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Machine learning integration
with multi-omics data
constructs a robust prognostic
model and identifies PTGES3
as a therapeutic target for
precision oncology in

lung adenocarcinoma
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Background: Lung adenocarcinoma is the most prevalent lung cancer type, with
a 5-year survival rate for advanced patients below 20%. This study aims to
develop a risk model to guide treatment for these patients.

Materials and methods: RNA-seq data from TCGA and GEO were analyzed using
Cox regression and 10 machine learning algorithms to identify prognostic genes
and stratify patients. Single-cell datasets were integrated to examine PTGES3's
role in tumor progression, with SCENIC and ATAC-seq revealing its
transcriptional regulators. PTGES3 expression was evaluated via tissue
microarray immunohistochemistry. Functional assays (CCK-8, colony
formation, flow cytometry, Western blot) after lentiviral knockdown in lung
cancer cells assessed its effects on proliferation, apoptosis, and cell cycle.
ZBTB7A was validated as a transcriptional regulator of PTGES3 by dual-
luciferase reporter assay, and xenograft models in nude mice evaluated tumor
growth in vivo.

Results: Our analysis identified 28 key genes, classifying lung adenocarcinoma
samples into high-score and low-score groups. Patients in the high-score group
showed worse prognoses, linked to clinical stage progression and phenotypes
like angiogenesis and epithelial-mesenchymal transition. PTGES3 knockdown
inhibited tumor growth, leading to cell cycle arrest and increased apoptosis.
ZBTB7A was identified as a key regulator of PTGES3, while interactions among
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LGALS9Y, P4HB, and CD44 significantly impacted signaling pathways influencing
the tumor microenvironment’s immune status.

Conclusions: Our findings highlight the potential of LS score-based molecular
subtyping to improve treatment strategies for lung adenocarcinoma and
emphasize PTGES3's role in new therapeutic development.

lung adenocarcinoma, prognostic model, machine learning, PTGES3, ZBTB7A

1 Introduction

Lung cancer represents the most prevalent type of cancer
globally, with lung adenocarcinoma (LUAD) being the most
common subtype, accounting for approximately 40% of all lung
cancer cases (1). Despite significant advancements in diagnostic and
therapeutic modalities, the prognosis for lung cancer patients
remains concerning—particularly for those with metastatic
LUAD, whose five-year survival rate is less than 20% (2, 3).
Moreover, the incidence and mortality rates associated with lung
cancer continue to rise, accompanied by increasing challenges
related to drug resistance and low overall response rates (4). This
situation underscores the urgent need to explore and identify
biomarkers that may predict the efficacy of targeted therapies and
immunotherapies for LUAD, as well as to investigate their
underlying mechanisms (5). Such efforts could provide valuable
targets and a theoretical framework for drug design and informed
clinical decision-making.

In this study, we aimed to elucidate the relationship between the
molecular characteristics of LUAD and patient prognosis. Through
a systematic analysis of RNA-seq data from the TCGA and GEO
databases, we identified 28 differentially expressed genes that are
significantly associated with LUAD prognosis. The selection of
these key genes was based on Cox regression analysis combined
with the comprehensive application of ten machine learning
methods, which ensured the reliability and accuracy of the
prognostic markers identified. Building on this foundation, we
developed a prognostic scoring system, termed the LS score,
which effectively reflects patient survival outcomes. Our analysis
of the LS score allowed for the categorization of LUAD patients into

Abbreviations: PTGES3, Prostaglandin E synthase enzyme3; mPGES-3,
Microsomal prostaglandin E synthase-3; LUAD, Lung adenocarcinoma; PGE2,
Prostaglandin E2; THC, Immunohistochemistry; TMA, Tissue microarray;
shRNA, Short hairpin RNA; FACS, Fluorescence activated Cell Sorting; HRP,
Horseradish peroxidase; TCGA, the Cancer Genome Atlas; GEO, Gene
Expression Omnibus; RNA-seq, RNA sequencing; scRNA-seq, Single-cell RNA
sequencing; GRN, Gene regulatory network; TFs, Transcription factors; SCENIC,
Single-cell regulatory network inference and clustering; RAS, Regulon activity
scores; UMAP, Uniform manifold approximation and projection; GSVA, Gene

set variation analysis.
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high-score and low-score groups. The results demonstrated
significant differences in clinical characteristics between these two
molecular subtypes. Patients in the high-score group generally faced
a more unfavorable prognosis and exhibited strong correlations
with various tumor biological behaviors, including angiogenesis,
cell cycle regulation, and epithelial-mesenchymal transition. This
classification not only aids in the identification of prognostic risk
among patients but also serves as a foundation for the development
of tailored clinical treatment strategies.

We particularly focused on the key gene PTGES3 within our
model, which has been recognized as a prognostic biomarker in
multiple cancers, including breast cancer, ovarian cancer,
glioblastoma, and liver cancer (6-9). PTGES3 also plays an
important role in immune regulation in LUAD (10, 11). Our
analyses assessed the role of PTGES3 in tumor progression,
demonstrating its relationship with cell cycle and apoptosis,
which were further corroborated by both in vitro and in vivo
experiments. Additionally, we investigated the key upstream
transcription factor ZBTB7A along with the significant upstream
mutations CSMD3 and KEAP1 that influence PTGES3 expression.
In terms of cell communication, LGALS9, P4HB, and CD44 may
interact within signaling pathways involving the transcription factor
ZBTB7A and its target gene PTGES3 in tumor cells and
macrophages. This interaction may subsequently impact the
immune status of the tumor microenvironment and influence
tumor progression. The whole research process is shown
in Figure 1.

2 Materials and methods
2.1 Data sources

We obtained data from TCGA-LUAD and GSE42127, which
were sourced from the UCSC-XENA and GEO databases,
respectively. After applying the “combat” method to mitigate
batch effects, these datasets were merged to form a new cohort
referred to as the Merge cohort. To further validate the correlation
between ZBTB7A and PTGES3, we utilized GSE11969, GSE19188,
and GSE72094. Additionally, we accessed single-cell data
(GSE117570, GSE127465, GSE148071) from the TISCH database
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FIGURE 1
The work flow diagram of this study.

(http://tisch.comp-genomics.org/) to analyze tumor tissue (12),
resulting in a dataset comprising 36,096 genes across 111,138
cells. Single-cell analysis was conducted using the Seurat R
package, with quality control and cell annotation performed
based on the information from the TISCH database. Furthermore,
we curated data from the Cancer Cell Atlas database (https://
www.weizmann.ac.il/sites/3CA/) to investigate PTGES3
expression across various tumor cell datasets (13).

2.2 Machine learning to establish LS score
prognostic model

We employed several integrative machine learning algorithms,
including Lasso, Ridge, Elastic Net (Enet), Random Forest (RF),
Stepwise Generalized Linear Model (Stepglm), Generalized Boosted
Regression Modeling (GBM), Support Vector Machine (SVM),
Extreme Gradient Boosting (XGBoost), glmBoost, and Naive Bayes.
We paired these ten algorithms to create a variety of combinations of
machine learning algorithms. The TCGA data served as the training set,
while the GSE42127 and merged cohort data were utilized for validation.
To construct the prognostic model, the C-index for each model was
calculated as the mean across the three datasets. Detailed information on
various combinations can be found in Supplementary Table 1.

We utilized the R package pROC to generate ROC curves and
calculate the area under the curve (AUC) for different models,
assessing the predictive strength of genes in disease occurrence.
Additionally, we performed survival analysis using the R packages
“survival” and “survminer.” To elucidate the selected genes, we applied
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SHAP (SHapley Additive exPlanations) methods to interpret the
model output. SHAP, based on game theory, explains the output of
any machine learning model by evaluating the significance of features
on output changes when combined with others.

2.3 Effect analysis of knockdown genes in
the DepMap database

In the DepMap database (14), Gene Effect refers to the impact of
interference operations, such as gene knockout or knockdown, on
cell viability. A negative Gene Effect indicates that the gene is
essential for cell survival; specifically, knockout of this gene
adversely affects cell proliferation. Furthermore, a smaller Gene
Effect value suggests a greater necessity of that gene, indicating its
critical role in cell survival and function, as well as a higher level of
dependency by the cell.

We utilized the GSCA database (https://guolab.wchscu.cn/
GSCA/#/) to analyze the relationships between the top 10 genes
from the prognostic model, immune infiltration, and drug
sensitivity (15).

2.4 Clinical and molecular features of
patients with high and low LS scores

We analyzed the relationship between LS scores calculated by

the RSF random forest method and clinical-pathological features.
The “Maftools” package was used to analyze gene mutations in
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high-scoring and low-scoring groups. Additionally, we created
heatmaps of chemokines and immune cell-related genes for each
scoring group using the “pheatmap” R package. Univariate and
multivariate regression analyses were conducted to evaluate the
prognostic impact of LS scores.

In terms of molecular characteristics, we performed a correlation
analysis between model scores and all genes, presenting the results via
heatmaps. Based on the correlation analysis results, we conducted
GSEA enrichment analysis using the R package “clusterProfiler.” To
assess differences in tumor progression phenotypes, we compared
mDNAsi, mRNAsi, and TMB using ssgsea scores. Furthermore, we
collected signatures related to tumor stemness and utilized the
CancerSEA database (http://biocc.hrbmu.edu.cn/CancerSEA) to
categorize 14 distinct functional states of tumor cells, allowing us
to compare the differences in tumor progression phenotypes
between high and low scoring groups (16).

2.5 Expression and biological function of
key gene PTGES3 in lung cancer

We utilized the Curated Cancer Cell Atlas database to analyze the
expression of PTGES3 across various tumors using single-cell datasets.
The single-cell data from GSE117570, GSE127465, and GSE148071
were downloaded from the TISCH database, focusing on tumor tissue
data. For single-cell analysis, we employed the R package Seurat, using
quality control and cell annotation informed by the TISCH database
results. We identified differentially expressed genes among various cell
types using the FindAllMarkers function, showcasing the top 5 genes
with high and low expression for each cell type.

Based on the median expression level of the PTGES3 gene, all
cells were categorized into high and low expression groups, and
UMAP plots were generated to illustrate the grouping results.
Additionally, we conducted trajectory analysis using the R
package Slingshot to investigate the relationship between gene
expression and pseudotime. Enrichment analysis was performed
to further compare the participation of high and low PTGES3
expression groups in various biological processes.

2.6 Cell communication analysis

To further investigate the differences in cell communication
between high and low PTGES3 groups, we employed the R package
CellChat to analyze the information flow between these groups.
Additionally, we examined the tumor-cell interactions involving
PTGES3 and ZBTB7A using CellChat.

2.7 PTGES3 transcriptional regulation
analysis
This study utilized the SCENIC method, which includes co-

expression analysis using GENIE3 to construct a co-expression
network, motif enrichment analysis via RcisTarget to establish a
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regulon model, and activity evaluation through AUCell to assess
regulon activity in cells (17). This approach integrates cis-regulatory
sequence data with RNA sequencing, yielding a list of regulons
(transcription factors and target genes) and regulon activity scores
(RAS). The analysis helped identify upstream transcription factors
associated with PTGES3, which is linked to the cell cycle
and apoptosis.

The annotatePeak function from the ChIPseeker package
annotated the PTGES3 promoter’s transcription start site (TSS)
within the region tssRegion=c (-3000, 3000). The LUAD_ATAC
dataset is available from the NCI Genomic Data Commons(NCI
Genomic Data Commons).

2.8 ZBTB7A transcription factor analysis
upstream of PTGES3

The SCENIC method was employed to identify key regulatory
transcription factors, followed by intersection analysis with ATAC
data. In the NSCLC_GSE125465 single-cell dataset, the FeaturePlot
function from the Seurat package was utilized to visualize the
colocalization and correlation between ZBTB7A and PTGES3 in
tumor cells. Additionally, the interactions between ZBTB7A-
positive tumor subpopulations and other cell subsets were further
examined using CellChat, and the transcriptional activity of
ZBTB7A in different cell subsets with high and low PTGES3
expression was compared. Furthermore, Sangerbox (http://
www.sangerbox.com/tool) was used to analyze the expression
levels of ZBTB7A across various cancers (18).

2.9 Comparative analysis of genetic
mutations in PTGES3 and ZBTB7A

We utilized the online database Sparkle (https://grswsci.top) to
investigate the relationship between gene expression and specific
gene mutation types. To achieve this, we employed the coin package
in R and its independence_test function to conduct permutation
tests, thereby validating this association. Patients were classified into
mutant and wild-type groups based on their gene mutation status,
and differential analysis was performed using the limma package to
calculate the log2 fold change (log2FC) for each gene. We then
ranked the genes according to their log2FC values. Subsequently, we
conducted gene set enrichment analysis using the clusterProfiler
package, focusing on both the Hallmark gene set and the KEGG
metabolic gene set. The enrichment score (ES) for each gene set was
calculated, followed by significance testing and multiple hypothesis
testing of the ES values. Finally, we performed visualizations that
highlighted pathways with an adjusted p-value of less than 0.05.

2.10 Materials and reagents

The antibodies used in this study were as follows: anti-PTGES3
(1:2000, Signalway Antibody, #32773), anti-Bcl-2 (1:2000,
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TABLE 1 Clinicopathological features of 80 lung adenocarcinoma
patients in tissue microarray.

Characteristics N (%)

Age (years) <65 53 (66)
=265 27 (34)
Sex Females 31 (39)
Males 49 (61)
Tumor size <5 cm 60 (75)
>5 cm 20 (25)
Clinical stage I 2 (2.5)
1I 47 (58.8)
III 31 (38.7)
T stage T1 19 (23.8)
T2 43 (53.7)
T3 15 (18.7)
T4 3(3.8)
N stage NO 40 (50)
N1 15 (18.7)
N2 11 (13.8)
N3 14 (17.5)
M stage MO 79 (98.8)
M1 1(1.2)
Lymph node metastasis 8 (10)
Distant metastasis 0(0)

Proteintech, #12789-1-AP), anti-Bax (1:2000, Proteintech, #50599-
2-Ig), anti-Ki67 (1:5000, Proteintech, #27309-1-AP), anti-GPX4
(1:2000, Proteintech, #67763-1-Ig).Additionally, antibodies against
CDK4 (1:1000, Cell Signaling Technology, #12790), Cyclin D1
(1:1000, Cell Signaling Technology, #2978), and GAPDH (1:5000,
Cell Signaling Technology, #2118) were utilized. Fetal bovine serum
(FBS), Trypsin-EDTA (0.25%) solution, Pierce' " BCA Protein
Assay kit, RPMI 1640 medium, and FxCycle PI/RNase Staining
Solution were purchased from Thermo Fisher Scientific (Waltham,
MA, USA). Annexin V Apoptosis Detection kit and CCK-8 kit were
obtained from Abbkine (Wuhan, Hubei, China).

2.11 Immunohistochemistry based tissue
microarray

Tissue microarrays (TMAs) containing lung cancer and
adjacent non-cancerous tissues (Cat: HLugA180Su08) were
obtained from Shanghai Outdo Biotech Company (Shanghai,
China). The usage of this commercial TMA was approved by the
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Institutional Review Board of Shanghai Outdo Biotech Company
(No.SHYJS-CP-1904014), and the study was conducted in
accordance with the ethical principles of the Declaration of
Helsinki. The ethical approval documents are provided in
Supplementary Table 2. IHC was conducted to assess PTGES3
expression (dilution 1:4000). Scoring was performed by two
experienced pathologists, blinded to tissue identity, utilizing a
grading system based on staining intensity (0: none; 1: weak; 2:
moderate; 3: strong) and the percentage of positive-staining cells (1:
1-25%; 2: 26-50%; 3: 51-75%; 4: 76-100%). The final score was
calculated as intensity score multiplied by percentage score. The
clinicopathological features of lung cancer patients are summarized
in Table 1.

2.12 Cell lines and cell culture

The lung cancer cell lines (H1299 and A549) were obtained
from the Cell Bank of the Chinese Academy of Sciences (Shanghai,
China). H1299 and A549 cells were cultured in RPMI 1640
medium, which was supplemented with 10% fetal bovine serum,
100 U/mL penicillin, and 100 ug/mL streptomycin (Hyclone,
Logan, UT, USA) at 37 °C in a humidified atmosphere of 5% CO2.

2.13 Lentivirus transfection

Specific short hairpin RNAs (shRNAs) targeting PTGES3 and a
non-silencing control shRNA were designed and validated by OBiO
Technology (Shanghai, China). The shRNA sequences were: sh-
PTGES3-1: GGCTTAGTGTCGACTTCAATA; sh-PTGES3-2:
GAAGACAGTAAGGATGTTAAT; sh-PTGES3-3: CGAAGG
GACTATGTCTTCATT; sh-Ctrl: CCTAAGGTTAAGTCGC
CCTCG. Lentiviral particles containing these shRNAs were
transfected into H1299 and A549 cells at a multiplicity of
infection (MOI) of 10 for 6-8 hours. Following transfection, the
medium was replaced with fresh culture medium and the cells were
co-cultured for an additional 72 hours. Stable cell lines were then
selected using puromycin and used for subsequent experiments.

2.14 Western blot analysis

Western blot analysis was performed as described in our
previous publication (19). Proteins were extracted using
standard procedures, and concentrations were measured with a
BCA Protein Assay Kit (Beyotime, Shanghai, China). Equal
amounts of protein were loaded onto a 10% gel for
electrophoresis and transferred to a PVDF membrane. After
blocking, membranes were incubated with primary (1:1000) and
secondary antibodies (1:5000), and protein bands were detected
using an ECL imager (Bio-Rad, Hercules, CA, USA). All
procedures followed our established protocols.
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2.15 Cell viability assay

Cells were transfected and were reseeded into 96-well plates at a
density of 0.2x10-5 cells/well and cultured for 24, 48, 72, 96, 120
hours and 10 pL of CCK-8 solution was added to each well and was
incubated at 37 °C for 2 hours in an incubator with 5% CO2 in the
dark. Subsequently, the absorbance was measured at 450 nm using a
microplate reader (Thermo Fisher Scientific; Carlsbad, CA, USA).

2.16 Colony formation assay

Cells were transfected and reseeded into 12-well plates at a
density of 500 cells/well and cultured at 37°C in an atmosphere of
5% CO2 for 8-10 days. At the end of the experiment, the cells were
fixed with 4% paraformaldehyde for 15 min and then stained with
0.1% crystal violet for 15-20 min, followed by washing with PBS.
The number of colonies was counted.

2.17 Cell cycle and apoptosis assay

Cells were transfected and reseeded into 6-well plates at a
density of 1.0 x 1075 cells/well, then cultured for 72 hours. For
the cell cycle assay, cells were collected, fixed with 70% ethanol at
4°C overnight, centrifuged at 2000 rpm for 3 min, washed, and
incubated with FxCycle PI/RNase Staining Solution for 30 min at
room temperature. Cell cycle progression was analyzed by FACS
(Becton Dickinson, CA, USA) using Modfit LT v3.0 (Verity
Software House). For the apoptosis assay, cells were washed with
PBS and incubated with an Annexin-V Apoptosis Detection Kit for
15 min, and the apoptotic rate was analyzed via FACS.

2.18 Dual luciferase reporter assay

We obtained the overexpression ZBTB7A plasmids and the
PTGES3 mutant and wild-type plasmids from Miao-Ling Plasmid
(China) and transfected them following the manufacturer’s
instructions. The reagents for the dual luciferase reporter assay
were purchased from Yeasen (Shanghai, China), and the
transfection and detection were carried out according to the
provided protocols.

2.19 RNA sequencing

Stable knockdown transformants were sent to CapitalBio
Technology for transcriptome sequencing. RNA was extracted
using TRIzol, and the concentration was measured with a
Nanodrop ND-2000, with integrity assessed using an Agilent
Bioanalyzer 4150, yielding values between 9.1 and 9.6. Sequencing
libraries were prepared following the ABclonal mRNA-seq Lib Prep
Kit protocol. The purified cDNA libraries were sequenced on the
MGISEQ-T7 platform. KEGG analyses identified enriched
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pathways and altered biological processes resulting from
the knockdown.

2.20 Xenograft experiments in nude mice

Male BALB/c nude mice (6-8 weeks, 20 + 2 g) were obtained
from Shanghai SLAC Laboratory Animal Co. Ltd. and housed at
Fujian University of Traditional Chinese Medicine. All animal
procedures complied with ARRIVE guidelines and the National
Research Council’s Guide for the Care and Use of Laboratory
Animals. The experimental protocol was approved by the Animal
Care and Use Committee of Fujian University of Traditional
Chinese Medicine (approval no. FJ/TCM IACUC 2022174). H1299
cells were transfected with sh-Ctrl and sh-PTGES3, then injected
subcutaneously (1x1076 cells in 100 pL PBS with 50% Matrigel)
into the flanks of nude mice (n=6). Tumor volume was measured
every other day with a vernier caliper using the formula: (larger
diameter x smaller diameter?)/2.

2.21 Statistical analysis

Data analyses and presentations were conducted using R
software (version 4.3.1) and Python (version 3.10.11). Results are
expressed as mean * standard deviation. Student’s t-test or Mann-
Whitney U test was used for two-group comparisons, while one-
way ANOVA or Kruskal-Wallis H test was used for multiple group
comparisons. Kaplan-Meier survival differences were assessed with
the log-rank test. Statistical significance was defined as P < 0.05. Part
of the flow chart was drawn on the online Platform GDP (BioGDP -
Generic Diagramming Platform for Biomedical Graphics) (20).

3 Results

3.1 To construct a prognostic gene
signature for LUAD patients

To construct a prognostic gene signature for LUAD patients,
TCGA_LUAD and GSE42127 were used for differential gene
analysis, and the merged cohort was formed. Survival analysis
was performed for the differentially expressed genes, and the
results were presented as univariate regression forest plots of
TCGA_LUAD prognosis (Figure 2A) and GSE42127 prognosis
(Figure 2B), respectively. By intersection analysis of the COX
regression results of the two datasets, genes that were either risk
genes or protective genes in the two datasets were selected, resulting
in the identification of 28 risk genes and 0 protective genes for
machine learning modeling (Figure 2C).

We used an integrated program based on machine learning
to develop a prognostic LS score using the expression profiles of
28 differential genes related to prognosis. The TCGA dataset was
used as the training set, while the remaining datasets served as
the validation set. We employed ten machine learning
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FIGURE 2

A prognostic gene signature for LUAD patients. (A) Results of univariate prognostic regression analysis of TCGA-LUAD. (B) Results of univariate
prognostic regression analysis of GSE42127. (C) Univariate prognostic regression analysis results combining TCGA-LUAD and GSE42127. (D) TCGA
data were used as the training set, with other datasets as validation sets. Ten machine learning algorithms and various combinations were employed
to construct prognostic models, with the obtained C-indexes displayed. (E) Twenty-eight genes were modeled using RSF, highlighting their
importance. (F) Survival analysis for the training dataset TCGA-LUAD. (G) Evaluation of the random forest model’s prognostic prediction capability in
the training set using the ROC curve. (H) Time-dependent ROC curve. (I) Survival analysis of the GSE42127 validation set. (J) Survival analysis of the

merged cohort validation set.

algorithms and their combinations to construct prognostic
models, calculating the C-indexes (Figure 2D). The results
showed that the RSF (random survival forest) algorithm had
the best performance. We then modeled the RSF for these 28
genes and illustrated the importance of the genes (Figure 2E).
Survival analysis in the training set TCGA-LUAD (Figure 2F)
demonstrated that patients with higher LS scores had a worse

Frontiers in Immunology

07

prognosis. Additionally, the ROC curve was utilized to evaluate
the prognostic prediction ability of the random forest model,
with results indicating that the AUC value exceeded 0.9
(Figures 2G, H), confirming good predictive performance.
Prognostic analysis in the validation set GSE42127 and the
merged cohorts further validated that patients with higher LS

scores had a worse prognosis (Figures 21, J).

frontiersin.org



https://doi.org/10.3389/fimmu.2025.1651270
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ruan et al.

3.2 RSF model interpretation

SHAP analysis was conducted on the RSF model, revealing the
distribution of SHAP values for key characteristic genes
(Figure 3A), which underscores the influence of different genes
on model predictions. The top five influential genes identified were
KRT6A, PERP, SEC61G, PTTGI, and PTGES3. The relationship
between the feature values of these genes and their corresponding
SHAP values is illustrated in the SHAP dependence plot
(Figure 3B). Higher SHAP values correlate with an increased
probability of poor prognosis, with KRT6A demonstrating the
most significant impact; its expression level positively influences
poor prognosis likelihood. While PTGES3 appears to exert a
protective effect at lower expression levels, increased expression of
PTGES3 is associated with a greater negative impact on prognosis.

Using DepMap data analysis, we evaluated the effects of gene
knockdown on cell viability using the “Gene Effect” metric. A
negative Gene Effect value typically indicates that a gene is
essential for cell survival, with smaller negative values reflecting a
greater importance for cell viability. The ridge plot (Figure 3C)
illustrates the distribution of effects for key genes, the majority of
which show negative values, indicating a strong association with
tumor growth. Positions further to the left on the plot correlate with
a more pronounced inhibitory effect on cell proliferation following
gene knockout. Interestingly, the expression levels of these key
genes increased with stage progression (Figure 3D).

In analyzing the relationships between these key genes, immune
cell infiltration, and drug sensitivity, we found that high expression
of KRT6A was positively correlated with the infiltration of specific
immune cell types. Conversely, PTGES3 exhibited complex
correlations across various immune cell infiltrates, showing
positive correlations with effector and exhausted T cells, while
demonstrating negative correlations with CD4+ T cells and NK
cells (Figure 3E). Drug sensitivity analysis indicated that high
KRT6A expression may correlate with sensitivity to gefitinib,
whereas PTGES3 may confer resistance to TGX221 (Figure 3F).

3.3 Correlation between LS score and
clinicopathological features of LUAD
patients

Comparative analyses with respect to variables such as sex, T
stage, N stage, M stage, and clinical stage showed significant
associations between the low-score group and the high-score
group (Figures 4A-E). In addition, when we compared the rates
of somatic mutations in significantly mutated genes (SMGs)
according to score group, mutations in TP53 (47% vs. 38%), TTN
(47% vs. 37%), and MUCI16 (41% vs. 36%) were more prevalent in
the high-score group (Figures 4F, G).

Further examination of the differentially expressed genes
between the low-score group and the high-score group
(Figure 4H) showed that these genes may be involved in the
regulation of tumor cell growth, migration, metastasis, and drug
resistance. The significantly differentially expressed genes included
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NPAP1, MTCL1, TRERF1, and TEX15. Univariate and multivariate
regression analyses of the LS score suggested that it was an
independent predictor of prognosis (Figures 41, J).

3.4 Differences in tumor biology between
patients with high and low scores

To explore the molecular classification of patients based on our
scoring system, we first performed correlation analysis between the
score and all genes, identifying the top 50 genes that were positively
and negatively correlated (Figures 5A, B). Following this correlation
analysis, (Figure 5C) GSEA enrichment analysis revealed that the
high-score group activated pathways associated with androgen
response, hypoxia, and glycolysis, while inhibiting the unfolded
protein response. (Figure 5D) Patients in the high-score group
exhibited increased activation of various metabolic activities and a
reduced response to drugs, which may be linked to drug resistance.

We also evaluated mDNAsi and mRNAsi, which are indicators
related to cell stemness, reflecting changes in mRNA and DNA
expression profiles associated with stemness. Results revealed that
the high-score group exhibited a higher level of tumor stemness
phenotype (Figures 5E, F) alongside an increased tumor mutational
burden (TMB) (Figure 5G). Additionally, the stemness-related
signature score was significantly elevated in the high-score group
(Figure 5H). Moreover, ssGSEA was utilized for scoring, revealing
that the high-score group was positively correlated with phenotypes
that promote tumor progression, such as angiogenesis, apoptosis,
cell cycle, and epithelial-mesenchymal transition (Figure 5I).
Finally, the oncoPredict package was employed to predict drug
sensitivity for patients in the high-score group who have poor
prognosis, with lower IC50 values indicating higher sensitivity
(Supplementary Figure 1A); for instance, docetaxel and lapatinib
may be effective treatments for these high-score patients.

3.5 Functional exploration of PTGES3 in
lung cancer

PTGES3 plays a significant role in lung cancer. This study
further investigates the function of PTGES3 in tumors. PTGES3 is
ubiquitously expressed in various tumor cells and the tumor
microenvironment (Figure 6A), demonstrating notably high
expression levels in lung cancer studies (Figure 6B).
Dimensionality reduction analysis of single-cell data revealed
distinct cell clustering (Figure 6C) and highlighted the top five
genes with both high and low expression in each cell type
(Figure 6D), with PTGES3 showing high expression across
multiple cell subsets (Figure 6E).

Furthermore, we categorized the samples into two groups based
on the expression levels of PTGES3 to assess its impact on each
subgroup. The results indicated significant changes in both tumor
cells and macrophages with elevated PTGES3 expression,
suggesting a potential close relationship between the two
(Figure 6F). Additionally, UMAP maps illustrating cell
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FIGURE 3

Key gene analysis of the LS model. (A) SHAP analysis of the RSF model revealed the distribution of SHAP values for the featured genes, highlighting
the varying impacts of different genes on model predictions. (B) The SHAP dependence plot illustrates the relationship between feature values and
SHAP values, identifying the top five genes that exert the greatest influence on predictions. (C) The Cancer Dependency Map (DepMap) analysis
assessed the effects of gene knockdown on cell viability and functionality. (D) Results indicate that the expression of key genes increases with tumor
progression. (E) We also analyzed the association between the top ten genes and immune cell infiltration in lung adenocarcinoma. (F) Finally, the
relationship between gene expression levels and IC50 values of anticancer drugs was assessed, revealing a positive correlation that suggests high
gene expression may contribute to resistance against these drugs.

enrichment analysis of the differentially expressed genes between
the high and low expression groups demonstrated that elevated

distributions for the high and low expression groups are presented
separately (Figure 6G). Cell trajectory analysis of PTGES3
PTGES3 expression was closely associated with biological processes
such as the cell cycle and endoplasmic reticulum stress (Figure 6I).

expression revealed that higher levels of gene expression were
associated with increased cell maturity (Figure 6H). Finally,
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FIGURE 4

Relationship between model score and clinical factors in patients. (A) Association between model score and gender. (B) Correlation between model
score and T stage. (C) Relationship between model score and N stage. (D) Relationship between model score and M stage. (E) Association between
model score and overall stage. (F) Gene mutation status in the high-score group. (G) Differences in gene mutation profiles between the low-score
group. (H) Comparative analysis of gene mutations between high and low-score groups. (I) Univariate analysis indicating that model score is an
independent prognostic factor. (J) Multivariate regression analysis confirming that model score serves as an independent prognostic factor.
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FIGURE 5

Differences in tumor biology between patients with high and low scores. (A) The correlation analysis between the model score and all genes,
respectively, showed the positively correlated top50 genes using heat maps. (B) Expression levels of inversely correlated top 50 genes. (C) GESA
enrichment analysis was employed to examine the differences in enriched pathways between high and low score groups. (D) GESA enrichment
analysis was utilized to compare the metabolic enrichment differences between high and low score groups. (E) mDNAsi expression differences and
correlation between high and low score groups. (F) Differences in mRNAsi expression and correlation between high and low score groups.

(G) Differences in expression and correlation between scores in high and low score groups and tumor mutational burden. (H) Differences in
stemness between high and low score groups. () to compare the differences of tumor phenotypic indicators between high and low score groups.
*p<0.05 **p<0.01 *** p<0.001
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FIGURE 6

Functional exploration of PTGES3 in lung cancer. (A) Gene expression analysis across multiple tumor single-cell datasets, showing that PTGES3 is
universally expressed in both tumor cells and the tumor microenvironment. (B) Gene expression profiles for each single-cell dataset. (C)
Dimensionality reduction results of single-cell data, demonstrating cell clustering. (D) Identification of differentially expressed genes across various
cell types using the FindAllMarkers function, highlighting the top five genes with high and low expression levels within each cell type. (E) Additional
gene expression analysis in single-cell data. (F) Left panel shows high and low expression groups, while the right panel presents the proportion of
each cell type for each patient. (G) UMAP visualizations of cell distribution in high and low expression groups. (H) Cell trajectory analysis conducted
with the R package Slingshot, illustrating the relationship between gene expression and the proposed temporal sequence, indicating that more
mature cells exhibit higher gene expression. (I) Enrichment analysis of differential genes between high and low expression groups based on single-
cell data, performed using the R package clusterProfiler, with results presented separately for Biological Process (BP), Molecular Function (MF),
Cellular Component (CC), and KEGG pathways.
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3.6 Cell-to-cell communication analysis
reveals distinct communication pathways
associated with high and low expression of
PTGES3

Tumorigenesis is a complex and multistep process influenced
by numerous factors. Recent studies have underscored the
significance of intercellular communication in tumor evolution
(21, 22). In this study, the R package “CellChat” was used to
evaluate the interaction between cancer cells and immune cells in
patients with high and low PTGES3 expression (LS score). We
analyzed the number of cell interactions, interaction weights, and
the input (right) and output (left) signal intensities of various
signaling pathways (Figures 7A-F). The results indicated that the
strength of interactions between patients with high LS scores and
other cell subsets was significantly greater than that in patients with
low scores, particularly with macrophages and fibroblasts
(Figures 7G, H). This finding suggests that intercellular
communication within the immune response plays a crucial role
in facilitating immune cell infiltration in patients with high
LS scores.

Additionally, cell-to-cell communication analysis unveiled
specific communication pathways that exhibited high and low
score specificity. The information flow graph generated by
CellChat revealed a significant difference in signaling between the
high-score group (red) and the low-score group (green).
Specifically, the signaling pathways were notably more robust in
the high-score group (indicated in red text), while signaling in the
low-score group was more pronounced in green text; no significant
differences in signaling were observed in the black text (Figure 7I).
We further examined ligand-receptor interactions associated with
enhanced LS signaling (Figure 7]). The results demonstrated that
the interaction between VEGFA and its receptor was significantly
heightened in the high PTGES3 expression state (P < 0.01),
suggesting that the VEGF signaling pathway may promote tumor
angiogenesis. Moreover, the interaction between SPP1 and CD44
highlights its potential role in facilitating cell adhesion and
migration, which may contribute to tumor metastasis. The
observed trend of increased interactions between HLA molecules
and CD8+ T cells indicates a potential immunosuppressive
mechanism, consistent with the results of tumor phenotype
assessments. Overall, the enhanced signaling pathways and
cellular interactions identified in this study provide a foundation
for future functional studies and potential therapeutic targets.

3.7 PTGES3 upstream transcriptional
regulation analysis

We first employed the SCENIC method to identify key
transcription factors. By reconstructing gene regulatory networks
and analyzing single-cell RNA sequencing data, we identified
significantly active transcription factors. SCENIC integrates cis-
regulatory sequence information with RNA sequencing data,
yielding transcription factor lists (including their enriched target
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gene sets) and transcription factor activity scores (RAS) for each
cell. Utilizing the enhanced SCENIC method, we distinguished
different cell types and PTGES3 expression levels based on
transcription factor activity in UMAP maps (Figure 8A).
Furthermore, using transcription factor data from pySCENIC, we
predicted regulatory transcription factors upstream of
PTGES3 (Figure 8B).

Previous studies indicate a close relationship between PTGES3 and
the cell cycle (23). Consequently, we investigated transcription factors
involved in regulating both the cell cycle and apoptosis based on the
results of the improved SCENIC analysis (Figures 8C, D, Supplementary
Table 1). Additionally, we analyzed the heatmap showing correlations
between different transcription factors (TFs) and ATAC peaks in LUAD
(Figure 8E). Combining these TFs with participants in the cell cycle and
apoptosis pathways suggested that ZBTB7A may serve as a key
regulatory TF (Figure 8F). Therefore, we further analyzed the
correlation between them and found that there was a negative
correlation between them in multiple data sets, so there may be a
regulatory relationship between them (Figure 8G-J).Additionally, the
activity of the ZBTB7A transcription factor varied significantly between
PTGES3 high and low expression groups across different cell subsets
(Figure 8K). Moreover, we confirmed the regulatory effects of the two by
dual luciferase reporter assay (Supplementary Figure 3G).

To further explore the relationship between ZBTB7A and
PTGES3, we examined the expression distribution of ZBTB7A
across cell subpopulations after annotating the single-cell dataset
NSCLC_GSE127465 (Supplementary Figures 2A, B). Building on
this, we explored the expression level of ZBTB7A across pan-cancer
types (Supplementary Figure 2C) and analyzed interactions
between ZBTB7A+ and ZBTB7A- tumor cells (Supplementary
Figures 2D-G). Remarkably, ZBTB7A+ tumor cells displayed
stronger interactions with macrophages than with other cell
types. Furthermore, the interaction between LGALS9 and its
associated proteins (P4HB and CD44) with ZBTB7A was
particularly significant, especially between LGALS9 and P4HB
(Supplementary Figures 2H-K). As a key chaperone protein,
P4HB is involved in protein folding and quality control during
endoplasmic reticulum stress and is closely linked to ferroptosis.
The interaction between P4HB and LGALS9 may significantly
impact the survival, proliferation, and migration of tumor cells.

3.8 PTGES3 expression in tumors and
mechanistic validation

PTGES3 was found to be highly expressed in LUAD tissues
(Figure 9A), and its expression was summarized alongside the
clinicopathological features of lung cancer patients
(Supplementary Table 2). Stable cell lines were constructed
(Figure 9B), and CCK-8 and colony formation assays confirmed
that the knockdown of PTGES3 inhibited cell proliferation
(Figures 9C, D, Supplementary Figures 3A, B). These findings
were further validated through animal experiments (Figures 9E, F,
Supplementary Figures 3C, D). Enrichment analysis revealed a close
association between PTGES3 and the cell cycle, which was further
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validated by Western blot analysis showing its impact on key cell
cycle proteins (Figures 9G, H). Flow cytometry results
demonstrated that knockdown of PTGES3 inhibited cell cycle
progression (Figure 9I). Additionally, our investigations showed
that PTGES3 also played a role in cell apoptosis, with Western blot
analysis confirming its effect on apoptosis-related proteins
(Figures 9], K). Flow cytometry results indicated that PTGES3
knockdown increased the proportion of apoptotic cells
(Figure 9L). Moreover, the histochemical results of the tumors
further confirmed the above results at the protein level (Figure 9M).

Furthermore, we analyzed the pathway differences among
various cell types in the positive and negative PTGES3 expression
groups using single-cell RNA sequencing data from GSE127465
(Supplementary Figure 3E). We observed that high PTGES3
expression was closely associated with ferroptosis. We observed
that high levels of PTGES3 expression were strongly associated with
ferroptosis. Furthermore, cellular RNA sequencing data indicated
that PTGES3 knockdown led to an enrichment of cell cycle
pathways (Supplementary Figure 3F). Interaction analyses
revealed that PTGES3+ tumor cells exhibited stronger direct
interactions with macrophages compared to other cell types
(Supplementary Figures 4A-E). Notably, the interactions between
LGALS9 and its associated proteins (P4HB and CD44) with
PTGES3+ also played a significant role, particularly the
interaction between LGALS9 and P4HB, which was markedly
stronger (Supplementary Figures 4F-H). Therefore, ZBTB7A may
regulate the functions of macrophages and tumor cells via PTGES3.
Additionally, the interplay among LGALS9, P4HB, and CD44 may
enhance this regulatory effect. Through these signaling interactions,
the cells can establish a complex network that significantly
influences the immune status of the tumor microenvironment
and tumor progression.

In our upstream genomic mutation analysis of PTGES3, we
investigated the relationship between the ZBTB7A transcription
factor and PTGES3. Our findings indicated that ZBTB7A was
closely associated with mutations in TP53, CSMD3, KRAS, and
ZFHX4 (Supplementary Figure 5A). Conversely, PTGES3 exhibited
a strong correlation with mutations in CSMD3 and KEAPI
(Supplementary Figure 5B). Through an examination of several
key mutations and their interrelatedness, we discovered that
mutations in CSMD3 and KEAP1 significantly influenced their
expression levels (Supplementary Figures 5C, D), while TP53
mutations were found to impact ZBTB7A expression.
Importantly, we noted that these mutations did not exert a
significant effect on PTGES3 expression (Supplementary
Figure 5E). We further explored the implications of these
mutations on tumor dynamics. Both CSMD3 mutations and
PTGES3 exhibited similar effects on the cell cycle and the
unfolded protein response (Supplementary Figure 5F), while
KEAPI mutations also influenced the cell cycle and a variety of
metabolic activities (Supplementary Figure 5G). Therefore, in
populations with CSMD3 mutations, the aberrant expression
of ZBTB7A and PTGES3 appears to be associated with
tumor progression.
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4 Discussion

In our study, we identified 28 differentially expressed genes
(DEGs) associated with prognosis and developed a set of consensus
prognostic survival scores (LS scores) utilizing machine learning
algorithms; this scoring system demonstrated strong predictive
capability for overall survival at 1, 3, and 5 years (Figure 2G).
Furthermore, analysis of the patient demographics in the high-score
and low-score groups revealed that patients in the high-score group
had a poorer prognosis (Figure 2J), which was closely linked to
clinical progression indicators (Figures 4A-E). Notably, male
patients tended to have higher scores, aligning with the findings
of previous enrichment analyses. In addition, the prevalence of
mutations in genes such as TP53, TTN, and MUC16 was
significantly higher in the high-score group compared to the low-
score group (Figures 4F, G), which corroborates prior studies
indicating that TP53 mutations are strongly associated with poor
prognosis in lung adenocarcinoma (24-26). Moreover, most of the
differentially expressed genes between the two mutation groups
were linked to tumor progression; for instance, NPAPI is associated
with potential molecular features, prognostic indicators, and
possible therapeutic targets for neuroendocrine neoplasms (NEN)
(27), while MTCLLI is closely related to the stemness of colorectal
cancer and TRERFI is associated with the progression of human
breast cancer and resistance to tamoxifen (28, 29). Finally, in terms
of treatment response, both docetaxel and lapatinib may exhibit
sensitivity and efficacy in patients with high scores
(Supplementary Figure 1A).

The two types of patients exhibited significant differences in
tumor behavior. In the high-score group, tumor phenotypes
displayed distinct characteristics, with positive correlations
observed among various phenotypes related to tumor progression
(Figure 5I), such as angiogenesis, apoptosis, cell cycle regulation,
and epithelial-mesenchymal transition, all of which align with their
poor prognosis. Notably, a comprehensive analysis of information
flow revealed that multiple signaling pathways were significantly
enhanced in the PTGES3 high expression group (Figures 71, J). For
instance, the pronounced interaction between VEGFA and its
receptors, VEGFR1 and VEGFR?2, indicates that VEGF signaling
may facilitate tumor angiogenesis in patients with high survival
scores, thereby supplying essential nutrients and oxygen for tumor
growth (30). Furthermore, the significant interaction between SPP1
and CD44 suggests its pivotal role in cell adhesion and migration,
subsequently promoting tumor cell metastasis (31). These findings
underscore that PTGES3 could serve as a valuable predictor for
treatment selection, providing a crucial basis for developing more
effective treatment strategies, particularly in the management of
patients with LUAD.

In the construction of the survival score (LS score), we
performed an interpretable SHAP analysis, highlighting the
significance of key genes including KRT6A, PERP, SEC61G,
PTTG1, and PTGES3(Figure 3A). Among these, KRT6A
exhibited the highest contribution to the model, with its increased
expression closely associated with poor prognosis. Studies indicate a

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1651270
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Ruan et al.

significant correlation between KRT6A expression and factors such
as tumor lymph node metastasis, TNM staging, and smoking
history in non-small cell lung cancer (NSCLC) patients (32). It is
suggested that KRT6A may influence cancer biology by promoting
stem cell-like features, with regulatory mechanisms of G6PD
expression potentially involving LSD1 and MYC signaling
pathways (33, 34). These findings provide new perspectives on
KRT6A as a potential driver and prognostic biomarker in NSCLC.
Additionally, research on LUAD has revealed that individuals
carrying the PERP-428CC genotype face a higher risk
of developing lung cancer, as its CAT/GR expression is
downregulated through the PTEN/MDM?2/p53 signaling pathway
(35). Tumor cells with low PERP activity have demonstrated the
potential of PERP overexpression to inhibit cancer cell growth and
enhance sensitivity to chemotherapy (36). Furthermore, SEC61G
shows promise in predicting response to targeted therapy and
immunotherapy among LUAD patients and plays a critical role in
brain metastases and immune evasion in NSCLC (37, 38). Silencing
PTTGL effectively inhibits cell proliferation and migration while
promoting apoptosis (39, 40).

PTGES3 may initially exhibit a protective effect on prognosis;
however, its increased expression later appears to correlate with
adverse prognostic outcomes, mirroring the trends observed in
expression changes and tumor staging. Through in vitro and in vivo
experiments (Figures 9C-F), we validated that high PTGES3
expression is associated with enhanced tumor proliferation,
inhibited apoptosis, and promoted cell cycle progression.
Additionally, we explored potential upstream transcriptional
regulators of PTGES3. By utilizing SCENIC in conjunction with
ATAC-seq data, we identified ZBTB7A as a key regulatory
transcription factor for PTGES3 (Figure 8F). ZBTB7A is a
transcriptional repressor belonging to the POZ/BTB and Kriippel
(POK) transcription factor family (41, 42). In LUAD, ZBTB7A
expression is relatively low and correlates with poor prognosis,
Notably, approximately 6% of ZBTB7A genes in LUAD exhibit
mutations, including loss-of-function mutations (43). Furthermore,
reduced expression of ZBTB7A can activate signaling pathways
associated with tumor progression, such as AXL, PVT1, and ELK1,
indicating a potential tumor suppressor function in LUAD (43).
Consistent with our findings, both ZBTB7A and PTGES3 are
influenced by the same mutation, CSMD3 (Supplementary
Figure 5C), which also impacts the regulation of the cell cycle.
Furthermore, numerous pieces of evidence indicate a negative
correlation between ZBTB7A and PTGES3. In addition, the
positive outcome of the dual luciferase reporter assay further
reinforces regulatory relationship between these two factors.

Interestingly, HP1Y, a protein that recognizes dimethylated and
trimethylated histone 3 at lysine 9 (H3K9me2/3), is one of the most
frequently amplified and overexpressed histone methylation
recognition proteins in human LUAD (43). Research indicates
that HP1y can downregulate transcriptional repression to
modulate ZBTB7A expression, subsequently upregulating
multiple oncogenic factors such as AXL, PVTI1, and ELKI. This
suggests that PTGES3 might serve as a critical downstream protein
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impacted by these changes, providing a theoretical basis for
targeting patients with limited treatment options in LUAD.
Despite providing valuable insights into the clinical significance
of LS score characteristics, our study recognizes several limitations.
Firstly, the analyses primarily relied on retrospective data,
highlighting the necessity for future research to validate the
clinical relevance of our findings. Given the complexity of LUAD
and its diverse histological phenotypes, comprehensive mechanistic
investigations and clinical studies are essential for a deeper
exploration of the score’s role across different LUAD subtypes.
Moreover, although we validated the differential gene expression of
PTGES3 between LUAD and precancerous samples using tissue
microarrays, further verification at the protein level for other key
genes remains to be conducted. While we confirmed the impact of
PTGES3 on tumor growth through in vitro and in vivo experiments
and explored its principal upstream regulatory factors, a more
detailed investigation into specific mechanisms will be necessary
in future studies. Additionally, our LS score model lacks validation
through Phase III randomized controlled trials to support its
decision-making capabilities. Therefore, conducting high-quality,
well-powered, multicenter randomized controlled trials with
adequate follow-up is a critical step for substantiating our results.

5 Conclusion

In conclusion, our findings suggest that LS score may serve as a
valuable prognostic indicator for patients with lung
adenocarcinoma (LUAD), with PTGES3 identified as a potential
key therapeutic target. However, further research is needed to
address the aforementioned limitations, thereby enhancing the
validity and applicability of our results. Future studies will
contribute to the verification of the clinical utility of LS score and
PTGES3 across different LUAD subtypes and promote the
development of more personalized treatment strategies.
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