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bronchoconstriction in a
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Background: Cold air and air pollution are known triggers to induce symptoms in
exercise-induced bronchoconstriction (EIB). Mast cells are hypothesized to be a
key player in the pathogenesis of EIB. This study aims to investigate the role of
mast cells using mast cell deficient (Cpa3“"®/*) mice and with mast cell stabilizers
(Doxantrazole) in an exposure-associated mouse model of EIB.

Methods: Male Cpa3“®* mice and wild type littermates or BALB/c mice were
exposed to a submaximal running protocol in cold environment (4°C) or resting
period (room temperature) 5 days for 3 weeks after oropharyngeal challenge with
saline or 0.1 mg/ml diesel exhaust particles (DEP). BALB/c mice were intraperitoneally
injected with 16.5 mg/kg Doxantrazole or placebo (0.5% NaHCO-) during the last
week. Twenty-four hours after the last running or resting session, lung function, lung
inflammation and immune mediated response was determined.

Results: Inhibition of mast cells by Doxantrazole or mice lacking functional mast
cells (Cpa3°"’*), resulted in blunting of bronchial hyperreactivity, both in acute
breathing pattern and in hyperreactivity to increasing doses of methacholine.
Neutrophilic inflammation was still present after Doxantrazole treatment, but not
in Cpa3°'e/’r mice. These results were similar in neutrophil extracellular traps and
neutrophil-linked cytokines and chemokines. Macrophage activaty was also
reduced in the absence of functional mast cells.

Conclusion: Mast cells are crucial in the development of bronchial
hyperreactivity and macrophage activation. Additionally, they have a complex
interplay with neutrophilic inflammation. These findings highlight the potential of
mast cell modulation as therapeutic strategy in exposure-associated EIB.
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Introduction

Exercise-induced bronchoconstriction (EIB) is defined as the
reversible and transient narrowing of the airways during or
shortly after physical exertion (1). Typically experienced
symptoms include cough, chest tightness, shortness of breath and
wheezing. Although the prevalence is high in both athletes and
patients with asthma, with an average of 30 - 70% and 40 - 90%,
respectively, the pathophysiological mechanisms are still not fully
understood (2).

Couto et al. suggests that mast cells are a key player in EIB, next
to neutrophils and TRP-channels (3). Mast cells are bone-marrow
derived cells that mature under the influence of stem cell factor, the
ligand of the c-kit receptor. Mast cell precursors migrate from the
bone marrow to epithelial and mucosal tissues, such as the
gastrointestinal tract, skin and the respiratory epithelium, where
they complete maturation (4). Different subtypes of mast cells
have been identified in both humans and mice, distinguished by
their granule content, tissue localisation and functional
characteristics (5).

In the lung, mast cells can promote airway smooth muscle
contraction through the release of contractile agonists such as
histamine and cysteinyl leukotriene (6). While IgE/FceRI-dependent
mast cell activation is most studied and understood (7), IgE/FceRI-
independent routes also contribute to bronchoconstriction. The mast
cell receptor MAS-related G protein-coupled receptor X2 (MRGPRX2)
was over 15 years ago identified in humans to play an important role in
IgE-independent mast cell activation (8, 9). Although several studies
report increased numbers of MRGPRX2-positive mast cells in lung
tissue from patients with asthma (10, 11), its exact role in the
pathogenesis of asthma remains incompletely understood and
difficult to explore (8). Thus, MRGPRX2 may contribute to mast
cell-mediated airway responses under certain conditions, but its precise
role in asthma pathogenesis requires further clarification.

Different mouse models lacking functional mast cells have
been developed and used to study allergic and non-allergic asthma
(12-15). Kit"V"*"W-h mice have the W-sash inversion mutation in
the regulatory elements upstream of the c-kit transcription site
(16), whereas the Cpa3°™'* mice exhibit mast cell deficiency as a
result of Cre-mediated toxicity driven by the carboxypeptidase A3
promotor (17). Both models lack mast cells in all tissues, while
maintaining normal levels of other immunological cells, such as
neutrophils and erythrocytes (13, 18). Cpa3** mice have an
additional reduction in the number of basophils compared to wild
type mice (18).

In this study, we aim to evaluate mast cell involvement in the
development of bronchial hyperresponsiveness (BHR) and airway
inflammation in an EIB-mouse model exposed to cold air and/or
diesel exhaust particles (DEP). To achieve this, mice lacking
functional mast cells (Cpa3°re/Jr mice) and wild type (WT)
littermates were compared. Additionally, therapeutic inhibition of
BHR and inflammation was evaluated with a mast cell stabilizer
[doxantrazole (19)] in WT BALB/c mice.
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Methods
Reagents

Diesel exhaust particles (DEP, NIST2975), which was
characterized by the National Institute of Standards and
Technology (NIST), Tween®20 and doxantrazole (3-(1H-tetrazol-
5-YL)-9H-thioxanthen-9-one 10,10-dioxide monohydrate) were
obtained from Merck (Belgium). Doxantrazole was dissolved in
0.5% NAHCO; and sonicated for 25 minutes. Pentobarbital
(Dolethal®) and Isoflurane (Iso-Vet 1000 mg/g) were obtained via
the animal facility from KU Leuven.

Animals

Eight- to ten-week old male BALB/c mice (n = 80) were
obtained from Charles River Laboratories (Belgium). Cpa3cre/ *
gene-targeted mice were kindly provided by Prof. Hans-Reimer
Rodewald (17) and were bred on a BALB/c background. Cpa3/*
mice (n = 64) and wild type littermates (n = 53) were used in the
experimental set-up. To ensure an adequate sample size, littermates
were combined with wild type BALB/c mice (Charles River
Laboratories, n = 64) after an evaluation of potential differences
between experiments. Schematic overview of the experiments can
be found in Supplementary Figure S1.

Mice were housed in individually ventilated cages per
experimental group with ad libitum access to food and water.
Environmental conditions were standardized (12h dark/light
cycles, 22 - 24°C and relative humidity of 50-60%). All
experiments were approved by the local Ethical Committee for
animal experiments of KU Leuven, Belgium (P118/2021) and
comply with the ARRIVE guidelines.

Experimental running and instillation
protocol

A previously optimized sub-maximal running protocol of 3
weeks in combination with DEP and cold exposure was used to
induce EIB as described earlier (20, 21). Immediately before each
running or resting session, animals were oropharyngeally instilled
with 50 pl 0.1 mg/ml DEP, dissolved in vehicle (saline + 0.2%
Tween20) or with 50 ul vehicle.

Mice were divided into 8 groups based on 3 variables (1):
Exercise (E) or No Exercise (NE) (2); Room temperature (RT) or
cold air (4°C) and (3) DEP or Saline (Sal). During the first four days
of the last week of the protocol, mice in the mast cell stabilizer
experiment were intraperitoneally injected with doxantrazole (16.5
mg/kg) or placebo (50 ul NaHCOj3) one hour before oropharyngeal
instillation with saline or DEP. In this experimental set-up, only RT
resting mice (NE/RT) and 4°C exercising (E/4°C) mice were
evaluated, with saline or DEP.
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Lung function assessment

Every first day of the week, respiratory pattern was measured non-
invasively using Double Chamber Plethysmography (DCP, Emka
Technologies, Paris, France) in conscious mice as described earlier (22).

Lung function measurements were performed 24 hours after the
final running session, following the methodology previously
described (17, 18) using the flexiVent FX system (SCIREQ,
Montreal, Canada, version 7.6) equipped with a Negative Pressure
Forced Expiration (NPFE) and FX1 module. Baseline lung function
was evaluated using deep inflation (inspiratory capacity), Quick-
Prime 3 (QP3) pertubations (airway resistance (Rn), tissue damping
(G), tissue elastance (H)) and NPFE pertubations (forced volumes).
Subsequently, airway resistance and forced expiratory volume in 0.1
seconds (FEV,, ;) were measured in response to increasing doses of
nebulized methacholine (baseline, 0, 2.5, 5, 10, 20 and 40 mg/ml).

Blood analysis

Immediately after lung function assessment, an overdose of
pentobarbital was administered and blood was collected from the
retro-orbital plexus. Blood was centrifuged (1400g, 4°C, 10 min),
serum was collected and stored at -80°C until further analyses. Serum
surfactant protein D (SpD) was determined using the Mouse SP-D
DuoSet ELISA D DuoSet ELISA (R&D Systems, Minneapolis, US,
detection limit 62.5 pg) according to manufacturer’s instructions.

Bronchoalveolar lavage fluid analyses

Bronchoalveolar lavage fluid (BALF) was collected by three
washes of the lungs with 700 pl saline (0.9% NaCl). Pooled fluid was
centrifuged (1000 g, 10 min, RT) and resuspended cells were
counted using an automated cell counter (NanoEnTek, Seoul,
Korea). Cytospins were made (300 g, 6 min, Cytospin 3,
Shandon, TechGen, Zellik, Belgium) and stained with the Diff-
Quick method (ThermoFisher Scientific, Massachusetts, US). 250
cells per slide were counted to determine the proportion of
neutrophils, macrophages, eosinophils and lymphocytes.

DEP-uptake in macrophages was evaluated as percentage of
loaded macrophages, determined by manually counting 250 cells.
The DEP-covered area within the macrophage was calculated using
the Image]J software (NIH, Maryland, US) following the method of
Bai et al. (23). Twenty-five macrophages per mouse were manually
delineated, DEP-covered area was calculated by the software.

Cytokine and chemokine concentrations of granulocyte-
macrophage colony-stimulating factor (GM-CSF), tumour necrosis
factor-o. (TNF-qv), interleukin (IL)-1pB, IL-2, IL-4, IL-6, IL-10, IL-33,
keratinocyte-derived chemokine (KC) and monocyte chemoattractant
protein-1 (MCP-1) were measured using a U-plex Assay (Meso Scale
Diagnostics, Maryland, USA) according to manufacturer’s instructions.
Neutrophil elastase concentration (Mouse Neutrophil Elastase/ELA2
DuoSet ELISA, R&D Systems, Minneapolis, US, detection limit
12,5 pg/ml) and dsDNA (Quant-iT PicoGreen dsDNA assay Kkit,
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ThermoFisher Scientific, Massachusetts, USA) were determined
according to manufacturer’s instructions.

Flow cytometric analyses

Left lung was collected during harvest at the end of the protocol
and processed to a single cell suspension. Cells were stained for viability
and labelled with different anti-mouse fluorochrome-conjugated
monoclonal antibodies to identify dendritic cell as previously
described (22). Scatter plots of dendritic cell subpopulations are
available in Supplementary Figure S2. Overview of used markers for
flow cytometric analyses can be found in Supplementary Table SI.

Data analysis

Data are shown as individual mice and group mean or as mean
with standard deviation (SD). Normality of the data was assessed using
Shapiro-Wilk test. Non-parametric Wilcoxon matched-pairs rank test
and parametric unpaired t-test were used to compare two groups.
Intergroup differences were evaluated using a one-way parametric
ANOVA combined with a Bonferroni multiple comparison post hoc
test or a non-parametric Kruskal-Wallis test with a Dunn’s multiple
comparison post hoc test. To evaluate combination effects, two-way
ANOVA with a Bonferroni multiple comparison post hoc test was used.
Data was evaluated using GraphPad Prism (9.3.0, GraphPad Software
Inc,, San Diego, USA). A level of p < 0.05 was considered significant. To
enhance clarity, we restricted group comparisons to RT resting groups
(NE/RT) and 4°C exercising groups (E/4°C). Additional groups were
included to maintain consistency in the experimental model; however,
no comparisons were made between WT and Cpa3™* mice in this
context. The same strategy and groups were used to compare the data

of the doxantrazole experiment.

Results

Mast cells play a major role in breathing
pattern and lung function

Previously, we showed significantly changes in the breathing
pattern of animals exercising in cold environment (E/4°C) (20). One
of the parameters which was significantly increased in the E/4°C
groups, was the expiratory time (Te). Mice lacking functional mast
cells (CpaSCR/ ") did not show an increased Te after exercise at 4°C,
both when challenged with saline (Figure 1A) and with diesel exhaust
particles (DEP, Figure 1B). WT DEP cold running mice showed a
significantly more increased Te compared to Cpa3“™* mice. Wild
type (WT) mice in the doxantrazole experiment all showed a
significantly increased Te compared to non-exercising room
temperature (RT/NE) mice (Figures 1C, D). The effect of
doxantrazole could not be assessed in this setting due to the study
design, in which mast cells were only inhibited during the final days.
However, this indicates that the mice in the doxantrazole experiment
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Role of mast cells in responses to cold air, exercise and DEP exposure on expiratory time. Expiratory time (Te) was measured on day 1, 6, 13 and 20
before and immediately after exercise or resting session with double chamber plethysmography, as outlined in Supplementary Figure S1. Changes
were calculated as differences between pre- and post-exposure. This was assessed in saline-exposed wild type (WT) compared to mast cell deficient

(Cpa3c*) mice (A), in diesel-exposed WT compared Cpa3°"®/*

mice (B), in saline-exposed placebo-treated mice compared to doxantrazole-treated

mice (C) and in diesel-exposed placebo-treated mice compared to doxantrazole-treated mice (D). Data are evaluated using two-way ANOVA with
Bonferroni multiple comparison post hoc test and represented as mean + SD. Levels of significance were *p < 0.05, **p < 0.01, ***p < 0.001.

n = 7-8 per group. NE, no exercise; E, exercise; RT, room temperature

also developed an altered breathing pattern resembling EIB in the first
weeks of exercise at 4°C.

Similar changes were seen in end-expiratory pause (EEP). The
increase in EEP in cold air exercising mice exposed to DEP (DEP/E/4°
C) as seen in WT animals was no longer present in Cpa3™** mice
(Figure 2B). Similar trends were seen after saline challenge, yet not
significant (Figure 2A). In the doxantrazole experiment, the mice of the
Sal/E(/4°C) also exhibited an increased EEP on day 1 (Figure 2C) and
mice of the DEP/E(/4°C) group showed an increased EEP on day
6 (Figure 2D).

Twenty-four hours after the last running or resting session, lung function
was measured invasively. No differences between WT and Cpa3™* saline
resting RT mice were seen in baseline volumes (FVC, FEV,;, FEV,,),
baseline airway resistance (Rn), tissue elastance (H) or tissue damping (G)
(data not shown). There were also no baseline differences between the groups
in the Cpa3™* experiment (data not shown).

Frontiers in Immunology

To investigate the role of mast cells in exercise-induced
bronchoconstriction in response to cold air, we assessed the reduction
in forced expiratory volume in 0.1 second (FEV ;) to increasing doses of
methacholine. In WT mice, exercise in cold air induced a dose-
dependent decrease in FEV,,;, whereas this response was absent in
Cpa3“™* mice (Figure 3A). The reduction in FEV,; was significantly
more pronounced in WT cold exercising mice compared to Cpa3™*
cold exercising mice. No differences were seen between the Cpa3™®*
mice groups (Supplementary Figure S3A). One week of doxantrazole
treatment was sufficient to inhibit the bronchoconstrictive effect,
resulting in a significant lower reduction in FEV,; compared to
placebo (Figure 3B). The dose response curves for airway resistance
(Rn) showed similar results as the ones for FEV,; in both experiments,
with no significantly increased airway resistance upon methacholine
challenge in either Cpa3cre/+ exercising mice (Figure 3C, Supplementary
Figure S3B) or doxantrazole-treated exercising mice (Figure 3D).
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Role of mast cells in responses to cold air, exercise and DEP exposure on end-expiratory pause. End-expiratory pause (EEP) was measured on day 1,
6, 13 and 20 before and immediately after exercise or resting session with double chamber plethysmography based on the experimental protocol
(Supplementary Figure S1). Changes were calculated as differences between pre- and post-exposure. This was measured in saline-exposed wild type
(WT) compared to mast cell deficient (Cpa3cre/+) mice (A), in diesel-exposed WT compared Cpa3cre/+ mice (B), in saline-exposed placebo-treated
mice compared to doxantrazole-treated mice (C) and in diesel-exposed placebo-treated mice compared to doxantrazole-treated mice (D). Data are
evaluated using two-way ANOVA with Bonferroni multiple comparison post hoc test and represented as mean + SD. Levels of significance were

*p < 0.05, **p < 0.01, ***p < 0.001. n = 7-8 per group. NE, no exercise; E, exercise; RT, room temperature.

Neutrophilic airway inflammation is not
completely inhibited by mast cell inhibition

WT cold exercising mice showed significantly more neutrophils
in the bronchoalveolar lavage fluid (BALF) compared to resting
(RT) mice, with a more pronounced effect in DEP-challenged

e/t mice. A

animals. This effect was entirely absent in Cpa3
significantly lower percentage of neutrophils was present in
Cpa3“™’* DEP/E/4°C mice compared to WT DEP/E/4°C mice
(Figure 4A). Additionally, no differences were seen between the
different Cpa3“™*/* groups (Supplementary Figure S4).

Both placebo and doxantrazole treated DEP/E/4°C mice showed
significantly higher percentages of neutrophils in the BALF
compared to Sal/NE/RT mice (Figure 4B). No differences were
observed between doxantrazole and placebo treated animals.

Frontiers in Immunology

Neutrophil elastase (NE) and double stranded DNA (dsDNA)
were assessed as markers for neutrophil extracellular traps (NETs)
in BAL. WT DEP/E(/4°C) mice showed significantly more NE in
BAL compared to WT DEP/NE(/RT) and Cpa3“e/ * DEP/E(/4°C)
mice (Figure 5A). This effect was not seen in doxantrazole-treated
animals compared to resting nor placebo-treated animals
(Figure 5B). Levels of dsDNA did not differ significantly between
groups in either the Cpa3“™* knockout or the doxantrazole
experiment (Supplementary Figures S5A, B).

The concentration of different cytokines and chemokines was
assessed in BAL fluid. Concentration of keratinocyte chemoattractant
(KC) was significantly higher in WT DEP/E(/4°C) mice compared to
WT Sal/E(/4°C) and Cpa3™®* DEP/E(/4°C) mice (Figure 6A). No
differences were seen between Cpa3™* groups (Supplementary
Figure S6). Similarly, DEP/E(/4°C) mice in the doxantrazole
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FIGURE 3

Role of mast cells in bronchial hyperreactivity to cold air, exercise and DEP exposure. Twenty-four hours after the last running or resting session
(Supplementary Figure S1), animals were sacrificed and reactivity to methacholine was measured using the flexiVent. Dose-response curve in FEVq

(%) to increasing doses of methacholine (0-40 mg/ml) in WT compared to Cpa

Scre/+

mice (A) and in placebo- compared to Doxantrazole-treated

mice (B). Dose-response curve in airway resistance (Rn) to increasing doses of methacholine (0-40 mg/ml) in WT compared to Cpa3“"®/* mice

(C) and in placebo- compared to Doxantrazole-treated mice (D). Data was acquired through negative pressure forced expiration (NPFE) manoeuvre
and QP3 forced oscillation technique, respectively, with the flexiVent. Data are represented as group average and evaluated using two-way ANOVA
with Bonferroni multiple comparison post hoc test, n = 7-16 per group. Levels of significance for groups were * compared to Sal/E (4°C, WT [A&C]
or placebo [B&D] and # compared to DEP/E (4°C, WT [A&C] or placebo [C&D]). *, #p < 0.05, **, ##p < 0.01, ***, ###p < 0.001, ****, ####p <
0.0001. n = 7-8 per group. Sal, saline; DEP, diesel exhaust particles; NE, no exercise; E, exercise; RT, room temperature; FEVq 4, forced expiratory

volume in 0.1 second; BHR, bronchial hyperresponsiveness.
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FIGURE 4
Response of mast cell inhibition on neutrophilic inflammation in the bronchoalveolar lavage fluid. After the experimental running protocol
(Supplementary Figure S1), animals were sacrificed and bronchoalveolar lavage fluid (BAL) was collected to evaluate (neutrophilic) inflammation.
Percentual numbers of neutrophils among total inflammatory cells present in the BAL of Cpaié”e’/+ mice compared to WT mice (A) and placebo-
compared to Doxantrazole treated mice. Data are represented as mean + SD with individual values and were evaluated using Kruskal—Wallis test
with Dunn’s post hoc testing. Levels of significance were Levels of significance were *p < 0.05, ***p < 0.001. n = 7-16 per group. Sal, saline; DEP,
diesel exhaust particles; NE, no exercise; E, exercise; RT, room temperature; WT, wild type.

experiment had a significantly higher concentration of KC in the BAL Granulocyte-macrophage colony-stimulating factor (GM-CSF)
fluid compared to placebo-treated Sal/NE(/RT) and Sal/E(/4°C) mice  concentration was not influenced by mast cell inhibition. Only in
(Figure 6B). However, in this experiment, no differences were seen  the doxantrazole experiment, a significant increase in GM-CSF
between placebo-treated and doxantrazole-treated DEP/E(/4°C) mice. ~ concentration was visible after administering DEP. Yet, no
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FIGURE 5

Response of mast cell inhibition on neutrophil extracellular traps in the bronchoalveolar lavage fluid. After the experimental running protocol
(Supplementary Figure S1), animals were sacrificed and bronchoalveolar lavage fluid (BAL) was collected to evaluate presence of neutrophil
extracellular traps (NETs, measured as neutrophil elastase). Concentration of neutrophil elastase present in the BAL of Cpasc’e”+ mice compared to
WT mice (A) and placebo- compared to Doxantrazole treated mice (B). Data are represented as mean + SD with individual values and were
evaluated using Kruskal—Wallis test with Dunn’s post hoc testing. Levels of significance were *p < 0.05, **p < 0.01. n = 7-16 per group. Sal, saline;
DEP, diesel exhaust particles; NE, no exercise; E, exercise; RT, room temperature; WT, wild type.
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Effect of mast cell inhibition on inflammatory cytokine and chemokine response in the airways to cold air, exercise and diesel exhaust particles. After
the experimental running protocol (Supplementary Figure S1), animals were sacrificed and bronchoalveolar lavage fluid (BAL) was collected to
evaluate airway inflammation through cytokine concentration. Concentration of keratinocyte-derived chemokine (KC) (A) and granulocyte-
macrophage colony-stimulating factor (GM-CSF) (C) present in the BAL of Cpa3<"®/* mice compared to WT mice and of KC (B) and GM-CSF

(D) placebo- compared to Doxantrazole treated mice. Data are represented as mean + SD with individual values and were evaluated using Kruskal—
Wallis test with Dunn’s post hoc testing. Levels of significance were *p < 0.05, **p < 0.01, ***p < 0.001. n = 7-16 per group. Salll, saline, DEP, diesel
exhaust particles, NE, no exercise; E, exercise; RT, room temperature; WT, wild type.

difference was seen between placebo- and Doxantrazole treated
mice (Figure 6D). This difference was not present in the Cpa3“'*
mice and WT littermates (Figure 6C).

TNF-o, IL-1B, IL-2, 1L-4, IL-6, IL-10, IL-33, and MCP-1
concentrations did not differ between groups in the Cpa3™®’*
knockout or the doxantrazole experiment (Supplementary Table S2).

Mast cell inhibition affects macrophage
count and function

The total number of macrophages did not differ between groups

in WT mice and Cpa3™* mice. While not statistically significant

Frontiers in Immunology

between Cpa3™* and WT mice, the increase in macrophages as
seen in WT DEP/E(/4°C) mice was absent in Cpa3m/ * DEP/E(/4°C)
mice (Figure 7A). In contrast, doxantrazole treatment induced a
significantly prevented influx of macrophages compared to placebo
in DEP/E(/4°C) mice (Figure 7B).

The number of macrophages taking up DEP was significantly
higher in WT DEP/E(/4°C) mice compared to non-exercising (RT)
mice. Cpa3™'* mice also had an increased number of macrophages
containing particles in their cytoplasm when exercising in cold
(DEP/E/4°C) compared to resting Cpa™* mice, however the
number was still significantly lower compared to WT DEP/E/4°C
mice. Doxantrazole treatment prevented particle uptake in the E/4°
C group (Figures 7C, D). Similar significant differences were seen
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FIGURE 7
Role of mast cells in macrophage population and particle uptake in the airways in response to cold air, exercise and diesel exhaust particles. After
the experimental running protocol (Supplementary Figure S1), animals were sacrificed and bronchoalveolar lavage fluid (BAL) was collected to
evaluate presence and activity of macrophages. Absolute number of macrophages present in BAL of Cpa3“"®/* mice compared to WT mice (A) and
placebo- compared to Doxantrazole-treated mice (B). The percentage of macrophages loaded with diesel exhaust particles (DEP) as manually
counted in Cpa3<®/* mice compared to WT mice (C) and placebo- compared to Doxantrazole-treated mice (D) and the percentage area of the
macrophage covered with particles as calculated with the Imaged software of CpaSC'e” mice compared to WT mice (E) and placebo- compared to
Doxantrazole-treated mice (F). Data are represented as mean + SD with individual values and were evaluated using Kruskal—Wallis test with Dunn'’s
post hoc testing. Levels of significance were *p < 0.05, **p < 0.01, ****p < 0.001. n = 7-16 per group. Sal, saline; DEP, diesel exhaust particles; NE,
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when evaluating the with DEP covered area of the macrophages
(Figures 7E, F). Representative image of DEP loading of all groups is
available in Supplementary Figure S7.

No effects of mast cells on dendritic
subpopulations

No differences were seen in the different subsets of dendritic
cells (DC, Supplementary Table S3). Wild type mice did not show
an increased presence of DC subsets when challenged with DEP and
exercise in cold compared to resting saline-challenged mice.
Similarly, no differences were seen in the different groups treated
with placebo or doxantrazole (data not shown).

Discussion

This study investigated the role of mast cells in bronchial
hyperreactivity and airway inflammation induced by exercise in
combination with DEP and cold air in mice. We found that mast
cells play an essential role in the development of bronchial
hyperreactivity and seem to be involved in the development of
neutrophilic inflammation in the lungs.

Cpa3“™* mice were chosen over other mast cell-deficient
mouse models due to their more specific targeting of mast cells.
Unlike Kit-dependent models, which affect multiple cell lineages
such as erythrocytes and neutrophils (24), Cpa3“'*
selective depletion of mast cells and basophils. Cpa

mice have more
3" mast cell-
deficient mice showed no signs of BHR nor airway inflammation,
thereby suggesting that there is a crucial role for mast cells early in
the development of exercise-induced bronchoconstriction in
association to cold air and DEP exposure. This is in line with the
hypotheses that has been summarized by Couto et al., where mast
cells are an important player in the development of EIB (3).

Our findings are in line with previous research that showed an
important role for mast cells in non-allergic asthma (25), especially
in the phenotypes exacerbated by environmental triggers such as
cold air and air pollution (26). In allergen-driven models, mast cell
deficient mice demonstrated attenuated BHR and inflammation,
which could be restored by mast cell reconstitution (27), and mast
cell-derived TNF was shown to be critical for BHR development
(28).In contrast, we did not observe TNF differences in our model,
despite consistent BHR. Other studies reported increased mast cell
activation and mediator release in response to air pollution, mainly
in an IgE-dependent manner (29-31). Human provocation studies
further supported the role of mast cells in airway narrowing, where
mast cell-derived prostaglandin D, and leukotriene C, metabolites
were increased after mannitol challenges (32). Currently, we were
unable to identify the exact mechanism through which mast cells
are activated in our model to induce BHR and airway inflammation.
Further research with e.g. FceRI knockout mice or anti-IgE
neutralisation could provide indispensable insights.

To evaluate in which phase of the development of EIB mast cells
play a role, WT mice were treated with the mast cell stabilizer
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doxantrazole, otherwise known as 3-(5-tetrazolyl) thioxanthene-9-
one 10, 10-dioxide (33). Although the exact mode of action of
doxantrazole remains unclear, it has been suggested that the
compound may inhibit 3’-5’-cyclic adenosine monophosphate
phosphodiesterase (34), thereby reducing intracellular calcium
influx and thus preventing degranulation of mast cells (35, 36).
Although doxantrazole is currently not used in clinical practice and
may not be the most potent available mast cell stabilizers, its use here
was justified based on prior dose optimization and standardized
intraperitoneal administration (37). These findings raise the question
whether mast cell stabilizers could be used in addition to 32-agonists
for the treatment of bronchoconstriction in asthma and EIB.
However, further research is required to confirm this in humans.

Doxantrazole treatment was limited to the final week of the
experimental to allow development of EIB. Despite the short
treatment duration, mast cell stabilization was sufficient to significantly
reduce the manifestation of BHR, thereby suggesting that mast cells have
an important role in the later stages of EIB and its characteristic
bronchial hyperresponsiveness. Yet, the infiltration of neutrophils
could not be reversed by doxantrazole treatment, indicating that mast
cell inhibition alone does not fully abrogate airway inflammation.

These findings suggest a complex interplay between mast cells,
neutrophils and BHR. While mast cells consistently modulate BHR,
neutrophilic inflammation appears to be context dependent. This
indicates that BHR can occur in the absence and in the presence of
neutrophils and that mast cells contributing to BHR partly independent
of neutrophil infiltration. Mast cells likely induce bronchoconstriction
through the release of early-phase mediators such as histamine and
leukotrienes (38). Therefore, the neutrophilia likely represents a parallel
or secondary inflammatory process. This is supported by previous
studies showing that depletion of neutrophils does not consistently
prevent BHR (39). However, future studies investigating direct mast
cell-neutrophil interactions in vitro or in vivo are required to elucidate
the mechanisms underlying this complex relationship.

The influence of mast cells on the neutrophils in the airways were
further reflected in the neutrophil extracellular traps (neutrophil
elastase) and in the concentration of KC/GRO in BAL. Only in the
mast cell deficient mice, a significantly lower concentration of
neutrophil elastase and KC/GRO in BAL was seen. This difference
was not present in the doxantrazole-treated animals. To further
elucidate the role of neutrophils in this exposure-associated EIB
model, future studies using specific neutrophil depletion strategies or
a neutrophil-deficient mouse models should be used. GM-CSF
concentrations showed inconsistent increases. In Cpa3™* mice and
their littermates, cold, exercise, and/or DEP did not affect GM-CSF
levels. In contrast, in both doxantrazole- and placebo-treated mice,
DEP exposure led to increased concentrations. This pattern suggests
that the effect is primarily DEP-induced rather than EIB-related.”

In this study, we showed that macrophages were mildly affected
by inhibition of mast cells. Mast cell deficient mice showed a
decreased trend in number of macrophages present in the
airways. This difference reached significance in doxantrazole-
treated mice. Additionally, our findings point to an association
between absence of mast cells and lower DEP uptake by
macrophages, as well as lower amounts of macrophages taking up
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DEP. This could indicate that macrophages are less active in the
absence of mast cells. Despite that there is no direct link, this aligns
with literature showing that macrophages can become more
activated in the presence of mast cells (40, 41).

A limitation of this study is the absence of functional mast cell
assays, such as a hexosaminidase assay. This would strengthen the
mechanistic link between mast cell activation and bronchial
hyperresponsiveness and/or airway inflammation. Likewise,
macrophage activity could not be objectified with a phagocytotic
assay, such as a zymosan uptake assay (42). Future studies should
incorporate these analyses to make a stronger mechanistic evaluation of
the underlying processes. Additionally, other hypotheses, including
neuronal activation (3), should be assessed using inhibitors of TRP-
channels or deficient mouse models. In our study, we specifically focused
on inflammatory processes detectable in the airway lumen rather than
the lung parenchyma. While we assessed neutrophils and NET markers
in BALF, we did not perform histological analyses to evaluate
neutrophilic infiltration or direct mast cell-neutrophil interactions in
lung tissue. Targeting the parenchymal compartment is necessary to
define these cellular interactions and to establish a more comprehensive
mechanistic link between mast cells and neutrophilic inflammation.

Conclusion

In conclusion, this study evaluated the role of mast cells in (early)
bronchial hyperresponsiveness (BHR) and airway inflammation in an
EIB-mouse model exposed to cold air and/or diesel exhaust particles
(DEP). We found that mast cells are crucial in the development of
BHR and has a complex interplay with neutrophilic inflammation.
These findings suggest that mast cells are a promising therapeutic
target and may contribute to improved treatment outcomes in
patients with exposure-associated EIB.
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