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The intestinal immune compartment plays a central role in HIV pathogenesis,

serving as an early site for viral replication and a significant reservoir for latent

infection. Despite the success of antiretroviral therapy (ART) in suppressing plasma

viremia, HIV persists indefinitely in latently infected cells, commonly found in the

intestinal tract due to its unique immunological and structural environment.

Targeting HIV-infected cells that persist in the intestinal tract is an important

consideration for therapeutic strategies and is also important when considering an

HIV cure. This review describes the therapeutic approaches aimed at addressing

HIV persistence in the intestinal tract, or gut. We provide a brief overview of

mechanisms underlying reservoir formation and maintenance, discuss the

challenges posed by gut-specific factors, and examine emerging strategies,

including latency reversal agents, immune modulation, gut-targeted ART, and

novel delivery systems. This review will focus on contemporary advances in

knowledge in this space, gaps in the literature and areas for future research focus.
KEYWORDS

HIV reservoir, gut-associated lymphoid tissue (GALT), HIV persistence, mucosal
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1 Introduction

While antiretroviral therapy (ART) effectively suppresses plasma viral levels, it fails to

eliminate latent reservoirs of HIV, particularly in gut associated lymphoid tissue (GALT)

(1). The gut serves as a major anatomical reservoir due to the high density of activated,

HIV-susceptible CD4+ T cells expressing the major co-receptors for HIV, CCR5 and

CXCR4 (2–4), unique lymphocyte trafficking patterns, variable antiretroviral (ARV)

penetration (5–8), and an immunoregulatory environment. The gut contains over 85%

of lymphoid tissue and more than 90% of all lymphocytes (9), making it a critical

compartment in HIV pathogenesis and persistence.
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The intestinal immune system comprises inductive sites (e.g.,

mesenteric lymph nodes and Peyer’s patches), where adaptive

immune cells (CD4+ T cells, CD8+ T cells and B cells) are

initially activated and differentiate; and effector sites (e.g., lamina

propria and epithelium), where differentiated immune cells mount

mucosal defence (10, 11).

A critical component within this compartment, GALT, plays a

key role in antigen sampling and comprises multi-follicular

structures like Peyer’s patches in the small intestine, isolated

lymphoid follicles (ILFs) that are dispersed throughout the small

and large intestines (10, 11), as well as sites such as the appendix

(12) and rectal lymphoid tissue (13, 14). The abundance of activated

CD4+ T cells, with a predominantly memory (CD45RO+)

phenotype that also express the HIV co-receptors CCR5/CXCR4

(2–4) coupled with the extensive mucosal surface area at this site,

renders GALT especially susceptible to HIV infection (4). Early

studies revealed a profound depletion of CCR5+ memory CD4+ T

cells following acquisition of HIV (15), particularly in effector sites

of the lamina propria (16, 17), where CCR5-expressing memory

CD4+ T cells were rapidly lost (18). As shown in both SIV and HIV

infection, there is a preferential depletion of CD4+ T cell in

mucosal-associated lymphoid tissue compared with peripheral

blood that is more severe in mucosal tissues than in peripheral

blood, and disproportionately affects Th17, Th22 and other

immune-regulatory subsets essential for maintaining mucosal

barrier function (18–25). Notably, other contemporaneous studies

suggested that the virus spares long-lived naïve and central memory

CD4+ T cells, which may replenish depleted effector cells (26, 27).

Countering the prevailing hypothesis of direct viral cytopathicity

(28), these studies suggested that chronic immune activation may be

the primary driver of progressive CD4+ T cell loss (26, 27).

Nonetheless, HIV persistence in the intestinal immune

compartment poses a formidable barrier to achieving remission

or eradication of HIV (10–14). In this review, we examine the

mechanisms underpinning HIV persistence in the gut and explore

emerging therapeutic strategies tailored to this complex

immune compartment.
2 Mechanisms of HIV reservoir
persistence in the gut

2.1 Structural and cellular factors

HIV disrupts the gut’s three key barriers: the microbial barrier

(commensal bacteria) (29), the mechanical barrier (tight junctions

between epithelial and endothelial cells) (30, 31), and the

immunologic barrier (mucosal lymphocytes, mesenteric lymph

nodes, and cytokines) (17, 32, 33). These disruptions drive chronic

immune activation and facilitate viral persistence (Figure 1).

Anatomical sites vary in immune cell composition (34),

tolerogenic features (35), and the transcriptional landscape of the

HIV reservoir (36), resulting in differential viral burden (37, 38) and

tissue-specific responses to latency-targeting interventions (39).

Microbial sensing by gut macrophages leads to IL-1 production
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and downstream secretion of regulatory cytokines (retinoic acid, IL-

10, TGF-b), which foster a tolerogenic environment (40, 41). The

gut, in particular, is a key site of immune tolerance and a primary

reservoir for HIV, where constant exposure to microbiota-derived

signals drives the differentiation and maintenance of HIV-

susceptible CD4+ T cell subsets, including regulatory T cells

(Tregs), Th1, Th2, Th17, and Th22 cells (42–45). Many of these

cells express high levels of HIV co-receptor CCR5 (43), rendering

them highly susceptible to infection during acute and chronic

phases. Th17 and Th22 subsets, which are enriched in the lamina

propria and play critical roles in maintaining mucosal barrier

integrity and microbial defense, are particularly vulnerable targets

(25, 46, 47). Recent findings suggest that CCR6-expressing CD4+ T

cell subsets, including Th17, Th1Th17, and CCR6+CCR4-CXCR3-

cells, represent a substantial and preferentially infected reservoir in

the gut, enriched for replication-competent HIV due to their

mucosal localization, memory phenotype, and high susceptibility

to infection (47–49).

Another pivotal cellular reservoir in the gut are tissue-resident

memory T cells (TRM), which differ from circulating memory T

cells in both phenotype and function. TRM are long-lived, non-

recirculating cells that localize to mucosal barrier sites and are

poised for rapid immune responses upon local antigen re-encounter

(50). In the gut, regionalized signaling within the intestinal

microenvironment supports the maintenance of two

phenotypically distinct TRM states: terminally differentiated TRM

cells localized to the upper villus, and progenitor-like TRM residing

in the lower villus (51). CD8+ TRMs acquire CD103 expression

under the influence of local TGF-b and IL-10 (52, 53), while most

CD4+ TRMs lack CD103 (54). Despite this, both gut-resident and

circulating CD103+ CD4+ T cells share a gene expression profile

enriched for HIV DNA but exhibit low levels of RNA transcription

per provirus, consistent with latent infection (55). The shared

molecular mechanisms, including reduced expression of

ribosomal proteins and components of mRNA processing and

transcriptional machinery, suggest common mechanisms of

proviral silencing (55). Functionally, TRMs express elevated levels

of inflammatory and cytotoxic genes (54, 56, 57), enabling rapid

effector responses. However, they also upregulate inhibitory

markers such as PD-1 and CD101, which constrain proliferation

and IL-2 production (54, 58). These dual attributes, activation

readiness and functional suppression, highlight their role as both

sentinels of mucosal immunity and long-lived HIV reservoirs that

may be less accessible to immune clearance or ART penetration (54,

55). These features may contribute to immune evasion and present

barriers to latency reversal strategies, underscoring the need for

targeted approaches that can overcome the unique functional and

transcriptional constraints of the gut-resident reservoir.
2.2 Persistent immune activation and
inflammation fuel HIV persistence

Chronic immune activation is a hallmark of HIV infection and a

key driver of reservoir persistence (Figure 1). Persistent infection is
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characterized by a dynamic equilibrium in which ongoing immune

activation coexists with regulatory mechanisms that limit

immunopathology but may also permit viral persistence (43).

Elevated levels of pro-inflammatory markers such as IFN-g, IL-6, IP-
10, and indoleamine 2,3-dioxygenase promote CD4+ T cell

susceptibility and sustain inflammatory cycles (59–62). A higher

proportion of activated and proliferating T cells are found in the gut

compared to peripheral blood (22, 63), contributing to reservoir

maintenance. This activation is largely triggered by HIV-mediated

damage to the intestinal epithelium, leading to microbial translocation-

the leakage of bacterial products like lipopolysaccharide (LPS) into

circulation- which fuels systemic immune activation in both people

with HIV (PWH) and SIV-infected macaques, and strongly predicts

disease progression (29, 64–66). Fungal translocation, particularly of

(1→3)-b-D-glucan, further amplifies inflammation via pattern

recognition receptor signaling, and remains elevated despite ART,

contributing to gut damage and disease progression (67, 68).
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Although ART effectively suppresses plasma viremia, it does not

fully restore gut epithelial integrity or microbiome diversity (22, 67,

69, 70). Consequently, immune activation and microbial

translocation markers persist, undermining immune homeostasis

and facilitating continued HIV persistence (67, 71–73). Ongoing

inflammation also recruits new target cells for infection, reinforcing

the reservoir despite viral suppression (74). Together, these features

create a uniquely permissive environment in the gut for HIV latency

and immune evasion, even under sustained ART.

2.3 Gut microbiota, dysbiosis and microbial
translocation

Recent findings suggest that gut microbiota composition may

modulate reservoir size and immune control. A recent germ-free

humanised mouse model demonstrated the role the microbiome

plays in HIV persistence, with lower levels of HIV replication in
FIGURE 1

Factors contributing to HIV persistence in the gut. Multiple factors converge in the gut to promote HIV latency and persistence despite antiretroviral
therapy (ART). Early reservoir seeding during acute infection, combined with a tolerogenic mucosal environment and immune-evasive tissue-
resident memory (TRM) cells, establishes a durable reservoir. Chronic immune activation driven by microbial translocation, along with gut-associated
lymphoid tissue (GALT) fibrosis, impairs immune clearance. Heterogeneous CD4+ T cell subsets, suppressed transcriptional activity, suboptimal ART
penetration, and gut microbiota dysbiosis further reinforce viral persistence and immune evasion within this immunologically distinct tissue.
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plasma and tissues of germ-free mice, depleted of their resident

microbiota, compared with conventional humanised mice (75).

In a study of HIVconsv immunogen (conserved regions of HIV-1

Gag, Pol, Vif, and Env) and the histone deacetylase inhibitor

(HDACi) romidepsin, a latency reversing agent (LRA);

individuals with higher baseline gut Bacteroidales: Clostridiales

ratios showed smaller HIV reservoirs and more sustained control

of viremia (76). Bacteroidales species, known producers of

immunomodulatory metabolites like short-chain fatty acids, may

influence T cell function and mucosal immunity (77), implicating

microbial dysbiosis as both a consequence and modulator of HIV

persistence. Finally, a pilot randomised controlled trial of repeated

faecal microbiota transplantation in PWH found no differences in

biomarkers of inflammation and bacterial translocation between

treatment and control groups, but no comparisons of HIV

reservoirs were conducted in this study (78).

The presence and mechanism of a causal link between gut

barrier dysfunction, microbial translocation, systemic inflammation

and HIV persistence is not well understood (79, 80) and warrants

further study.
2.4 ARV penetration in the gut: barriers to
reservoir elimination

Reduced antiretroviral drug penetration in the gut may pose a

challenge to the elimination of the HIV reservoir in this

compartment. Studies have shown that mucosal tissue penetrance

varies with antiviral agents; due to a range of intrinsic and extrinsic

factors (protein binding, molecular size, lipophilicity, ionization,

and blood perfusion), physical barriers, as well as efflux and uptake

transporter expression (5); leading to levels of some ARVs, such as

the integrase strand transfer inhibitor (INSTI) dolutegravir and

non-nucleoside reverse transcriptase inhibitor rilpivirine, falling

below therapeutic thresholds in gut tissues compared to

peripheral blood (5, 81). Consistent with these findings,

individuals with lower tissue drug concentrations exhibit higher

HIV transcription at these sites despite systemic viral suppression

(82, 83). Some studies have even suggested that the HIV reservoir is

constantly replenished by low-level virus replication in lymphoid

tissue despite undetectable viral RNA in plasma (81, 84), although

this remains controversial and has been strongly challenged by

others (85, 86). Nonetheless, recent pharmacokinetic studies of

newer, long-acting (LA) injectable drug formulations also

demonstrate lower gut tissue penetrance (6), despite their long

half-life and superiority over combination tenofovir disoproxil

fumarate/emtricitabine in the setting of HIV pre-exposure

prophylaxis (87, 88). In a Phase I study of the INSTI

cabotegravir-LA, rectal concentrations of the drug were <8% of

the corresponding plasma concentration (6). In contrast, drug

concentrations of LA injectable rilpivirine in rectal tissue were

found to exceed plasma levels in vivo and showed a dose-

dependent antiviral effect ex vivo (7), suggestive of more durable

mucosal protection. A recent study of LA cabotegravir plus

rilpivirine found that some individuals continued to shed HIV-1
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RNA in rectal secretions despite plasma suppression, and rectal

rilpivirine levels, though above the protein-adjusted EC90, did not

correlate with viral shedding, suggesting that drug exposure alone

may not fully suppress HIV transcription or replication in the gut

(8). Other factors including ongoing immune activation,

suboptimal immune control and high burden of latently infected

cells in the gut (89) likely also contribute to observed persistent

transcription and compartmentalized viral replication. Notably,

while genetically intact HIV DNA can be detected in tissues

including the ileum, colon, and rectosigmoid, the presence of

markers of transcription completion and protein production

(polyadenylated and multiply-spliced HIV transcripts) are

infrequently detected in gut and female genital tract tissues in

virally-suppressed PWH (36, 38). These findings underscore the

complexity of achieving complete viral suppression in different

mucosal compartments and the need to consider both drug

distribution and local tissue factors when evaluating the efficacy

of long-acting ART formulations.
3 Emerging therapeutic approaches

3.1 Latency modulating agents

Latency reversal agents (LRAs) aim to reactivate latent HIV to

increase virus transcription, protein expression and virion

production (Figure 2), thereby making infected cells visible to the

immune system for immune-mediated clearance (90). A diverse

array of transcription activating LRAs have been assessed both in

vitro, ex vivo and in vivo for their ability to reactivate HIV

transcription with varying levels of success- a topic that has been

comprehensively reviewed elsewhere (90–93).

Ex vivo analysis of LRAs demonstrate that agents that can induce

HIV transcription in peripheral blood may not exert the same

magnitude of effect in gut tissues (39). Notably, even when HIV

transcription is induced, the translation of viral proteins or

production of virions- crucial for immune recognition- may be

limited, raising questions about the functional efficacy of many

LRAs, particularly in tissue-resident cells. As such, the distinct

immune milieu of the gut (Figure 1) may necessitate the

development of gut-specific LRAs or combination strategies that

improve both HIV reactivation and immune-mediated clearance in

this compartment.

Emerging immunomodulatory LRAs, such as Toll-like receptor

(TLR) agonists, TLR-1/2, TLR7, and TLR9 (94–97), have demonstrated

potential in both reactivating latent virus and modulating immune

responses in humans and non-human primates. TLR agonist

stimulation induces an activated plasmacytoid dendritic cell

phenotype, with increased expression of TNF-a, IFN-a, interferon
regulatory genes and restriction factors that contribute to an increased

HIV-specific T cell response (98). Treatment with the TLR9 agonist

lefitolimod results in induction of an interferon stimulated gene

signature consistent with potent IFN-a induction but without

concomitant excessive inflammation in the gut mucosa (95, 99),

suggesting this treatment could exert beneficial effects in the gut. The
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combination of TLR7 agonist vesatolimod (GS-9620) and broadly

neutralizing antibody PGT121 led to lower levels of HIV DNA in

lymph nodes of treated SHIV-SF162P3-infected rhesus monkeys at

week 120 (100) and decreases in intact proviral DNA in peripheral

CD4+ T cells during ART coupled with a delay in viral rebound during

ART interruption in a phase 1b clinical trial (101). More recently, dual

TLR7/8 agonists have demonstrated enhanced latency reversal and

immune activation compared to single agonists, resulting in greater

reductions in the inducible HIV reservoir and improved control of viral

rebound in preclinical (ex vivo PBMC/cell line) models (102).

While considerable progress has been made in the development

of latency reversal strategies, there is limited evidence supporting

the efficacy of LRAs in the gut. Latency reversing effects in colonic

and rectal tissue have been demonstrated in clinical trials of the

HDACis panobinostat and vorinostat (103, 104), and the TLR9-

agonist lefitolimod (99), however in the case of vorinostat, this effect

less than that noted in peripheral blood cells. Notably, few clinical

trials investigating LRAs have routinely conducted biopsies of

gastrointestinal tissue.
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An alternative latency-modulating approach under

investigation, the “block and lock” strategy, seeks to drive HIV

into a long-lived, transcriptionally silent state. This has been studied

with agents such as bromodomain-containing protein 4 (BRD4)

modulators (105), Heat shock protein 90 (HSP90) inhibitors (106–

108), LEDGINs (109, 110), Jak-STAT inhibitors (111, 112), HIV-1

Tat inhibitor didehydro-cortistatin A (113). Notably, didehydro-

cortistatin A has a favorable pharmacokinetic profile, stability,

activity in the absence of ART, and the ability to cross the blood–

brain barrier, making it a particularly attractive candidate (113,

114). Given the gut’s role as a major site of persistent HIV

transcription, strategies that can durably suppress proviral

expression in tissue-resident immune cells could be critical for

achieving long-term remission. The distinct immunologic

landscape of the gut underscores a critical gap in current HIV

cure strategies, highlighting the need for more trials to evaluate the

impact of interventions on gut reservoirs and to develop gut-

targeted or combination approaches that both induce HIV

transcription and enhance immune-mediated clearance.
FIGURE 2

Emerging therapeutic strategies for targeting the HIV reservoir in the gut. Strategies include: (1) latency-modulating agents to induce viral gene
expression; (2) gut-homing pathway modulation via integrin-targeting antibodies; (3) immune-based therapies to enhance clearance of infected
cells; (4) broadly neutralizing antibodies to block infection and mediate cytotoxicity; (5) interventions to restore gut barrier integrity and reduce
inflammation; (6) cell-based therapies, (7) gene-editing and CRISPR-based approaches; and (8) targeted delivery platforms such as nanoparticles and
antibody-drug conjugates to improve localization and efficacy of therapeutics within the gastrointestinal tract. Together, these approaches aim to
overcome anatomical and immunological barriers to HIV cure.
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3.2 Modulating gut-homing pathways
through antibody-based interventions

CD4+ T cells migrate into gastrointestinal tissues by engaging

a4b7 integrin, expressed on their surface, with MAdCAM-1, a key

adhesion molecule found on the gut endothelium (115, 116). HIV

gp120 binds to this gut-homing integrin (117), enhancing the

susceptibility of a4b7+CD4+ T cells to HIV infection (118).

Therefore, targeting a4b7, which facilitates the trafficking of

HIV-infected cells to the gut (118–121), represents a novel

strategy to disrupt reservoir formation and persistence.

Treatment with anti-a4b7 therapy [vedolizumab (VDZ)] in

PWH on ART with concomitant inflammatory bowel disease (IBD)

has demonstrated promise in attenuating the formation of

lymphoid aggregates within the gut (122), which are known to

serve as key sanctuary sites for maintaining viral reservoirs (123–

126). While VDZ resulted in sustained virologic control in one

study of macaques infected with an attenuated strain of SIV,

SIVmac239 (127), this finding triggered some controversy as the

SIV strain used in the study had a stop codon in the Nef coding

region (128). Subsequent studies in macaques infected with

SIVmac251 (129) and in PWH on ART (130), could not replicate

this observation. Nonetheless, a recent clinical trial suggested that

the level of a4b7 blockade may inversely correlate with HIV DNA

levels (131), highlighting a potential role for integrin-targeting

strategies in reducing viral reservoirs, though further research is

needed to explore their utility in combination cure approaches.

In addition to a4b7, other trafficking molecules such as CCR9,

which is important for gut homing particularly in Th17 cells during

HIV infection (132) and MadCAM-1 are being explored as potential

therapeutic targets in reducing inflammation (133) that could provide

gut-selective options that avoid systemic immunosuppression.
3.3 Immune modulation strategies to
enhance HIV reservoir clearance

Immune modulation strategies aim to restore antiviral

immunity, reduce chronic inflammation, and enhance the

immune system’s capacity to recognize and eliminate infected

cells within mucosal tissues (134). Checkpoint blockade targeting

inhibitory receptors (e.g., PD-1, CTLA-4, LAG-3, TIGIT) has

shown promise in reversing T cell exhaustion and enhancing

HIV-specific CD8+ T cell responses in preclinical studies

[reviewed elsewhere (134)]. These approaches may synergise with

LRAs (135), but systemic administration risks immune-related

adverse events (136) , highl ighting the need for gut-

targeted strategies.

Cytokine-based therapies, such as IL-15 superagonists may

enhance mucosal effector responses (137, 138). The IL-15

superagonist N-803 (Figure 2) modestly reduced inducible HIV in

peripheral blood mononuclear cells (PBMC) in a Phase I trial,

alongside natural killer (NK) cell expansion (137). In SIV-infected

macaques, N-803 increased CD8+ T cell and NK cell activation and

trafficking to lymphoid and mucosal tissues (139, 140), highlighting
Frontiers in Immunology 06
its potential to bolster immune clearance mechanisms in mucosal

reservoirs. However, the effects of N-803 in the human gut remain

largely uncharacterized, underscoring the need for dedicated studies

to evaluate its impact on the gut HIV reservoir.

Emerging bispecific platforms like ImmTAVs- soluble,

engineered T-cell receptors (TCRs) fused to anti-CD3, redirect

polyclonal CD8+ T cells to eliminate HIV-infected CD4+ T cells

presenting low levels of HIV antigen (141). Given the low-level HIV

Gag expression detectable in gut tissues of ART-suppressed

individuals (142, 143), ImmTAVs may offer a potent strategy for

mucosal reservoir clearance. Although current constructs are HLA-

restricted and untested in gut tissue, their efficacy in solid tumours

(144) supports their translational potential. Advantages of this

strategy include: (i) targeting cells expressing very low antigen

levels; (ii) bypassing exhausted HIV-specific T cells; and (iii)

compatibility with combination therapies.

Immune-based approaches must carefully balance antiviral

activity with the preservation of mucosal barrier function and

limitation of inflammation-induced damage. Refinement of these

strategies is ongoing, aiming to enhance antiviral responses while

preserving mucosal integrity. For instance, targeted delivery

mechanisms, such as nanoparticle formulations and antibody-

drug conjugates (Section 2.7) are being explored to localize

immune modulation to mucosal tissues and reduce systemic

toxicity. Combinatorial approaches, such as pairing cytokines like

IL-15 or IL-21 with checkpoint blockade (145) or probiotic therapy

(146), are being optimized to enhance effector cell function without

inducing excessive inflammation. Additionally, advances in cancer

immunotherapy, such as checkpoint blockade targeting myeloid-

derived suppressor cel ls (MDSCs) to overcome their

immunosuppressive effects and enhance the efficacy of immune

checkpoint inhibitors (ICIs) and adoptive cell therapies (147), may

inform combinatorial strategies for targeting the HIV reservoir.

These emerging approaches reflect a broader shift toward precision

immunotherapies that are tailored to the distinct immunologic and

structural characteristics of mucosal tissues- an important step

toward more effective strategies for targeting and eliminating HIV

reservoirs in these challenging anatomical sites.
3.4 Broadly neutralizing antibodies

Broadly neutralizing antibodies (bNAbs) can induce direct viral

neutralization and immune responses through antibody-dependent

cellular cytotoxicity (ADCC) (148–151). Despite some promising

data showing that the combination of bNAbs 3BNC-117 and 10–

1074 can significantly delay viral rebound following ART

interruption (152), concomitant decreases in the size of the viral

reservoir have not been demonstrated. A recent proof-of-concept

study using a 10–1074 formulated for topical vaginal application

demonstrated that mucosal delivery of potent bNAbs provided

protection against repeated cell-associated SHIV162P3 vaginal

challenge in non-human primates (153). Clinical trials are

currently ongoing to assess the effect of long-acting bNAbs on the

tissue-resident viral reservoirs (154).
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3.5 Restoring gut barrier integrity and
reducing inflammation

A wide array of therapeutic strategies has been explored to

target the gut microbiome in PWH, aiming to reduce persistent

inflammation and immune dysfunction despite effective

ART (Figure 2).

Antibiotics, administered experimentally, have shown mixed

outcomes, with some studies in nonhuman primates (NHPs)

suggesting reduced gut inflammation and altered susceptibility to

SIV infection, however concerns remain about long-term dysbiosis

and resistance (155) that may compromise gut barrier integrity. In

human trials examining antibiotics as a possible modality to

ameliorate persistent immune dysfunction in ART-suppressed

PWH, neither rifaximin nor cotrimoxazole treatment altered

bacterial translocation (156, 157). Although antibiotics can

influence the gut microbiome in PWH (155), their use warrants

caution due to broad microbial disruptions and the risk of

antimicrobial resistance.

Prebiotics and probiotics have demonstrated modest benefits on

immune markers in some exploratory trials (158–160), but larger

controlled studies in children infected with HIV, and ART naive

adults with HIV failed to show consistent improvements in gut

dysbiosis, immune recovery or reduction in inflammatory

biomarkers (161–163). Despite some reported benefits, including

potential improved gut barrier integrity (164), current prebiotic and

probiotic formulations lack sufficient evidence and regulatory

oversight to support their use in PWH (155), highlighting the

need for more targeted, next-generation approaches.

More recently, attention has shifted to postbiotics and live

biotherapeutic products (LBPs) driven by progress in the

treatment of Clostridium difficile (165, 166). Approaches include

delivery of targeted bacterial consortia, designed to restore or

improve gut microbiota composition, and microbial metabolites

like butyrate (167), that could have anti-inflammatory or immune-

modulating effects (159, 168) and enhance epithelial barrier

function (169), however their immunological efficacy in the

setting of HIV remains under investigation. Faecal microbiota

transplantation (FMT) is under investigation as a strategy to

reverse HIV-associated gut dysbiosis, with early-phase trials

demonstrating transient donor engraftment (170), enhanced

microbial diversity (171), and indications of reduced gut epithelial

damage (172). While these findings highlight FMT’s potential to

modulate the gut microbiota in PWH, evidence for its impact on

systemic inflammation and HIV persistence remains inconclusive,

underscoring the need for further research into microbiota-targeted

interventions to address HIV-driven immune dysfunction.

Therapies aimed at reducing systemic inflammation or

restoring gut barrier integrity in PWH target key drivers such as

microbial translocation, residual viral replication, and immune

dysregulation. Investigational approaches include anti-

inflammatory agents (e.g., statins (173–176)); immunomodulators

like IL-1b blockers (177, 178), IL-6 blockers (177, 178), tumour

necrosis factor a (TNFa) blockers (179, 180), toll-like receptor 4
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(TLR4) antagonists (181), PPAR agonists (182, 183), or Janus

kinase (JAK) inhibitors (179, 180); farnesoid X nuclear receptor

(FXR) agonists (184) sulfonamide drugs (185); and gut-tropic

agents such as GLP-2 analogue teduglutide (Clinical Trial:

NCT02431325). Apolipoprotein A-I (apoA-I) mimetic peptides

bind bioactive lipids and endotoxin (LPS) to exert an anti-

inflammatory effect (186). Previously investigated as a treatment

modality for cardiovascular disease and cancer (187, 188), recent

work in humanized mouse models of HIV infection suggest that

these peptides can reduce levels of proinflammatory proteins, such

as ADAM17, that contribute to both systemic and gut

inflammation (189).

While several of these strategies have demonstrated reductions

in biomarkers of inflammation, their capacity to meaningfully

improve immune function or reduce clinical comorbidities in

PWH has yet to be definitively established.

Together, these findings underscore the complexity of

therapeutically targeting the gut in PWH and highlight a critical

need for rigorously designed, mechanistically informed studies to

identify microbiota-directed or gut-specific interventions that can

durably reduce inflammation, restore mucosal integrity, and

ultimately contribute to HIV remission or cure strategies.
3.6 Therapeutic vaccines to restore gut
immunity and reduce mucosal
inflammation

Therapeutic vaccines represent a promising avenue for

enhancing gut immunity in PWH. By targeting the gut mucosa,

these strategies aim to restore immune function, reduce

inflammation, and improve overall health outcomes in PWH.

Several approaches are under investigation, including intranasal

or mucosal vaccines adjuvanted with IL-13Ra2 blockers, which

have been shown to enhance mucosal CD8+ T cell responses in gut-

associated lymphoid tissues (190). Other strategies involve dendritic

cell-targeted vaccines designed to induce durable HIV-specific

immunity at mucosal sites (191, 192), oral vaccines using

recombinant Lactococcus lactis expressing HIV antigens which

have demonstrated the ability to elicit mucosal immune responses

(193), and mRNA-based vaccines that promote polyfunctional T

cell responses within the gastrointestinal tract.

While prophylactic mRNA HIV vaccines are progressing (e.g.,

NCT05001371, NCT05414786, NCT05217641), therapeutic HIV

vaccine development remains limited (194). Unlike prophylactic

strategies that focus on eliciting envelope-specific neutralizing

antibodies (195), therapeutic vaccines must induce strong, Gag-

specific polyfunctional CD8+ T cell responses (196–198). To date,

only a limited number of therapeutic vaccine candidates have

progressed beyond preclinical evaluation in mouse and non-human

primate models (199–201). Therapeutic vaccines, such as ALVAC-

HIV/Lipo-6T/IL-2 (202), Vacc-4x (203), and HIVACAT T-cell

immunogen-based vaccines (204) have shown promise in

enhancing viral control in the absence of ART, and may even help
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overcome the impact of gut microbiota depletion on IFNg-producing
T-cell responses (205). However, their standalone efficacy has been

limited, therefore combination strategies may be necessary to achieve

sustained viral remission and counteract immune dysfunction

originating in the gut. A major gap remains in understanding how

to direct antigen-specific immune responses to the gut and how to

measure functional improvements in gut immune health after

therapeutic vaccination. While clinical translation is ongoing, these

approaches represent promising adjuncts to antiretroviral therapy by

addressing the immunologic damage and inflammation that persist

in the gastrointestinal mucosa.
3.7 Gene and cell-based therapeutic
strategies

Gene editing technologies, particularly CRISPR-based

approaches, have emerged as promising tools for targeting

persistent HIV reservoirs. These strategies are especially relevant

to GALT, where therapeutic interventions must be able to access,

persist, and function effectively.

Viral-directed approaches aim to excise integrated provirus

(206), durably silence transcription (207) or activate latent

proviruses to enhance clearance (208). Recent efforts emphasize

the need for delivery systems that achieve effective biodistribution

within lymphoid tissues, where the majority of the reservoir resides

(209, 210). The CRISPR-based therapy EBT-001, delivered by

adeno-associated virus (AAV), achieved broad biodistribution in

lymphoid tissues and demonstrated evidence of proviral cutting in

preclinical simian immunodeficiency virus (SIV) models (206). Its

HIV counterpart, EBT-101, was recently shown to be safe in a first-

in-human clinical trial, although viral rebound occurred following

analytical treatment interruption, highlighting the need for further

refinement (211).

Host-directed approaches aim to render target cells resistant to

infection or to enhance antiviral immunity in mucosal

compartments (212), CCR5 remains a leading gene-editing target,

with multiple studies demonstrating disruption of CCR5 using zinc

finger nucleases (ZFNs), TALENs, and CRISPR is feasible in vitro,

ex vivo, and in vivo (212–215). These approaches provide proof-of-

concept for durable resistance to HIV infection and, importantly,

could protect gut-homing memory CD4+ T cells from reinfection.

and engineering of host cells resistant to infection (212).

Complementary to gene editing, cell-based therapies are

advancing in parallel. In nonhuman primate models, stem-cell-

derived CAR T cells demonstrated superior persistence, tissue

trafficking, and antiviral activity, reinforcing their potential in

mucosal immune compartments (216). Notably, a macaque study

demonstrated that hematopoietic stem cell (HSC)-derived CAR T

cells engraft and persist within tissue-associated HIV reservoirs,

including GALT, where they maintained proliferative capacity and

antiviral activity (216). Similarly, CAR/CXCR5 T cells showed

modest presence in gut tissues (ileum, rectum) alongside
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sustained reductions in viral RNA within lymphoid follicles,

underscoring both the potential and current limitations of tissue

penetration (217). Early-phase clinical trials, including CAR T-cell

therapies targeting gp120 (218), are underway, though mapping gut

homing and durability of responses remain critical next steps.

Together, these gene- and cell-editing strategies underscore the

potential to overcome the unique barriers posed by gut reservoirs,

where persistence, immune evasion, and tissue accessibility

converge, positioning the gut as a critical testing ground for next-

generation HIV cure interventions.
3.8 Cell and tissue-specific delivery
platforms

Targeting therapeutic agents directly to gut-associated

lymphoid tissue represents a major challenge and opportunity in

HIV cure research. The anatomical and immunological complexity

of the gut (9, 10), coupled with its unique barriers to drug

penetration and immune accessibility (89), necessitates the

development of innovative delivery systems designed to enhance

the localization, uptake, and activity of targeted therapeutics (219,

220). Nanoparticle-based delivery systems have emerged as

promising platforms for gut-specific targeting (220). These

include lipid nanoparticles, polymer-based carriers, and

biodegradable vesicles engineered to protect therapeutic cargo

from enzymatic degradation in the gastrointestinal tract and

promote uptake by mucosal immune cells (220).

Nano-drug delivery systems (NDDs) can be engineered to

enhance mucosal adhesion (221), cellular uptake (222), and

targeted delivery of antiretroviral agents or latency-reversing

therapeutics (223) directly to infected cells in the gut. By

bypassing efflux mechanisms and enabling sustained drug release

(224), NDDs may achieve higher local drug concentrations and

more effective suppression or elimination of HIV within tissue

reservoirs. Incorporating targeting moieties, such as antibodies or

ligands specific to infected cells (223) or the gut epithelium further

enhances specificity and likely minimises off-target effects. Thus,

NDDs represent a novel and rational approach to overcoming a key

barrier in HIV cure strategies. Hydrogel-based (225) and

mucoadhesive formulations (226, 227) offer additional avenues

for localized delivery. These systems can be designed to release

drugs in a sustained manner and enhance adhesion to the intestinal

epithelium or Peyer’s patches, improving exposure to target cells

while minimizing systemic absorption (228).

Antibody-drug conjugates (ADCs) are a class of precision

therapeutics that employ monoclonal antibodies to selectively

bind cell surface antigens, enabling targeted delivery of potent

cytotoxic agents to tumour cells (229), including those in

gastrointestinal cancers (230). Advancements in this field have led

to the development of next-generation ADCs, such as bispecific

ADCs, Probody-drug conjugates, immunostimulatory ADCs,

degrader-antibody conjugates, and dual-payload ADCs (229). A
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variety of HIV-targeted (e.g., Env, Tat, Vif) and host-directed (e.g.,

CD25, CD4, CCR5, CXCR4, IL-2R) ADCs have been investigated,

employing diverse payloads such as toxins, siRNAs, radionuclides,

small molecule inhibitors, photosensitisers, and lipids (231). While

clinical experience with HIV-specific ADCs remains limited, the

field stands to benefit from advances in cancer immunotherapy

(231). Targeting HIV-infected cells in the gut using ADCs

represents a promising yet underexplored strategy, particularly

given the tissue’s enrichment for latent reservoir cells and

parallels with gastrointestinal cancer targeting.

Beyond anatomical targeting, delivery systems are being

optimized to home to specific cellular reservoirs that represent

major sources of persistent HIV in the gut (232). Ligand-conjugated

nanoparticles are being engineered to exploit surface markers (e.g.,

integrins, chemokine receptors) expressed preferentially by target

populations (233). These precision-targeting approaches aim to

increase therapeutic efficacy while limiting off-target effects and

could be applied in the context of HIV. As latency reversal and

immunomodulation strategies progress toward clinical application,

the integration of advanced delivery technologies will be critical to

achieving therapeutic concentrations in gut tissues and enhancing

the safety and specificity of HIV cure interventions.
4 Discussion

The gut constitutes one of the most formidable barriers to HIV

eradication. As the largest immune organ in the body, it contains the

vast majority of lymphoid tissue and CD4+ T cells (9), rendering it

both a primary target for HIV infection and a long-lived viral reservoir.

Despite the efficacy of ART in suppressing plasma viremia, HIV

persists within GALT due to a convergence of structural, microbial,

immunological, and pharmacological barriers. Cure strategies must

therefore address not only systemic viral suppression but also the

unique features of the gut reservoir, including its size, immune

environment, and pharmacologic challenges.

Eliminating HIV reservoirs in the gut will likely require a

multipronged therapeutic approach. Latency-reversing agents

(LRAs) have shown partial activity in gut-derived cells, but their

efficacy is limited by poor tissue penetration and lack of potency in

reversing deep latency. Immune-based interventions, such as

broadly neutralizing antibodies and immune checkpoint

inhibitors, hold promise for enhancing reservoir clearance, but

their ability to reach and act within GALT remains to be

demonstrated. Drug delivery innovations, including nanoparticle

formulations and tissue-targeted vectors, may help overcome the

pharmacologic barriers posed by mucosal tissues, yet require

rigorous evaluation in both preclinical and clinical settings.

In parallel, gene- and cell-editing approaches are emerging as

transformative strategies for targeting gut HIV reservoirs. CRISPR-

based interventions, such as EBT-101, and SIV-directed precursors

have demonstrated broad biodistribution to lymphoid tissues,
Frontiers in Immunology 09
including the gut, with preclinical evidence of proviral excision.

Although early clinical studies highlight the need for greater

efficacy, these findings establish proof-of-concept that gene

editing can indeed reach and act within GALT. Similarly, cell-

based therapies, including CCR5-edited T cells and CAR-T

platforms, offer the potential to repopulate the gut with resistant

or effector cells capable of directly suppressing local HIV

replication. The ability of engineered cells to traffic to and persist

within mucosal tissues will be a critical determinant of their long-

term success.

Strategies aimed at restoring gut barrier integrity and reducing

inflammation, such as FMT, statins, anti-cytokine therapies, and

gut-tropic agents, may act synergistically to suppress the drivers of

HIV persistence. Therapeutic vaccines capable of eliciting robust

mucosal CD8+ T cell responses are another key area under

development, although translating these approaches into durable

immune control remains a significant hurdle.

To overcome the anatomical and pharmacologic challenges of

targeting the gut reservoir, innovative drug delivery systems,

including ligand-targeted nanoparticles and mucoadhesive

formulations, are under active investigation. These platforms may

improve tissue penetration, increase drug stability, and allow for

targeted delivery to infected cells within the mucosal environment.

Together, these efforts underscore the importance of integrating

genetic engineering strategies with gut-specific delivery systems, immune

modulation, and barrier-restoring interventions. The next phase of HIV

cure research will require assessing not only the safety and durability of

gene- and cell-editing therapies but also their functional impact on gut

reservoirs. As such, trials should incorporate tissue-based endpoints,

including gut biopsies and molecular reservoir profiling, to determine

whether systemic interventions translate into meaningful reductions in

mucosal reservoirs.

Looking ahead, several key knowledge gaps remain. The field

would benefit from validated biomarkers of gut reservoir size and

activity to assess therapeutic efficacy. Furthermore, most clinical

trials do not include tissue-based endpoints, limiting our

understanding of how interventions affect HIV persistence

outside the peripheral blood. Longitudinal studies incorporating

tissue pharmacokinetics, host immune responses, and microbiome

dynamics are critical to informing rational therapeutic design.

Ultimately, integration of multi-modal strategies targeting latency,

inflammation, immune dysfunction, and mucosal damage will

likely be necessary to achieve durable reductions in the gut

HIV reservoir.

In conclusion, the gut represents a uniquely challenging and

significant reservoir for latent HIV despite the clinical effectiveness

of ART. Rational combination therapies, guided by mechanistic

insights and empowered by advanced delivery platforms, offer a

promising path forward in the endeavour to eliminate HIV

reservoirs in the gut. However, success will depend on continued

investment in tissue-based research and the development of clinical

tools to measure and target HIV persistence at this critical site.
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