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T cells play a dual role in various physiopathological states, capable of eliminating

tumors and infected cells, while also playing a pathogenic role when activated by

autoantigens, causing self-tissue damage. The regulation of T cell-peptide/major

histocompatibility complex (TCR-pMHC) recognition is crucial for maintaining

disease balance and treating cancer, infections, and autoimmune diseases.

Despite efforts, predictive models of TCR-pMHC specificity are still in the early

stages. Inspired by advances in protein structure prediction via deep neural

networks, we evaluated AlphaFold 3 (AF3)-based AI computation as a method to

predict TCR epitope specificity. We demonstrate that AlphaFold can model TCR-

pMHC interactions, distinguishing valid epitopes from invalid ones with

increasing accuracy. Immunogenic epitopes can be identified for vaccine

development through in silico high-throughput processes. Additionally, higher-

affinity and specific T cells can be designed to enhance therapy efficacy and

safety. An accurate TCR-pMHC prediction model is expected to greatly benefit

T-cell-mediated immunotherapy and aid drug design. Overall, precise prediction

of T-cell immunogenicity holds significant therapeutic potential, allowing the

identification of peptide epitopes linked to tumors, infections, and autoimmune

diseases. Although there is much work to be done before these predictions

achieve widespread practical use, we are optimistic that deep learning-based

structural modeling is a promising pathway for the generalizable prediction of

TCR-pMHC interactions.
KEYWORDS
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In-silico prediction of peptide-MHC
binding and TCR recognition

There are many previous interests and attempts about

predicting the antigen specificity in the T cell activity (1–19).

Models for standalone prediction of peptide and MHC binding

have existed for decades, such as NetMHC, NetMHCpan,

MHCflurry, IEDB-AR, SYFPEITHI, TEPITOPE, MixMHCpred,

DeepHLApan, PickPocket, MARIA, SMM, ARBO-MHC, HBond-

MHC, MHCnuggets, PepCNN, BigMHC (20), and so on (21)

(5, 21–30). Yet, for an assessment of antigen specificity and

immunogenicity, the precise interaction of a given TCR to its

corresponding pMHC complex should be further considered

(31–33). Although tools, such as NetTCR (34), IMRex (35),

ERGO (19), TEINet (36), AEPCAM (37), PanPep (18), pMTnet

(38), TEIM-Res (39), PISTE (7), BERTrand (40), BigMHC (20), and

HLAIImaster (41, 42), have been available, few models among them

are able to accurately predict the recognition of pMHC complexes

by T-cell receptors (TCRs) (31–33). The most precise method to

dissect TCR-pMHC interactions involve experimentally generating

X-ray crystallography structures, which is a time-consuming and

technically demanding process. The primary hurdle in accurately

predicting T-cell recognition of pMHC complexes lies in the

inherent difficulties of protein structure prediction for TCRs and

pMHC complexes. While numerous computational models

employing various mechanisms have been developed to predict

the structure of proteins like antibodies and TCRs, few of them have

achieved satisfactory results (31–33). With the advent of the AI/ML

era and models, many algorithms, such as AlphaFold 2 and

AlphaFold 3 (43, 44), RoseTTAFold/RFdiffusion (45, 46),

TrRosetta (47), HADDOCK (48), DeepFRI (49), CANDOCK

(50), and Boltz-2 (51), have brought major improvements to

predict protein structures and interactions. The accuracy of

computational modeling has greatly improved. We have leveraged

these advancements to explore AI/ML-driven computational

protein structure prediction. Using our current model system, we

can exploratively predict T-cell binding to pMHC complexes with

significantly higher docking precision, enhancing reliability and

biological relevance (14, 14, 31, 43–46, 52–58).
AI/ML-powered computational design
for predicting TCR-pMHC recognition

Computationally predicting TCR-pMHC interactions using AI/

ML approaches offers a rapid, accurate, and scalable alternative to

traditional experimental methods, thereby significantly facilitating

antigen discovery and immune response modeling. AF3 is a publicly

released model developed by DeepMind, trained extensively on

more than 120 million protein sequences from the UniProt

database and more than 2.2 million experimentally determined

protein structures from the Protein Data Bank (PDB). We utilized

the model as-is, without retraining or further fine-tuning. The

default hyperparameters provided by AlphaFold 3 were employed,
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including three cycles of recycling, a multiple sequence alignment

(MSA) depth of 256, and a template dropout rate of 15% (43, 44). A

comparative analysis of AF3 with other structure prediction tools

confirms that AF3 predictions outperform other tools in terms of

structural accuracy and reliability (59). The results present a

comparative analysis of TCR-pMHC recognition between the

experimentally determined x-ray crystallography structure and

AF3 computational predictions (Figure 1). The experimentally

resolved crystal structure of the TCR-pMHC complex is shown in

Figure 1A, serving as a reference for evaluating AF3 prediction

accuracy. The crystal structure offers detailed insights into the

spatial arrangement and interactions among the T-cell receptor

(TCR) and peptide-MHC molecules. AF3’s prediction of TCR

binding in the presence of peptide-MHC complex is shown in

Figure 1B. This prediction closely mirrors the crystal structure in

Figure 1A, demonstrating high accuracy in modeling the ternary

complex. This highlights AF3’s ability to effectively predict TCR-

pMHC interactions once the peptide is bound to the MHC groove.

Conversely, AF3’s prediction of TCR binding to MHC in the

absence of the same peptide (SLLMWITQC) is illustrated in

Figure 1C. This prediction does not align well with the expected

TCR binding conformation shown in Figure 1B. The reduced

predictive performance from the AF3-based model highlights the

importance of peptide presence for accurate binding predictions.

This suggests that the conformation of the peptide-MHC complex is

essential for accurate TCR interaction. The presence of the peptide

resulted in a higher predicted interface template modeling (ipTM)

score compared to its absence in AF3’s TCR-pMHC binding

prediction (ipTM = 0.92 vs. 0.54, respectively) in the advanced

protein structure prediction analysis, as shown in Figures 1B, D in

contrast to Figures 1C, E. These high TM-score values confirm

strong agreement between AF3 predictions and the crystal structure

for the TCR-pMHC complex. The results demonstrated that the

AF3-enabled approach reliably predicts TCR-pMHC interactions,

supported by a high correlation with crystal structures and

favorable TM-scores (Figures 1B, D). Instead, predictive accuracy

decreases notably without peptides (Figures 1C, E). A comparative

analysis in more TCR-pMHC binding structures assesses how

peptide presence influences TCR-pMHC binding, as reflected in

the ipTM values. In this analysis, the same set of 9 TCR-pMHC

complexes (60–67) were included under both conditions: one group

is the TCR-pMHC binding structure with peptides (+Peptides) and

the other without peptides (-Peptides). The results demonstrate that

the ipTM scores of TCR-pMHC binding structures with peptides

are significantly higher than those without peptides (two-sided

Wilcoxon tests, p-value =6e-04), as shown in Figure 1F. These

findings highlight the significance of achieving accurate TCR-

pMHC binding predictions with AF3.
Future perspectives and challenges

AI-driven T-cell-pMHC modeling holds significant potential for

drug discovery and clinical applications. However, a major hurdle in

the existing models is their inability to accurately predict T-cell
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recognition of its cognate antigen (68–70). Developing in-silico tools

to assess T-cell immunogenicity is crucial from both biological and

therapeutic standpoints. Computational identification and screening

of TCR specificity can greatly advance T-cell-related therapeutics,

such as T cell therapy and vaccines, enhancing efficacy and safety

(31–33, 40, 55, 68, 69, 71). A generalizable model of TCR-pMHC

interactions can significantly accelerate the identification of dominant

antigenic epitopes with high affinity for their respective MHC.

Improving predictions of TCR binding to the pMHC complex can

help fine-tune TCR affinity and address a key challenge in the field.

Accurate predictions of the T-cell-pMHC complex structure can

aid in designing agonistic or antagonistic peptide analogs to

stimulate tumor-specific or tolerize (auto)antigen-specific T cells
Frontiers in Immunology 03
(34, 48, 72–75). For vaccine design, an AI-enabled model can assist

in selecting suitable epitopes with strong immunogenicity, helping to

accurately identify and validate those capable of activating T cells

(76, 77). Moreover, accurate predictions of peptide-MHC interaction

are expected to enable more effective assessment of the risk of anti-

drug responses in patients, although current models often

overestimate the results (34, 72–74). Ultimately, we hope that such

a model will be able to predict T-cell functional activity in an

exploratory manner, thereby contributing to the development of

potential therapeutic strategies (Table 1).

While the pharmaceutical and biotech industries have leveraged AI

across various stages of drug discovery, primarily focusing on small

molecules and antibody drugs, the application of AI/ML and digital
FIGURE 1

The x-ray crystallography structure and AF3-based prediction of T cell-pMHC interaction. (A) The x-ray crystallography structure of TCR binding to
NY-ESO-1 derived peptide (SLLMWITQC)/HLA-A*02:01complexes (https://www.imgt.org/3Dstructure-DB/cgi/details.cgi?
pdbcode=2PYE&Part=JMOL#jmolvisu) (60). (B) AF3 prediction of the interaction between specific TCR and NY-ESO-1 derived peptide (SLLMWITQC)/
HLA-A*02:01 complexes. (C) AF3 prediction of NY-ESO-1-specific TCR binding to MHC molecules alone in the absence of its peptide epitope. (D) The
predicted aligned error (PAE) of AlphaFold score, ipTM=0.92, from (B). (E) PAE of AlphaFold score, ipTM=0.54, from (C). (F) A total of 9 TCR-pMHC
complexes (60–67) were included under both conditions: one group is the TCR-pMHC binding structure with peptides (+Peptides) and the other
without peptides (-Peptides). All complexes involved the same class I MHC molecule (HLA-A*02:01) presenting 9–10mer peptides. The ipTM scores of
the TCR-pMHC binding structure with peptides (+Peptides) are significantly higher than the TCR-pMHC binding structure without peptides(-Peptides),
two-sided Wilcoxon tests, p-value =6e-04.
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biology to T-cell therapeutics remains relatively limited (68, 69, 76). As

demonstrated by the results above, our advanced protein prediction

modeling approach enables accurate prediction of T-cell-pMHC

interactions, offering significant potential to enhance T-cell-mediated

therapies. Despite advancements, AI-assisted protein design and

protein-protein interactions (PPI) still face significant unresolved

challenges (Table 2). Tools like AF3, Rosetta, and Boltz-2 have

revolutionized protein engineering, yet several critical obstacles

remain, as outlined below. One major challenge is the limited

availability of high-quality data, especially for underrepresented

antigens, rare HLA alleles, and paired TCR alpha and beta chains

(42, 78–80). The lower the quality and quantity of training data

available to AI systems, the less reliable their predictions of binding

interactions become. Additionally, TCRs naturally exhibit a wide range

of binding affinities and can be polyspecific, making it difficult to train

models that accurately capture their complex interaction profiles

(43, 44, 46, 52, 58, 81). A further complication arises from protein

conformational dynamics. Proteins exist in multiple conformations;

they open, close, twist, and bend. These conformational changes

depend on factors such as temperature, pH, chemical environment,

and interactions with other molecules (31, 33, 55). Moreover, TCR

binding affinity alone is not sufficient to guarantee a functional

immune response. A robust response requires a complex interplay of

factors, including antigen processing and presentation, TCR binding,as

well as T cell activation, differentiation and the diseased

microenvironment (82–85). While AlphaFold can help discriminate

between correct and incorrect binding partners, it doesn’t directly

predict binding affinity in a quantitative way. Additional modeling

approaches, such as Rosetta, are required to calculate binding energy

changes, which can then be used to predict the effects of mutations on
Frontiers in Immunology 04
TCR affinity and correlate them with binding affinity. Ultimately, the

development of a reliable and high-throughput screening system is

essential for identifying effective therapeutic candidates in drug

discovery. While our exploratory model system is an initial step, we

aspire for it to drive future advancements in T-cell-based therapeutics.
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TABLE 1 Exploring three key facets of therapeutic applications for
accurate T cell–pMHC recognition prediction.

I. Predict the binding of peptide epitopes to their respective MHC

Screen and identify antigenic epitopes with potential strong immunogenicity for
vaccine discovery.

Tailor the interaction of peptide-MHC interaction for designated
therapeutic outcomes.

II. Envision the interaction of antigen-specific T cells with their
corresponding pMHC

Predict TCR specificity from disease-associated T cells for target identification in
T-cell therapy.

Improve therapeutic design by refining the T-cell affinity to enhance efficacy
of therapeutics.

Reduce unintended cross-reactivity/off-target effects to minimize off-target effects
for drug safety assessment.

III. Predict the Magnitude and Nature of T Cell Responses

Assess potential T cell responses to therapeutics, including both immunogenic
activation and inhibitory effects.

Evaluate patient risk in developing anti-drug immune responses.

Assess the neoantigen quality of tumors and the associated resistance to immune
checkpoint blockade therapy.
TABLE 2 The major challenges in predicting TCR immunogenicity
in silico.

I. Limited availability of diverse, high-quality data for training

Only a small fraction of potential TCR-ligand pairs available overall for
model training.

Data on a diverse array of epitopes binding to TCRs needs to be generated. Most
antigens reported to bind TCRs are viral, comprising the majority of TCR-
antigen pairs.

Current datasets are dominated by antigens presented by common HLA alleles,
with few under-represented HLA alleles included.

II. Focusing solely on peptide-MHC binding without considering
TCR interactions

A strong peptide-MHC interaction may be necessary for T cell activation, but it
is not sufficient to guarantee an immune response.

III. Focusing solely on the b-chain CDR3 loops of TCR sequence information

Both a and b chains contribute to antigen recognition and specificity.
Incorporating both chains improves predictive performance, but chain pairing
information is largely missing from current datasets.

IV. Lack of INFO about the polyspecificity of individual TCRs

TCRs can exhibit both specificity and promiscuity. Models that assume a given
TCR recognizes only a single cognate epitope oversimplify the complexity of
TCR-antigen interactions.

V. Stronger TCR binding affinity alone does not necessarily translate to a
stronger functional immune response

Robust predictions of TCR specificity require a complex interplay of factors,
including antigen processing and presentation, TCR binding, T cell activation,
differentiation, and the diseased microenvironment.

VI. The influence of thymic selection and self-peptide presentation
is overlooked

The naive immune repertoire formation is an under-explored area in TCR
specificity prediction. The high affinity or immunogenicity of TCR predicted may
not exist in periphery due to thymic deletion.

VII. Limitations in Direct Quantification of Binding Affinity Prediction

While AlphaFold can help discriminate between correct and incorrect binding
partners, it doesn’t directly predict binding affinity in a quantitative way.

VIII. The effect of hallucination of the AL/ML models will impact the
precision of Binding Affinity Prediction

The key factors, such as data quality, model regularization, fine-tuning, and
better supervision, contribute to hallucination in the AL/ML models during
binding affinity prediction.
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