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Single-cell RNA sequencing (scRNA-seq) has emerged as an advanced biological

technology capable of resolving the complexity of cancer landscapes at single-

cell resolution. Spatial transcriptomics(ST), as an innovative complementary

approach, effectively compensates for the lack of spatial information inherent

in scRNA-seq data. This review explores the rapidly evolving integration of

scRNA-seq and ST and their transformative role in deciphering the tumor

microenvironment (TME). We highlight how these technologies jointly uncover

cellular heterogeneity, stromal-immune interactions, and spatial niches driving

tumor progression and therapy resistance. Moving beyond previous reviews, we

emphasize emerging computational strategies for data integration—including

deconvolution and mapping approaches—and evaluate their applications in

characterizing immune evasion, fibroblast diversity, and cell-cell

communication networks. Ultimately, this review provides a forward-looking

perspective on how spatial multi-omics are poised to advance precision

oncology through spatially-informed biomarkers and diagnostic tools. We

conclude that the full clinical potential of these technologies relies on closing

the gap between analytical innovation and robust clinical implementation.
KEYWORDS

spatial transcriptomics, single-cell RNA sequencing, tumor microenvironment, cancer
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GRAPHICAL ABSTRACT

The application of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomic (ST) techniques in TME.
1 Introduction

Traditionally, tumors have been regarded as diseases primarily

characterized by uncontrolled proliferation of malignant cells, and

therapeutic strategies have predominantly focused on their direct

eradication through chemotherapy and radiotherapy. However, this

perspective has evolved significantly with the growing recognition

of tumor complexity, wherein tumors are increasingly viewed as

highly dynamic and heterogeneous ecosystems (1). The TME, in

particular, represents a complex cellular and molecular landscape

composed not only of malignant cells but also of diverse non-

malignant components, including immune cells, cancer-associated

fibroblasts (CAFs), vascular endothelial cells, pericytes, and tissue-

resident stromal cells, all embedded within the extracellular matrix

(ECM) (2). In certain tumor types, non-malignant cells may

constitute the majority of the tumor mass (3). The cellular

composition and functional states in the TME exhibit significant

variability influenced by factors such as the anatomical origin of the

tumor, genetic and epigenetic features of cancer cells, disease stage,

and host-specific factors (4–6). Understanding the complex cellular

interactions and spatial heterogeneity in the TME is crucial for

enhancing our understanding comprehension of tumor biology and

facilitating the development of more precise and effective

anticancer therapies.

Despite its central role in cancer progression and therapeutic

response, the TME presents significant analytical challenges. One
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primary limitation arises from the technical constraints of

transcriptomic profiling methods. Conventional bulk RNA

sequencing (RNA-seq) captures only average gene expression

from heterogeneous cell populations, thereby obscuring intrinsic

cellular heterogeneity in the TME and failing to identify rare but

functionally critical subpopulations (7, 8). Tumor heterogeneity

itself constitutes another substantial barrier (9–11). This

heterogeneity exists both across patients (inter-tumor

heterogeneity) and within individual tumors (intra-tumor

heterogeneity), as cancer cells occupy various differentiation states

while exhibiting divergent transcriptional profiles and mutational

landscapes. Furthermore, non-malignant cell populations,

including immune and stromal cells, exhibit extensive phenotypic

and functional diversity. The complexity of mechanisms underlying

therapy resistance further highlights the urgent need for deeper

insights into the TME (12–15). Increasing evidence suggests that

non-malignant cells actively contribute to resistance against

chemotherapy, targeted therapies, and immunotherapies through

multiple mechanisms. For instance, CAFs secrete ECM components

and growth factors, establishing physical and biochemical barriers

that hinder drug penetration (16, 17). Immunosuppressive cells

such as regulatory T cells (Tregs) and M2-polarized macrophages

suppress anti-tumor immunity by expressing immune checkpoint

molecules (e.g., PD-1, CTLA-4) and releasing inhibitory cytokines

such as IL-10 and TGF-b (18–20). Collectively, these findings

underscore the necessity of comprehensively characterizing the
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TME—encompassing cellular composition, functional phenotypes,

and spatial interaction networks—to inform the rational design of

combination therapies (21, 22). To address these challenges, the

integrating scRNA-seq with ST has emerged as a powerful strategy.

This approach facilitates insights into the spatial and functional

complexity of the TME.

scRNA-seq is a powerful technique enabling high-resolution

gene expression profiling for the individual-cell level, enabling the

identification and characterization of distinct cellular

subpopulations with specialized functions (23). ST, a rapidly

evolving complementary approach, maps gene expression within

intact tissue sections, preserving critical spatial context and tissue

architecture (24). Given the cellular complexity of the TME, no

single technology can fully capture its spatial and functional

heterogeneity. Although current ST platforms generally lack true

single-cell resolution, their integration with scRNA-seq provides a

comprehensive perspective on the TME. Combining scRNA-seq

and ST overcomes these limitations by bridging cellular identity

with spatial localization. For instance, multimodal intersection

analysis (MIA) was introduced in 2020 to integrate scRNA-seq

and ST data, aiming to map spatial associations cell-type

relationships in pancreatic ductal adenocarcinoma (PDAC) (25).

This study revealed that stress-associated cancer cells colocalize

with inflammatory fibroblasts, the latter identified as major

producers of interleukin-6 (IL-6), underscoring spatially

organized tumor-stroma crosstalk in PDAC (25).

The integration of scRNA-seq and ST enables researchers to

dissect the complexity and spatial organization of the TME with

unprecedented resolution. This synergistic approach not only

deepens our understanding of tumor biology but also accelerates

the discovery of novel diagnostic and prognostic biomarkers, paving

the way for more precise and effective therapeutic strategies. We

conducted comprehensive searches in PubMed, Web of Science,

and Scopus to ensure broad coverage of relevant studies. We used a

combination of keywords related to single-cell sequencing, spatial

transcriptomics, tumor microenvironment, cancer heterogeneity,

and their respective applications in oncology. We defined explicit

criteria for including studies based on relevance, study type (e.g.,

original research, key reviews), and publication status. Studies were

excluded if they were not peer-reviewed, not published in English,

or deemed outside the scope of this review. We focused primarily on

literature published between January 2010 and June 2025 to capture

the most recent and impactful advances in the field. (GA).
2 Advances in technologies for
analyzing spatial distributions

ST is an emerging technology that enables spatially resolved

gene expression profiling within intact tissue sections, preserving

the native histological context. By combining high-resolution

imaging and transcriptomic analysis, ST maps gene expression

patterns with precise spatial localization, achieving subcellular

resolution in some cases. Current ST methodologies can be

broadly classified into two categories: image-based (I-B) and
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barcode-based (B-B) approaches (26, 27). Image-based methods,

such as in situ hybridization (ISH) (28) and in situ sequencing (ISS)

(29), utilize fluorescently labeled probes to directly detect RNA

transcripts within tissues, allowing visualization of gene expression

patterns while maintaining spatial integrity. In contrast, barcode-

based approaches rely on spatially encoded oligonucleotide

barcodes to capture RNA transcripts . In solid-phase

transcriptome capture, RNAs hybridize to immobilized barcoded

probes on slides before sequencing. Deterministic spatial barcoding

assigns unique barcodes to each transcript, retaining positional

information throughout sequencing (30–32). These complementary

strategies facilitate comprehensive spatial transcriptome profiling,

when integrated with single-cell techniques, they yield

unprecedented resolution for investigating tissue architecture and

tumor heterogeneity.

scRNA-seq of patient-derived tumors has uncovered diverse

cellular subpopulations and revealed intricate intercellular

communication networks within the TME (33–39). However,

scRNA-seq requires tissue dissociation, leading to the loss of

spatial context and limiting insights into tissue architecture and

cell-cell interactions. To address this, several strategies have been

developed to preserve or reconstruct spatial information. For

example, combining ISH-based gene expression mapping with

scRNA-seq data has proven effective for identifying rare cell types

and subpopulations using targeted gene panels (40, 41). Recent

advances have evolved ISH into high-plex RNA imaging (HPRI)

techniques, including in situ sequencing, multiplexed error-robust

fluorescence in situ hybridization (MERFISH) (42), and sequential

fluorescence in situ hybridization (seqFISH) (43–45). However,

these approaches are often limited to well-defined tissues and

remain challenging when applied to heterogeneous solid tumors

charac t e r i zed wi th complex s t ruc tu re s and d iver se

transcriptomic profiles.

Emerging methods, such as sci-Space, have been developed to

address this limitation by generating spatially resolved

transcriptomic maps at near-single-cell resolution across extensive

tissue areas. In mouse embryonic development studies, sci-Space

enabled the simultaneous capture of approximate spatial

coordinates and complete transcriptomes from over 120,000

nuclei. However, its spatial resolution is currently limited to

approximately 200 micrometers. Although there have been

improvements in spot density and size, the resolution remains

insufficient for precisely capturing interactions between

neighboring cells. As a result, this approach typically yields

composite transcriptomic profiles derived from small cell clusters

or cellular fragments rather than genuine single-cell resolution.

Currently, ST remains one of the most widely adopted approaches

for high-throughput spatial gene expression analysis (46, 47).

scRNA-seq is a high-throughput method for transcriptomic

profiling at individual-cell resolution. By isolating individual cells,

capturing their mRNA, and performing high-throughput

sequencing, scRNA-seq reveals cellular heterogeneity typically

masked in bulk RNA analyses. The advantages of scRNA-seq

include: (i) identification of rare cell populations, including tumor

stem cells and transitional cellular states, which are undetectable by
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bulk RNA-seq (48); (ii) classification of cells based on canonical

markers, enabling precise identification of immune cell subsets and

epithelial cell states (49); (iii) characterization of dynamic biological

processes, such as differentiation trajectories and cellular transitions

(50); and (iv) integration with multi-omics approaches, including

single-cell ATAC-seq (chromatin accessibility) and CITE-seq

(surface protein expression), providing multidimensional insights

into cell states (51).

Despite these strengths, scRNA-seq also exhibits notable

limitations. RNA capture efficiency per cell is relatively low (52).

The method remains costly and technically challenging,

necessitating careful optimization of sample processing protocols

(53, 54). Critically, the mandatory tissue dissociation disrupts native

spatial relationships, hindering analysis of cell–cell interactions

within intact tissue architectures (55, 56). The comparison of

scRNA-seq and ST is shown in Table 1.

The integration of scRNA-seq and ST confers significant

advantages for deciphering complex biological systems: (i)

Comprehensive gene expression profiling: scRNA-seq enables high-

resolution gene expression analyses, revealing cellular heterogeneity

and transcriptional dynamics within tissues (8). It is essential for cell-

type identification, developmental tracking, and elucidating disease

mechanisms. (ii) Spatial context and tissue architecture: ST preserve

native tissue spatial architecture, enabling localization of gene

expression patterns, cellular distributions, and intercellular

interactions (57). (iii) Complementary strengths: While scRNA-seq

lacks spatial information, ST technologies face resolution and

throughput limitations. Their integration overcomes their

individual limitations, offering a comprehensive understanding of

tissue biology (58–60).

Combining scRNA-seq and ST provides deeper insights into

cellular interactions with their microenvironment (61–63), with

critical implications for both diagnostics and therapeutics. This

integrative strategy supports the identification of spatially informed

biomarkers and therapeutic targets by linking gene expression

patterns to precise tissue regions, thereby advancing personalized

medicine and enhancing disease diagnosis (64). Currently, two

major computational approaches are used to this integration:

deconvolution and mapping. Deconvolution utilize single-cell
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reference datasets to computationally estimate the cellular

composition within each spatial capture spot, determining

proportions of various cell types. Mapping approaches assign

scRNA-seq-defined cellular subtypes to cells within spatial maps

or localize individual scRNA-seq profiles to specific tissue niches.

The characteristics of different integration strategies are shown in

Table 2. These analyses provide critical spatial context to inferred

ligand–receptor interactions and other forms of intercellular

communication derived from scRNA-seq data.
3 Immunosuppressive tumor
microenvironment

The immunosuppressive tumor microenvironment (ITME) is a

specialized ecosystem in tumor tissues. The ITME suppresses anti-

tumor immune responses via multiple mechanisms. This promotes

immune escape, tumor growth, and therapy resistance. Complex

cellular crosstalk drives ITME formation, representing a major

challenge to immunotherapy. The interaction between immune-

mediated tumor editing and cancer cell immune evasion influences

disease progression and therapeutic outcomes (82, 83).
3.1 Cells in the tumor microenvironment

The TME comprises diverse cell types that collectively influence

tumor behavior. ScRNA-seq and ST have revealed unprecedented

heterogeneity and functional plasticity among these populations,

uncovering their roles in immune evasion, metastasis, and

treatment resistance.

3.1.1 CD8+ T cells
CD8+ T cells, also known as cytotoxic T lymphocytes (CTLs),

serve as central effectors in anti-tumor immunity. They mediate

tumor cell killing through cytolytic mechanisms, such as perforin

and granzyme release, and secrete cytokines like IFN-g to amplify

immune responses. However, in the ITME, chronic antigen

exposure, inhibitory signals, and metabolic disturbances often

lead to CD8+T cell immune exhaustion (84–86). T cell exhaustion

is a critical factor contributing to immune evasion and limited

immunotherapy efficacy. Recent studies suggest that targeted

transcriptional modulation (87), metabolic reprogramming (86,

88), and microenvironmental remodeling (89, 90) can restore

CD8+ T cell functionality. These strategies offer promising

directions for next-generation immunotherapies.

ST has become an essential tool for deciphering the functional

states and spatial organization of CD8+ T cells in the TME. By

mapping spatial proximity to other cell populations, ST can infer

intercellular communication and elucidate how local cellular

neighborhoods influence CD8+ T cell phenotypes (91–94).

3.1.2 CD4+ T cells
CD4+ T cells act as central coordinators of immune responses

and differentiate into various functional subsets. In the TME, their
TABLE 1 Comparison between scRNA-seq and ST technology.

Characteristic scRNA-seq
Spatial

transcriptome

Resolution Single-cell level
spot level (multiple

cells)

Spatial information Missing Retain

Organizational
handling

Dissociate into single cells Tissue section

Advantage Fine identification of cell types
Spatial relationship

retention

Limitations Lost spatial background Limited resolution

Application
scenarios

Cell atlas construction and
rare cell identification

Spatial niche analysis,
cell interaction
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activity is highly context-dependent, influenced by subset

composition, cytokines and metabolites. scRNA-seq has revealed

that CD4+ T cells can exert tumor-suppressive effects by producing

TNF-a, while ST indicates spatial co-localization with CD8+ T cells,

suggesting coordinated immune responses. These findings

exemplify the complementary strengths of integrating scRNA-seq

and ST (95). Future research should leverage these technologies to

explore CD4+ T cell heterogeneity and spatial organization,

facilitating precision immunotherapy.
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CD4+ T cells mediate anti-tumor effects through both indirect

and direct mechanisms (95). Dynamic changes in CD4+ T cell

subsets correlate with tumor progression. For instance, scRNA-seq

analyses of prostate cancer identified elevated regulatory T cell

(Treg) activity scores in tumors relative to normal tissue, with

tumor-infiltrating Tregs displaying increased expression of TNF

receptor family genes. These findings suggest CD4+ T cells may

promote both pro-inflammatory tumor progression and

immunosuppressive niche formation via TNF signaling (96).
TABLE 2 seRNA-seq and spatial transcriptomic integration strategies.

Integration
strategies

Methods Advantages Disadvantages Re

Deconvolution SPOTlight,
CellPhoneDB

High accuracy Does not incorporate capture location information
when modeling spatial decomposition

(65)

Deconvolution Cottrazm Provide spatial quantitative information on cell
composition

Highly dependent on the quality and completeness
of reference data

(66)

Deconvolution CARD More precise High computational complexity (67)

Deconvolution cell2location Absolute quantification, not relative proportion It has a high computational complexity and is
extremely time-consuming

(68)

Deconvolution cell2location This provides strong and quantifiable evidence of
spatial composition.

The technical deviation that cannot be completely
avoided and lack the standard verification

(69)

Deconvolution cell2location Absolute quantification Highly dependent on the quality and matching
degree of reference data

(70)

Deconvolution RCTD Greatly enhance the detection sensitivity and
deconvolution accuracy for target cell types,
especially rare subtypes

RCTD will force the entire expression signal of
each bin to be attributed to a combination of
fibroblast subtypes

(71)

Deconvolution SPOTlight Higher resolution, capable of revealing cellular
interactions

the high spatial heterogeneity among samples (72)

Deconvolution SPOTlight
MIA

No external reference data is required It may confuse cell types and states (73)

Deconvolution cell2location It can handle the inherent over-dispersion and
technical noise in single-cell and spatial data very
well, and the results are more robust and reliable

Biological verification is still required (74)

Deconvolution CARD
MISTy

The functions complement each other perfectly,
forming an analytical closed loop

The accuracy of MISTy analysis is highly
dependent on the accuracy of RCTD
deconvolution

(75)

Deconvolution CARD Hierarchical annotation strategy improves
accuracy

The recognition ability is limited and it is unable
to parse new cell states

(76)

Deconvolution SPOTlight,
CellTrek

Through multi-level and multi-angle verification,
the conclusion is extremely robust

The analysis process is extremely complex and
requires extremely high professional knowledge

(77)

Mapping Tangram Compatible with capture and image-based ST data Gene expression can be less accurately predicted
from histology images if the cells cannot be
segmented

(59)

Mapping CellTrek Capture the complex nonlinear relationship
between gene expression and spatial position

The spatial position of cells is predicted by the
model rather than directly measured through
experiments

(78)

Mapping CellTrek Realize spatial mapping at the single-cell level high requirement for data matching degree (79)

Mapping CellTrek true single-cell resolution spatial mapping It is required that the scRNA-seq data and ST data
must be derived from highly similar biological
backgrounds

(80)

Spatially informed
ligand–receptor analysis

SpaOTsc The majority of cells can be mapped accurately
using a small number of genes.

gnores the possible time delay associated with cell-
to-cell communication

(81)
fron
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3.1.3 Tumor-associated macrophages
Macrophages represent essential innate immune components,

mediating pathogen clearance and immune modulation. Within

tumors, macrophages—termed tumor-associated macrophages

(TAMs)—often exhibit immunosuppressive functions and promote

tumor progression. TAMs exhibit remarkable plasticity, polarizing into

pro-inflammatory, cytotoxic M1-like or immunosuppressive, tissue-

remodeling M2-like phenotypes (97–99).

A recent study analyzed 97 paired samples from 24 colorectal

cancer patients with liver metastases using scRNA-seq and spatial

transcriptomics. It revealed extensive spatial remodeling in metastatic

niches, driven largely by MRC1+CCL18+ M2-like macrophages (100).

However, how the chemotherapy induces the functional changes of

macrophages was not clear. Further experimental validation is required

to validate that such state shift of macrophages is due to altered

differentiation or population change. It showed intensified

immunosuppression, highlighting the therapeutic potential of

targeting M2-like TAMs (100). Similarly, a 2021 breast cancer study

using scRNA-seq identified immunosuppressivemacrophage subsets—

lipid-associated macrophages (LAMs) and CXCL10+macrophages—as

key producers of suppressive cytokines. ST further demonstrated their

proximity to PD-1+ lymphocytes (101). However, its number of cases

per clinical subtype limited to estimate subtype-specific features.

In clear cell renal cell carcinoma (ccRCC), ST revealed distinct

expression profiles between tumor cores and boundaries. Integrative

analysis identified selective expression of IL-1b by macrophages at

tumor edges. IL-1b expression correlated with epithelial–mesenchymal

transition (EMT) induction and poor prognosis. IL-1b blockade

reduced tumor burden in RCC murine models (102), while in

another study, it was verified that IL-6 lowered lung cancer incidence

(103), highlighting IL-1b as a promising therapeutic target (104).The

limit is that the researchers chose mouse renal cell carcinoma lines as

the tumor cell model. This cell line usually lacks mutations related to

ccRCC (103).
3.2 Tumor cell–immune cell
communication in the tumor
microenvironment

Communication between tumor cells and immune cells in the

TME, critically influences immune evasion or tumor eradication.

scRNA-seq approaches have elucidated cell–cell interaction

networks and identified pivotal immune cell signaling hubs (103).

By inferring ligand–receptor interactions from scRNA-seq data,

researchers can delineate intercellular communication pathways

be tween cancer and TME, inc lud ing those dr iv ing

immunosuppression (105). Notably, epithelial cells engage

strongly with myeloid cells and may demonstrate potential

immunosuppressive communications with T cells.

Cell-cell interactions within the tumor microenvironment drive

key processes including immune suppression, angiogenesis, and

metastasis. Advances in single-cell and spatial multi-omics now

enable systematic mapping of these communications, revealing

ligand–receptor networks and functional cellular crosstalk.
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Targeting these interactions offers promising strategies for novel

cancer immunotherapies.

3.2.1 T lymphocyte-cell interactions
Interactions between T lymphocytes and various tumor cells

play a critical role in shaping the immune microenvironment.

scRNA-seq analyses have revealed strong immunosuppression in

tumors, characterized by increased infiltration of regulatory T cells

(Tregs), which impair CD8+T cell cytotoxicity and promote tumor

progression (106). ST further identified immune hotspots where

Tregs are found in close proximity to effector T cells, suppressing

anti-tumor responses within these regions (107, 108). Consistent

with this, transcriptomic profiling shows elevated abundances of

Tregs and exhausted CD8+T cells, underscoring the profound

immunosuppression and immune infiltration features in the

tumor microenvironment (109).

3.2.2 TAM-cell interactions
In TNBC tumors, macrophage subsets often co-express both

M1 andM2markers, suggesting their dual role in either suppressing

or promoting tumor progression and metastasis (110). Specific

subpopulations of tumor-associated macrophages (TAMs) are

associated with T cell infiltration and immunosuppression,

highlighting their critical influence on the immune landscape of

TNBC (111). These TAMs can impair T cell function and dampen

immune responses, thereby supporting immune evasion and

fostering a tumor-permissive microenvironment (112, 113).

Interestingly, macrophage infiltration also correlates with

improved patient outcomes. Transcriptome studies indicate that a

high density of CD163+macrophages is significantly associated with

longer overall survival and TNBC-specific survival (114).
3.2.3 CAFs-cell interactions
It was showed that CAF phenotypes were a strong prognostic

factor, and CAF phenotypes associated with good and poor patient

prognosis. It was also discovered that different CAF types varied in

their spatial distribution in the TME (Table 3). However, the

interactions occurred at the edges of the cells was not investigated

(115). In another study, the intercellular communication

predominantly involved iCAFs, malignant epithelial cells, mCAFs,

and pCAFs, each exhibiting distinct numbers and strengths of

interactions. Although their study provided a detailed analysis of

CAFs, it may not fully encapsulate all interactions and mechanisms

(116). ST in breast cancer have revealed specific spatial enrichment

between cancer-associated fibroblasts (CAFs) and T cell subsets

(101). In multiple tumor types, certain CAF subsets are associated

with T-cell exhaustion. For example, ecm-myCAF and TGF-b-
myCAF in breast cancer, and a FAP+/PDGFRA-subset in lung

cancer, have been linked to this immunosuppressive process (117,

118). Consistent with this, a separate lung cancer study also

reported positive correlations between FAP+ CAFs and T-cell

exhaustion markers (119). Spatial transcriptomics in head and

neck cancer demonstrated co-localization of specific CAF subsets

with exhausted T cells (120).
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3.2.4 B lymphocyte-cell interactions
B cells influence the tumor microenvironment not only through

antibody production, but also via cytokine secretion and direct cell-cell

interactions. They exert regulatory effects on both tumor cells and other

immune cells. For instance, ligand-receptor interactions can mediate

direct contact between B cells and tumor cells (121). Such interactions

may also suppress antibody-mediated immune responses (122).

Together, these mechanisms help sustain an immunosuppressive

microenvironment, promoting tumor proliferation and metastasis.

4 Functional heterogeneity of cancer-
associated fibroblasts and their
immunomodulatory roles

CAFs are a major stromal component in the TME, critically

contributing to tumor initiation, progression, invasion, metastasis,

and therapeutic resistance. CAFs typically originate from resident

fibroblasts or precursor cells activated by tumor-derived signals.

They exhibit high heterogeneity and secrete diverse cytokines,

growth factors, and ECM components, collectively remodeling the

TME to facilitate tumor development. CAFs significantly modulate

tumor behavior (123–125). Their functional plasticity and diversity

not only promote tumor progression but also represent potential

therapeutic targets. SeRNA-seq has revealed substantial CAFs

heterogeneity, identifying multiple transcriptionally distinct CAF

subtypes within the TME (Table 3) (126–128).
4.1 Spatially resolved roles of CAFs in the
TME

CAFs interact extensively with immune and tumor cells within the

TME, significantly influencing tumor progression (129). A 2023 spatial

transcriptomics study of 16 glioblastoma (GBM) patient samples
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demonstrated spatial proximity between CAFs, mesenchymal GBM

stem cells, endothelial cells, and M2-like macrophages (130). Beyond

immune modulation, CAFs shape the GBM vascular

microenvironment (131). CAF-induced hypertrophic remodeling of

tumor vasculature potentially underlies GBM resistance. ST revealed

CAFs were preferentially localized in perivascular niches along with

glioblastoma stem cells (GSCs), suggesting the interactions contributing

to therapeutic resistance. These findings highlight CAF–GSC

interactions as critical targets for therapeutic intervention in GBM (132).
4.2 CAFs in tumor metastasis

A 2022 study identified two major CAFs subtypes—iCAFs and

myCAFs—in esophageal squamous cell carcinoma (ESCC),

revealing the heterogeneity (133). Integrative scRNA-seq and ST

analyses demonstrated the epithelial cells primarily localized in

cancerous regions, whereas iCAFs were predominantly enriched in

surrounding stroma. In contrast, myCAFs showed no distinct

spatial preference. This spatial distribution suggested a pivotal

role for iCAFs in tumor progression and metastasis.
4.3 CAFs remodeling in response to
neoadjuvant chemotherapy

Neoadjuvant chemotherapy (NACT), administered before surgery

or radiotherapy, reduces the tumor burden, enhances resection success,

and eradicates micrometastases. Emerging evidence indicates NACT

significantly reshapes CAF composition and function, influencing

therapeutic outcomes. In rectal cancer, scRNA-seq demonstrated a

distinct reorganization of CAFs following NACT, particularly

characterized by an increase in myofibroblast populations after

treatment. Elevated myCAFs facilitated ECM remodeling and
TABLE 3 Subtypes and comparisons of CAFs.

Subtype Main gene Function Clinical significance

myCAF ACTA2 (a-SMA), TAGLN,
MYL9, CNN

High contractility, generating a large amount of
ECM;
It forms a physical barrier that hinders T cell
infiltration and drug delivery;
It is usually strongly activated by the TGF-b signaling
pathway

It may be related to tumor hardness, invasion,
metastasis and immune rejection

iCAF IL6, LIF, CXCL12, CXCL1,
CXCL2,

Secrete a large amount of cytokines and chemokines;
Recruit myeloid cells and induce
immunosuppression;
Promote the stemness and survival of tumor cells;
It is usually driven by the IL-1a/b and NF-kB
signaling pathways.

It may be related to immunosuppression,
inflammation and resistance to chemotherapy.

apCAF CD74, MHC-II It expresses MHC-II class molecules but lacks co-
stimulatory molecule;
It may mediate the impotence or inhibition of CD4+
T cells rather than their activation.

Unclear

meCAF CAV1, ALDH1A Metabolic reprogramming to support the metabolic
needs of tumors;
Nourish tumor cells through nutrients

It may be related to tumor growth, metabolic
adaptation and treatment resistance.
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immunosuppression, correlating with the poor prognosis (134, 135).

However, the relationship between CAFs heterogeneity and NACT

response remains incompletely characterized (136–139). Integrative

scRNA-seq and ST analyses have begun to shed light on how NACT-

induced remodeling affects therapeutic efficacy. In 2023, using

combined scRNA-seq and STs, Qin et al. (140) identified a novel

CAFs subpopulation termed positive-response–associated CAFs

(pCAFs), which promoted anti-tumor immunity through spatial

recruitment and immune cell interactions. Similar CAFs remodeling

patterns were observed in pancreatic ductal adenocarcinoma (PDAC)

(141). These findings indicate that NACT profoundly remodels both

cancer cells and fibroblasts, leading to the formation of distinct

immunological and stromal niches.

Collectively, these insights highlight the therapeutic potential of

modulating specific CAFs subsets. Potential strategies include

promoting immune-supportive pCAF differentiation, inhibiting

tumor-promoting nCAF subpopulations, or targeting specific

cytokines and ECM components driving therapy resistance.

Nevertheless, the mechanisms underlying CAF heterogeneity are not

yet fully understood. Systematic characterization of CAFs subsets and

their context-specific functions will be essential for uncovering novel

therapeutic targets.

5 Challenges and perspectives

Although scRNA-seq and ST have significantly enhanced our

understanding of tumor biology, several challenges remain to be

addressed (142). Tumors exhibit extensive somatic genetic

heterogeneity (143), and their pathogenesis involves intricate

regulatory mechanisms across multiple omics dimensions, including

transcriptomics, epigenomics, proteomics, and metabolomics (144).

With the rapid advancement of single-cell multi-omics technologies,

research has increasingly transitioned from single-omics analyses to

integrated approaches combining transcriptomic, genomic, epigenomic,

and proteomic data. Such integrated multi-omics strategies have already

provided valuable insights into several malignancies, including

colorectal cancer (CRC) (145), lung cancer (146), and prostate cancer

(147). The combination of single-cell multi-omics with ST is anticipated

to offer a more comprehensive and spatially resolved understanding of

tumor heterogeneity at single-cell resolution.

However, despite these technological advancements, clinical

translation remains challenging. Several practical barriers remain for

clinical transformation: (i) Cost-benefit trade-off: these technologies

are currently expensive and have long experimental cycles; (ii) High

requirements of infrastructure and data analysis capabilities; (iii) Lack

of regulations and standardization. This requires collaborative efforts

from regulators, industry, and academia (148, 149).
6 Outstanding questions

Achieving true single-cell resolution in spatial transcriptomics

technologies and the associated computational challenges in analyzing

such high-dimensional data. The necessary next step of integrating

spatial multi-omics data, particularly spatial proteomics and
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metabolomics, to build a more comprehensive functional

understanding of the tumor microenvironment. The urgent need for

standardizing and validating analytical pipelines to ensure robustness,

reproducibility, and ultimately, their successful translation into clinical

settings for diagnostics and therapeutic decision-making.

7 Conclusion

In conclusion, the integration of single-cell and spatial

transcriptomics technologies has fundamentally expanded our

understanding of tumor heterogeneity and microenvironmental

organization. However, to translate these insights into clinical

impact, future work must focus on three critical frontiers. First, the

integration of single-cell and spatial transcriptomics will be essential to

move beyond transcriptional data and achieve a functional, multi-

layered understanding of cellular phenotypes and interactions within

their native context. Second, the prospective clinical validation of

spatial biomarkers is urgently needed to establish their utility in

patient stratification, prognosis, and therapy guidance. This will

require rigorous standardization of analytical and reporting protocols

to ensure reproducibility across platforms and cohorts. Finally, the

development of advanced computational frameworks capable of

unifying multi-omic spatial data—and ultimately enabling real-time

mapping—will be crucial for informing diagnostic and even

intraoperative decisions. With sustained development, these

integrative approaches hold substantial promise for enhancing cancer

diagnostics, guiding precision therapeutic strategies, and ultimately

improving clinical outcomes for patients.
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