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Machine learning integration
with multi-omics data
constructs a robust prognostic
model and identifies PTGES3
as a therapeutic target for
precision oncology in
lung adenocarcinoma
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and Yi-ming Zeng1,6*
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Fujian, China, 2Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Putian
University, Putian, Fujian, China, 3Department of Urology, The Affiliated Hospital of Putian University,
Putian, China, 4Center for Vascular Surgery and Interventional Oncology, Fujian Provincial Hospital,
Fuzhou University Affiliated Provincial Hospital, Fuzhou, China, 5Department of Oncology, Fujian
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Background: Lung adenocarcinoma is the most prevalent lung cancer type, with

a 5-year survival rate for advanced patients below 20%. This study aims to

develop a risk model to guide treatment for these patients.

Materials andmethods: RNA-seq data from TCGA and GEOwere analyzed using

Cox regression and 10 machine learning algorithms to identify prognostic genes

and stratify patients. Single-cell datasets were integrated to examine PTGES3’s

role in tumor progression, with SCENIC and ATAC-seq revealing its

transcriptional regulators. PTGES3 expression was evaluated via tissue

microarray immunohistochemistry. Functional assays (CCK-8, colony

formation, flow cytometry, Western blot) after lentiviral knockdown in lung

cancer cells assessed its effects on proliferation, apoptosis, and cell cycle.

ZBTB7A was validated as a transcriptional regulator of PTGES3 by dual-

luciferase reporter assay, and xenograft models in nude mice evaluated tumor

growth in vivo.

Results: Our analysis identified 28 key genes, classifying lung adenocarcinoma

samples into high-score and low-score groups. Patients in the high-score group

showed worse prognoses, linked to clinical stage progression and phenotypes

like angiogenesis and epithelial-mesenchymal transition. PTGES3 knockdown

inhibited tumor growth, leading to cell cycle arrest and increased apoptosis.

ZBTB7A was identified as a key regulator of PTGES3, while interactions among
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LGALS9, P4HB, and CD44 significantly impacted signaling pathways influencing

the tumor microenvironment’s immune status.

Conclusions: Our findings highlight the potential of LS score-based molecular

subtyping to improve treatment strategies for lung adenocarcinoma and

emphasize PTGES3’s role in new therapeutic development.
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1 Introduction

Lung cancer represents the most prevalent type of cancer

globally, with lung adenocarcinoma (LUAD) being the most

common subtype, accounting for approximately 40% of all lung

cancer cases (1). Despite significant advancements in diagnostic and

therapeutic modalities, the prognosis for lung cancer patients

remains concerning—particularly for those with metastatic

LUAD, whose five-year survival rate is less than 20% (2, 3).

Moreover, the incidence and mortality rates associated with lung

cancer continue to rise, accompanied by increasing challenges

related to drug resistance and low overall response rates (4). This

situation underscores the urgent need to explore and identify

biomarkers that may predict the efficacy of targeted therapies and

immunotherapies for LUAD, as well as to investigate their

underlying mechanisms (5). Such efforts could provide valuable

targets and a theoretical framework for drug design and informed

clinical decision-making.

In this study, we aimed to elucidate the relationship between the

molecular characteristics of LUAD and patient prognosis. Through

a systematic analysis of RNA-seq data from the TCGA and GEO

databases, we identified 28 differentially expressed genes that are

significantly associated with LUAD prognosis. The selection of

these key genes was based on Cox regression analysis combined

with the comprehensive application of ten machine learning

methods, which ensured the reliability and accuracy of the

prognostic markers identified. Building on this foundation, we

developed a prognostic scoring system, termed the LS score,

which effectively reflects patient survival outcomes. Our analysis

of the LS score allowed for the categorization of LUAD patients into
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high-score and low-score groups. The results demonstrated

significant differences in clinical characteristics between these two

molecular subtypes. Patients in the high-score group generally faced

a more unfavorable prognosis and exhibited strong correlations

with various tumor biological behaviors, including angiogenesis,

cell cycle regulation, and epithelial-mesenchymal transition. This

classification not only aids in the identification of prognostic risk

among patients but also serves as a foundation for the development

of tailored clinical treatment strategies.

We particularly focused on the key gene PTGES3 within our

model, which has been recognized as a prognostic biomarker in

multiple cancers, including breast cancer, ovarian cancer,

glioblastoma, and liver cancer (6–9). PTGES3 also plays an

important role in immune regulation in LUAD (10, 11). Our

analyses assessed the role of PTGES3 in tumor progression,

demonstrating its relationship with cell cycle and apoptosis,

which were further corroborated by both in vitro and in vivo

experiments. Additionally, we investigated the key upstream

transcription factor ZBTB7A along with the significant upstream

mutations CSMD3 and KEAP1 that influence PTGES3 expression.

In terms of cell communication, LGALS9, P4HB, and CD44 may

interact within signaling pathways involving the transcription factor

ZBTB7A and its target gene PTGES3 in tumor cells and

macrophages. This interaction may subsequently impact the

immune status of the tumor microenvironment and influence

tumor progression. The whole research process is shown

in Figure 1.
2 Materials and methods

2.1 Data sources

We obtained data from TCGA-LUAD and GSE42127, which

were sourced from the UCSC-XENA and GEO databases,

respectively. After applying the “combat” method to mitigate

batch effects, these datasets were merged to form a new cohort

referred to as the Merge cohort. To further validate the correlation

between ZBTB7A and PTGES3, we utilized GSE11969, GSE19188,

and GSE72094. Additionally, we accessed single-cell data

(GSE117570, GSE127465, GSE148071) from the TISCH database
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(http://tisch.comp-genomics.org/) to analyze tumor tissue (12),

resulting in a dataset comprising 36,096 genes across 111,138

cells. Single-cell analysis was conducted using the Seurat R

package, with quality control and cell annotation performed

based on the information from the TISCH database. Furthermore,

we curated data from the Cancer Cell Atlas database (https://

www.weizmann.ac.il/sites/3CA/) to investigate PTGES3

expression across various tumor cell datasets (13).
2.2 Machine learning to establish LS score
prognostic model

We employed several integrative machine learning algorithms,

including Lasso, Ridge, Elastic Net (Enet), Random Forest (RF),

Stepwise Generalized Linear Model (Stepglm), Generalized Boosted

Regression Modeling (GBM), Support Vector Machine (SVM),

Extreme Gradient Boosting (XGBoost), glmBoost, and Naive Bayes.

We paired these ten algorithms to create a variety of combinations of

machine learning algorithms. The TCGA data served as the training set,

while the GSE42127 andmerged cohort data were utilized for validation.

To construct the prognostic model, the C-index for each model was

calculated as themean across the three datasets. Detailed information on

various combinations can be found in Supplementary Table 1.

We utilized the R package pROC to generate ROC curves and

calculate the area under the curve (AUC) for different models,

assessing the predictive strength of genes in disease occurrence.

Additionally, we performed survival analysis using the R packages

“survival” and “survminer.”To elucidate the selected genes, we applied
Frontiers in Immunology 03
SHAP (SHapley Additive exPlanations) methods to interpret the

model output. SHAP, based on game theory, explains the output of

any machine learning model by evaluating the significance of features

on output changes when combined with others.
2.3 Effect analysis of knockdown genes in
the DepMap database

In the DepMap database (14), Gene Effect refers to the impact of

interference operations, such as gene knockout or knockdown, on

cell viability. A negative Gene Effect indicates that the gene is

essential for cell survival; specifically, knockout of this gene

adversely affects cell proliferation. Furthermore, a smaller Gene

Effect value suggests a greater necessity of that gene, indicating its

critical role in cell survival and function, as well as a higher level of

dependency by the cell.

We utilized the GSCA database (https://guolab.wchscu.cn/

GSCA/#/) to analyze the relationships between the top 10 genes

from the prognostic model, immune infiltration, and drug

sensitivity (15).
2.4 Clinical and molecular features of
patients with high and low LS scores

We analyzed the relationship between LS scores calculated by

the RSF random forest method and clinical-pathological features.

The “Maftools” package was used to analyze gene mutations in
FIGURE 1

The work flow diagram of this study.
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high-scoring and low-scoring groups. Additionally, we created

heatmaps of chemokines and immune cell-related genes for each

scoring group using the “pheatmap” R package. Univariate and

multivariate regression analyses were conducted to evaluate the

prognostic impact of LS scores.

In terms of molecular characteristics, we performed a correlation

analysis between model scores and all genes, presenting the results via

heatmaps. Based on the correlation analysis results, we conducted

GSEA enrichment analysis using the R package “clusterProfiler.” To

assess differences in tumor progression phenotypes, we compared

mDNAsi, mRNAsi, and TMB using ssgsea scores. Furthermore, we

collected signatures related to tumor stemness and utilized the

CancerSEA database (http://biocc.hrbmu.edu.cn/CancerSEA) to

categorize 14 distinct functional states of tumor cells, allowing us

to compare the differences in tumor progression phenotypes

between high and low scoring groups (16).
2.5 Expression and biological function of
key gene PTGES3 in lung cancer

We utilized the Curated Cancer Cell Atlas database to analyze the

expression of PTGES3 across various tumors using single-cell datasets.

The single-cell data from GSE117570, GSE127465, and GSE148071

were downloaded from the TISCH database, focusing on tumor tissue

data. For single-cell analysis, we employed the R package Seurat, using

quality control and cell annotation informed by the TISCH database

results. We identified differentially expressed genes among various cell

types using the FindAllMarkers function, showcasing the top 5 genes

with high and low expression for each cell type.

Based on the median expression level of the PTGES3 gene, all

cells were categorized into high and low expression groups, and

UMAP plots were generated to illustrate the grouping results.

Additionally, we conducted trajectory analysis using the R

package Slingshot to investigate the relationship between gene

expression and pseudotime. Enrichment analysis was performed

to further compare the participation of high and low PTGES3

expression groups in various biological processes.
2.6 Cell communication analysis

To further investigate the differences in cell communication

between high and low PTGES3 groups, we employed the R package

CellChat to analyze the information flow between these groups.

Additionally, we examined the tumor-cell interactions involving

PTGES3 and ZBTB7A using CellChat.
2.7 PTGES3 transcriptional regulation
analysis

This study utilized the SCENIC method, which includes co-

expression analysis using GENIE3 to construct a co-expression

network, motif enrichment analysis via RcisTarget to establish a
Frontiers in Immunology 04
regulon model, and activity evaluation through AUCell to assess

regulon activity in cells (17). This approach integrates cis-regulatory

sequence data with RNA sequencing, yielding a list of regulons

(transcription factors and target genes) and regulon activity scores

(RAS). The analysis helped identify upstream transcription factors

associated with PTGES3, which is linked to the cell cycle

and apoptosis.

The annotatePeak function from the ChIPseeker package

annotated the PTGES3 promoter’s transcription start site (TSS)

within the region tssRegion=c (–3000, 3000). The LUAD_ATAC

dataset is available from the NCI Genomic Data Commons(NCI

Genomic Data Commons).
2.8 ZBTB7A transcription factor analysis
upstream of PTGES3

The SCENIC method was employed to identify key regulatory

transcription factors, followed by intersection analysis with ATAC

data. In the NSCLC_GSE125465 single-cell dataset, the FeaturePlot

function from the Seurat package was utilized to visualize the

colocalization and correlation between ZBTB7A and PTGES3 in

tumor cells. Additionally, the interactions between ZBTB7A-

positive tumor subpopulations and other cell subsets were further

examined using CellChat, and the transcriptional activity of

ZBTB7A in different cell subsets with high and low PTGES3

expression was compared. Furthermore, Sangerbox (http://

www.sangerbox.com/tool) was used to analyze the expression

levels of ZBTB7A across various cancers (18).
2.9 Comparative analysis of genetic
mutations in PTGES3 and ZBTB7A

We utilized the online database Sparkle (https://grswsci.top) to

investigate the relationship between gene expression and specific

gene mutation types. To achieve this, we employed the coin package

in R and its independence_test function to conduct permutation

tests, thereby validating this association. Patients were classified into

mutant and wild-type groups based on their gene mutation status,

and differential analysis was performed using the limma package to

calculate the log2 fold change (log2FC) for each gene. We then

ranked the genes according to their log2FC values. Subsequently, we

conducted gene set enrichment analysis using the clusterProfiler

package, focusing on both the Hallmark gene set and the KEGG

metabolic gene set. The enrichment score (ES) for each gene set was

calculated, followed by significance testing and multiple hypothesis

testing of the ES values. Finally, we performed visualizations that

highlighted pathways with an adjusted p-value of less than 0.05.
2.10 Materials and reagents

The antibodies used in this study were as follows: anti-PTGES3

(1:2000, Signalway Antibody, #32773), anti-Bcl-2 (1:2000,
frontiersin.org
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Proteintech, #12789-1-AP), anti-Bax (1:2000, Proteintech, #50599-

2-Ig), anti-Ki67 (1:5000, Proteintech, #27309-1-AP), anti-GPX4

(1:2000, Proteintech, #67763-1-Ig).Additionally, antibodies against

CDK4 (1:1000, Cell Signaling Technology, #12790), Cyclin D1

(1:1000, Cell Signaling Technology, #2978), and GAPDH (1:5000,

Cell Signaling Technology, #2118) were utilized. Fetal bovine serum

(FBS), Trypsin-EDTA (0.25%) solution, Pierce™ BCA Protein

Assay kit, RPMI 1640 medium, and FxCycle PI/RNase Staining

Solution were purchased from Thermo Fisher Scientific (Waltham,

MA, USA). Annexin V Apoptosis Detection kit and CCK-8 kit were

obtained from Abbkine (Wuhan, Hubei, China).
2.11 Immunohistochemistry based tissue
microarray

Tissue microarrays (TMAs) containing lung cancer and

adjacent non-cancerous tissues (Cat: HLugA180Su08) were

obtained from Shanghai Outdo Biotech Company (Shanghai,

China). The usage of this commercial TMA was approved by the
Frontiers in Immunology 05
Institutional Review Board of Shanghai Outdo Biotech Company

(No.SHYJS-CP-1904014), and the study was conducted in

accordance with the ethical principles of the Declaration of

Helsinki. The ethical approval documents are provided in

Supplementary Table 2. IHC was conducted to assess PTGES3

expression (dilution 1:4000). Scoring was performed by two

experienced pathologists, blinded to tissue identity, utilizing a

grading system based on staining intensity (0: none; 1: weak; 2:

moderate; 3: strong) and the percentage of positive-staining cells (1:

1-25%; 2: 26-50%; 3: 51-75%; 4: 76-100%). The final score was

calculated as intensity score multiplied by percentage score. The

clinicopathological features of lung cancer patients are summarized

in Table 1.
2.12 Cell lines and cell culture

The lung cancer cell lines (H1299 and A549) were obtained

from the Cell Bank of the Chinese Academy of Sciences (Shanghai,

China). H1299 and A549 cells were cultured in RPMI 1640

medium, which was supplemented with 10% fetal bovine serum,

100 U/mL penicillin, and 100 mg/mL streptomycin (Hyclone,

Logan, UT, USA) at 37 °C in a humidified atmosphere of 5% CO2.
2.13 Lentivirus transfection

Specific short hairpin RNAs (shRNAs) targeting PTGES3 and a

non-silencing control shRNA were designed and validated by OBiO

Technology (Shanghai, China). The shRNA sequences were: sh-

PTGES3-1: GGCTTAGTGTCGACTTCAATA; sh-PTGES3-2:

GAAGACAGTAAGGATGTTAAT; sh-PTGES3-3: CGAAGG

GACTATGTCTTCATT; sh-Ctrl: CCTAAGGTTAAGTCGC

CCTCG. Lentiviral particles containing these shRNAs were

transfected into H1299 and A549 cells at a multiplicity of

infection (MOI) of 10 for 6–8 hours. Following transfection, the

medium was replaced with fresh culture medium and the cells were

co-cultured for an additional 72 hours. Stable cell lines were then

selected using puromycin and used for subsequent experiments.
2.14 Western blot analysis

Western blot analysis was performed as described in our

previous publication (19). Proteins were extracted using

standard procedures, and concentrations were measured with a

BCA Protein Assay Kit (Beyotime, Shanghai, China). Equal

amounts of protein were loaded onto a 10% gel for

electrophoresis and transferred to a PVDF membrane. After

blocking, membranes were incubated with primary (1:1000) and

secondary antibodies (1:5000), and protein bands were detected

using an ECL imager (Bio-Rad, Hercules, CA, USA). All

procedures followed our established protocols.
TABLE 1 Clinicopathological features of 80 lung adenocarcinoma
patients in tissue microarray.

Characteristics N (%)

Age (years) <65 53 (66)

≥65 27 (34)

Sex Females 31 (39)

Males 49 (61)

Tumor size ≤5 cm 60 (75)

>5 cm 20 (25)

Clinical stage I 2 (2.5)

II 47 (58.8)

III 31 (38.7)

T stage T1 19 (23.8)

T2 43 (53.7)

T3 15 (18.7)

T4 3 (3.8)

N stage N0 40 (50)

N1 15 (18.7)

N2 11 (13.8)

N3 14 (17.5)

M stage M0 79 (98.8)

M1 1 (1.2)

Lymph node metastasis 8 (10)

Distant metastasis 0 (0)
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2.15 Cell viability assay

Cells were transfected and were reseeded into 96-well plates at a

density of 0.2×10–5 cells/well and cultured for 24, 48, 72, 96, 120

hours and 10 μL of CCK-8 solution was added to each well and was

incubated at 37 ˚C for 2 hours in an incubator with 5% CO2 in the

dark. Subsequently, the absorbance was measured at 450 nm using a

microplate reader (Thermo Fisher Scientific; Carlsbad, CA, USA).
2.16 Colony formation assay

Cells were transfected and reseeded into 12-well plates at a

density of 500 cells/well and cultured at 37°C in an atmosphere of

5% CO2 for 8–10 days. At the end of the experiment, the cells were

fixed with 4% paraformaldehyde for 15 min and then stained with

0.1% crystal violet for 15–20 min, followed by washing with PBS.

The number of colonies was counted.
2.17 Cell cycle and apoptosis assay

Cells were transfected and reseeded into 6-well plates at a

density of 1.0 × 10^5 cells/well, then cultured for 72 hours. For

the cell cycle assay, cells were collected, fixed with 70% ethanol at

4°C overnight, centrifuged at 2000 rpm for 3 min, washed, and

incubated with FxCycle PI/RNase Staining Solution for 30 min at

room temperature. Cell cycle progression was analyzed by FACS

(Becton Dickinson, CA, USA) using Modfit LT v3.0 (Verity

Software House). For the apoptosis assay, cells were washed with

PBS and incubated with an Annexin-V Apoptosis Detection Kit for

15 min, and the apoptotic rate was analyzed via FACS.
2.18 Dual luciferase reporter assay

We obtained the overexpression ZBTB7A plasmids and the

PTGES3 mutant and wild-type plasmids from Miao-Ling Plasmid

(China) and transfected them following the manufacturer’s

instructions. The reagents for the dual luciferase reporter assay

were purchased from Yeasen (Shanghai, China), and the

transfection and detection were carried out according to the

provided protocols.
2.19 RNA sequencing

Stable knockdown transformants were sent to CapitalBio

Technology for transcriptome sequencing. RNA was extracted

using TRIzol, and the concentration was measured with a

Nanodrop ND-2000, with integrity assessed using an Agilent

Bioanalyzer 4150, yielding values between 9.1 and 9.6. Sequencing

libraries were prepared following the ABclonal mRNA-seq Lib Prep

Kit protocol. The purified cDNA libraries were sequenced on the

MGISEQ-T7 platform. KEGG analyses identified enriched
Frontiers in Immunology 06
pathways and altered biological processes resulting from

the knockdown.
2.20 Xenograft experiments in nude mice

Male BALB/c nude mice (6–8 weeks, 20 ± 2 g) were obtained

from Shanghai SLAC Laboratory Animal Co. Ltd. and housed at

Fujian University of Traditional Chinese Medicine. All animal

procedures complied with ARRIVE guidelines and the National

Research Council’s Guide for the Care and Use of Laboratory

Animals. The experimental protocol was approved by the Animal

Care and Use Committee of Fujian University of Traditional

Chinese Medicine (approval no. FJTCM IACUC 2022174). H1299

cells were transfected with sh-Ctrl and sh-PTGES3, then injected

subcutaneously (1×10^6 cells in 100 μL PBS with 50% Matrigel)

into the flanks of nude mice (n=6). Tumor volume was measured

every other day with a vernier caliper using the formula: (larger

diameter × smaller diameter²)/2.
2.21 Statistical analysis

Data analyses and presentations were conducted using R

software (version 4.3.1) and Python (version 3.10.11). Results are

expressed as mean ± standard deviation. Student’s t-test or Mann-

Whitney U test was used for two-group comparisons, while one-

way ANOVA or Kruskal-Wallis H test was used for multiple group

comparisons. Kaplan-Meier survival differences were assessed with

the log-rank test. Statistical significance was defined as P < 0.05. Part

of the flow chart was drawn on the online Platform GDP (BioGDP -

Generic Diagramming Platform for Biomedical Graphics) (20).
3 Results

3.1 To construct a prognostic gene
signature for LUAD patients

To construct a prognostic gene signature for LUAD patients,

TCGA_LUAD and GSE42127 were used for differential gene

analysis, and the merged cohort was formed. Survival analysis

was performed for the differentially expressed genes, and the

results were presented as univariate regression forest plots of

TCGA_LUAD prognosis (Figure 2A) and GSE42127 prognosis

(Figure 2B), respectively. By intersection analysis of the COX

regression results of the two datasets, genes that were either risk

genes or protective genes in the two datasets were selected, resulting

in the identification of 28 risk genes and 0 protective genes for

machine learning modeling (Figure 2C).

We used an integrated program based on machine learning

to develop a prognostic LS score using the expression profiles of

28 differential genes related to prognosis. The TCGA dataset was

used as the training set, while the remaining datasets served as

the validation set. We employed ten machine learning
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algorithms and their combinations to construct prognostic

models, calculating the C-indexes (Figure 2D). The results

showed that the RSF (random survival forest) algorithm had

the best performance. We then modeled the RSF for these 28

genes and illustrated the importance of the genes (Figure 2E).

Survival analysis in the training set TCGA-LUAD (Figure 2F)

demonstrated that patients with higher LS scores had a worse
Frontiers in Immunology 07
prognosis. Additionally, the ROC curve was utilized to evaluate

the prognostic prediction ability of the random forest model,

with results indicating that the AUC value exceeded 0.9

(Figures 2G, H), confirming good predictive performance.

Prognostic analysis in the validation set GSE42127 and the

merged cohorts further validated that patients with higher LS

scores had a worse prognosis (Figures 2I, J).
FIGURE 2

A prognostic gene signature for LUAD patients. (A) Results of univariate prognostic regression analysis of TCGA-LUAD. (B) Results of univariate
prognostic regression analysis of GSE42127. (C) Univariate prognostic regression analysis results combining TCGA-LUAD and GSE42127. (D) TCGA
data were used as the training set, with other datasets as validation sets. Ten machine learning algorithms and various combinations were employed
to construct prognostic models, with the obtained C-indexes displayed. (E) Twenty-eight genes were modeled using RSF, highlighting their
importance. (F) Survival analysis for the training dataset TCGA-LUAD. (G) Evaluation of the random forest model’s prognostic prediction capability in
the training set using the ROC curve. (H) Time-dependent ROC curve. (I) Survival analysis of the GSE42127 validation set. (J) Survival analysis of the
merged cohort validation set.
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3.2 RSF model interpretation

SHAP analysis was conducted on the RSF model, revealing the

distribution of SHAP values for key characteristic genes

(Figure 3A), which underscores the influence of different genes

on model predictions. The top five influential genes identified were

KRT6A, PERP, SEC61G, PTTG1, and PTGES3. The relationship

between the feature values of these genes and their corresponding

SHAP values is illustrated in the SHAP dependence plot

(Figure 3B). Higher SHAP values correlate with an increased

probability of poor prognosis, with KRT6A demonstrating the

most significant impact; its expression level positively influences

poor prognosis likelihood. While PTGES3 appears to exert a

protective effect at lower expression levels, increased expression of

PTGES3 is associated with a greater negative impact on prognosis.

Using DepMap data analysis, we evaluated the effects of gene

knockdown on cell viability using the “Gene Effect” metric. A

negative Gene Effect value typically indicates that a gene is

essential for cell survival, with smaller negative values reflecting a

greater importance for cell viability. The ridge plot (Figure 3C)

illustrates the distribution of effects for key genes, the majority of

which show negative values, indicating a strong association with

tumor growth. Positions further to the left on the plot correlate with

a more pronounced inhibitory effect on cell proliferation following

gene knockout. Interestingly, the expression levels of these key

genes increased with stage progression (Figure 3D).

In analyzing the relationships between these key genes, immune

cell infiltration, and drug sensitivity, we found that high expression

of KRT6A was positively correlated with the infiltration of specific

immune cell types. Conversely, PTGES3 exhibited complex

correlations across various immune cell infiltrates, showing

positive correlations with effector and exhausted T cells, while

demonstrating negative correlations with CD4+ T cells and NK

cells (Figure 3E). Drug sensitivity analysis indicated that high

KRT6A expression may correlate with sensitivity to gefitinib,

whereas PTGES3 may confer resistance to TGX221 (Figure 3F).
3.3 Correlation between LS score and
clinicopathological features of LUAD
patients

Comparative analyses with respect to variables such as sex, T

stage, N stage, M stage, and clinical stage showed significant

associations between the low-score group and the high-score

group (Figures 4A-E). In addition, when we compared the rates

of somatic mutations in significantly mutated genes (SMGs)

according to score group, mutations in TP53 (47% vs. 38%), TTN

(47% vs. 37%), and MUC16 (41% vs. 36%) were more prevalent in

the high-score group (Figures 4F, G).

Further examination of the differentially expressed genes

between the low-score group and the high-score group

(Figure 4H) showed that these genes may be involved in the

regulation of tumor cell growth, migration, metastasis, and drug

resistance. The significantly differentially expressed genes included
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NPAP1, MTCL1, TRERF1, and TEX15. Univariate and multivariate

regression analyses of the LS score suggested that it was an

independent predictor of prognosis (Figures 4I, J).
3.4 Differences in tumor biology between
patients with high and low scores

To explore the molecular classification of patients based on our

scoring system, we first performed correlation analysis between the

score and all genes, identifying the top 50 genes that were positively

and negatively correlated (Figures 5A, B). Following this correlation

analysis, (Figure 5C) GSEA enrichment analysis revealed that the

high-score group activated pathways associated with androgen

response, hypoxia, and glycolysis, while inhibiting the unfolded

protein response. (Figure 5D) Patients in the high-score group

exhibited increased activation of various metabolic activities and a

reduced response to drugs, which may be linked to drug resistance.

We also evaluated mDNAsi and mRNAsi, which are indicators

related to cell stemness, reflecting changes in mRNA and DNA

expression profiles associated with stemness. Results revealed that

the high-score group exhibited a higher level of tumor stemness

phenotype (Figures 5E, F) alongside an increased tumor mutational

burden (TMB) (Figure 5G). Additionally, the stemness-related

signature score was significantly elevated in the high-score group

(Figure 5H). Moreover, ssGSEA was utilized for scoring, revealing

that the high-score group was positively correlated with phenotypes

that promote tumor progression, such as angiogenesis, apoptosis,

cell cycle, and epithelial-mesenchymal transition (Figure 5I).

Finally, the oncoPredict package was employed to predict drug

sensitivity for patients in the high-score group who have poor

prognosis, with lower IC50 values indicating higher sensitivity

(Supplementary Figure 1A); for instance, docetaxel and lapatinib

may be effective treatments for these high-score patients.
3.5 Functional exploration of PTGES3 in
lung cancer

PTGES3 plays a significant role in lung cancer. This study

further investigates the function of PTGES3 in tumors. PTGES3 is

ubiquitously expressed in various tumor cells and the tumor

microenvironment (Figure 6A), demonstrating notably high

expression levels in lung cancer studies (Figure 6B).

Dimensionality reduction analysis of single-cell data revealed

distinct cell clustering (Figure 6C) and highlighted the top five

genes with both high and low expression in each cell type

(Figure 6D), with PTGES3 showing high expression across

multiple cell subsets (Figure 6E).

Furthermore, we categorized the samples into two groups based

on the expression levels of PTGES3 to assess its impact on each

subgroup. The results indicated significant changes in both tumor

cells and macrophages with elevated PTGES3 expression,

suggesting a potential close relationship between the two

(Figure 6F). Additionally, UMAP maps illustrating cell
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distributions for the high and low expression groups are presented

separately (Figure 6G). Cell trajectory analysis of PTGES3

expression revealed that higher levels of gene expression were

associated with increased cell maturity (Figure 6H). Finally,
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enrichment analysis of the differentially expressed genes between

the high and low expression groups demonstrated that elevated

PTGES3 expression was closely associated with biological processes

such as the cell cycle and endoplasmic reticulum stress (Figure 6I).
FIGURE 3

Key gene analysis of the LS model. (A) SHAP analysis of the RSF model revealed the distribution of SHAP values for the featured genes, highlighting
the varying impacts of different genes on model predictions. (B) The SHAP dependence plot illustrates the relationship between feature values and
SHAP values, identifying the top five genes that exert the greatest influence on predictions. (C) The Cancer Dependency Map (DepMap) analysis
assessed the effects of gene knockdown on cell viability and functionality. (D) Results indicate that the expression of key genes increases with tumor
progression. (E) We also analyzed the association between the top ten genes and immune cell infiltration in lung adenocarcinoma. (F) Finally, the
relationship between gene expression levels and IC50 values of anticancer drugs was assessed, revealing a positive correlation that suggests high
gene expression may contribute to resistance against these drugs.
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FIGURE 4

Relationship between model score and clinical factors in patients. (A) Association between model score and gender. (B) Correlation between model
score and T stage. (C) Relationship between model score and N stage. (D) Relationship between model score and M stage. (E) Association between
model score and overall stage. (F) Gene mutation status in the high-score group. (G) Differences in gene mutation profiles between the low-score
group. (H) Comparative analysis of gene mutations between high and low-score groups. (I) Univariate analysis indicating that model score is an
independent prognostic factor. (J) Multivariate regression analysis confirming that model score serves as an independent prognostic factor.
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FIGURE 5

Differences in tumor biology between patients with high and low scores. (A) The correlation analysis between the model score and all genes,
respectively, showed the positively correlated top50 genes using heat maps. (B) Expression levels of inversely correlated top 50 genes. (C) GESA
enrichment analysis was employed to examine the differences in enriched pathways between high and low score groups. (D) GESA enrichment
analysis was utilized to compare the metabolic enrichment differences between high and low score groups. (E) mDNAsi expression differences and
correlation between high and low score groups. (F) Differences in mRNAsi expression and correlation between high and low score groups.
(G) Differences in expression and correlation between scores in high and low score groups and tumor mutational burden. (H) Differences in
stemness between high and low score groups. (I) to compare the differences of tumor phenotypic indicators between high and low score groups.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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FIGURE 6

Functional exploration of PTGES3 in lung cancer. (A) Gene expression analysis across multiple tumor single-cell datasets, showing that PTGES3 is
universally expressed in both tumor cells and the tumor microenvironment. (B) Gene expression profiles for each single-cell dataset. (C)
Dimensionality reduction results of single-cell data, demonstrating cell clustering. (D) Identification of differentially expressed genes across various
cell types using the FindAllMarkers function, highlighting the top five genes with high and low expression levels within each cell type. (E) Additional
gene expression analysis in single-cell data. (F) Left panel shows high and low expression groups, while the right panel presents the proportion of
each cell type for each patient. (G) UMAP visualizations of cell distribution in high and low expression groups. (H) Cell trajectory analysis conducted
with the R package Slingshot, illustrating the relationship between gene expression and the proposed temporal sequence, indicating that more
mature cells exhibit higher gene expression. (I) Enrichment analysis of differential genes between high and low expression groups based on single-
cell data, performed using the R package clusterProfiler, with results presented separately for Biological Process (BP), Molecular Function (MF),
Cellular Component (CC), and KEGG pathways.
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3.6 Cell-to-cell communication analysis
reveals distinct communication pathways
associated with high and low expression of
PTGES3

Tumorigenesis is a complex and multistep process influenced

by numerous factors. Recent studies have underscored the

significance of intercellular communication in tumor evolution

(21, 22). In this study, the R package “CellChat” was used to

evaluate the interaction between cancer cells and immune cells in

patients with high and low PTGES3 expression (LS score). We

analyzed the number of cell interactions, interaction weights, and

the input (right) and output (left) signal intensities of various

signaling pathways (Figures 7A-F). The results indicated that the

strength of interactions between patients with high LS scores and

other cell subsets was significantly greater than that in patients with

low scores, particularly with macrophages and fibroblasts

(Figures 7G, H). This finding suggests that intercellular

communication within the immune response plays a crucial role

in facilitating immune cell infiltration in patients with high

LS scores.

Additionally, cell-to-cell communication analysis unveiled

specific communication pathways that exhibited high and low

score specificity. The information flow graph generated by

CellChat revealed a significant difference in signaling between the

high-score group (red) and the low-score group (green).

Specifically, the signaling pathways were notably more robust in

the high-score group (indicated in red text), while signaling in the

low-score group was more pronounced in green text; no significant

differences in signaling were observed in the black text (Figure 7I).

We further examined ligand-receptor interactions associated with

enhanced LS signaling (Figure 7J). The results demonstrated that

the interaction between VEGFA and its receptor was significantly

heightened in the high PTGES3 expression state (P < 0.01),

suggesting that the VEGF signaling pathway may promote tumor

angiogenesis. Moreover, the interaction between SPP1 and CD44

highlights its potential role in facilitating cell adhesion and

migration, which may contribute to tumor metastasis. The

observed trend of increased interactions between HLA molecules

and CD8+ T cells indicates a potential immunosuppressive

mechanism, consistent with the results of tumor phenotype

assessments. Overall, the enhanced signaling pathways and

cellular interactions identified in this study provide a foundation

for future functional studies and potential therapeutic targets.
3.7 PTGES3 upstream transcriptional
regulation analysis

We first employed the SCENIC method to identify key

transcription factors. By reconstructing gene regulatory networks

and analyzing single-cell RNA sequencing data, we identified

significantly active transcription factors. SCENIC integrates cis-

regulatory sequence information with RNA sequencing data,

yielding transcription factor lists (including their enriched target
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gene sets) and transcription factor activity scores (RAS) for each

cell. Utilizing the enhanced SCENIC method, we distinguished

different cell types and PTGES3 expression levels based on

transcription factor activity in UMAP maps (Figure 8A).

Furthermore, using transcription factor data from pySCENIC, we

predicted regulatory transcription factors upstream of

PTGES3 (Figure 8B).

Previous studies indicate a close relationship between PTGES3 and

the cell cycle (23). Consequently, we investigated transcription factors

involved in regulating both the cell cycle and apoptosis based on the

results of the improved SCENIC analysis (Figures 8C, D, Supplementary

Table 1). Additionally, we analyzed the heatmap showing correlations

between different transcription factors (TFs) and ATAC peaks in LUAD

(Figure 8E). Combining these TFs with participants in the cell cycle and

apoptosis pathways suggested that ZBTB7A may serve as a key

regulatory TF (Figure 8F). Therefore, we further analyzed the

correlation between them and found that there was a negative

correlation between them in multiple data sets, so there may be a

regulatory relationship between them (Figure 8G-J).Additionally, the

activity of the ZBTB7A transcription factor varied significantly between

PTGES3 high and low expression groups across different cell subsets

(Figure 8K).Moreover, we confirmed the regulatory effects of the two by

dual luciferase reporter assay (Supplementary Figure 3G).

To further explore the relationship between ZBTB7A and

PTGES3, we examined the expression distribution of ZBTB7A

across cell subpopulations after annotating the single-cell dataset

NSCLC_GSE127465 (Supplementary Figures 2A, B). Building on

this, we explored the expression level of ZBTB7A across pan-cancer

types (Supplementary Figure 2C) and analyzed interactions

between ZBTB7A+ and ZBTB7A- tumor cells (Supplementary

Figures 2D-G). Remarkably, ZBTB7A+ tumor cells displayed

stronger interactions with macrophages than with other cell

types. Furthermore, the interaction between LGALS9 and its

associated proteins (P4HB and CD44) with ZBTB7A was

particularly significant, especially between LGALS9 and P4HB

(Supplementary Figures 2H-K). As a key chaperone protein,

P4HB is involved in protein folding and quality control during

endoplasmic reticulum stress and is closely linked to ferroptosis.

The interaction between P4HB and LGALS9 may significantly

impact the survival, proliferation, and migration of tumor cells.
3.8 PTGES3 expression in tumors and
mechanistic validation

PTGES3 was found to be highly expressed in LUAD tissues

(Figure 9A), and its expression was summarized alongside the

c l in icopatho logica l features of lung cancer pat ients

(Supplementary Table 2). Stable cell lines were constructed

(Figure 9B), and CCK-8 and colony formation assays confirmed

that the knockdown of PTGES3 inhibited cell proliferation

(Figures 9C, D, Supplementary Figures 3A, B). These findings

were further validated through animal experiments (Figures 9E, F,

Supplementary Figures 3C, D). Enrichment analysis revealed a close

association between PTGES3 and the cell cycle, which was further
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FIGURE 7

Intercellular communication analysis revealing specific pathways linked to high and low expression of PTGES3. (A) Circle diagram illustrating the
number of interactions in the high expression group. (B) Scatter plots highlighting the distribution of efferent and afferent intensities in interactions
(high and low), showing the strength of interactions between different cell types in the high expression group. (C) Heat maps displaying the output
(left) and input (right) signal intensities of each signaling pathway in various cell types within the high expression group. (D) Number of interactions
among cells in the low expression group. (E) Scatter plots depicting the distribution of efferent and afferent intensities in interactions (high and low),
illustrating the strength of interactions between different cell types in the low expression group. (F) Heat maps showing the output (left) and input
(right) signal intensities of each signaling pathway in different cell types within the low expression group. (G) Comparison of the number of
interactions between different cell types in the high and low expression groups. (H) Bar graphs depicting the number and strength of interactions
among various cell types. (I) Bar chart representing the two states of “High” (red) and “Low” (cyan) to visually display information flow related to
different genes. (J) Bubble plots showcasing enhanced and attenuated ligand-receptor pairs in the low-score group.
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FIGURE 8

PTGES3 upstream transcriptional regulation analysis. (A) Expression of RAS-based single-cell UMAPs according to PTGES. (B) Prediction of
transcription factors upstream of PTGES3 using pySCENIC data. (C) Transcription factors involved in regulating the cell cycle. (D) Transcription
factors implicated in apoptosis regulation. (E) Heatmap showing the correlation between various transcription factors and ATAC peaks. (F) Venn
diagram illustrating the intersection of transcription factors that regulate PTGES3 cell cycle and apoptosis, as predicted by Chip analysis. (G) Scatter
plot of correlation between ZBTB7A and PTGES3 in GSE11969. (H) Scatter plot of correlation between GSE19188 ZBTB7A and PTGES3. (I) Scatter
plot of correlation between ZBTB7A and PTGES3 in GSE72094. (J) Scatter diagram of correlation between ZBTB7A and PTGES3 in TCGA. (K) Activity
of the ZBTB7A transcription factor varies between PTGES3 high and low expression groups within different cell subsets at the single-cell level.
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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FIGURE 9

PTGES3 expression in tumors and mechanistic validation. (A) PTGES3 protein expression was assessed in lung cancer tissues and non-cancerous
colorectal tissues via IHC. (B) Knockdown of PTGES3 in H1299 and A549 cells using three sh-PTGES3 sequences was verified by Western blot.
(C) The effect of PTGES3 knockdown on lung cancer cell growth was evaluated with a CCK-8 assay, normalizing to Day 1 viability. (D) Colony
formation analysis demonstrated reduced survival in cells with PTGES3 knockdown. (E, F) In vivo effects of PTGES3 knockdown on tumor growth
were studied in a xenograft nude mouse model. (G) The tumor subset enrichment analysis using single-cell sequencing data indicated a GSEA
enrichment analysis for samples with high PTGES3 expression. (H) Protein levels of Cyclin D1 and CDK4 were assessed in H1299 cells. (I) Flow
cytometry analysis revealed cell cycle changes in H1299 cells following PTGES3 knockdown. (J) enrichment analysis of tumor subsets from single-
cell sequencing data also suggested GSEA enrichment for samples with elevated PTGES3 expression. (K) The protein levels of Bax and Bcl-2 were
evaluated through Western blot analysis. (L) Flow cytometry analysis demonstrated alterations in apoptosis in H1299 cells with PTGES3 knockdown.
(M) The histochemical differences among various tumor groups for each index were illustrated. Statistical significance was indicated as P<0.05 for all
relevant comparisons. * p < 0.05.
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validated by Western blot analysis showing its impact on key cell

cycle proteins (Figures 9G, H). Flow cytometry results

demonstrated that knockdown of PTGES3 inhibited cell cycle

progression (Figure 9I). Additionally, our investigations showed

that PTGES3 also played a role in cell apoptosis, with Western blot

analysis confirming its effect on apoptosis-related proteins

(Figures 9J, K). Flow cytometry results indicated that PTGES3

knockdown increased the proportion of apoptotic cells

(Figure 9L). Moreover, the histochemical results of the tumors

further confirmed the above results at the protein level (Figure 9M).

Furthermore, we analyzed the pathway differences among

various cell types in the positive and negative PTGES3 expression

groups using single-cell RNA sequencing data from GSE127465

(Supplementary Figure 3E). We observed that high PTGES3

expression was closely associated with ferroptosis. We observed

that high levels of PTGES3 expression were strongly associated with

ferroptosis. Furthermore, cellular RNA sequencing data indicated

that PTGES3 knockdown led to an enrichment of cell cycle

pathways (Supplementary Figure 3F). Interaction analyses

revealed that PTGES3+ tumor cells exhibited stronger direct

interactions with macrophages compared to other cell types

(Supplementary Figures 4A-E). Notably, the interactions between

LGALS9 and its associated proteins (P4HB and CD44) with

PTGES3+ also played a significant role, particularly the

interaction between LGALS9 and P4HB, which was markedly

stronger (Supplementary Figures 4F-H). Therefore, ZBTB7A may

regulate the functions of macrophages and tumor cells via PTGES3.

Additionally, the interplay among LGALS9, P4HB, and CD44 may

enhance this regulatory effect. Through these signaling interactions,

the cells can establish a complex network that significantly

influences the immune status of the tumor microenvironment

and tumor progression.

In our upstream genomic mutation analysis of PTGES3, we

investigated the relationship between the ZBTB7A transcription

factor and PTGES3. Our findings indicated that ZBTB7A was

closely associated with mutations in TP53, CSMD3, KRAS, and

ZFHX4 (Supplementary Figure 5A). Conversely, PTGES3 exhibited

a strong correlation with mutations in CSMD3 and KEAP1

(Supplementary Figure 5B). Through an examination of several

key mutations and their interrelatedness, we discovered that

mutations in CSMD3 and KEAP1 significantly influenced their

expression levels (Supplementary Figures 5C, D), while TP53

mutations were found to impact ZBTB7A expression.

Importantly, we noted that these mutations did not exert a

significant effect on PTGES3 expression (Supplementary

Figure 5E). We further explored the implications of these

mutations on tumor dynamics. Both CSMD3 mutations and

PTGES3 exhibited similar effects on the cell cycle and the

unfolded protein response (Supplementary Figure 5F), while

KEAP1 mutations also influenced the cell cycle and a variety of

metabolic activities (Supplementary Figure 5G). Therefore, in

populations with CSMD3 mutations, the aberrant expression

of ZBTB7A and PTGES3 appears to be associated with

tumor progression.
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4 Discussion

In our study, we identified 28 differentially expressed genes

(DEGs) associated with prognosis and developed a set of consensus

prognostic survival scores (LS scores) utilizing machine learning

algorithms; this scoring system demonstrated strong predictive

capability for overall survival at 1, 3, and 5 years (Figure 2G).

Furthermore, analysis of the patient demographics in the high-score

and low-score groups revealed that patients in the high-score group

had a poorer prognosis (Figure 2J), which was closely linked to

clinical progression indicators (Figures 4A-E). Notably, male

patients tended to have higher scores, aligning with the findings

of previous enrichment analyses. In addition, the prevalence of

mutations in genes such as TP53, TTN, and MUC16 was

significantly higher in the high-score group compared to the low-

score group (Figures 4F, G), which corroborates prior studies

indicating that TP53 mutations are strongly associated with poor

prognosis in lung adenocarcinoma (24–26). Moreover, most of the

differentially expressed genes between the two mutation groups

were linked to tumor progression; for instance, NPAP1 is associated

with potential molecular features, prognostic indicators, and

possible therapeutic targets for neuroendocrine neoplasms (NEN)

(27), while MTCL1 is closely related to the stemness of colorectal

cancer and TRERF1 is associated with the progression of human

breast cancer and resistance to tamoxifen (28, 29). Finally, in terms

of treatment response, both docetaxel and lapatinib may exhibit

sensi t iv i ty and efficacy in pat ients with high scores

(Supplementary Figure 1A).

The two types of patients exhibited significant differences in

tumor behavior. In the high-score group, tumor phenotypes

displayed distinct characteristics, with positive correlations

observed among various phenotypes related to tumor progression

(Figure 5I), such as angiogenesis, apoptosis, cell cycle regulation,

and epithelial-mesenchymal transition, all of which align with their

poor prognosis. Notably, a comprehensive analysis of information

flow revealed that multiple signaling pathways were significantly

enhanced in the PTGES3 high expression group (Figures 7I, J). For

instance, the pronounced interaction between VEGFA and its

receptors, VEGFR1 and VEGFR2, indicates that VEGF signaling

may facilitate tumor angiogenesis in patients with high survival

scores, thereby supplying essential nutrients and oxygen for tumor

growth (30). Furthermore, the significant interaction between SPP1

and CD44 suggests its pivotal role in cell adhesion and migration,

subsequently promoting tumor cell metastasis (31). These findings

underscore that PTGES3 could serve as a valuable predictor for

treatment selection, providing a crucial basis for developing more

effective treatment strategies, particularly in the management of

patients with LUAD.

In the construction of the survival score (LS score), we

performed an interpretable SHAP analysis, highlighting the

significance of key genes including KRT6A, PERP, SEC61G,

PTTG1, and PTGES3(Figure 3A). Among these, KRT6A

exhibited the highest contribution to the model, with its increased

expression closely associated with poor prognosis. Studies indicate a
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significant correlation between KRT6A expression and factors such

as tumor lymph node metastasis, TNM staging, and smoking

history in non-small cell lung cancer (NSCLC) patients (32). It is

suggested that KRT6A may influence cancer biology by promoting

stem cell-like features, with regulatory mechanisms of G6PD

expression potentially involving LSD1 and MYC signaling

pathways (33, 34). These findings provide new perspectives on

KRT6A as a potential driver and prognostic biomarker in NSCLC.

Additionally, research on LUAD has revealed that individuals

carrying the PERP-428CC genotype face a higher risk

of developing lung cancer, as its CAT/GR expression is

downregulated through the PTEN/MDM2/p53 signaling pathway

(35). Tumor cells with low PERP activity have demonstrated the

potential of PERP overexpression to inhibit cancer cell growth and

enhance sensitivity to chemotherapy (36). Furthermore, SEC61G

shows promise in predicting response to targeted therapy and

immunotherapy among LUAD patients and plays a critical role in

brain metastases and immune evasion in NSCLC (37, 38). Silencing

PTTG1 effectively inhibits cell proliferation and migration while

promoting apoptosis (39, 40).

PTGES3 may initially exhibit a protective effect on prognosis;

however, its increased expression later appears to correlate with

adverse prognostic outcomes, mirroring the trends observed in

expression changes and tumor staging. Through in vitro and in vivo

experiments (Figures 9C-F), we validated that high PTGES3

expression is associated with enhanced tumor proliferation,

inhibited apoptosis, and promoted cell cycle progression.

Additionally, we explored potential upstream transcriptional

regulators of PTGES3. By utilizing SCENIC in conjunction with

ATAC-seq data, we identified ZBTB7A as a key regulatory

transcription factor for PTGES3 (Figure 8F). ZBTB7A is a

transcriptional repressor belonging to the POZ/BTB and Krüppel

(POK) transcription factor family (41, 42). In LUAD, ZBTB7A

expression is relatively low and correlates with poor prognosis,

Notably, approximately 6% of ZBTB7A genes in LUAD exhibit

mutations, including loss-of-function mutations (43). Furthermore,

reduced expression of ZBTB7A can activate signaling pathways

associated with tumor progression, such as AXL, PVT1, and ELK1,

indicating a potential tumor suppressor function in LUAD (43).

Consistent with our findings, both ZBTB7A and PTGES3 are

influenced by the same mutation, CSMD3 (Supplementary

Figure 5C), which also impacts the regulation of the cell cycle.

Furthermore, numerous pieces of evidence indicate a negative

correlation between ZBTB7A and PTGES3. In addition, the

positive outcome of the dual luciferase reporter assay further

reinforces regulatory relationship between these two factors.

Interestingly, HP1g, a protein that recognizes dimethylated and

trimethylated histone 3 at lysine 9 (H3K9me2/3), is one of the most

frequently amplified and overexpressed histone methylation

recognition proteins in human LUAD (43). Research indicates

that HP1g can downregulate transcriptional repression to

modulate ZBTB7A expression, subsequently upregulating

multiple oncogenic factors such as AXL, PVT1, and ELK1. This

suggests that PTGES3 might serve as a critical downstream protein
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impacted by these changes, providing a theoretical basis for

targeting patients with limited treatment options in LUAD.

Despite providing valuable insights into the clinical significance

of LS score characteristics, our study recognizes several limitations.

Firstly, the analyses primarily relied on retrospective data,

highlighting the necessity for future research to validate the

clinical relevance of our findings. Given the complexity of LUAD

and its diverse histological phenotypes, comprehensive mechanistic

investigations and clinical studies are essential for a deeper

exploration of the score’s role across different LUAD subtypes.

Moreover, although we validated the differential gene expression of

PTGES3 between LUAD and precancerous samples using tissue

microarrays, further verification at the protein level for other key

genes remains to be conducted. While we confirmed the impact of

PTGES3 on tumor growth through in vitro and in vivo experiments

and explored its principal upstream regulatory factors, a more

detailed investigation into specific mechanisms will be necessary

in future studies. Additionally, our LS score model lacks validation

through Phase III randomized controlled trials to support its

decision-making capabilities. Therefore, conducting high-quality,

well-powered, multicenter randomized controlled trials with

adequate follow-up is a critical step for substantiating our results.
5 Conclusion

In conclusion, our findings suggest that LS score may serve as a

valuable prognost ic indicator for pat ients with lung

adenocarcinoma (LUAD), with PTGES3 identified as a potential

key therapeutic target. However, further research is needed to

address the aforementioned limitations, thereby enhancing the

validity and applicability of our results. Future studies will

contribute to the verification of the clinical utility of LS score and

PTGES3 across different LUAD subtypes and promote the

development of more personalized treatment strategies.
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