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Traumatic spinal cord injury (TSCI) is a devastating neurological condition with

limited therapeutic options and a high likelihood of permanent disability. Among

the multifaceted secondary injury mechanisms triggered by TSCI, pyroptosis—an

inflammatory form of programmed cell death—has emerged as a key pathological

process. In particular, microglial pyroptosis plays a pivotal role in exacerbating

neuroinflammation and disrupting tissue homeostasis, thereby amplifying the

secondary injury cascade. This review provides a comprehensive overview of the

molecular pathways mediatingmicroglial pyroptosis, including canonical (NLRP3–

caspase-1–GSDMD), non-canonical (caspase-11–GSDMD), and atypical (caspase-

3/8–GSDME/GSDMC) signaling. We also examine recent therapeutic strategies

aimed at suppressing microglial pyroptosis—such as extracellular vesicle-based

delivery systems, small-molecule compounds, and gene-targeted approaches—

and assess their potential to enhance neurological and motor recovery following

SCI. By elucidating both the pathological significance and therapeutic promise of

microglial pyroptosis, this review offers novel perspectives on its translational

potential as a target for spinal cord injury intervention.
KEYWORDS
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1 Introduction

Traumatic spinal cord injury (TSCI) refers to denotes an abrupt, often irreversible

disruption of spinal parenchyma precipitated by high-energy mechanical forces—such as

falls, motor-vehicle collisions and sports trauma—which instantaneously destroy neurons,

glia and the microvasculature, producing profound sensorimotor deficits and imposing

substantial socioeconomic burdens (1, 2).
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Pathologically, TSCI progresses through two distinct phases:

primary injury and secondary injury (3). The primary injury arises

directly from mechanical forces (e.g., compression, traction, laceration)

that cause irreversible structural damage to spinal cord tissue (4). In

contrast, secondary injury initiates rapidly after the primary insult and

involves a complex, sustained cascade of pathophysiological events,

including neuroinflammation, oxidative stress, excitotoxicity,

apoptosis, pyroptosis, edema, and disruption of the blood-spinal cord

barrier (BSCB). The progression of secondary injury can last from

hours to weeks or longer, typically divided into acute (hours to 3 days),

subacute (3 days to 2 weeks), and chronic (weeks to months) phases

(5). Each phase may exacerbate the initial damage and impair long-

term functional recovery. Notably, compared to the irreversible nature

of primary structural damage, secondary injury exhibits greater

plasticity and therapeutic potential, and timely interventions

targeting secondary injury may reduce long-term neurological deficits.

Pyroptosis is a pro-inflammatory form of programmed cell death

distinct from classical apoptosis (6). Its hallmark molecular features

include the assembly of inflammasomes and activation of caspase-1,

which cleaves substrates such as Gasdermin D (GSDMD) (7). The N-

terminal fragment of GSDMD (GSDMD-NT) forms pores in the cell

membrane, leading to rapid cell lysis and the release of cellular contents

(8). Pyroptosis triggers the maturation and secretion of inflammatory

mediators (e.g., IL-1b, IL-18), which induce intense local inflammation

and exacerbate damage to adjacent cells.

Microglia, the resident immune cells of the central nervous

system (CNS), play critical roles in immune surveillance, debris

clearance, and synaptic pruning (9). Studies show that microglia are

among the first cells to respond following spinal cord injury,

undergoing morphological changes, migration, and phenotypic

transformation to participate in inflammatory reactions at the

injury site (10). Activated microglia exhibit a “double-edged

sword” effect: they can promote repair by clearing necrotic debris

and releasing neurotrophic factors, but may also aggravate the local

inflammatory milieu through the secretion of pro-inflammatory

cytokines such as TNF-a and IL-1b (11).

In the context of spinal cord injury, growing evidence highlights

microglial pyroptosis as a pivotal event in secondary injury (12). As key

contributors to post-injury inflammation, elevated pyroptosis in

microglia is thought to worsen the neuroinflammatory environment

(13). Numerous studies demonstrate significant upregulation of

pyroptosis-related molecules (e.g., NLRP3 inflammasome

components, cleaved GSDMD) in microglia after TSCI. Pyroptotic

microglial death may also impair their beneficial roles in debris

clearance and regenerative support. Thus, microglial pyroptosis is

recognized as a critical link in the secondary injury cascade,

profoundly impacting motor and neurological functional recovery.
2 Spinal cord injury and microglia

2.1 Spinal cord injury and secondary injury

During the acute phase of SCI, spinal cord ischemia, vasogenic

edema and glutamate-mediated excitotoxicity inflict the primary
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insult, whereas neuroinflammation, mitochondrial dysfunction,

overactive nitric-oxide-synthase (NOS), excessive apoptosis/

necrosis, axonal degeneration and glial-scar formation

synergistically hinder axonal remyelination and remodeling,

ultimately dictating neurological prognosis (14). Minutes after

trauma, an explosive inflammatory cascade releases damage-

associated molecular patterns (DAMPs) that swiftly recruit and

activate resident glia and peripheral immune cells within the CNS

(15). Pro-inflammatory cytokines—IL-1b, IL-6 and TNF-a—rise

steeply in tissue and cerebrospinal fluid within hours. Activated

microglia and infiltrating macrophages are detectable in the

parenchyma as early as 1 h, peak at 5–10 days and can persist for

months (16). The diverse mediators released by these inflammatory

cells collectively shape the secondary injury microenvironment,

exacerbating pathological processes such as ischemia, edema,

oxidative free radical accumulation, apoptosis, and pyroptosis

(17). Timely curtailment of this cascade is therefore paramount

for salvaging residual neural tissue and preserving function.
2.2 Activation of microglia and their
associated roles in spinal cord injury

Microglia—the brain’s resident “sentinels” and “scavengers”—

continually survey the parenchyma under homeostatic conditions

(18). After SCI they are rapidly activated, becoming one of the

earliest cellular responders (19). Within minutes-to-hours they

enlarge, proliferate and migrate towards the lesion core. Activated

microglia appear as early as 1 h, peak at 5–10 days and remain for

weeks-to-months (20).

The activation state of microglia exhibits a dual nature: On one

hand, excessive activation of microglia leads to the release of large

amounts of pro-inflammatory mediators, exacerbating tissue

damage (21). On the other hand, moderate activation facilitates

debris clearance and secretion of neurotrophic factors, promoting

tissue repair. Based on their activation states and functions,

microglia are typically categorized into two phenotypes: the

classically activated M1 phenotype and the alternatively activated

M2 phenotype (22).

2.2.1 Activation states of microglia
M1 microglia predominate during the acute phase of SCI and

exhibit pro-inflammatory and neurotoxic effects (23). They secrete

high levels of inflammatory mediators, such as IL-6, IL-12, and IFN-

g (24, 25), which trigger inflammatory cascades in neighboring cells,

leading to severe neuronal and glial cell death and demyelination.

M1 microglia also generate excessive reactive oxygen species (ROS)

and proteases, causing further tissue damage (26).

In contrast, M2 microglia exert anti-inflammatory and

neuroprotective roles by releasing anti-inflammatory cytokines

(e.g., IL-10, IL-4, TGF-b) and growth factors (27–29). These

mediators suppress inflammation and promote tissue repair and

axonal regeneration. However, recent studies emphasize that the

M1/M2 classification represents a spectrum rather than a strict

dichotomy (30). However, recent studies suggest that microglial
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classification represents a continuum rather than two extreme,

polarized phenotypes. With the advancement of technologies such

as single-cell sequencing and spatial transcriptomics, microglia are

now classified into multiple functional subtypes based on molecular

characteristics, each with distinct nomenclature (31).

Homeostatic microglia refer to the resident microglia that

maintain CNS homeostasis under physiological conditions—

traditionally described as the “resting” state. Their marker genes

include P2RY12, TMEM119, CX3CR1, SIGLEC-H, and HEXB (30).

Interferon-responsive microglia exhibit gene signatures induced

by type I interferon stimulation, typically observed in acute

inflammation or viral infection. However, studies have shown

that this phenotype also exists in healthy mice, with notable sex-

specific differences—male mice predominantly exhibit the

interferon-responsive profile (high expression of the male-specific

gene Eif2s3y), whereas females retain a homeostatic phenotype

(high expression of the female X-linked gene Xist) (32).

Disease-associated microglia (DAM) were first identified in

neurodegenerative conditions, characterized by the upregulation

of genes involved in phagocytosis and lipid metabolism, such as

APOE, TREM2, CD11c/ITGAX, and CLEC7A, accompanied by

downregulation of homeostatic genes. This subtype is associated

with lipid dysregulation and impaired clearance function and is

mainly observed in neurodegeneration, demyelinating diseases, and

late-stage acute injuries.

Proliferative-region-associated microglia (PAMG) are detected

in neurogenic niches during development and participate in

clearing apoptotic cells and promoting neurogenesis. Wang et al.

found that PAMGs appear predominantly in the early acute phase

of SCI (within ~3 days), characterized by genes involved in cell

proliferation and stress response. These cells can be further divided

into two subclusters: PAMG1, which highly expresses cell cycle

regulatory genes (e.g., Mcm3, Cdk1) to promote proliferation; and

PAMG2, which upregulates genes related to oxidative stress and

inflammation (e.g., Tlr2, Cd5l, Ifi204), suggesting a potential role in

counteracting injury-induced oxidative environments.

Meanwhile, injury-associated microglia (IaMG) are

prominently enriched during the subacute phase post-injury.

These are mainly divided into IaMG1 and IaMG2, both

expressing inflammation-related genes such as Stat1, Cst7, and

Cybb. Notably, the IaMG2 subset also upregulates genes

associated with angiogenesis and axon regeneration (e.g., Nrp2,

Fn1, Cxcr4, Rab7b), indicating its potential role in tissue repair and

axonal regrowth. This highlights that post-injury microglial

subtypes are not functionally homogeneous (30).

In addition, other subtypes have been proposed based on disease

models, such as glioma-associated microglia (GAM), post-stroke

microglia, and Parkinson’s disease-associated microglia. Some studies

have noted overlapping features and lineage connections among

different subtypes (33), and evidence suggests that microglia in

varying activation states can migrate between regions as disease

progresses (33, 34). These findings complicate nomenclature

and experimental interpretation but underscore the remarkable

plasticity of microglia and their ability to transition across diverse

states depending on temporal and microenvironmental cues.
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Understanding these subpopulations is essential for elucidating the

mechanisms by which microglia contribute to injury repair.

2.2.2 Microglial efferocytosis after spinal cord
injury

Microglial engulfment of dying cells and myelin debris is

indispensable for establishing a pro-regenerative milieu in the

CNS. This engulfment—termed efferocytosis—progresses through

three coordinated steps: “find-me,” “eat-me,” and “digest” signals

that sequentially attract, engage, and remove dying cells (35).

Briefly, apoptotic cells emit chemo-attractants that bind dedicated

receptors on phagocytes, triggering engulfment; the resulting

phagosome then fuses with lysosomes, where the cargo is

enzymatically degraded (36).

Efferocytosis therefore represents a pivotal checkpoint in

inflammation resolution. By-products generated during digestion

actively re-programme immune cells, steering them toward pro-

resolving phenotypes and restoring tissue homeostasis (35). After

brain injury, efferocytosis in the CNS is often suppressed. Notably,

EphA4 overexpression in microglia inhibits the P-ERK/P-Stat6/

MERTK signaling axis (37). By contrast, microglia enriched for

MERTK display heightened efferocytosis, foster oligodendrocyte

regeneration, and improve functional outcome in demyelinating

models (38). Likewise, Gas6 limits pro-inflammatory microglial

activation and curtails microglia–astrocyte crosstalk, thereby

attenuating post-SCI inflammation and glial-scar formation (39).

Multiple studies have shown that enhancing microglial

phagocytic capacity improves outcomes in ischemic stroke,

subarachnoid hemorrhage, and related conditions, likely through

mechanisms involving the reduction of neuronal injury and

modulation of CNS inflammation (40, 41). Some researchers have

proposed that microglial phagocytic capacity is closely tied to their

activation state. During efferocytosis, microglia may also adopt a

pro-resolving phenotype, secreting anti-inflammatory cytokines

such as TGF-b and IL-10 to suppress secondary inflammation

and maintain tissue homeostasis (42, 43). Additionally, some

studies have employed a strategy combining neutrophil

membrane-derived vesicles and a “Trojan Horse” system to

promote nerve regeneration and modulate inflammation after SCI

through efferocytosis. This effect is mediated by the reprogramming

of immune cells and regulation of the immune cascade (44).

Collectively, these data underscore efferocytosis as a central driver

of immune resolution and tissue repair in SCI. Therapeutic

reinforcement of microglial efferocytosis thus offers a compelling

avenue for improving neurological outcome.
3 Pyroptosis pathways following
spinal cord injury

3.1 Classical caspase-1-dependent pathway

In the canonical pathway, pyroptosis is initiated by multi-protein

inflammasomes—most notably NLRP3—that sense danger-

associated molecular patterns (DAMPs) liberated after primary
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mechanical trauma (45). A prototypical signal is extracellular ATP,

which binds microglial P2X7 receptors, drives K+ efflux, and thereby

activates the NLRP3 inflammasome in SCI (46). High mobility group

box 1 (HMGB1), a nuclear protein under physiological conditions, is

upregulated in damaged neurons and microglia following SCI and

can bind to receptors such as TLR2/4, thereby promoting M1-type

polarization of microglia and increasing the release of pro-

inflammatory mediators (47). Cellular stress increases

mitochondrial permeability; oxidized mtDNA escapes into the

cytosol and directly couples to NLRP3, driving inflammasome

assembly (48). In addition, SCI-induced cell damage can release

other DAMPs such as heat shock proteins (e.g., HSP70, HSP90), S100

proteins, and related molecules. These too are recognized by pattern

recognition receptors and contribute to sterile inflammation (49, 50)-

(51). Collectively, ATP, HMGB1, and mtDNA represent well-

characterized DAMPs in the context of SCI, corresponding to the

release of metabolic, nuclear, and genetic materials, respectively.

These molecules engage distinct receptors and pathways to drive

NLRP3 inflammasome-mediated neuroinflammation.

NLRP3 inflammasome activation proceeds in two steps: the

priming/transcriptional signal and the activating signal. The

priming/transcriptional signal is initiated by DAMPs or other

stimuli that activate transcriptional pathways such as NF-kB,
resulting in upregulated transcription and translation of NLRP3

and its downstream pro-inflammatory cytokine precursors,

including pro-IL-1b and pro-IL-18 (52). This step elevates the

cellular abundance of inflammasome components and sensitizes

the NLRP3 complex to activation, involving adapter proteins such

as Myeloid differentiation primary response 88 (MyD88),

Interleukin-1 receptor-associated kinase 1 (IRAK-1), TIR-

domain-containing adaptor-inducing interferon-b (TRIF), and

Fas-associated protein with death domain (FADD) (53, 54). The

activating signal is closely tied to the aforementioned DAMPs and

directly induces NLRP3 inflammasome assembly and activation of

effector molecules such as caspase-1 (55). This second signal is often

associated with ion fluxes, particularly potassium efflux and calcium

influx, which are considered potential upstream events in NLRP3

activation (53, 56). In acute-to-subacute SCI, NLRP3–caspase-1

signaling surges in microglia and constitutes a linchpin of

secondary degeneration (57). Excessive pyroptosis depletes

protective microglia and floods the parenchyma with pro-

inflammatory mediators, jeopardizing neuronal survival.

Pharmacological or genetic inhibition of NLRP3 therefore

constitutes a promising strategy to blunt neuroinflammation and

foster recovery (58).
3.2 Non-canonical pyroptosis pathway
mediated by Caspase-4/5/11

In the non-canonical route, human caspase-4/-5 (murine

caspase-11) are directly engaged by cytosolic lipopolysaccharide

(LPS), bypassing canonical inflammasome sensors (59). LPS

docking to their CARD domains triggers rapid oligomerization

and auto-activation of these caspases. The activated caspases cleave
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the linker region of Gasdermin D (GSDMD), releasing the N-

terminal fragment (GSDMD-NT). This fragment inserts into the

cell membrane, forming pores that trigger pyroptotic cell lysis (60).

While Caspase-4/5/11 do not directly process pro-IL-1b or pro-

IL-18, the membrane pores formed by GSDMD-NT cause

potassium ion efflux and other cellular disturbances (60, 61).

These changes indirectly activate the NLRP3 inflammasome,

leading to Caspase-1-dependent maturation and release of IL-1b
and IL-18. Consequently, the non-canonical pathway often

synergizes with the classical pathway, amplifying the

inflammatory cascade (62). Caspase-11 can also cleave the large-

pore channel pannexin-1, leading to massive ATP release from the

cell. The extracellular ATP then activates the P2X7 receptor, which

further triggers potassium efflux, thereby promoting the activation

of the NLRP3 inflammasome (63). Mice lacking P2X7 or pannexin-

1 exhibit greater resistance to LPS, indicating that this signaling axis

is essential for caspase-11-dependent non-canonical pyroptosis.

Such cross-talk intensifies neuroinflammation after SCI,

underscoring the intricate tapestry of pyroptotic signaling in

secondary pathology.
3.3 Atypical pyroptosis mediated by
caspase-3/8

Mounting evidence indicates that the executioner caspases-3

and caspases-8, historically viewed as apoptotic proteases, can

instigate pyroptosis via unconventional cleavage of specific

gasdermins, thereby constituting inflammasome-independent

“atypical” pathways (64).

Caspase-3 is recognized as the protease executing apoptosis

(65). However, in cells with high GSDME expression, caspase-3 can

cleave GSDME, releasing its N-terminal pore-forming domain. This

shifts apoptosis toward pyroptosis-like lytic cell death (66).

Research indicates that GSDME acts as a “molecular switch,”

triggering membrane pore formation and inflammatory mediator

release in caspase-3-activated cells (67). Post-SCI, elevated GSDME

levels are observed, and its suppression reverses neuroinflammatory

exacerbation (68). Microglia express GSDME under pathological

conditions, undergoing caspase-3-dependent GSDME cleavage and

pyroptotic death upon injury (69).

Caspase-8, a key enzyme in the extrinsic apoptosis pathway, has

recently been shown to cleave Gasdermin C (GSDMC) under

specific inflammatory conditions (e.g., high TNF-a and IFN-g
levels), inducing pyroptosis in cancer cells (70). Metabolite a-
ketoglutarate (a-KG)-induced pyroptosis via death receptor DR6

and caspase-8-mediated GSDMC cleavage has also been reported,

dependent on ROS elevation and acidic microenvironments (71).

Additionally, caspase-8 can inefficiently cleave GSDMD or promote

inflammasome activation, further linking it to pyroptosis (72).

Muendlein et al (73) recently proposed the concept of

“efferoptosis,” referring to a form of macrophage death termed

“macrophage efferoptosis” induced by TNF during efferocytosis. In

this process, TNF-activated macrophages undergo TRIF/caspase-8/

GSDMD-dependent cell death after engulfing neutrophils. Notably,
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IL-1b maturation in this context does not rely on the NLRP3

inflammasome but instead occurs via direct cleavage by caspase-8.

This suggests that a similar pathway may also be involved in

microglial pyroptosis following SCI.
3.4 ROS-mediated pyroptosis

Excess reactive-oxygen species (ROS) generated after SCI

constitute a pivotal trigger of inflammasome activation and

ensuing pyroptosis. ROS potentiate NLRP3 oligomerization by

inducing thiol oxidation, ionic flux and mitochondrial

dysfunction (74, 75). Studies show that pathological events post-

SCI, such as hemorrhage, hypoxia, and iron ion release,

amplify ROS production (76). Excessive ROS triggers NLRP3

inflammasome-mediated pyroptosis. Additionally, ROS indirectly

activate the inflammasome by disrupting lysosomal membranes

(causing lysosomal enzyme leakage) and damaging mitochondria

(releasing mitochondrial DNA and other DAMPs) (77). In

microglia, uncontrolled ROS levels persistently stimulate caspase-

1/GSDMD-dependent pyroptosis, releasing inflammatory

mediators that exacerbate neurological damage.

Targeting oxidative stress via antioxidant therapies has emerged

as a promising strategy to suppress pyroptosis and mitigate

inflammation (78). For instance, Cynarin inhibits microglial

pyroptosis in SCI models by enhancing Nrf2 antioxidant

signaling, reducing ROS levels, and suppressing NLRP3

inflammasome assembly (79). This mechanism highlights the

therapeutic potential of antioxidants in modulating pyroptosis

and improving outcomes in SCI.

Mitochondrial Damage and Pyroptosis
3.5 Mitochondrial damage-mediated
pyroptosis

As metabolic powerhouses, mitochondria are intimately linked

to cell-death pathways; injury-induced dysfunction prompts excess

ROS production and releases mtDNA, oxidized cardiolipin, and

other DAMPs into the cytosol (80–82). These molecules act as

DAMPs to activate inflammasomes such as NLRP3 or AIM2,

triggering caspase-1-mediated pyroptosis (83, 84). Targeting this

mechanism, enhancing mitophagy (selective autophagy of

mitochondria) to clear damaged mitochondria has emerged as an

effective strategy to suppress pyroptosis. For instance, the natural

compound Betulinic acid promotes autophagy and mitophagy,

clearing dysfunctional mitochondria and reducing ROS levels,

thereby significantly inhibiting microglial pyroptosis during SCI

(85). Similarly, Urolithin A alleviates microglial pyroptosis and

inflammation by enhancing mitophagy in injured tissues (86).

These findings underscore the importance of maintaining

mitochondrial homeostasis to inhibit pyroptosis and mitigate

secondary injury in SCI (Figure 1).
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4 Targeted modulation of microglial
pyroptosis to promote neurological
and motor recovery post-SCI

Currently, there are no clinically approved pyroptosis-targeted

interventions for SCI. However, preclinical studies have

demonstrated the critical importance of targeting microglial

pyroptosis to improve neurological and motor functional recovery

following SCI. Strategies such as cell transplantation, extracellular

vesicles derived from other cell sources, synthetic drugs, natural

compounds, and genetic modulation of key pyroptosis regulators

have shown significant therapeutic potential (Shown Table 1

for details).
4.1 Cell transplantation and extracellular
vesicle-based interventions

In recent years, cell transplantation and extracellular vesicle

(EV)-based drug delivery technologies have rapidly advanced in the

field of regenerative medicine, emerging as third-generation

“biological therapeutic” strategies following small-molecule drugs

and genetic engineering (87). According to the International Society

for Extracellular Vesicles (ISEV), EVs are lipid bilayer-enclosed

particles (including exosomes and microvesicles) naturally released

by cells, capable of carrying diverse bioactive cargo (88). In addition

to miRNAs or circRNAs, EVs can deliver proteins, lipids, and other

therapeutic factors that aid in spinal cord repair. Compared to

traditional pharmaceuticals, these approaches can cross the blood-

spinal cord barrier, achieve precise delivery to lesions, and remodel

the damaged microenvironment through multi-target, network-

based regulation, balancing high efficacy with controllability (89,

90). In animal studies and early clinical trials for neurological

disorders, stem cells and their derived extracellular vesicle have

demonstrated potential in promoting neuroprotection,

inflammation modulation, axonal regeneration, and functional

recovery (91). Notably, extracellular vesicle inherently offer

advantages such as low immunogenicity, feasibility for large-scale

production, and adaptability to engineering modifications, thereby

enabling safe and repeatable administration.

Regulatory T cells (Tregs) suppress microglial pyroptosis by

secreting exosomal miR-709, which down-regulates NKAP;

administering either Tregs themselves or their extracellular

vesicles blocks microglial pyroptotic activation and ultimately

improves functional recovery after SCI (92). Extracellular vesicles

derived from bone-marrow mesenchymal stem cells (BMSCs)

deliver miR-21a-5p, which enhances PELI1-dependent autophagy

and thereby inhibits microglial pyroptosis (93). Induced pluripotent

stem-cell–derived neural stem cell (iPSC-NSC) extracellular vesicles

can package and transfer let-7b-5p to modulate LRIG3 expression,

reducing microglia/macrophage pyroptosis and boosting motor

recovery in mice after SCI (94). lncRNA-F630028O10Rik,
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TABLE 1 Summary table of studies on targeted interventions in post-SCI microglial pyroptosis and their impact on prognosis.
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asome and subsequent microglial polarization

and pyroptosis.

(103)

B /MMP9 pathway to reduce microglial pyroptosis
y reduce secondary spinal cord injury

(114)

ir exosomes effectively suppress pyroptosis and
microglial/macrophages subjected to SCI and LPS
ntions alleviate the formation of glial scars, maintain

(94)
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Experimental Methods of Mechanisms
Therapeutic effects Reference

yelin, and facilitate the growth of axons, ultimately restoring
functional abilities in SCI mice.

sion of FANCC in SCI mice and LPS-stimulated microglia
ed pyroptosis and neuroinflammation via blocking the p38/

NLRP3 pathway
(115)

vates miR-124-3p levels targeting DAPK1, modulates the
/GSDMD pathway, suppresses pyroptosis, and mitigates SCI.

(104)

ed following SCI and promoted the expression of lncRNA-
his lncRNA functioned as a ceRNA for miR-1231-5p/Col1a1
ed microglial pyroptosis after SCI by activating the PI3K/

AKT pathway.

(95)

icroglial CerS5 expression after SCI effectively mitigates
ion by suppressing microglial pyroptosis, thereby exerting
effects. This process involves C16 ceramide, a downstream
5 metabolic pathway, which activates the NLRP3 signaling
ay in a manner dependent on Pla2g7 and NFkB.

(116)

lp stem cells can reduce microglial pyroptosis by inhibiting
e-1/interleukin-1b pathway, thereby promoting the recovery
neurological function after spinal cord injury.

(96)

r increase of NLRP3 and GSDMD, circ0000381 upregulation
atory change to limit microglial/macrophage pyroptosis after
c0000381 can bind to miR-423-3p and act as an endogenous
it miR-423-3p activity, thus attenuating spinal microglial/

macrophage pyroptosis.

(97)

hibit the pyroptosis of microglia. The combination of MSCs‐
2 can further inhibit the neuroinflammatory response after
improving the neurological function after SCI in rats.

(98)

r1 axis induces neuroinflammatory responses by activating
roglia pyroptosis following spinal cord injury.

(117)

uate the inflammatory response of the spinal cord after SCI,
ssociated with inhibition of microglial activation and

pyroptosis pathway.
(105)

the assembly of NOD-like receptor thermal protein domain
3 (NLRP3) inflammasome by Nrf2-dependent expression to
te microglial pyroptosis and neuroinflammation.

(79)
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Mechanisms
of action

Therapeutic effects Reference

us Injections EIF4A3/SIRT1

OM-MSCs-Exo mitigated microglial pyroptosis and promoted motor function
recovery after SCI by delivering lncRNA RMRP. Further analysis elucidated
that the inhibitory roles of exosomal lncRNA RMRP on microglial pyroptosis

are dependent on EIF4A3/SIRT1 signaling.

(99)

aspinal
ration at the
f spinal
injury.

IRAK4/ROS/NLRP3
GPx3 plays a critical role in SCI by inhibiting microglial pyroptosis via the

IRAK4/ROS/NLRP3 signaling pathway.
GPX3 PROMOTES FUNCTIONAL RECOVERY AFTER SCI 13

(75)

neal injection PKR/STAT1/NLRP3
PKR inhibition suppressed ER stress and NLRP3 inflammasome-related

pyroptosis in microglia partly through suppressing STAT1
(118)

neal injection NLRP3
Kaempferol could inhibite the pyroptosis related proteins (NLRP3 Caspase-1

p10 ASC N-GSDMD) and reduce the release of IL-18 and IL-1b.
(106)

aspinal
ration at the
f spinal
injury.

NEK7 reversed the
inhibition of pyroptosis
induced by TRIM32 in a

ubiquitylation-
dependent manner

TRIM32
inhibits microglia pyroptosis by facilitating the ubiquitylation of NEK7 at the
K64 site, thereby alleviating the progression of SCI. The findings suggest that

TRIM32 has the potential to be a therapeutic target of SCI.

(119)

ersral PKA/NF-kB
Klx modulates microglial polarization and pyroptosis via the PKA/NF-kB

signaling pathway.
(107)

ersral PI3K/AKT PI3K/AKT signaling pathway participates in microglial pyroptosis after SCI (108)
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released in extracellular vesicles following TLR4 activation after

SCI, heightens microglial pyroptosis through the PI3K/AKT

pathway (95). Transplantation of human dental-pulp stem cells

decreases microglial pyroptosis via the NLRP3/caspase-1/IL-1b
axis, thereby promoting neurological recovery after SCI (96).

While circ0000381 is up-regulated after SCI, miR-423-3p declines;

silencing circ0000381 elevates miR-423-3p and increases microglia/

macrophage pyroptosis (97). Mesenchymal-stem-cell extracellular

vesicles loaded with miRNA-22 suppress microglial pyroptosis in

rats following SCI (98). Exosomal lncRNA RMRP from olfactory-

mucosa mesenchymal stem cells mitigates microglial pyroptosis and

enhances motor recovery through the EIF4A3/SIRT1 pathway (99).

In addition, miR-146a, up-regulated via Nrf2 after SCI, down-
Frontiers in Immunology 09
regulates GSDMD in microglia, thereby restraining their

pyroptosis (100). Neutrophil membrane vesicles combined with a

composite fiber scaffold reprogram microglial phenotype and

metabolism during inflammation, regulating the innate immune

cascade to reduce neuroinflammation and promote neural

regeneration (44). This scaffold mimics an “efferocytosis-like”

mechanism whereby the EVs are endocytosed by macrophages/

microglia, reprogramming them towards a pro-regenerative

phenotype and significantly promoting nerve fiber regeneration

after SCI. his strategy exemplifies how combining biomaterial

scaffolds with EV-mediated immune modulat ion can

synergistically coordinate inflammatory resolution and tissue

repair in SCI.
FIGURE 1

Diagram of pyroptosis pathway following spinal cord injury (created by Biorender).
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4.2 Pharmacological and small-molecule
interventions

Small-molecule drugs and natural products are regarded as one

of the most clinically translatable intervention strategies because

their chemical structures are well-defined, their quality is

controllable, and their routes of administration are flexible. In

recent years, numerous bioactive constituents derived from

medicinal herbs or diet have been shown to cross the blood–

brain/spinal barriers, scavenge ROS, modulate the immune-

inflammatory network and promote axonal regeneration—

offering multiple-target advantages. Alongside technological

advances, a series of newly synthesized small molecules have also

exhibited excellent pharmacokinetic properties and selective

microglial targeting, providing a rich pool of lead compounds for

the precision treatment of nervous-system disorders.

The NADPH-oxidase inhibitor apocynin blocks AOPP-induced

microglial pyroptosis after SCI via ROS-dependent MAPK–NF-kB
and NLRP3–GSDMD pathways, thereby improving outcomes (101).

Lycium barbarum glycopeptide (LbGp) up-regulates the key enzymes

FADS1 and FADS2 in microglia to boost DHA production and, by

suppressing the MAPK/NF-kB and pyroptosis cascades, mitigates

neuro-inflammation and enhances recovery (102). Lupenone

diminishes IkBa activation and p65 nuclear translocation; by

modulating NF-kB it inhibits NLRP3-inflammasome activity,

reduces microglial pyroptosis and alleviates motor deficits after SCI

(103). Resveratrol elevates miR-124-3p, which targets DAPK1 and

down-regulates the NLRP3/Caspase-1/GSDMD axis, thereby

lowering microglial pyroptosis (104). Celastrol suppresses

microglial pyroptosis after SCI through the NF-kB/p-p65 pathway

(105). Cynarin attenuates microglial pyroptosis post-SCI by up-

regulating Nrf2 (75). Lupeol activates mitophagy via the AMPK–

mTOR–TFEB pathway and strengthens Na+/K+-ATPase activity,

inhibiting microglial pyroptosis and slowing SCI progression.

Kaempferol curbs ROS generation by inhibiting NADPH oxidase-4

and restrains microglial pyroptosis through the MAPK–NF-kB
pathway (106). Kanglexin (Klx), an anthraquinone compound,

enhances PKA phosphorylation while inhibiting NF-kB and IkBa
phosphorylation, thus limiting NF-kB nuclear translocation and

NLRP3-inflammasome-induced microglial pyroptosis (107).

Taxifolin targets PI3K/Akt signaling, lessens neuro-inflammation,

promotes axonal regeneration and lowers microglial pyroptosis,

thereby improving functional outcomes after SCI (108).
4.3 Targeted gene intervention

With the rapid advances of gene-editing platforms such as

CRISPR/Cas and TALEN, manipulating specific genes within the

CNS has moved quickly from simple “proof-of-concept” studies to

bona-fide functional interventions (106). Compared with

conventional small-molecule or protein inhibitors, genome

editing can silence or activate pathogenic/protective genes with

high precision, efficiency and durability, providing a highly specific

tool for modulating the inflammatory cascade and remodeling the
Frontiers in Immunology 10
micro-environment (109). When coupled with delivery vehicles

that cross the blood–brain barrier—such as recombinant adeno-

associated virus (rAAV) and lipid-nanoparticle (LNP) systems—

gene editing has already shown longer-lasting efficacy and

controllable safety profiles than pharmacological therapies in

multiple models of neurodegenerative disease and SCI (110).

Consequently, targeted gene intervention has become a major

developmental direction for regulating microglial pyroptosis,

mitigating secondary SCI, and treating other CNS disorders.

CD73 (ecto-5′-nucleotidase/NT5E) – an AMP-hydrolyzing

ectoenzyme that converts extracellular ATP to adenosine. CD73

knock-down attenuates GSDMD-mediated pyroptosis by

suppressing PI3K/AKT/Foxo1 signaling. After SCI, HIF-1a
accumulation up-regulates CD73; in turn, CD73 over-expression

amplifies HIF-1a via an adenosine–A2B receptor–p38 cascade,

forming a positive-feedback loop (111). TLR4 – drives microglial

pyroptosis after SCI through the STAT1/DDX3X/NLRP3 axis. Both

TLR4 knockout and supplementation with biglycan (BGN) reverse

this effect (112). HSPA1A (Heat-shock protein A member 1A) – a

molecular chaperone highly induced after TSCI. Over-expression

via lentiviral vectors up-regulates DUSP1 and inhibits MAPK

signaling, thereby reducing microglial pyroptosis (113). Bmal1 – a

core circadian-clock gene. Bmal1 limits microglial pyroptosis and

secondary SCI by down-regulating the NF-kB/MMP9 pathway

(114). FANCC (Fanconi-anemia complementation group C) –

previously considered anti-inflammatory; its targeted inhibition

lowers microglial pyroptosis via the p38/NLRP3 pathway (115).

CerS5 (Ceramide-synthase 5) – silencing CerS5 in microglia

alleviates neuroinflammation by suppressing pyroptosis. The

mechanism involves the downstream product C16-ceramide,

which activates the NLRP3 pathway through Pla2g7 and NF-kB
(116). C/EBPb (CCAAT/enhancer-binding protein b) – linked to

inflammatory status in neurodegeneration; its knock-down

diminishes microglia-mediated neuroinflammation by repressing

Fcgr1 transcription (117). GPx3 (Glutathione-peroxidase 3) – an

antioxidant enzyme. GPx3 silencing elevates ROS and increases

IRAK4 and pro-inflammatory cytokines, thereby enhancing

microglial pyroptosis (75). PKR (Protein-kinase R) – a type I ER-

membrane kinase traditionally associated with ER stress. In SCI it

modulates microglial pyroptosis via the STAT1 pathway (118).

TRIM32 – an E3-ubiquitin ligase. TRIM32 inhibits microglial

pyroptosis by promoting ubiquitination of NEK7 at lysine 64,

slowing SCI progression (119).
5 Discussion and future directions

Compelling evidence now demonstrates that microglial

pyroptosis orchestrates secondary degenerative cascades after SCI

(13, 120). As resident immune sentinels of the central nervous

system, microglia are rapidly recruited and activated within minutes

of trauma, initiating a robust inflammatory response. During this

lytic form of programmed cell death, microglia undergo rapid

swelling and lysis, releasing inflammatory mediators (e.g., IL-1b,
IL-18) and cellular contents. These mediators exacerbate local
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neuroinflammatory cascades, causing further damage to adjacent

neurons and oligodendrocytes and amplifying secondary tissue

damage (121). Conversely, multiple pre-clinical studies show that

genetic or pharmacological suppression of microglial pyroptosis

markedly attenuates neuroinflammation, limits cellular loss and

accelerates locomotor recovery post-SCI (57, 75, 116).

Nano-sized extracellular vesicles have emerged as versatile carriers

for anti-pyroptotic cargo. extracellular vesicles, with their small size and

low immunogenicity, can penetrate the blood-spinal cord barrier and

evade mononuclear phagocyte clearance (122, 123). Studies utilizing

stem cell-derived exosomes as carriers for delivering anti-pyroptosis

molecules have shown efficacy (124). The advantages of extracellular

vesicles include targeted delivery and tissue permeability, but challenges

remain in their high preparation/purification costs, complex processes,

and lack of standardized quality control. Critically, batch-to-batch

consistency in bioactivity and clarity of active components must be

resolved before clinical translation.

A growing pharmacopeia of small-molecule inhibitors,

antioxidant polyphenols and natural compounds can attenuate

microglial pyroptosis in vivo (125, 126). Anti-inflammatory or

antioxidant small molecules (e.g., Taxifolin, resveratrol, luteolin)

have been shown to attenuate neuroinflammation and suppress

microglial pyroptosis post-SCI. These drugs benefit from mature

production processes and ease of administration, with some natural

compounds exhibiting favorable biosafety (79, 105). Nevertheless,

their pleiotropic targets and limited cell specificity raise concern

regarding off-target immunosuppression, and systemic delivery

must still overcome the blood–spinal cord barrier to achieve

therapeutic concentrations while minimizing adverse effects.

Gene-based interventions, such as knockout or silencing of key

nodes in pyroptosis pathways, provide robust evidence in animal

studies (127, 128). Adeno-associated viruses (AAVs) or lipid

nanoparticles delivering shRNA/siRNA have also emerged as

tools to inhibit microglial pyroptosis (129, 130). Gene therapies

offer high specificity and durable effects by targeting critical

pyroptosis molecules. However, clinical translation faces hurdles,

including immune responses to delivery vectors, safety/ethical

concerns regarding gene editing, and ensuring cell-specific

targeting without compromising systemic immunity (131, 132).

Furthermore, these approaches are costly, technically demanding,

and logistically challenging in acute injury scenarios.

Each intervention modality for modulating microglial pyroptosis

carries distinct advantages and limitations. EV-based biological

therapies (including cell transplants and EV carriers) enable targeted

multi-factorial modulation of the injury microenvironment, with the

ability to cross the BSCB and high biocompatibility; however, their

production is costly and complex, and standardization of contents and

potency remains challenging. Small-molecule drugs, by contrast, are

easy to administer and can broadly suppress inflammation or oxidative

stress; they benefit from well-established manufacturing and generally

good safety profiles, but often lack cell-type specificity and must

effectively penetrate into the spinal cord, raising concerns about off-
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target effects. Gene-editing and gene-silencing approaches (e.g.

CRISPR/Cas9 or RNAi therapies) precisely target key pyroptosis-

related genes with potentially long-lasting effects, yet they face

significant hurdles including immune responses to viral or

nanoparticle delivery vectors, ethical and safety considerations, and

technical complexity in delivery to the injured CNS. In practice, the

optimal approach may depend on the context: small molecules might

be favored for acute, systemic intervention, whereas EV-based or gene

therapies could offer more specific, sustained effects in subacute or

chronic phases. Ultimately, a combination of these strategies may be

required to achieve optimal neuroprotection and functional recovery

after SCI.

Despite these advances, critical knowledge gaps persist.

Foremost, the cell-type-specific contribution to the pyroptotic

burden is poorly defined: infiltrating macrophages, astrocytes,

oligodendrocytes and neurons may die via pyroptosis alongside

microglia (2, 133). Most studies focus on inflammasome activation

in mixed glial populations or whole spinal tissue, lacking resolution

of pyroptosis dynamics in specific cell types (134). This obscures the

relative contributions of microglial versus other cell pyroptosis to

secondary injury. For instance, conflating microglia with monocyte-

derived macrophages in analyses may mask functional differences.

Advanced in vivo tracing and purified in vitro models are needed to

dissect cell-specific mechanisms.

Second, functional distinctions among Gasdermin (GSDM)

family members in SCI remain poorly understood (67). While

GSDMD is widely recognized as the executor of inflammasome-

mediated pyroptosis, recent studies suggest GSDME and other

family members may mediate pyroptosis via alternative pathways

(e.g., caspase-3 activation) (68, 135). In SCI, GSDMD-driven

microglial pyroptosis is well-documented, but evidence for roles

of GSDME, GSDMC, or other “non-canonical” pyroptosis

pathways in neuronal or glial death is lacking. This gap limits our

holistic understanding of pyroptosis networks in SCI.

Third, the optimal therapeutic window for pyroptosis inhibition

requires clarification (136). Secondary injury spans acute, subacute,

and chronic phases, with pyroptosis activity and tissue impacts

likely varying across stages (137, 138). While inflammasome

components and cleaved GSDMD surge in early injury (hours to

days), long-term pyroptosis activity (weeks to chronic phases)

remains inconsistently reported (139). Endogenous regulatory

mechanisms may partially suppress pyroptosis but fail to halt

progressive damage (140, 141). Timing interventions is thus

critical: early blockade might disrupt essential immune clearance,

whereas delayed action risks irreversible inflammatory cascades.

Systematic temporal mapping of pyroptosis activity and

intervention efficacy is needed to define optimal clinical windows.

In summary, converging advances in multi-omic analytics, bio-

engineered delivery systems and genome editing are poised to

transform our mechanistic understanding of microglial pyroptosis

into clinically actionable therapies, with the potential to lessen the

lifelong disability burden of SCI.
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