the SWISS-MODEL

Template Library (SMTL). The best-fit templates were selected

based on sequence identity, template resolution, and structural

coverage. Each model was evaluated by Global Model Quality

Estimation (GMQE) and QMEAN Z-score. Final models were

downloaded in PDB format between January and April 2025 and

were used for mutation mapping and binding-site prediction

(16, 17).
2.3 Molecular docking

Protein-ligand docking was conducted using SwissDock (http://

www.swissdock.ch/, accessed April 2025), a web server based on the

EADock DSS docking engine and the CHARMM22 force field.
Frontiers in Immunology 03
Ligands for docking included clinically approved inhibitors:

gefitinib (EGFR), crizotinib and alectinib (ALK), sotorasib and

adagrasib (KRAS), and a PD-1 small molecule analogue. Blind

docking was employed to explore allosteric and orthosteric binding

across the protein surface. Docked conformations were scored

based on FullFitness and DG (binding free energy) values.

Interaction analyses were performed using PyMOL v2.5 and

BIOVIA Discovery Studio Visualizer v21.1, with hydrogen bond

distances and van derWaals overlaps cross-validated against known

crystal structures (RMSD ≤ 2 Å where applicable) (18).
2.4 Protein-protein interaction network
construction

To evaluate the functional interaction landscape of each

biomarker, protein–protein interaction (PPI) networks were

constructed using the STRING database (https://string-db.org/,

version 12.0). Each protein (EGFR, ALK, KRAS, PDCD1) was

individually queried, and results were filtered with a high-

confidence interaction score cutoff of ≥0.90. Interactions were

derived from curated databases, experimental evidence, co-

expression, text mining, and co-occurrence. PPI networks were

accessed and downloaded in February 2025. The top 10 functional

partners for each protein were selected for interpretation and

integration into biological pathways (19).
2.5 Transcriptomic expression validation

To validate the relevance of the selected biomarkers at the

transcriptomic level, a qPCR-style in silico gene expression analysis

was performed using the following public RNA-seq data platforms:

GEPIA2 (http://gepia2.cancer-pku.cn/; accessed March 2025): A

TCGA–GTEx portal used for tumor vs. normal differential

expression. Statistical cutoffs were set at |log2FC| ≥ 1 and p <

0.01. Data were analyzed for LUAD and LUSC cohorts. TNMplot

(https://www.tnmplot.com/; accessed April 2025): Used for cross-

platform (RNA-seq and microarray) validation of EGFR, ALK,

KRAS, and PDCD1 expression in NSCLC versus normal tissues.

Consistency across datasets strengthened reliability. UALCAN

(http://ualcan.path.uab.edu/; accessed April 2025): Provided stage-

wise and subtype-specific analysis of biomarker mRNA expression.

Promoter methylation data indicated transcriptional activation

rather than repression for EGFR, ALK, and KRAS, suggesting

their overexpression is driven by oncogenic signaling rather than

epigenetic deregulation Supplementary Table S2, mimicking a

qPCR-style output with log2 fold changes, p-values, and clinical

relevance. For laboratory validation, three human NSCLC cell lines

were selected: A549 (lung adenocarcinoma), H1975 (EGFR-mutant

lung adenocarcinoma), and H520 (lung squamous cell carcinoma).

All cell lines were procured from the American Type Culture

Collection (ATCC) and cultured under standard conditions at 37°

C with 5% CO2 in RPMI-1640 medium (Gibco, Thermo Fisher
frontiersin.org
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Scientific) supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin-streptomycin. These cell lines were selected based on

their molecular characteristics: H1975 harbors the clinically

relevant EGFR T790M mutation; A549 serves as a KRAS-mutant

adenocarcinoma reference; and H520, although not typically ALK-

positive, was included due to reports of low-level ALK mRNA

expression in squamous NSCLC, allowing exploratory assessment

of expression heterogeneity. Total RNA was extracted using the

RNeasy Mini Kit (Qiagen, Germany), and RNA quality and

concentration were evaluated using a NanoDrop 2000

spectrophotometer (Thermo Scientific) along with agarose gel

electrophoresis to ensure integrity. Complementary DNA (cDNA)

was synthesized from 1 μg of total RNA using the High-Capacity

cDNA Reverse Transcription Kit (Applied Biosystems).

Quantitative PCR (qPCR) was performed using PowerUp SYBR

Green Master Mix (Applied Biosystems) and gene-specific primers

targeting EGFR, ALK, KRAS, and PDCD1 (primer sequences and

conditions are detailed in Supplementary Table S3). GAPDH was

used as the endogenous reference gene. All reactions were carried

out in triplicate on the QuantStudio 5 Real-Time PCR System

(Applied Biosystems) under standard thermal cycling conditions:

95°C for 2 minutes, followed by 40 cycles of 95°C for 15 seconds and

60°C for 1 minute. Relative expression levels were calculated using

the 2^(-DDCt) method, using A549 cells as the baseline control.

This integrated approach combining in silico data mining and cell

line-based qPCR assays enabled a robust validation of biomarker

expression profiles relevant to NSCLC.
Frontiers in Immunology 04
3 Results

3.1 Structural study using SWISS-MODEL

Understanding the three-dimensional (3D) structures of critical

biomarker proteins is essential for elucidating their functional roles

in tumorigenesis, drug resistance, and immune evasion in lung

cancer. Homology modeling offers a powerful tool when high-

resolution crystallographic structures are unavailable. Using the

SWISS-MODEL server, we generated accurate 3D models for

EGFR, ALK, KRAS, and PD-1, which represent key oncogenic

and immunomodulatory targets in non-small cell lung

cancer (NSCLC).

3.1.1 Protein selection
The four selected proteins were chosen based on their clinical

importance in lung cancer, involvement in key signaling pathways,

and their status as targets of approved therapies. Their sequences

were retrieved from the UniProt database, and associated details are

summarized in Table 1.

3.1.2 Homology modeling workflow and quality
assessment

Each amino acid sequence was submitted to SWISS-MODEL

between January and April 2025. Template selection involved

BLAST and HHblits searches against the SMTL (SWISS-MODEL

Template Library). Models were built based on the best-fitting

templates with optimal sequence identity, resolution, and

coverage. Quality was assessed using: GMQE (Global Model

Quality Estimation): a score between 0–1 indicating the expected

accuracy. QMEAN Z-score: indicating the degree of similarity to

high-resolution crystal structures (Table 2).

3.1.3 Structural insights and ramachandran
validation

The generated models revealed functional motifs and structural

domains relevant to biomarker activity, mutation hotspots, and

drug-binding interfaces. Quality assessment was further confirmed

using MolProbity for stereochemical evaluation, including

Ramachandran plots Table 3.

EGFR: The structural model of EGFR provided detailed

visualization of the kinase domain, including the N-lobe, C-lobe,

hinge region, and ATP-binding cleft. Mutations L858R and T790M

were positioned within the binding pocket, supporting known
TABLE 1 Selected lung cancer biomarker proteins for
homology modeling.

Protein
Role in

Lung Cancer
Common
Alterations

UniProt
ID

Epidermal Growth
Factor
Receptor (EGFR)

Promotes
proliferation via
tyrosine kinase

L858R, exon 19
deletions,
T790M

P00533

Anaplastic
Lymphoma
Kinase (ALK)

Oncogenic fusions
and
kinase activation

EML4–ALK,
L1196M,
G1269A

Q9UM73

Kirsten Rat Sarcoma
Viral
Oncogene (KRAS)

GTPase regulating
MAPK and
PI3K pathways

G12C,
G12D, G12V

P01116

Programmed Cell
Death Protein 1
(PD-1)

Immune
checkpoint;
suppresses T-
cell activity

PDCD1
upregulation
or SNPs

Q15116
TABLE 2 Summary of homology modeling results using SWISS-MODEL.

Protein Template PDB ID Sequence identity (%) GMQE QMEAN Z-score Model confidence

EGFR 7syd.1.C ~99.34% 0.62 –0.77 High (L858R, T790M captured)

ALK 3lct.1.A ~99.70% 0.15 –0.76 Moderate–High (DFG, ATP pocket resolved)

KRAS 4dso.1.A ~88.77% 0.86 –0.85 High (GTP-binding domain, G12C captured)

PD-1 7xad.4.A ~99.16% 0.72 –0.82
High (Ig-like fold, PD-L1 binding

site resolved)
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mechanisms of kinase activation and resistance to tyrosine kinase

inhibitors (TKIs). The T790M substitution introduces steric

hindrance, correlating with reduced inhibitor binding affinity.

Ramachandran plot analysis revealed 91.5% residues in favored

regions, with a low outlier rate, and a MolProbity score of 1.36,

indicating high stereochemical quality (Figure 1).
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ALK: The ALKmodel resolved key catalytic features, including the

aC-helix, activation loop, and DFG motif. Resistance mutations

L1196M and G1269A were located at or near the ATP-binding cleft,

supporting their role in reducing drug efficacy. These structural

positions validate why next-generation ALK inhibitors such as

lorlatinib are effective in overcoming first-line resistance. The model
FIGURE 1

Homology model and validation of EGFR (P00533). The modeled structure of the Epidermal Growth Factor Receptor (EGFR) shows a well-defined
kinase domain comprising the N-lobe, C-lobe, and ATP-binding cleft. Key regions such as the aC-helix, activation loop (A-loop), and the hinge
region are visible. The structure supports the presence of clinically relevant mutations like L858R and T790M, which influence drug resistance.
Ramachandran plot validation shows 91.5% residues in favored regions, with a MolProbity score of 1.36, confirming model quality.
TABLE 3 Structural and mutational insights into modeled proteins.

Protein Key structural
features

Common
mutations

Drug interac-
tion sites

Therapeutic
relevance

Model quality

Epidermal Growth Factor
Receptor (EGFR)

N-lobe, C-lobe, hinge
(ATP-binding cleft), aC-
helix, A-loop

L858R (Exon 21), Exon
19 deletions, T790M

ATP-binding cleft,
T790 site

Target of TKIs (e.g.,
gefitinib, Osimertinib);
T790M causes
steric hindrance

MolProbity: 1.36
Favored: 91.5%
Outliers: 0.33%

Anaplastic Lymphoma
Kinase (ALK)

Kinase fold, DFG motif,
ATP-binding site,
aC-helix

L1196M,
G1269A, F1174L

Active site, ATP pocket Target of ALK inhibitors
(e.g., crizotinib,
lorlatinib); mutations
affect binding

MolProbity: 2.09
Favored: 93.14%
Outliers: 1.96%

Kirsten Rat Sarcoma
Viral Oncogene (KRAS)

G-domain (G1–G5
motifs), Switch I & II,
P-loop

G12C, G13D, Q61H/L P-loop near the
allosteric pocket

Targeted by covalent
inhibitors (e.g.,
sotorasib); mutations
inhibit GTP hydrolysis

MolProbity: 1.38
Favored: 93.26%
Outliers: 3.93%

Programmed Cell Death
Protein 1(PD-1)

IgV-like domain, b-
sandwich fold

PDCD1 polymorphisms
(e.g., 7146G>A)

Ligand-binding domain
(Y68, I126, E136)

Targeted by immune
checkpoint inhibitors
(e.g.,
nivolumab,
pembrolizumab)

MolProbity: 0.67
Favored: 97.13%
Outliers: 0.00%
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achieved a MolProbity score of 2.09 with 93.14% residues in favored

Ramachandran regions, indicating good overall geometry (Figure 2).

KRAS: The homology model of KRAS revealed structurally

distinct regions including the GTP-binding P-loop and the dynamic

switch I/II regions. Mutation G12C was exposed in a solvent-

accessible allosteric pocket, ideal for covalent targeting by

inhibitors such as sotorasib. Other oncogenic hotspots, including

G13D and Q61H, were also well resolved. The model had a

MolProbity score of 1.38 and 93.26% of residues within favored

regions, supporting its utility in in silico drug design (Figure 3).

PD-1: The PD-1 homology model exhibited a well-defined

immunoglobulin variable (IgV)-like fold and included key

residues involved in ligand binding, such as Tyr68, Ile126, and

Glu136. Structural comparison with the crystallographic reference

structure (PDB: 3RRQ) demonstrated a strong similarity, with a

root-mean-square deviation (RMSD) of approximately 1.4 Å,

confirming the model’s accuracy in capturing the IgV fold and

the ligand-binding interface. These structural insights clarify

binding interactions with therapeutic antibodies like nivolumab

and pembrolizumab. Additionally, known PDCD1 polymorphisms

relevant to immunotherapy response could be structurally localized.

The model showed the highest stereochemical quality, with a

MolProbity score of 0.67 and 97.13% favored residues (Figure 4).
Frontiers in Immunology 06
3.2 STRING interaction network analysis

The STRING protein–protein interaction (PPI) analysis of

EGFR, ALK, KRAS, and PD-1 revealed a complex, yet functionally

coordinated molecular landscape in lung cancer. EGFR emerged as a

central receptor tyrosine kinase, forming high-confidence

interactions (score = 0.999) with ligands HBEGF, EREG, and EGF,

as well as co-receptors ERBB2 and ERBB3. These interactions

propagate downstream signaling through canonical MAPK, PI3K/

AKT, and JAK/STAT pathways, while intracellular adaptors like

PIK3CA, CBL, and GAB1 support signaling amplification,

endocytosis, and feedback regulation (Supplementary Table S4,

Figure 5A). In parallel, ALK demonstrated interactions with its

oncogenic fusion partner EML4, high-affinity ligands PTN and

MDK, and signaling mediators such as PIK3R1, PLCG1, KRAS,

and NRAS. These nodes anchor ALK within PI3K-AKT and MAPK

cascades. Notably, ALKAL2 was also identified as a ligand for ALK,

reinforcing its receptor-ligand activation loop (Supplementary Table

S5, Figure 5B). KRAS exhibited a tightly regulated network

comprising upstream activators (SOS1, RALGDS), MAPK effectors

(RAF1, BRAF), and PI3K axis mediators (PIK3CA). Intriguingly,

interaction with calcium-modulating proteins from the calmodulin

family (CALML3–6) revealed an additional layer of regulatory
FIGURE 2

Homology model and validation of ALK (Q9UM73). The ALK model displays the canonical kinase fold, which includes the traditional ATP binding
pocket, DFG motif, and aC-helix required for inhibitor binding. The locations of mutations associated with therapy resistance such as L1196M and
F1174L can be mapped structurally. The model included 93.14% favored residues on the Ramachandran plot, and the MolProbity score was 2.09. The
structural characteristics of the ALK model provide support for the model to be relevant for understanding aspects of ALK inhibitors with regard to
design and resistance mechanisms.
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complexity, highlighting calcium-mediated modulation of oncogenic

signaling (Supplementary Table S6, Figure 5C). Finally, PD-1

(PDCD1) was shown to interface with ligands CD274 (PD-L1)

and PDCD1LG2 (PD-L2), which mediate immune checkpoint

suppression. The receptor also interacted with co-stimulatory

proteins CD80 and CD86 and with intracellular phosphatases

SHP2 (PTPN11) and SHP1 (PTPN6), which inhibit TCR pathway

components. Additional interactions with CTLA4, LAG3, LGALS9,

and CD4 placed PD-1 at the center of a dynamic immunoregulatory

network critical for tumor immune evasion (Supplementary Table

S7, Figure 5D). These comprehensive STRING networks reinforce

the multifaceted signaling and regulatory roles of these key

biomarkers in lung cancer and provide mechanistic insight into

their therapeutic potential. The multifaceted signaling and regulatory

roles of these key biomarkers in lung cancer and provide mechanistic

insight into their value in precision medicine.
3.3 Molecular docking interpretation

The molecular docking analysis revealed that each inhibitor

displayed distinct binding affinities and interaction profiles with its

respective target, as summarized in Table 9. Among all compounds,

Gefitinib exhibited the strongest binding to EGFR, with a binding
Frontiers in Immunology 07
energy of −5.94 kcal/mol and a dissociation constant (Kd) of 4.38 ×

10-5 M. Its high affinity was supported by a strong hydrogen bond

with MET793 and extensive hydrophobic interactions with LEU718

and VAL726 within the ATP-binding pocket of EGFR (Figure 6A),

stabilizing the ligand effectively. Erlotinib, another EGFR-targeting

inhibitor, also demonstrated high binding affinity (−5.78 kcal/mol,

Kd = 5.73 × 10-5 M), forming critical interactions with MET793 and

ASP800, alongside hydrophobic contacts involving ALA743

(Figure 6B). Its slightly lower binding energy compared to Gefitinib

suggests comparable but marginally reduced stability in the receptor

pocket. As shown in Table 4, its ligand efficiency of 0.19 suggests high

pharmacological relevance. The KRAS G12C inhibitors, Adagrasib

and Sotorasib, showed moderate binding energies (−3.94 and −3.72

kcal/mol, respectively) and lower affinity compared to EGFR

inhibitors. However, both ligands displayed target-specific

interactions, supporting their selective binding. Adagrasib

(Figure 6C) formed halogen and Pi–cation interactions with TYR32

and PHE28, as well as a hydrogen bond with ASP33, whereas

Sotorasib (Figure 6D) targeted the KRAS switch II pocket through

Pi–Pi stacking with PHE28 and hydrogen bonds with SER17 and

ASP30. These interactions, reflected in ligand efficiencies ranging

from 0.17 to 0.20 (Table 4), support their efficacy despite modest

binding energy. To support reproducibility, the small-molecule

ligands used in this study were annotated with public database
FIGURE 3

Homology model and validation of KRAS (P01116). KRAS structure reveals a compact G-domain with well-defined GTP-binding motifs (G1–G5) and
flexible Switch I and II regions. The G12C mutation, located at a solvent-accessible site near the allosteric pocket, is visible and forms the basis for
covalent inhibition strategies. Model validation with a MolProbity score of 1.38 and 93.26% favored residues on the Ramachandran plot confirms a
reliable structure for drug-target interaction analysis.
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FIGURE 4

Homology model and validation of PD-1 (Q15116). The PD-1 homology model focuses on the IgV-like extracellular domain, which is a b-sandwich
fold held together with disulfide bridges. The Y68, I126 and E136 residues involved in PD-L1 binding were all structurally defined in the homology
model, this supports current checkpoint blockade approaches. Ramachandran analysis indicates high model quality, with 97.13% residues in favored
regions and a low MolProbity score of 0.67, making it suitable for further immunotherapy-based structural studies.
FIGURE 5

STRING protein-protein interaction networks of lung cancer biomarkers. (A) EGFR interaction network showing key ligands, co-receptors, and
downstream signaling molecules (MAPK, PI3K/AKT, JAK/STAT). (B) ALK interaction network illustrating fusion partners, growth factors, and effector
proteins in oncogenic cascades. (C) KRAS network with upstream activators, MAPK and PI3K effectors, and calcium-modulating regulators. (D) PD-1
network displaying immune checkpoint ligands, co-stimulatory molecules, phosphatases, and co-inhibitory regulators.
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identifiers. Gefitinib, used as an EGFR inhibitor, corresponds to

PubChem CID: 123631. For the KRAS G12C-targeted docking

studies, sotorasib and adagrasib were modeled based on structures

closely matching PubChem CIDs 134557218 and 137517260,
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respectively. The PD-L1 small-molecule inhibitor evaluated in this

study shares structural similarity with known checkpoint antagonists

such as those listed under PubChem CIDs 91663303 and 168679817.

These identifiers allow independent retrieval of compound structures
FIGURE 6

Molecular docking of small-molecule inhibitors with EGFR, KRAS, and PD-L1: predicted binding poses and key residue interactions. (A) Predicted
binding pose of Gefitinib within the ATP-binding pocket of EGFR, showing a strong hydrogen bond with MET793 and hydrophobic interactions with
LEU718 and VAL726. (B) Binding conformation of Erlotinib in EGFR, forming hydrogen bonds with MET793 and ASP800 and hydrophobic contacts
with ALA743. (C) Adagrasib docked in the KRAS G12C switch II pocket, forming halogen and Pi–cation interactions with TYR32 and PHE28 and a
hydrogen bond with ASP33. (D) Sotorasib interacting with the KRAS switch II pocket, displaying Pi–Pi stacking with PHE28 and hydrogen bonds with
SER17 and ASP30. (E) PD-L1 ligand binding to the PD-L1 receptor groove, forming hydrogen bonds with GLN104, GLN114, and GLN115 and
hydrophobic contacts with VAL93, LEU108, and TYR102.
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TABLE 4 Binding affinity scores (DG in kcal/mol) of top docked models for lung cancer biomarkers with their respective ligands.

Compound Structure Binding energy Kd Ligand efficiency

Gefitinib -5.94 4.38x10-5 0.17

Erlotinib -5.78 5.73x10-5 0.19

Crizotinib -3.75 1.8x10-3 0.14

Alectinib -4.43 5.61x10-4 0.13

Sotorasib -3.72 1.86x10-3 0.20

(Continued)
F
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for future replication and further in silico optimization. The PD-L1

ligand demonstrated a robust binding energy of −5.54 kcal/mol and

Kd of 8.60 × 10-5 M, underpinned by three hydrogen bonds with

GLN104, GLN114, and GLN115, as well as hydrophobic contacts

with VAL93, LEU108, and TYR102 (Figure 6E). These interactions

suggest its potential to disrupt PD-1/PD-L1 signaling. The PD-L1

ligand used in docking is a known small-molecule antagonist

(PubChem CID: 132194007) reported to disrupt PD-1/PD-L1

binding in-vitro. In contrast, Crizotinib and Alectinib, both ALK

inhibitors, yielded weaker docking results with higher Kd values (1.8

× 10-³ and 5.61 × 10-4 M, respectively) and lower ligand efficiencies

(Table 4). Though clinically effective, their modeled binding energies

(−3.75 and −4.43 kcal/mol) indicate suboptimal binding stability in

this computational context. Overall, Table 4 provides a comparative

overview of the binding performance and efficiencies, highlighting
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Gefitinib, Erlotinib, and the PD-L1 ligand as the most promising

candidates, with KRAS inhibitors showing moderate but target-

specific activity, and ALK inhibitors underperforming in this model.
3.4 Transcriptomic validation of key
biomarkers

The selected biomarkers (EGFR, ALK, KRAS, and PDCD1),

demonstrated significantly higher expression in NSCLC tumor

tissues compared to adjacent normal tissues (p < 0.01). In both

LUAD and LUSC cohorts, EGFR and KRAS showed consistently

elevated expression. ALK was upregulated in a subset of tumors,

particularly in non-smokers, while PDCD1 was predominantly

expressed in immune-rich tumor microenvironments. UALCAN
TABLE 4 Continued

Compound Structure Binding energy Kd Ligand efficiency

Adagrasib -3.94 1.28x10-3 0.17

PD L1 -5.54 8.60x10-5 0.20
TABLE 5 Transcriptomic and expression levels validation of key NSCLC biomarkers.

Gene
In Silico differential expres-
sion (Tumor vs. Normal)

Stage-specific
pattern (UALCAN)

Promoter methyl-
ation (UALCAN)

qPCR expression in NSCLC cell
lines<br>(Relative to A549, 2^−DDCt)

EGFR ↑ LUAD, ↑ LUSC (p < 0.01) ↑ in advanced stages Low methylation
H1975: ↑↑

H520: ↑

ALK ↑ Subset of LUAD (p < 0.01) ↑ in early LUAD stages Low methylation
H1975: ↑

H520: ↑↑

KRAS ↑ LUAD > LUSC (p < 0.01)
Consistently high
across stages

Low methylation
H1975: ↑↑

H520: ↑

PDCD1
↑ in immune-rich LUAD/LUSC (p

< 0.01)
↑ with tumor stage

Mild
promoter methylation

H1975: ↑

H520: ↑↑
LUAD – Lung adenocarcinoma; LUSC – Lung squamous cell carcinoma; ↑ – moderate increase; ↑↑ – strong increase.
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analysis further revealed stage-specific expression patterns for all four

genes. Promoter methylation data indicated low methylation levels

for EGFR, ALK, and KRAS, suggesting that their overexpression is

driven by transcriptional activation rather than epigenetic silencing.

To experimentally validate these findings, quantitative PCR (qPCR)

was conducted on three human NSCLC cell lines: A549, H1975, and

H520. Relative expression levels were normalized to GAPDH and

calculated using the 2^(-DDCt) method, with A549 serving as the

reference baseline. EGFR expression was markedly elevated in H1975

cells, consistent with its EGFR-mutant status. ALK showed increased

expression in H520, while KRAS expression was higher in H1975

compared to A549 and H520. PDCD1 was modestly expressed across

all three lines, with the highest levels detected in H520 cells (Table 5).

These laboratory findings closely mirrored the in silico

transcriptomic trends and further substantiated the relevance of

these genes in NSCLC biology.
4 Discussion

Lung cancer remains one of the most lethal malignancies

worldwide, with non-small cell lung cancer (NSCLC) accounting

for nearly 85% of all cases. Late-stage diagnosis and therapeutic

resistance significantly hinder clinical outcomes (20, 21). In this

study, we applied an integrated multi-omics approach combining

structural modeling, protein–protein interaction (PPI) network

analysis, and both in-silico and experimental transcriptomic

validation to investigate four clinically actionable biomarkers—

EGFR, ALK, KRAS, and PDCD1—central to NSCLC pathogenesis

and therapy.

Homology models constructed via SWISS-MODEL demonstrated

high stereochemical integrity and structural accuracy, capturing key

oncogenic and resistance-conferring mutations, including EGFR

T790M, ALK L1196M, and KRAS G12C. These mutations are well-

documented contributors to resistance against tyrosine kinase

inhibitors (TKIs), either by altering the ATP-binding pocket

geometry or introducing steric hindrance (11, 20, 22). Our models

provided atomic-level insight into these conformational changes,

facilitating rational drug design strategies for TKI-resistant NSCLC

subtypes. Notably, EGFR structural domains associated with ligand-

binding and dimerization were well-resolved, reinforcing its

importance in receptor tyrosine kinase inhibition. The ALK-kinase

domain model aligned with oncogenic ALK-fusion conformations

seen in EML4–ALK, while KRAS exhibited a structurally conserved

G-domain required for GTP/GDP cycling—an established therapeutic

vulnerability. The PDCD1 (PD-1) model further revealed its

immunoglobulin-like extracellular topology, which is critical for

interactions with checkpoint ligands such as PD-L1 and PD-L2

(23). Importantly, the homology model of PD-1 provides detailed

spatial insights into the IgV-like domain and key binding residues

such as Y68, I126, and E136, which are instrumental in guiding the

rational design of nanocarrier-bound checkpoint inhibitors. These

structural features can be harnessed to engineer nanoparticle-

conjugated anti-PD-1 antibodies or ligands that enhance targeted

delivery and immune activation in the tumor microenvironment (24).
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To elucidate the functional context of these biomarkers, we

employed STRING-based PPI network analysis. EGFR and ALK

were located upstream in key oncogenic pathways, interacting with

adaptors such as GRB2, SHC1, and ERBB2, indicating canonical

MAPK and PI3K/AKT activation. The KRAS interactome

prominently featured RAF1, SOS1, and BRAF, corroborating its

centrality in RAS–RAF–MEK–ERK signaling cascades (25, 26).

Interestingly, KRAS also exhibited novel associations with

calmodulin-like proteins (CALM3, CALML6), suggesting

potential modulation by calcium signaling. PDCD1 formed

inhibitory networks with CD80/86 and SHP2, aligning with

checkpoint inhibition and immune evasion frameworks (27, 28).

These network-level interactions reinforced our structural data and

provided a dual-dimensional insight into the biological roles and

therapeutic tractability of these proteins.

Transcriptomic validation further strengthened the evidence for

biomarker relevance. In silico expression analysis using GEPIA2,

TNMplot, and UALCAN revealed significantly elevated expression

of EGFR, ALK, and KRAS in NSCLC tissues versus normal lung

tissues (p < 0.01), while PDCD1 was selectively upregulated in

tumors with high immune infiltration, consistent with its

immunomodulatory function (29, 30). Stage-specific analysis

showed increasing PDCD1 expression with advancing tumor

stages, suggesting its role as a dynamic immunological biomarker.

Promoter methylation profiles indicated low methylation in EGFR,

ALK, and KRAS, suggesting transcriptional activation rather than

epigenetic silencing. To validate these findings experimentally, we

conducted qPCR-based expression profiling in NSCLC cell lines—

A549, H1975, and H520. The EGFR transcript was significantly

upregulated in H1975, a cell line harboring the T790M mutation,

consistent with clinical resistance phenotypes (31). ALK expression

was elevated in H520, aligning with subtype-specific expression

trends. KRAS showed robust expression in both H1975 and H520,

reflecting its ubiquitous role across NSCLC subtypes, particularly in

smokers (32). Notably, PDCD1 expression was highest in H520,

despite overall lower levels compared to the other biomarkers,

reinforcing its immune-context-specific expression and its utility

in checkpoint inhibitor studies. Notably, KRAS interactions with

calmodulin-like proteins (CALML3–6) suggest a noncanonical

regulatory axis that may involve calcium-dependent modulation

of RAS activity. This interaction could influence KRAS-driven

oncogenesis through alterations in MAPK signaling sensitivity, a

mechanism that warrants further investigation in the context of

calcium signaling dynamics and therapeutic resistance.

These multi-layered analyses—spanning structural, functional,

and expression dimensions—offer a comprehensive biomolecular

characterization of four pivotal NSCLC biomarkers. Unlike

previous studies focusing on isolated data types or single gene

validation, our approach bridges computational modeling, systems

biology, and laboratory experimentation to present a more

integrated view. The combination of 3D modeling, molecular

docking, and expression correlation enables mechanistic insights

into resistance mutations, network dependencies, and therapeutic

vulnerability. Docked poses were validated by comparing them to

crystallographic reference structures, yielding RMSD values ≤ 2.1 Å,
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which confirms the reliability of the predicted binding

conformations. For example, the high docking affinity of gefitinib

with the EGFR model aligns well with its established clinical

potency, whereas the comparatively weaker binding observed in

the PD-1 model reflects a more nuanced interaction profile,

consistent with the behavior of immunomodulatory agents. These

insights pave the way for nanomedicine-based translation,

especially the use of mesoporous silica nanoparticles, liposomes,

or lipid-based nanocarriers for PD-1-targeted immune checkpoint

blockade, with enhanced tumor specificity and reduced off-target

effects (33). Additionally, the high-affinity binding of gefitinib to the

EGFR kinase domain and the validated structural model of KRAS

G12C support the development of nanocarrier-mediated delivery

systems for these TKIs. Encapsulating gefitinib, sotorasib, or

adagrasib within polymeric nanoparticles or lipid bilayered

vesicles may enhance drug stability, improve tumor targeting via

enhanced permeability and retention (EPR) effect, and overcome

solubility-related pharmacokinetic limitations (34).

Building on the strong foundation of in-silico and cell line-based

validations presented here, future studies will expand to include

patient-derived tumor samples to better capture the heterogeneity

and microenvironmental complexity of NSCLC. Incorporating

proteomic analyses and functional assays will also enhance

understanding of biomarker expression at the protein and pathway

activity levels. Although not directly analyzed in this study, DepMap

and CCLE resources are earmarked for future validation of therapeutic

responses linked to our biomarker panel. Further exploration of PD-1-

targeted nanosystems—such as antibody-functionalized nanogels or

pH-sensitive micelles—could yield translational advances in nano-

immunotherapy. To further improve structural insights, we plan to

leverage emerging AI-driven tools like Alpha Fold2 and molecular

dynamics simulations for more precise modeling of mutant proteins.

While our current study does not simulate nanomaterial–biomarker

interactions, future work will incorporate nanocarrier conjugation

studies, leveraging docking and molecular dynamics tools to evaluate

binding specificity and release kinetics. Together, these approaches

will deepen the translational relevance of biomarker characterization

and support the development of more effective targeted therapies and

nanomaterials-based immunotherapies for NSCLC patients.
5 Conclusion

This study comprehensively characterized four key NSCLC

biomarkers—EGFR, ALK, KRAS, and PDCD1—through an

integrated framework combining structural modeling, protein–

protein interaction analysis, and transcriptomic validation using

public datasets and experimental qPCR in cell lines. Our findings

confirmed their significant overexpression and pivotal roles in

oncogenic signaling and immune regulation, reinforcing their value

as diagnostic and therapeutic targets in lung cancer. The structural

elucidation of PDCD1 (PD-1) offers a mechanistic basis for designing

nanomaterial-assisted immune checkpoint interventions. The

conformational insights into EGFR, ALK, and KRAS further

support the development of nanocarrier-based delivery systems for
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targeted tyrosine kinase or GTPase inhibition. By aligning molecular

structure with functional data, this work sets the stage for the rational

design of nanomaterials that enhance drug delivery, improve

immune modulation, and overcome resistance mechanisms. This

multidisciplinary study not only validates established molecular

targets but also bridges structural biology with emerging nano-

immunotherapy strategies. These results provide a solid foundation

for translational research involving patient-derived tumor models

and nanotechnology-driven interventions aimed at advancing

precision oncology in NSCLC.
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