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New insights into mesenchymal
stem cells in inflammatory
subtypes of asthma
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and Peng Gao*

Department of Respiratory & Critical Care Medicine, Hospital 2, Jilin University, Changchun, China
Asthma is a heterogeneous disease characterized by chronic airway

inflammation, heightened reactivity, and structural remodeling. The responses

of different phenotypes to traditional corticosteroid therapy vary significantly,

with steroid resistance in low T-helper type 2 asthma remaining an urgent clinical

challenge. In recent years, mesenchymal stem cells (MSCs) and their exosomes—

mesenchymal stem cell-derived extracellular vesicles (MSC-EVs)—have emerged

as promising therapeutic agents due to their potent immunomodulatory

properties. In this review, we systematically explain how MSCs and MSC-EVs

inhibit airway inflammation in asthma through multi-target immunoregulation,

highlight their therapeutic potential in steroid-resistant asthma, and outline the

challenges and optimization strategies involved in clinical translation, thereby

providing a theoretical foundation for the development of novel therapies.
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1 Introduction

Asthma is a common respiratory disorder characterized by chronic airway inflammation,

heightened airway responsiveness, and structural remodeling (1–5). Its pathophysiology

involves numerous inflammatory cells and mediators (6–10). Based on inflammatory cell

profiles in induced sputum, asthma can be classified into four types: eosinophilic asthma,

neutrophilic asthma, mixed granulocytic asthma and paucigranulocytic asthma (11). T-helper

type 2 (Th2)-type asthma is characterized by activation of type 2 inflammatory pathways and

is characterized by eosinophilic inflammation (12). In contrast, non-Th2 asthma lacks

markers of type 2 inflammation and is characterized by neutrophilic, paucigranulocytic, or

mixed inflammation (12). Corticosteroids are essential in asthma management; however, low

Th2 asthma often exhibits steroid resistance and remains difficult to treat (13–17). Managing

low Th2 asthma remains a significant clinical challenge in respiratory medicine. Several new

biologic therapies have recently emerged. Anti-immunoglobulin E (anti-IgE) monoclonal

antibodies (mAbs), such as omalizumab, reduce exacerbations by lowering free IgE levels and

may delay disease progression (18). Anti-interleukin-5/interleukin-5 receptor alpha (anti-IL-
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5/IL-5Ra) agents, such as mepolizumab and benralizumab, effectively

eliminate eosinophils, reduce acute exacerbation rates, and improve

lung function (19, 20). IL-4Ra inhibitors, such as dupilumab,

significantly improve mucus secretion and airway remodeling by

blocking IL-4/IL-13 signaling. These are suitable for moderate to

severe asthma (21). Anti-thymic stromal lymphopoietin mAbs, such

as tezepelumab, inhibit upstream alarmin pathways and demonstrate

efficacy across various asthma phenotypes (22). However, challenges

remain in the clinical application of these drugs. Certain asthma

subtypes—such as neutrophilic and mixed granulocytic asthma—

respond poorly to treatment (23–25). Other concerns include disease

rebound after discontinuation, complications associated with long-

term use, and high treatment costs (26–29). Recent studies have

found that mesenchymal stem cells (MSCs) have significant

therapeutic effects in asthma, offering new avenues for

treatment development.

MSCs are adult stem cells capable of self-renewal and multi-

lineage differentiation (30–33). First identified in 1976, MSCs have

since been found in nearly all human tissues, including bonemarrow-

derived MSCs (BM-MSCs), adipose-derived MSCs, and umbilical

cord blood-derived MSCs (UC-MSCs) (34–38) (Figure 1).

Originating from the mesoderm, MSCs exhibit a strong capacity

for self-renewal and diverse differentiation potential (39–41).

Extensive studies have demonstrated that MSCs possess potent

immunomodulatory properties and can migrate to sites of
Frontiers in Immunology 02
inflammation and tumors (42). MSCs have shown remarkable

therapeutic benefits for numerous diseases due to their ability to

differentiate into various cell types (43–47). In vitro-expanded MSCs

have been applied in treating a range of immune and inflammatory

conditions, including autoimmune diseases and organ failure, such as

Crohn’s disease of the bowel and graft-versus-host disease (38).

Recently, the potential role of MSCs in asthma has attracted

increasing interest from researchers (48). However, the clinical

application of MSCs faces several challenges, including the need for

large cell doses, variability in cell quality, low post-transplantation

survival rates, unintended effects following intravenous injection, and

limited ability to cross physiological barriers such as the blood–brain

barrier (49–53). Therefore, increasing attention has been directed

toward extracellular vesicles (EVs) derived from MSCs and their

ability to modulate normal and pathological cellular processes,

including inflammation and tissue injury responses (54). MSC-

derived extracellular vesicles (MSC-EVs) are lipid-based vesicles

secreted by MSCs and include exosomes, microvesicles, and

apoptotic bodies (55–57). Exosomes are formed through the

endosomal-multivesicular body pathway, microvesicles are

generated via direct budding from the plasma membrane resulting

from localized membrane remodeling and shedding, while apoptotic

bodies are produced through programmed cell apoptosis (58–60).

Several studies have investigated the mechanisms by whichMSC-EVs

influence immune cell function (54, 61, 62). These vesicles carry a
FIGURE 1

The overview of multipotentiality and multi-lineage differentiation of MSCs. MSC, mesenchymal stem cells.
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wide array of signaling molecules from their parent cells, such as

proteins, lipids, surface receptors, enzymes, cytokines, metabolites,

and nucleic acids (63, 64). By modulating innate and adaptive

immune responses, MSC-EVs help regulate immunity by

suppressing the activity of T cells, B cells, natural killer cells, innate

lymphoid cells, macrophages, and dendritic cells (DCs), thereby

influencing various asthma phenotypes (65, 66).
2 MSCs/EVs and asthma

MSCs and MSC-EVs exert significant effects on asthma and

have emerged as promising therapeutic agents for its treatment

(67–69). The therapeutic potential of MSCs in asthma largely

stems from their immunomodulatory properties, which help

regulate the balance between Th1 and Th2 cytokines, thereby

reducing airway inflammation and remodeling (53, 70–72).

Numerous studies have confirmed the immunomodulatory

effects of MSCs (52, 73, 74). MSCs can reduce T cell

proliferation (75, 76), inhibit the differentiation of monocytes

into pro-inflammatory macrophages and DCs (77, 78), suppress

the cytotoxicity and proliferation of natural killer cells (79), and

limit B cell maturation and antibody production (80). These

findings suggest that MSCs may influence asthma progression by

modulating multiple immune cell types. MSC-EVs are increasingly

recognized for their similar immunoregulatory roles and their

advantages in transport and application (81). Table 1 categorizes

and summarizes asthma animal models using MSCs or MSC-EVs

as a therapeutic approach.
3 MSCs and immune and non-
immune cells in asthma

MSCs are involved in the pathogenesis of asthma through their

effects on a variety of immune and non-immune cells (Figure 2). In

this review, we summarize the molecular mechanisms of MSCs as

well as the role of MSC-EVs in asthma and their therapeutic potential.
3.1 T cells

T lymphocyte subsets play a key role in the pathogenesis of asthma.

The differentiation of various T cell subtypes and the cytokines they

secrete are critical in driving different forms of asthma-related

inflammation. MSC-EVs exert strong immunomodulatory effects and

can regulate T cell metabolism, further influencing distinct asthma

phenotypes (75, 82). Th2 cells are major drivers of eosinophilic asthma.

They secrete type 2 cytokines such as IL-4, IL-5, and IL-13, which

promote eosinophil proliferation and cause airway inflammation and

damage (83). In contrast, Th17 cells are implicated in neutrophilic

asthma. Cytokines such as IL-17, secreted by Th17 cells, strongly

promote the recruitment and activation of neutrophils, resulting in

increased neutrophilic infiltration in the airway, the release of

inflammatory mediators and proteases, and consequent airway
Frontiers in Immunology 03
epithelial injury and remodeling (84, 85). MSCs can regulate various

T cell states—including immature, naive, mature, effector, and memory

T cells—through multiple mechanisms (86). For example, indoleamine

2, 3-dioxygenase (IDO), a rate-limiting enzyme in tryptophan

catabolism induced by inflammatory cytokines, plays a role in

inhibition of intracellular pathogen replication and immune

regulation (87). IDO suppresses T cell proliferation and promotes

regulatory T cell (Treg) differentiation by converting tryptophan to

kynurenine (88). BM-MSCs have been shown to significantly upregulate

IDO expression, inhibit Th17 cell differentiation, and reduce IL-17

secretion in inflammatory environments (88).

3.1.1 Regulatory T cells
Tregs are a subset of T cells with significant immunosuppressive

functions, characterized by the expression of forkhead box P3

(FOXP3), CD25, and CD4 (89, 90). Tregs play a critical role in

asthma by suppressing excessive immune responses and reducing

airway inflammation. Studies have shown that MSC-EVs can

promote the differentiation of CD4+, CD25+, and FOXP3+ Tregs

(91–93). This effect is mediated by specific microRNAs (miRNAs)

contained in the vesicles, including miR-1470 and miR-21-5p. miR-

1470 upregulates the expression of cyclin-dependent kinase

inhibitor 1B (p27Kip1), while miR-21-5p participates in regulating

Treg differentiation and function via the phosphoinositide 3-kinase

(PI3K)/AKT pathway (91, 94–97). In addition, MSC-EVs can

enhance the expression of miR-146a, a miRNA with significant

immunomodulatory activity (98). miR-146a promotes the

production of anti-inflammatory cytokines, such as IL-10 and

transforming growth factor-beta (TGF-b), thereby enhancing the

inhibitory function of Tregs (98). miR-126a also contributes to

MSC-EV-mediated promotion of Treg differentiation. Studies have

shown that MSCs can convert conventional T cells into Tregs by

modulating miR-126a expression (99). miR-126a also plays a role in

the stabilization of FOXP3 expression, which is a key transcription

factor for Treg development and function (99). MSC-EVs can

further upregulate p27Kip1 and down-regulate cyclin-dependent

kinase 2 levels, leading to T cell cycle arrest and reduced T cell

proliferation—an important immunosuppressive mechanism (100).

Studies demonstrated that MSC-EVs modulate cytokine secretion

in T cells. In a synovitis model, EV treatment reduced IL-17 levels

and increased IL-10 and TGF-b expression (101, 102). It is

important to note that MSC sources vary greatly in their ability

to induce Tregs. An in vitro study comparing BM-MSCs and UC-

MSCs found that UC-MSCs ability to induce Tregs was significantly

greater than that of BM-MSCs (91). In terms of treatment, Zhang

et al. reported that MSC-EVs improved disease symptoms by

inhibiting T cell proliferation and enhancing Treg differentiation,

leading to a decrease in proinflammatory cytokines and elevated

anti-inflammatory cytokines (103).

3.1.2 Th1/Th2
The imbalance between Th1 and Th2 cells is a key factor in the

pathogenesis of eosinophilic asthma. By secreting TGF-b1, MSCs

suppress the expression of GATA-binding protein 3 and inhibit

Th2 cell proliferation (104, 105). At the same time, some studies
frontiersin.org
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TABLE 1 Summary of animal studies on MSC therapy for asthma.

Classification Author
Type
of cases

Asthma
subtype

MSC
source

Administration
route

MSC
dosage

Main findings References

MSCs
Fernanda F.
Cruz et al.

AHE induced-
C57BL/6 mice

Mixed BM-MSCs IV
1×106
cells

IL-4, IL-5, IL-13,IL-
6, IL-17a ↓, IFNg ↑,
lymphocytes,
neutrophils,
eosinophils in
BALF ↓

(67)

Geng
Lin et al.

HDM induced-
BALB/c mice

Mixed
HGF-
DPSCs

IV
2×106
cells

IL-4, IL-5, IL-13, IgE
↓;
Ckb8–1 protein
expression ↓;
CD4+ T cell, CCR1+
T cell proportion ↓;
AHR ↓;
CD4+ T cells ↓

(68)

Fatih
Firinci et al.

OVA induced-
BALB/c mice

Eosinophilic BM-MSCs IV
1×106
cells

IgE, IL-4 ↓;
goblet cells, mast
cells↓;
airway remodeling ↓;
eosinophils in blood
and BALF ↓

(69)

Julie E
Trzil et al.

Chronic allergic
asthma
induced cats

Eosinophilic AD-MSCs IV
0.36–
2.5×107

MSCs

LA and BWT
scores ↓

(71)

Si-Yuan
Ma et al.

OVA induced-
BALB/c mice

Eosinophilic iPSC-MSCs IV
1×108

cells/kg

OVA-IgG1, OVA-
IgE↓;
IL-4, IL-13, IL-5 in
BALF ↓;
eosinophils in
spleen ↓

(72)

Guan Nan
Tang et al.

OVA induced-
BALB/c mice

Eosinophilic BM-MSCs IV
1×106
cells

IL-4, IL-5, IL-13↓;
Treg cells ↑;
TLR3 mRNA ↑;
IFN-g mRNA ↑;
IL-12a mRNA ↑

(96)

Ahmadi M
OVA induced-
Wistar rats

Eosinophilic BM-MSCs IV
2×106
cells

IL-4↓, IL-13↓,
IL-10↑

(97)

Yingying Li
OVA induced-
BALB/c mice

Mixed UC-MSCs IV
1×107
cells

IL-10 ↑, IL-17 ↓;
Foxp3 ↑, RORg ↓;
Treg cells ↑, Th17
cells ↓; AHR, AI↓

(102)

Jae Woo
Shin et al.

A. alternata or
HDM/DEP
induced-BALB/
c mice

Eosinophilic
or mixed

hUC-MSCs IV
1.0×105

cells

IL-13↓;
AHR↓;
ILC2s↓;
eosinophils in BAL↓

(106)

Hai-Feng
Ou-Yang
et al.

OVA induced-
C57BL/6 mice

Eosinophilic BM-MSCs IV
2×106
cells

IL-4, IL-5, IL-9 in
BALF↓;
IFN-g in BALF ↑;
Th1/Th2 ratio ↑;
Total inflammatory
cells, eosinophils in
BALF ↓;
Mast cell
degranulation ↓;
AHR↓

(107)

Faouzi Braza
HDM induced-
BALB/c mice

Mixed BM-MSCs IV
5×105

cells

IL-4, IL-5, IL-13, IL-
17 ↓, IL-10, IFN-g↑;
M2 macrophage

(131)

(Continued)
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TABLE 1 Continued

Classification Author
Type
of cases

Asthma
subtype

MSC
source

Administration
route

MSC
dosage

Main findings References

polarization ↑;
AHR ↓

Abreu,
S.C. et al.

OVA induced-
C57BL/6 mice

Mixed BM-MSCs IV
1×105

cells

IL-4, IL-13, TGF-b,
VEGF↓;
IL-10, IFN-g↑;
M2 macrophage
polarization↑;
eosinophils,
neutrophils, BALF
total cells↓;
parenchymal
collagen,
airway remodeling↓.

(135)

Xiaolian
Song et al.

OVA induced-
BALB/c mice

Eosinophilic BM-MSCs IV
1×106
cells

Eosinophils in
BALF↓;
IL-4, IL-5, IL-13↓;
Alveolar macrophage
M2 polarization ↑

(136)

Qiannan
Fang et al.

OVA induced-
C57BL/6 mice

Mixed GMSCs IV
2×106
cells

CD11b+ DCs,
CD11c+DCs
proinflammatory↓;
Th2 cell
differentiation↓;
Eosinophil
infiltration↓;
IL-5-secreting CD4+
T cells↓;
HGF-
dependent
immunomodulation↑

(152)

Kambiz
Moghaddasi
et al.

OVA induced-
BALB/c mice

Eosinophilic BM-MSCs IV
1×106
cells

IgE, IL-4 ↓;
goblet cells,mast
cells↓;
airway remodeling ↓;
eosinophils in blood
and BALF ↓

(153)

Ligia Lins de
Castro et al.

OVA induced-
BALB/c mice

Eosinophilic AD-MSCs IV
1×106
cells

CD3+CD4+ T cells
↓;
Collagen deposition
↓;
TGF-b ↓;
IL-5 in lung tissue↓

(155)

Ligia L.
Castro et al.

HDM induced-
C57BL/6 mice

Eosinophilic AD-MSCs IV
1×105

cells

IL-4, IL-13, TGF-b↓;
CD4+ T-cells,
Eosinophils↓;
Collagen
fiber content↓

(156)

Nemeth K
Ragweed
induced-C57BL/
6 mice

Eosinophilic BM-MSCs IV ns

IL-4, IL-5, IL-13 ↓;
IgG1, IgE↓;
eosinophil
infiltration↓;
mucus production↓

(158)

Shao Lin
Zeng et al.

OVA induced-
BALB/c mice

Eosinophilic BM-MSCs IV
1×106
cells

DC maturation
(CD40/CD80/CD86)
↓;
IL-4, IL-5, IL-13↓;
CCL17/CCL22 ↓

(176)

Khang
M. Duong

HDM induced-
BALB/c mice

– BM-MSCs IV
1×106
cells

IL-5, IL-13↓, IL-25
↓;

(178)

(Continued)
F
rontiers in Immunol
ogy
 05
 frontiersin.org

https://doi.org/10.3389/fimmu.2025.1649597
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hou et al. 10.3389/fimmu.2025.1649597
have shown that the therapeutic effect of MSCs on severe asthma by

inhibiting Th2 cells depends on the route of administration, and the

dose and time need to be optimized (106, 107). Cho et al.

demonstrated that MSCs reduce Th2-related cytokines, including

IL-4, IL-5, and IL-13, while increasing the Th1-related cytokine
Frontiers in Immunology 06
interferon-gamma (IFN-g), thereby inhibiting Th2 differentiation

and restoring the Th1/Th2 balance (108, 109). Another study found

that systemic injection of BM-MSCs during antigen sensitization

promoted a Th1 phenotype in antigen-specific CD4 T lymphocytes,

suppressing Th2-mediated allergic airway inflammation through an
TABLE 1 Continued

Classification Author
Type
of cases

Asthma
subtype

MSC
source

Administration
route

MSC
dosage

Main findings References

Activated CD11c+
DCs, activated
CD11b+ DCs ↓;
AHR ↓

J. Z.
Kitoko et al.

HDM induced-
C57BL/6 mice

Mixed
BM-MSCs/
AD-MSCs

IT
1×105

cells

IL-10 ↑;
Eosinophils, B cells
in BALF↓;

(186)

Yin Yao
et al.

OVA induced-
mice (specific
strain
not specified)

Eosinophilic iPSC-MSCs IV ns

IL-4, IL-5, IL-13 in
BALF↓;
Serum IgE ↓;
IL-33 and TSLP in
lungs ↓;
Eosinophils,
lymphocytes,
neutrophils↓

(212)

Xin-peng
Han et al.

OVA induced-
BALB/c mice

Eosinophilic BM-MSCs IV ns

Eosinophils↓;
IL-4, IL-5, IL-13,
TGF-b1↓;
TAK1↓;
p38MAPK↓;
collagen density↓;
smooth
muscle thickness↓

(223)

Shu-Bin
Fang et al.

OVA
+LPSinduced-
C57BL/7 mice

Neutrophilic
Human
iPSC-MSCs

IV
1×106
cells

Neutrophils in
BALF↓;
Th17 cells↓;
IL-17A↓;
p-STAT3↓;
airway
inflammation score↓

(237)

Jiling Ren
OVA induced-
BALB/c mice

Eosinophilic
hUC-
MSCs
exosomes

IN 50 mg

IL-10↑,IL-4, IL-5, IL-
6, TNF-a↓;
OVA specific IgE↓;
Eosinophils, Total
cells in BALF↓

(66)

MSC-EVs
Liyang
Dong et al.

OVA induced
BALB/c mice

Mixed
hUC-MSC-
derived
EVs

IV 40 ug

IL-4, IL-13 in
BALF↓;
Collagen
deposition↓;
a-SMA↓;
Total inflammatory
cells, Eosinophils
in BALF↓

(154)

Weifeng
Gu et al.

OVA induced-
BALB/c mice

Eosinophilic
hUCMSC-
derived
migrasomes

IV 100 mg
IL-4, IL-5, IL-13 ↓;
Th2 cells,
eosinophils ↓;

(177)
↑or↓, significant increase or decrease; ns, not significant; AD-MSC, adipose-derived mesenchymal stem cells; AHE, aspergillus hyphal extract; AI, asthma index; a-SMA, asmooth muscle actin;
BALF, bronchoalveolar lavage fluid; BM-MSC, bone marrow-derived mesenchymal stem cells; BWT score, bronchial wall thickening score; CCR1+, C-C chemokine receptor type 1 positive; CD4
+, cluster of differentiation 4 positive; Ckb8-1, chemokine beta 8-1; DCs, dendritic cells; Foxp3, forkhead box P3; EVs, extracellular vesicles; GMSCs, gingival mesenchymal stem cells; HDM,
house dust mite; HGF-DPSCs, human HGF-overexpressing dental pulp stromal cells; HGF, hepatocyte growth factor; hUC-MSCs, umbilical cord-derived mesenchymal stem cells; IFN,
Interferon; IgE, immunoglobulin E; ILC2s, group 2 innate lymphoid cells; IN, intranasal; IT, intratracheal; IV, intravenous; IFN-g, interferon-gamma; IL, interleukin; IV, intravenous; iPSC-
MSCs, Induced pluripotent stem cell-derived mesenchymal stem cells; LA score, lung attenuation score; p38MAPK, p38 mitogen-activated protein kinase; p-STAT3, phosphorylated signal
transducer and activator of transcription 3; RORg, RAR-related orphan receptor g; TAK1, transforming growth factor-b-activated kinase 1; TLR3, toll-like receptor 3; mRNA, messenger RNA;
TSLP, thymic stromal lymphopoietin; MSC, mesenchymal stem cells; MSC-EVs, mesenchymal stem cells-derived extracellular vesicles; TNF-a, tumor necrosis factor-alpha; Treg, regulatory T
cell; UC-MSC, umbilical cord-derived mesenchymal stem cells; VEGF, vascular endothelial growth factor.
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IFN-g-dependent mechanism (110). Interestingly, Chen et al.

reported that MSC-EVs may promote the transformation of Th1

to Th2 cells, contrary to the findings above. However, that study

primarily noted that the proportion of Th1 cells was significantly

decreased and that of Th2 cells was significantly increased following

MSC-EV treatment, without investigating the underlying molecular

mechanisms in detail (111). In addition, studies have shown that

MSCs can inhibit the phosphorylation of STAT3 by upregulating

the expression of protein tyrosine phosphatase non-receptor type 2,

thereby reducing the production of IFN-g and IL-4 by Th1 and Th2

cells, and suppressing their differentiation and proliferation

(112, 113). Combined with the findings of Cho et al., the effect of

MSCs on IFN-g appears to be bidirectional—inhibiting its

production and signaling and promoting its expression and

functional enhancement. The exact mechanism remains unclear

and may depend on the specific biological environment and

regulatory pathways involved.

3.1.3 Th17
Th17 cells secrete cytokines such as IL-17 and IL-12, promoting

inflammatory responses and airway remodeling, and are thought to

contribute to glucocorticoid-insensitive asthma subtypes, such as

neutrophilic asthma (84, 114, 115). It has been demonstrated that

treating rats with experimental autoimmune uveitis using MSCs

significantly reduced the production of Th17-related cytokines,
Frontiers in Immunology 07
such as IL-17, lowered the proportion of Th17 cells among

lymphocytes, and inhibited interleukin differentiation and activity

(116). Guan et al. suggested that adipose-derived stem cells (ADSCs)

directly inhibit Th17 cell proliferation through contact mediated by

programmed death-ligand 1 (PD-L1) on their cell surface, and also

secrete TGF-b and prostaglandin E2 (PGE2) to suppress Th17 cells

(117). RNA sequencing analysis revealed that ADSCs significantly

downregulated Th17-associated genes, including IL17A, CCL20, and

MMP12 (117). Pathway analysis revealed that ADSC treatment

significantly inhibited the activation of IL-17 signaling pathway

(117). Other studies reported that gingiva-derived MSC-EVs

reduced NF-kB phosphorylation by suppressing IKKB expression

via miR-148a-3p, thereby inhibiting the IKKB/NF-kB signaling

pathway, reducing IL-17A levels, increasing IL-10 production, and

ultimately suppressing Th17 cell proliferation and differentiation

while alleviating inflammation (118, 119). MSCs also regulate Th17

cell metabolism through mitochondrial transfer. Studies have shown

that tunneling nanotubes and EVs can transfer mitochondria to Th17

cells, leading to metabolic reprogramming. After MSC

reprogramming, Th17 cells exhibited increased oxidative

phosphorylation and reduced glycolysis through the mTORC1

pathway, which inhibited the proliferation and function of Th17

cells. Moreover, the expression of FOXP3 in Th17 cells was

significantly increased following mitochondrial transfer, suggesting

a transition toward Treg cell phenotype (120, 121).
FIGURE 2

MSCs crosstalk with immune and non-immune cells. ↑or↓, significant increase or decrease; Breg, regulatory B cells; CCL, C-C motif chemokine
ligand; CXCL, C-X-C motif chemokine ligand; EMT, epithelial-mesenchymal transition; IL, interleukin; Jak-STAT, janus kinase-signal transducer and
activator of transcription; Treg, regulatory T cells; MSC, mesenchymal stem cells; MMP12, matrix metalloproteinase-12; NF-kB, nuclear factor kappa-
B; IFN-g, interferon-g.
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3.2 Monocytes and macrophages

In asthma, macrophages are key immune cells involved in

phagocytosis, the release of inflammatory mediators, antigen

presentation, and the regulation of immune responses (122, 123).

Macrophages can be classified into two main phenotypes: classically

activated (M1) and alternatively activated (M2) macrophages (124).

The balance between M1 and M2 macrophages is particularly

important in asthma pathogenesis. M2 macrophages are often

associated with the promotion of airway inflammation and tissue

remodeling (125). M1 macrophages are activated by Th1 cytokines,

such as IFN-g, and by toll-like receptor (TLR) signaling. Upon

activation, M1 macrophages produce proinflammatory cytokines

including IL-6 and IL-1b , which promote neutrophilic

inflammation (126). In contrast, M2 macrophages are induced by

Th2-derived cytokines, particularly IL-4 and IL-13, to produce

eosinophil-promoting cytokines such as IL-10 and TGF-b (127).

Paucigranulocytic asthma, a milder subtype of asthma, is

characterized by a predominance of macrophages; however, its

molecular mechanisms remain poorly understood (128, 129).

Macrophage polarization induces Th1 and Th2 cytokine

production, thereby contributing to the pathogenesis of

eosinophilic asthma and neutrophilic asthma (130).

Several studies have shown that BM-MSCs can influence

macrophages through different mechanisms, potentially affecting

different asthma phenotypes (131). In the pathogenesis of asthma,

macrophage polarization plays an important role in modulating the

inflammatory response. Numerous studies have demonstrated that

MSCs can promote M2 polarization (132–136). MSCs and MSC-EVs

can induce the shift from pro-inflammatoryM1macrophages to anti-

inflammatory M2 macrophages by secreting anti-inflammatory

factors such as tumor necrosis factor-stimulated gene-6 (TSG-6)

and IL-10, thereby reducing the inflammatory response (137–139).

Furthermore, several studies have demonstrated that miRNAs and

proteins carried by MSC-EVs—including miR-21-5p, miR-146a-5p,

miR-451, miR-16, and galectin-1—can promote M2 polarization by

inhibiting inflammatory pathways involving NF-kB, Jak-STAT, and
PI3K-AKT, thus reducing inflammation (138, 140–142). In addition,

MSC-derived mitochondria have been found to transfer to

macrophages and promote M2 polarization by improving

mitochondrial function (143). Li et al. demonstrated that MSCs can

inhibit CD4+ T cell proliferation and promote M2 macrophage

polarization in a TSG-6-dependent manner, thereby reducing

inflammation (144). Through miRNA sequencing and proteomic

analysis of mesenchymal stem cell-derived exosomes (MSC-Exos)

and MRC-5-derived exosomes, Liu et al. proposed that MSC-Exos

may inhibit pyroptosis via miRNA-mediated regulation of the

caspase-1 pathway or through proteins with immunomodulatory

functions. However, the specific miRNAs and proteins responsible

remain unidentified (145).

When M1-type macrophages were co-cultured with MSCs,

CD54-specific upregulation and enrichment were detected at the

contact interface, and this specific interaction induced calcium
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signaling and enhanced the CD54-mediated immunosuppressive

capacity of MSCs, which may represent an additional mechanism

by which MSCs inhibit the inflammatory response (146).

Regarding monocytes, Du Rocher et al. demonstrated that MSCs

induced phenotypic changes in monocytes, including downregulation

of major histocompatibility complex class I and II, CD11c, and CCR5,

and upregulation of CD14 and CD64 expression (147). These changes

were accompanied by a reduction in IL-1b and IL-6 production by the
monocytes. Overall, MSCs reduce the number of monocyte-derived

macrophages and promote the polarization of macrophages from the

M1 to the M2 phenotype, thereby alleviating airway inflammation.
3.3 Eosinophils

Eosinophilic asthma is a subtype of asthma characterized by

elevated levels of eosinophils in the airway. It is associated with

several cytokines, such as IL-4, IL-5, and IgE, and several novel

immune agents have also been proposed for this asthma subtype

(148–151). In recent years, numerous studies have confirmed that

MSCs have significant effects on eosinophils and related cytokines

(152, 153). Experiments have shown that human UCMSC-EVs

treated with hypoxia can reduce eosinophilic infiltration in

allergic airway inflammation and decrease levels of Th2 cytokines

such as IL-4, IL-5, and IL-13 (154, 155). Ligia et al. also

demonstrated that multiple infusions of fat-derived MSCs can

reduce eosinophil-mediated inflammation in asthmatic models

through immunosuppression (156). Interestingly, a case report

suggested that intravenous MSC infusion significantly improved

eosinophilic infiltrating gangrene of the lower extremity in patients

with eosinophilic granulomatosis with polyangiitis, inhibiting local

eosinophilic degranulation (157). Overall, MSCs can inhibit

eosinophilic inflammation, and the specific mechanisms involved

have been explored in recent years. For example, gingiva-derived

MSCs inhibit eosinophil activation by secreting hepatocyte growth

factor (152). BM-MSCs can inhibit eosinophil-related inflammation

through TGF-b signaling pathway (158). In addition, cord blood

MSCs have been shown to alleviate eosinophilic inflammation in

atopic dermatitis and asthma by downregulating IgE and

eosinophilic cationic protein levels (159). A study demonstrated

that tonsil-derived MSCs may reduce allergic symptoms and

eosinophilic infiltration by inhibiting the induction of cytokines

such as IL-25 and IL-33, as well as chemokines such as CCL11 and

CCL24 (160). Another study confirmed that MSCs can reduce total

IgE, IL-5, and eosinophilic inflammatory cells through the

expression and transduction of the IL10 gene (161). Notably,

MSCs can also indirectly affect eosinophils by influencing other

cells. Placenta-derived MSCs can reduce eosinophil-mediated

airway hyperreactivity and inflammation in asthmatic models by

inhibiting Th17 cell differentiation and promoting Treg cell

expansion (102). Although MSCs inhibit eosinophilic

inflammation, their specific roles and mechanisms in eosinophilic

asthma require further investigation.
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3.4 Neutrophils

Neutrophilic asthma is a subtype of asthma characterized by

neutrophil-dominant airway inflammation and is closely associated

with refractory, severe, and fatal asthma (162). It is often difficult to

treat because of resistance to glucocorticoid therapy and the lack of

other effective treatments (130). The pathogenesis of neutrophilic

asthma involves the recruitment and activation of neutrophils in the

airway (163). Neutrophils release a variety of pro-inflammatory

mediators, including cytokines, chemokines, and neutrophil

extracellular traps (NETs). These mediators contribute to airway

inflammation, hyperresponsiveness, and remodeling, which underlie

the clinical symptoms of asthma (164–166). By secreting chemokines

such as CXCL12 and CCL5, MSCs inhibit the over-recruitment of

neutrophils to inflammatory sites, thereby reducing tissue damage

(167). Another study demonstrated that intratracheal administration of

MSCs reduced CXCL1 expression via secretion of TSG-6, which

inhibited neutrophil recruitment (168). Furthermore, MSCs secrete

molecules such as IDO, PGE2, and TGF-b, which directly inhibit

excessive neutrophil activation, reduce pro-inflammatory cytokine

release, and alleviate inflammation (169, 170). BM-MSCs have been

shown to inhibit neutrophil apoptosis and reduce reactive oxygen

species (ROS) production (171). Moreover, MSC treatment can reduce

chemotaxis, ROS production, and NADPH oxidase activity by

upregulating CD24 expression, shifting activated neutrophils toward

a senescent neutrophil phenotype and thereby suppressing

inflammation (172). Another possible mechanism involves NETs.

NETs are web-like structures composed of decondensed chromatin

and antimicrobial proteins released by neutrophils to trap and kill

pathogens (173). MSCs can regulate many neutrophil functions,

including migration, ROS production, and NET formation.

The direction of these effects depends closely on the specific

environment and the source of MSCs (174). Under non-pathological

conditions, MSCs enhance neutrophil migration and ROS production,

whereas in inflammatory states, MSCs suppress these functions as well

as NETosis (174). EVs secreted by MSCs carry miRNAs such as miR-

199, which inhibit NET formation and reduce the release of pro-

inflammatory mediators, thereby attenuating inflammation (167).

Wang et al. demonstrated that MSCs can reduce NET formation by

inhibiting the MEK/ERK signaling pathway (175). In addition, the

source of MSCs influences their effect on neutrophils: MSCs derived

from healthy donors block neutrophil infiltration and NETosis,

whereas MSCs derived from patients with cancer enhance these

functions (174). Hypoxia-challenged MSC-derived EVs have been

shown to reduce excessive NET formation, promoting diabetic

wound healing (175). This effect is mediated by the transfer of miR-

17-5p, which targets the TLR4/ROS/MAPK pathway (175). Targeting

NETs with MSCs may represent a novel therapeutic strategy

for asthma.
3.5 Dendritic cells

DCs play an important role in various types of asthma by

regulating immune cell activation and the inflammatory response.
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MSCs can inhibit the maturation, migration, and antigen-

presenting functions of DCs through cytokine secretion, EVs, and

direct cell contact, thereby exerting therapeutic effects in asthma

(176–178). A study by Saeidi et al. suggested that UC-MSCs and

BM-MSCs inhibit the differentiation, maturation, and endocytosis

of monocyte-derived DCs under in vitro conditions via secreted

factors (78). Peng et al. found that MSC-EVs can inhibit the

differentiation of human monocytes into DCs and downregulate

the expression of CD40, CD80, CD86, and HLA-DR, although they

do not affect mature DCs (mDCs) (179). Reis et al. also

demonstrated that MSC-EV treatment impaired antigen uptake

by immature DCs and prevented their maturation, resulting in

decreased expression of CD83, CD38, and CD80, reduced secretion

of IL-6 and IL-12p70 and increased TGF-b production. The study

also proposed a novel mechanism whereby MSC-EVs regulate DC

function by targeting the CCR7 gene for degradation via miRNAs

such as miR-21-5p, thereby significantly reducing their migration

toward CCL21 (94). Another study showed that MSCs suppressed

DC function by inhibiting IL-10/STAT3-mediated CST7 gene

transcription (180). Another study suggested that MSCs may

regulate the MAPK signaling pathway in DCs, secrete galectin-1

(Gal-1) to upregulate Gal-1 expression in DCs, and induce the

development of tolerogenic DC immunophenotypes, thereby

inhibiting DC function (181). Furthermore, Xiao-Qing et al.

demonstrated that small MSC-EVs inhibited the activation of

mDCs on type 2 innate lymphoid cells (ILC2s) in patients with

allergic rhinitis (182). Mechanistically, the PGE2-EP2/4 axis plays a

key role in the immunomodulatory effects of EV-modified mDCs

on ILC2s. The study also confirmed the ability of MSC-EVs to

modulate DC function and inhibit the Th2 immune response in

allergic conditions (182). By increasing the production of IL-10,

EV-treated DCs can suppress the production of Th2 cytokines such

as IL-4, IL-9, and IL-13, thereby alleviating allergic reactions (182).

These findings suggest that MSC-EVs may have therapeutic

potential for treating allergic airway inflammation by targeting DCs.
3.6 B cells

B cells play pro-inflammatory and anti-inflammatory roles in

asthma by producing IgE antibodies, regulating immune responses,

and participating in airway inflammation. They are key players in

the immunopathogenesis of asthma. Studies by Gauvreau et al. have

found elevated levels of IgE+ B cells in the airways of patients with

asthma, suggesting their involvement in allergic inflammation

(183). Beyond antibody production, B cells also act as antigen-

presenting cells that regulate T cell responses. In asthma, B cells can

influence the differentiation of Th2 cells, thereby contributing to

allergic inflammatory processes (184). Studies have shown that

MSCs can regulate B cell proliferation and differentiation while

also inhibiting B cell apoptosis (80, 185, 186). Increased PD-L1 in

lipopolysaccharide-treated human adipose-derived MSCs was

found to inhibit B cell proliferation and IgG secretion via the NF-

kB pathway (187). Guo et al. reported that MSC treatment

downregulated Th17 cells and upregulated CD1dhighCD5+
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regulatory B (Breg) cell activity, thereby reducing the severity of

experimental autoimmune encephalomyelitis (188). Epstein-Barr

virus-induced gene 3 (EBI3), a b-subunit of the IL-12 cytokine

family, is induced by Epstein-Barr virus infection and forms various

immune-regulating cytokines by pairing with different a-subunits
and play an important role in immune regulation (189, 190).

Tonsil-derived MSCs have been shown to alleviate B cell-

mediated immune responses and increase the population of IL-

10-producing Breg cells by upregulating EBI3 expression (190).

Similar to T cells, miRNAs contained in MSC-EVs also exert

regulatory effects on B cells. miR-125b, derived from labial gland

MSC exosomes, have been shown to influence primary Sjögren’s

syndrome by directly targeting PRDM1. As a result, the proportion

of CD19+CD20-CD27+CD38+ plasma cells decreased significantly

(191). EGR2 plays a key role in B cell development, particularly

during their survival and differentiation stages (192, 193). A study

on neonatal hypoxia-ischemia brain injury suggested that MSC-EV-

derived miR-410 may upregulate EGR2 and BCL2 expression by

downregulating HDAC1. These findings suggest that miR-410 may

have a regulatory role in B cell function, although further studies are

needed (194). In addition, MSCs may influence asthma by

modulating Bregs, a heterogeneous group of B cell subsets with

immunosuppressive properties similar to those of Tregs (195).

Chao et al. demonstrated that human UC-MSCs protected against

experimental colitis by increasing the number of CD5+ Bregs and

correcting imbalances between Treg/Th17/Th1 cell subsets (196).

Another study also confirmed that MSCs promote the survival and

proliferation of CD5+ Bregs (197). Multiple studies have shown that

MSCs can enhance Breg production. Given the pivotal role of B cells

in adaptive immune responses, further research is warranted to

elucidate how MSCs modulate asthma pathogenesis through B cell-

mediated mechanisms.
3.7 Mast cells

Mast cells (MCs) have long been recognized as key effector cells

in asthma because of their increased abundance in the airways of

patients with asthma compared with healthy individuals (197–199).

MC activation influences the phenotype of asthma. A study by

Tiotiu et al. demonstrated that IL-33-stimulated MC signatures

were associated with severe neutrophilic asthma, while IgE-

activated MCs were associated with eosinophilic phenotypes

(200). Regarding corticosteroid responsiveness, a study by

Alzahrani et al. suggested that MC-derived mediators may

contribute to glucocorticoid insensitivity in severe asthma (201).

MSC-derived exosomes have been shown to inhibit TLR7-mediated

MC activation and reduce pro-inflammatory cytokine release (202).

In addition, another study demonstrated that MSC-derived

microvesicles suppressed MC activation by upregulating PGE2

production and E-prostanoid 4 (EP4) receptor expression (203).

Brown et al. reported that co-culturing MSCs with MCs resulted in

reduced MC degranulation, pro-inflammatory cytokine production,

and chemotaxis. These effects were mediated via upregulation of

COX-2 and enhanced by the activation of EP4 receptors on MCs
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(204). Moreover, MSCs have been shown to reduce levels of IL-5 in

patients with asthma, a key cytokine for MC activation (205).

Reduced IL-5 levels can lead to decreased MC activity, thereby

reducing asthma symptoms (206, 207). Overall, MSCs can suppress

MC function and attenuate inflammatory responses through

various pathways, offering potential benefit across asthma

phenotypes. Nevertheless, further studies are needed to confirm

these effects.
3.8 Epithelial cells

Airway epithelial cells contribute to the formation and

development of airway inflammation and hyperresponsiveness in

asthma through their barrier function and the release of various

inflammatory mediators (208, 209). MSCs can modulate epithelial

cell function via the secretion of paracrine factors that promote

repair by enhancing migration, proliferation, and differentiation

(210). Placenta-derived MSCs have been shown to reduce the

expression of inflammatory cytokines such as IL-6 and IL-8 in

epithelial cells exposed to particulate matter, exerting anti-

inflammatory effects that may aid asthma control (211). Another

study demonstrated that MSCs reduce inflammation by forming

tunneling nanotubes to transfer mitochondria into airway epithelial

cells with mitochondrial dysfunction (212). Connexin 43 (CX43) is

a key molecule regulating mitochondrial transfer, and inhibiting

CX43 weakens the therapeutic effect (212). The epithelial-

mesenchymal transition (EMT) plays an important role in

airway remodeling in asthma. During EMT, epithelial cells lose

their polarity and adhesion properties, acquire mesenchymal

characteristics, and exhibit increased migratory and invasive

capabilities (213). In patients with asthma, exposure to allergens,

contaminants, and infections activates the TGF-b1/SMAD

signaling pathway, inducing EMT. This results in increased TGF-

b1 expression, reduced levels of epithelial markers such as E-

cadherin, and upregulation of mesenchymal markers such as

vimentin and alpha-smooth muscle actin (214, 215). Song et al.

demonstrated that MSCs and their exosomes significantly inhibit

airway remodeling and the EMT by suppressing the Wnt/b-catenin
signaling pathway (216). Additional studies have provided direct or

indirect evidence supporting the ability of MSCs to inhibit the EMT

in bronchial epithelial cells, suggesting promising therapeutic

potential for MSCs in treating airway diseases characterized by

excessive EMT and fibrosis (217–219). Further research is needed to

explore the role of MSCs in modulating epithelial cell responses

in asthma.
3.9 Airway smooth muscle cells

A hallmark of asthma is airway remodeling, which is closely

associated with airway smooth muscle cell (ASMC) proliferation and

migration (220). Experimental studies have demonstrated that

extracellular miR-301a-3p from ADSCs can significantly reduce

remodeling and the inflammatory response in PDGF-BB-
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stimulated ASMCs by targeting the STAT3 pathway (221). Several

studies have shown that MSCs or their EVs can reduce airway

smooth muscle thickness and improve airway remodeling in

asthmatic mouse models (222–224). However, the precise signaling

pathways remain unclear to be fully elucidated. Findings from Lin

et al. suggest that the PI3K/AKT signaling pathway may play a role

(225). Further investigation is needed to confirm this mechanism.
4 Effect of MSCs/MSC-EVs on asthma
subtypes

As mentioned above, asthma can be divided into four

inflammatory subtypes based on induced sputum examination.

The proportion of eosinophils in sputum is significantly increased

in patients with eosinophilic asthma, which is closely related to Th2

immune response and responds well to glucocorticoid treatment

(12, 226). The percentage of neutrophils in sputum of patients with

neutrophilic asthma is significantly increased, which is related to

Th1 and Th17 inflammatory pathways. Neutrophilic asthma is

often seen in patients with severe asthma or patients who smoke,

and shows poor response to glucocorticoids, and is often

accompanied by airway remodeling (227, 228). Patients with

mixed granulocytic asthma have both increased eosinophils and

neutrophils in sputum, and their clinical manifestations and

pathological features are more complex and their symptoms are

more severe (229). The proportion of eosinophils and neutrophils

in sputum of patients with paucigranulocytic asthma is not

significantly increased, and the related mechanism is not clear,

but may relate to airway mucus hypersecretion or epithelial barrier

dysfunction; the symptoms are persistent but there is a lack of

typical inflammatory markers (230–232).

MSCs and MSC-EVs influence various asthma subtypes by

impacting both immune and non-immune cells. In eosinophilic

asthma, MSCs andMSC-EVs can inhibit Th2 cells differentiation by

blocking GATA3 expression through TGF-b1 (104, 105), and

activate PI3K/AKT pathway through miR-1470 and miR-21-5p to

promote Treg expansion, reducing airway inflammation (91, 97). At

the same time, they also regulate macrophages, induce their

polarization to the M2 phenotype by TSG-6 and IL-10 (137–139),

and inhibit the NF-kB inflammatory pathway through miR-21-5p

and miR-146a-5p (140–142), exerting anti-inflammatory effects by

regulating macrophages. In addition, they can directly inhibit

eosinophil activation through hepatocyte growth factor secretion

and TGF-b signaling (152, 158). They can also block mast cell

degranulation by COX-2 up-regulation and EP4 receptor activation

(204), repair barrier function by CX43-mediated mitochondrial

transfer (212). However, it should be noted that the curative

effects of MSCs from different sources are significantly different.

For example, UC-MSCs have a significantly stronger ability to

induce Treg than BM-MSCs (91), and MSC-EVs may promote

Th2 transformation through unknown mechanisms (111).

For neutrophilic asthma, MSCs and MSC-EVs inhibit Th17 cells

differentiation through IDO-mediated tryptophan metabolism (88),

block Th17 cells proliferation by PD-L1 contact (117), and promote
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their transformation into Treg through mitochondrial reprogramming

(120, 121). They can also block neutrophil recruitment by down-

regulating CXCL1 by TSG-6 (168), inhibit NET formation by miR-

199 (167), and inhibit NETosis by targeting TLR4/ROS/MAPK

pathway by miR-17-5p (175). This reduces neutrophilic

inflammation. Activated by TLR4, M1 macrophages can highly

express CD86 and other markers, secrete IL-6, IL-1b and TNF-a,
and directly recruit neutrophils to infiltrate the airway (227). MSCs can

regulate macrophages, inhibit M1 polarization by activating calcium

signal through CD54 interaction (146), and block cell pyroptosis by

caspase-1 pathway inhibition (145). Activated MCs can directly recruit

neutrophils to the airway by releasing chemokines such as LTB4, or

even capture and internalize neutrophils by forming an intracellular

mast cell trap, using its undigested substances to enhance its pro-

inflammatory function and further recruit more neutrophils (233).

MSCs and MSC-EVs can block IL-33-activated MCs and attenuate the

activation of MCs by inhibiting TLR7 signaling pathway (202). It is

worth noting that MSCs in the inflammatory state significantly inhibit

the function of neutrophils, but different sources ofMSCs have opposite

effects; healthy donor MSCs inhibit NETosis, while MSCs derived from

patients with cancer enhance this effect (174).

In patients with mixed granulocyte asthma, not only the

percentage of neutrophils in induced sputum, but also the level of

exhaled nitric oxide, was significantly increased, suggesting the

coexistence of type 2 and non-type 2 inflammation (229).

According to the above, MSCs and MSC-EVs can inhibit mixed

granulocytic asthma by inhibiting eosinophilic inflammation and

neutrophilic inflammation simultaneously by different immune

cells. In paucigranulocytic asthma, MSCs and MSC-EVs mainly

play a role by regulating epithelial barrier function and mucus

secretion. Studies have shown that the characteristic mucus

hypersecretion and epithelial barrier damage of this subtype of

asthma are related to the abnormal release of epithelial-derived

alarmins (230–232). MiR-146a and other molecules carried by

MSC-EVs can inhibit the NF-kB pathway in airway epithelial

cells and reduce the expression of MUC5AC mucin (210, 216). At

the same time, MSCs repair epithelial tight junction proteins and

restore barrier integrity through CX43-mediated mitochondrial

transfer (212). In addition, HGF secreted by MSCs can down-

regulate IL-25 and IL-33 expression (152), indirectly inhibit ILC2

activation, and block the vicious cycle of non-Th2 type

inflammation, thereby improving airway hypersecretion and

persistent symptoms of paucigranulocytic asthma (160, 230).
5 MSCs and asthma treatment

Corticosteroids play a central role in asthma treatment, with

inhaled corticosteroids being essential for maintenance therapy in

some patients (234). However, some patients develop resistance, and

those with low Th2 asthma are not sensitive to steroids (235). In recent

years, studies have suggested that MSCs can be used to treat asthma by

controlling airway inflammation (205, 236, 237). Numerous animal

studies have shown that MSCs can regulate Th1/Th2 balance, inhibit

the maturation and function of DCs, suppress B cell maturation and
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antibody production, reduce the infiltration and activation of

eosinophils and neutrophils, and inhibit M2 macrophage

polarization. These mechanisms contribute to reduced airway

inflammation and hyperresponsiveness, thereby alleviating asthma

symptoms. In clinical research, several MSC-based therapies have

been or are currently being evaluated. However, no MSC-related

asthma treatments have passed phase 3 clinical trials. One

discontinued phase I clinical trial (NCT03137199) evaluated the

efficacy of intravenously administered BM-MSCs in two groups of

patients with asthma, assessing lung volume and function, peripheral

eosinophil levels, dyspnea, and quality of life every 4 weeks.

Unfortunately, this trial was terminated in 2020. Notably, in a

separate phase I clinical trial, a 68-year-old male patient with

asthma received an intravenous infusion of human UC-MSCs

cultured in vitro. Follow-up at 2 and 6 months post-treatment

revealed a marked reduction in asthma attack frequency and a

decreased dependence on inhalers and supplemental oxygen. No

treatment-related adverse events were reported, indicating that MSC

therapy significantly improved the patient’s quality of life (238).

Regarding the safety of MSC therapy, a phase 1 clinical study is

currently being conducted to evaluate the safety, toxicity, and potential

mechanisms of interferon-g-induced mesenchymal stromal cells

(gMSCs) in the treatment of moderate-to-severe persistent asthma.

Participants are divided into low- and high-dose groups, and the

primary outcome measures include the number of adverse events and

severe adverse events post-interventions, as well as the incidence of

grade ≥3 adverse reactions attributed to the gMSC product. This trial

is ongoing (NCT05035862). In another ongoing clinical experiment,

airway epithelial cells were obtained from participants via

bronchoscopy to evaluate the effects of adult stem cell products on

asthmatic airway epithelium in vitro. The study aims to explore the

utility of MSC secretome in eliminating IgE- and type-2 cytokine-

driven immune response and reversing airway remodeling

(NCT04883320). MSCs show therapeutic promise for asthma;

however, challenges remain. These include difficulties in storage and

transportation, the risk of incomplete differentiation, and limited

lifespan (239–241). Therefore, MSC-EVs may represent a more

practical alternative. In a currently ongoing phase II clinical trial

(NCT04602104), patients are assigned to low-, medium-, and high-

dose groups to receive either aerosolized human MSC exosomes or

saline for seven consecutive days. Other trials are evaluating the safety

of exosomes derived from healthy volunteers (NCT04313647). To

date, however, no clinical trials evaluating MSC-EV therapy for

asthma have been completed, and further research is needed.
6 Prospects and conclusion

Overall, current evidence suggests that MSCs exert diverse and

beneficial effects in asthma. MSCs can inhibit airway inflammation

and remodeling—two hallmark features of asthma—indicating their

promise as a potential therapeutic approach. Given the limitations of

existing therapies and the urgent need for development of novel

treatments, MSC-based approaches represent an area of growing

interest. MSCs appear to regulate immune responses across various
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inflammatory subtypes of asthma by modulating the proliferation,

differentiation, and cytokine secretion of several key cell types

involved in the pathogenesis of asthma, such as B cells, T cells,

macrophages, MCs, neutrophils, and eosinophils. However, the

specific mechanisms and signaling pathways of MSCs regulation in

asthma remain unknown, and warrant further investigations.

The available evidence suggests that MSCs and their derived EVs

have demonstrated significant therapeutic potential in asthma by

modulating immune and non-immune cell functions. They inhibit

the proliferation and activation of T cells, B cells, eosinophils,

neutrophils, and DCs; promote Tregs and Bregs; and induce the

polarization of macrophages from pro-inflammatory M1 to anti-

inflammatory M2 phenotypes. Collectively, these actions contribute

to the reduction of airway inflammation and hyperresponsiveness.

Although the therapeutic potential of MSCs has shown positive results

in different studies as well as in clinical trials, the specific mechanisms

and signaling pathways of MSCs in patients with different phenotypes

of asthma are still under investigation.

MSC therapy has the potential to transform asthma treatment,

particularly for patients with steroid-resistant subtypes such as

neutrophilic asthma. However, one of the key limitations of MSC

therapy is the relatively low survival rate of the cells and high cost

because of variability in cell quality when compared with existing

biologic agents and corticosteroid-based therapies. Future development

of MSC-based therapies should focus on improving cell quality and

survival, enhancing immunomodulatory capacity, and minimizing

production costs. Pretreatment strategies—such as hypoxia or

cytokine priming—may enhance the therapeutic efficacy of MSCs

while simultaneously reducing the associated costs. Compared to

MSCs, MSC-EVs offer greater therapeutic promise due to their

enhanced safety, improved stability, and more flexible delivery options.

Research into the role of MSC-EVs in regulating immune and

structural cells in asthma is still in its early stages, and more clinical

trials and studies on the specific mechanism of action need to be

carried out. Further investigations are needed to establish the safety,

efficacy, and mechanism of action of MSCs and MSC-EVs in

asthma therapy. These efforts will be critical in paving the way for

novel therapeutic strategies for this chronic inflammatory disease.
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