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Background: Hypoxia is a hallmark of the colorectal cancer (CRC) tumor

microenvironment (TME) that drives malignant progression, chemoresistance,

and immune evasion. However, the cellular heterogeneity underpinning hypoxic

responses in CRC and its impact on prognosis remain incompletely understood.

Methods: We integrated single-cell RNA sequencing data from 15 CRC samples

(GSE166555 and GSE221575) to delineate hypoxic and normoxic cell populations

and identify hypoxia-related genes (HRGs). Weighted gene co-expression

network analysis (WGCNA) and enrichment profiling elucidated key biological

processes associated with hypoxia. Cell–cell communication networks were

inferred using CellChat, and transcription factor regulatory modules were

reconstructed via SCENIC and GRNBoost2. A hypoxia-based prognostic

signature was developed from unique H3 cluster genes using univariate Cox

and Lasso regression on The Cancer Genome Atlas (TCGA; n = 606) and

validated in GSE39582 (n = 579). Drug sensitivity correlations were derived

from the GDSCv2 database. Finally, in vitro assays assessed the functional role

of GIPC2, a model gene, in CRC cell lines.

Results: Single-cell profiling uncovered eight distinct hypoxic clusters, with H3

exhibiting the highest hypoxia scores and enrichment in glycoprotein metabolic

and angiogenesis pathways. The eight-gene prognostic model stratified patients

into high- and low-risk groups with significantly different overall survival in both

TCGA (P = 0.0026) and validation cohorts (P = 0.011). Drug analysis highlighted

associations of model genes with PI3K/MTOR and apoptosis pathways. GIPC2

knockdown in LS180 and HT-29 cells markedly inhibited proliferation, migration,

and invasion, while inducing apoptosis and reversing EMT phenotypes.
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Conclusions: We present a robust hypoxia-related gene signature that

accurately predicts CRC patient prognosis and nominate GIPC2 as a potential

biomarker and therapeutic target, offering new insights into hypoxia-driven CRC

biology and personalized treatment strategies.
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Introduction

CRC is one of the leading causes of cancer-related mortality

globally, ranking as the third most common cancer and the second-

highest cause of cancer death (1). The prognosis of CRC remains

poor, primarily due to challenges in early detection and the

development of metastasis (2). A growing body of evidence

underscores the significant role of the TME in influencing CRC

progression and patient outcomes (3). The complexity of the TME,

coupled with its influence on tumor cell behaviors and therapeutic

responses, calls for the development of improved prognostic models

that incorporate TME characteristics.

A hallmark feature of most solid tumors, including CRC, is the

presence of a hypoxic microenvironment, which significantly alters

tumor biology and contributes to the malignant phenotype (4).

Hypoxia induces the accumulation of hypoxia-inducible factors

(HIFs), which reprogram cellular metabolism, protein synthesis,

and cell cycle progression, enabling tumor cells to survive and

proliferate under low-oxygen conditions (5, 6). The “Warburg

effect”, characterized by increased glucose uptake and glycolysis

even in the presence of oxygen, is driven by HIF-1 and MYC,

providing essential nutrients and energy for rapid cell division and

genome replication (7).

Hypoxia contributes to chemotherapy and radiotherapy

resistance by inducing the expression of multidrug resistance

proteins and enhancing drug efflux (8, 9). Additionally, hypoxia

promotes immune evasion, as it increases the expression of

programmed death ligand-1 (PD-L1) on tumor cells, suppressing

immune responses and facilitating immune escape (10). The

metabolic reprogramming driven by hypoxia also affects immune

cell function, particularly in natural killer (NK) cells, by altering

their transcriptome and reducing their ability to produce key

immune-modulatory factors (11). Furthermore, hypoxia plays a

crucial role in remodeling the extracellular matrix (ECM),

increasing its stiffness and fibrotic content, which in turn

enhances tumor cell invasion and metastasis (12). Hypoxia-

induced changes in the TME, including the accumulation of

regulatory metabolites such as lactate and adenosine, further

contribute to immune suppression and the promotion of tumor

progression (13). These metabolic shifts, coupled with the selective

pressure exerted by hypoxia, shape the evolutionary landscape of
02
the tumor, driving molecular aberrations that favor tumor survival

and immune evasion.

Despite the well-established role of hypoxia in CRC, the specific

molecular mechanisms through which it influences prognosis and

therapeutic resistance remain incompletely understood. Recent

studies have highlighted the potential of HRGs as biomarkers for

predicting CRC patient outcomes, particularly in the context of

immunotherapy. However, a comprehensive understanding of

HRGs interactions within the TME and their impact on CRC

progression is still lacking.

This study aims to address this gap by integrating single-cell

transcriptomic data to explore the role of HRGs in CRC. By analyzing

the interactions between HRGs and CRC cells, we aim to identify

novel molecular markers for prognostic modeling and develop a

hypoxia-related gene signature to improve the accuracy of CRC

prognosis. Ultimately, our goal is to enhance the current clinical

strategies for CRC management by providing a more precise model

for predicting patient outcomes and guiding therapeutic decisions.
Materials and methods

Transcriptomic data acquisition and
processing

RNA expression data and corresponding clinical information of

CRC, comprising a total of 606 cases, were extracted from the

TCGA database to serve as the training set for model development.

Furthermore, the GSE39582 dataset, containing 579 colorectal

cancer microarray data, was obtained from the GEO database to

act as the validation set, assessing the model’s robustness and

accuracy. All of this data was converted to TPM format and log2

transformed for subsequent analysis.
Acquisition and processing of single-cell
sequencing data

We extracted 13 CRC samples from the GSE166555 dataset and

2 CRC tumor samples from the GSE221575 dataset in the GEO

database, totaling 15 tumor samples. Data analysis was conducted
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using R software (version 4.1.3) with the Seurat package. For cell

quality control, we set the mitochondrial content to be no more

than 20%, the hematopoietic cell content to be no more than 3%,

and established standards for cell UMI counts and gene counts

ranging from 200 to 20,000 and from 200 to 5,000, respectively. We

employed the “normalizedata”, “findcariablefeatures”, and

“scaledata” functions from the Seurat package for data

normalization, selection of 2000 highly variable genes, and data

transformation. Batch effect correction was performed using the

harmony method. Subsequently, we utilized UMAP and t-SNE

techniques from the Seurat package for dimensionality reduction

and the Louvain algorithm for clustering analysis. Ultimately, we

identified differentially expressed genes between various clusters or

cell types using the “findallmarkers” function, with filtering criteria

including a p-value less than 0.05, log2FC greater than 0.25, and an

expression proportion greater than 0.1.
Identifying hypoxic cells

Ensure that Python 3.7.3 and R 4.1.3, along with the R packages

“corrplot” and “mclust”, are installed before commencing data

analysis. Utilize the pre-downloaded single-cell sequencing data

for analysis under the auspices of the CHPF package, which

integrates this information to predict cellular hypoxia status.

Ultimately, by analyzing the predicted outcomes, you can identify

high-confidence hypoxic and normoxic cells, and infer the hypoxia

status of other cells. The hypoxia gene sets required for data analysis

can be found at the following link: https://github.com/

yihan1221/CHPF.
Cell annotation analysis

In our study, we systematically profiled the cellular composition

of tumor tissues using a targeted panel of cell-specific markers.

Tumor cells were identified using epithelial markers “EPCAM”,

“KRT18”, “KRT19”, and “CDH1”. The stromal compartment was

characterized by fibroblast markers “DCN”, “THY1”, “COL1A1”,

and “COL1A2”, endothelial markers “PECAM1”, “CLDN2”,

“FLT1”, and “RAMP2”, and immune cells including T-cells

marked by “CD3D”, “CD3E”, “CD3G”, and “TRAC”; natural

killer (NK) cells by “NKG7”, “GNLY”, “NCAM1”, and “KLRD1”;

B-cells by “CD79A”, “IGHM”, “IGHG3”, and “IGHA2”; and

myeloid cells by “LYZ”, “MARCO”, “CD68”, and “FCGR3A”.

Subsequently, tumor cells were isolated and subjected to

clustering analysis to dissect the intratumoral heterogeneity. The

resulting cellular clusters were visualized using UMAP and t-SNE

for dimensionality reduction, and bar charts and heatmaps were

generated to quantitatively and qualitatively assess the distribution

and expression patterns of key markers, respectively.
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WGCNA analysis and enrichment analysis

We employed the WGCNA software package to identify gene

modules associated with hypoxia group cells. This analysis facilitated

the clustering of co-expressed genes that may be related to the hypoxic

phenotype. To elucidate the biological significance of these gene

modules, we utilized the clusterprofiler software package for a

comprehensive gene enrichment analysis, specifically querying the

Gene Ontology Biological Process (GOBP) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) databases. This step revealed the

functional annotations and pathways significantly enriched among

the genes within the H group modules. Furthermore, to visually map

and interpret the enrichment results, we harnessed cytoscape software,

particularly employing the “enrichmentmap” and “autoannotate”

plugins for an intuitive representation and annotation of the

functional categories and pathways.
Analysis of cell-to-cell communication and
copy number variation analysis

To explore the potential interactions between immune and tumor

cells, we utilized the R package “cellchat” for cell-cell communication

analysis. This package simulates the communication process by

integrating ligands, receptors, and their auxiliary factors. By

analyzing the receptors expressed by one cell type and the

corresponding ligands expressed by another, we inferred the

enriched receptor-ligand interactions between these two cell types.
Single-cell transcriptional factor analysis

Using the “scenic” package, we conducted predictions of

transcription factors for cell clusters H3 and N3, respectively.

Subsequently, we employed the GRNboost2 software for the co-

expression analysis of genes to construct a gene regulatory network.

We utilized the degree measure to identify significant nodes within

the network, extracting the top 1% of genes or transcription factors

for further analysis.
Constructing and validating a prognostic
model based on genes unique to hypoxia
group

We analyzed unique and significant transcription factors or

genes from the H3 cell cluster. Initially, we used univariate Cox

analysis to screen genes associated with prognosis, followed by

model building with Lasso regression analysis. We then calculated

the risk scores, using the median value as the cutoff threshold to

divide patients into high and low-risk groups.
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Cell culture

Human CRC cell lines (LoVo, HT-29, SW480, LS180, SW620)

and normal fetal human colon (FHC) cells were purchased from the

ATCC and maintained in DMEM (Gibco) supplemented with 10%

FBS (HyClone) and 1% penicillin/streptomycin at 37°C in a

humidified 5% CO2 atmosphere.
Quantitative real-time PCR

Total RNAwas extracted from tissues or cultured cells using TRIzol

reagent (Invitrogen) according to the manufacturer’s instructions.

cDNA was synthesized from 1 mg RNA using the PrimeScript RT

Reagent Kit (Takara). qRT-PCR was performed on a QuantStudio 5

Real-Time PCR System (Applied Biosystems) using SYBR Premix Ex

Taq II (Takara). Primer sequences for GIPC2 and GAPDH (internal

control) are listed in Supplementary Table S1. Cycling conditions were:

95°C for 30 s, followed by 40 cycles of 95°C for 5 s and 60°C for 30 s.

Relative expression was calculated by the 2-DDCt method.
siRNA transfection

GIPC2‐targeting siRNA (si-GIPC2) and non-targeting control

siRNA (si-NC) were purchased from GenePharma. Cells were seeded

at 50% confluence in 6-well plates and transfected with 50 nM siRNA

using Lipofectamine RNAiMAX (Invitrogen) in Opti-MEM (Gibco).

After 6 h, medium was replaced with complete DMEM, and cells were

harvested 48 h post-transfection for downstream experiments.
Cell proliferation assay (CCK-8)

Transfected LS180 and HT-29 cells were seeded in 96-well

plates at 2,000 cells/well in quintuplicate. At days 1, 2, 3 and 4, 10 mL
of CCK-8 reagent (Dojindo) was added to each well and incubated

for 2 h at 37°C. Absorbance at 450 nm was measured using a

microplate reader (Bio-Rad).
Apoptosis assay by flow cytometry

Forty-eight hours after siRNA transfection, LS180 cells were

collected, washed twice in cold PBS, and stained with Annexin V–

FITC and propidium iodide (PI) using the Annexin V-FITC Apoptosis

Detection Kit (BD Biosciences) following the manufacturer’s protocol.

Samples were analyzed on a BD FACSCanto II flow cytometer, and

data were processed with FlowJo v10.
Western blot analysis

Total protein was extracted with RIPA buffer (Beyotime)

containing protease and phosphatase inhibitors (Roche). Protein

concentration was determined by BCA assay (Pierce). Equal
Frontiers in Immunology 04
amounts (30 mg) of protein were separated by 10% SDS-PAGE and

transferred to PVDF membranes (Millipore). After blocking with 5%

non-fat milk in TBS-T for 1 h, membranes were incubated overnight at

4°C with primary antibodies against cleaved caspase-3, Bcl-2, E-

cadherin, vimentin (Cell Signaling Technology), and b-actin (Sigma).

HRP-conjugated secondary antibodies (Jackson ImmunoResearch)

were applied for 1 h at room temperature. Bands were visualized

using ECL substrate (Thermo) and quantified by ImageJ.
Transwell migration and invasion assays

For migration assays, 5 × 104 transfected LS180 cells in serum-free

DMEMwere seeded into the upper chamber of 8-mmTranswell inserts

(Corning). For invasion assays, inserts were pre-coated with 50 mL
Matrigel (BD Biosciences) diluted 1:8 in serum-free DMEM. The lower

chamber containedDMEMwith 10% FBS. After 24 h (migration) or 36

h (invasion) at 37°C, non-migrated/invaded cells on the upper surface

were removed with a cotton swab. Cells on the lower surface were fixed

with 4% paraformaldehyde for 15 min, stained with 0.1% crystal violet

for 20 min, rinsed, and air-dried. Five random fields per insert were

photographed under an inverted microscope (Olympus) and counted.

All assays were performed in triplicate.
Statistical analysis

All data processing, statistical analysis, and plotting were

performed in the R 4.1.3 software environment. We assessed the

correlation between two continuous variables by calculating the

Pearson correlation coefficient. Categorical variables were compared

using the chi-squared test, while comparisons of continuous variables

were conducted using the Wilcoxon rank-sum test or the T-test. Cox

regression models and Kaplan-Meier survival curve analysis for

survival analysis were implemented using the survival package.

Statistical significance was set at a P-value of less than 0.05.
Results

Comprehensive single-cell transcriptome
profiling reveals key cellular populations
and hypoxic microenvironment in CRC

We analyzed the cellular diversity and molecular characteristics of

colorectal cancer (CRC) using the GSE166555 and GSE221575

datasets, which encompass 15 primary tumor samples. Using the

UMAP algorithm for dimensionality reduction and clustering, we

identified distinct cellular populations, including endothelial cells,

fibroblasts, myeloid cells, B cells, NK cells, and MAST cells

(Figure 1A). Hypoxic and non-hypoxic cell groups were classified

using the “CHPF” package (Figure 1B), revealing that hypoxic cells

were distributed across different tissue types and cellular

compartments (Figure 1C). A Sankey diagram further demonstrated

the association between cellular populations, tissue types, and hypoxia

status, showing a strong correlation between immune cells and
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1651749
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Duan et al. 10.3389/fimmu.2025.1651749
hypoxia (Figure 1D). Additionally, a heatmap of hypoxia markers

highlighted their differential expression across tumor and immune

cells (Figure 1E). Supplementary Figure 1 provides additional insights

into cell communication via the MIF signaling pathway.
Immune cell subpopulations exhibit
distinct hypoxic responses and interactions
with tumor cells

Further analysis of immune cell subpopulations revealed a close

association between macrophages and hypoxia, particularly in the

tumor microenvironment (Figures 2A–C). A Sankey diagram

(Figure 2D) illustrated the interrelationship between immune cell
Frontiers in Immunology 05
types, tumor samples, and hypoxic status. To understand immune-

tumor interactions, we employed CellChat for cell-cell communication

analysis, identifying LGALS9-CD44 signaling as a significant pathway

in CRC (Figures 2E, F). UMAP plots of LGALS9 and CD44 expression

in both tumor and immune cells were visualized, confirming the

importance of this signaling axis (Figures 2G, H).
Tumor cell hypoxia subtypes reveal distinct
molecular signatures and functional
pathways

Clustering of tumor cells based on hypoxic status identified four

hypoxic clusters (H1, H2, H3, H4) and four non-hypoxic clusters
FIGURE 1

Single-cell transcriptomic profiling reveals cellular composition and hypoxic status in CRC. (A) UMAP plot of single-cell data showing distinct cell
types in CRC, including endothelial cells, fibroblasts, myeloid cells, B cells, NK cells, and MAST cells, providing a comprehensive cellular atlas of CRC.
(B) UMAP plot identifying hypoxic vs. non-hypoxic cells based on CHPF software, demonstrating the distribution of hypoxia across the single-cell
dataset. (C) Bar chart of hypoxic and non-hypoxic cell proportions across CRC samples, tissue types, and cell types, highlighting variability in hypoxic
conditions within the TME. (D) Sankey diagram illustrating the relationship between cell types, sample types, and hypoxic status, indicating the
prevalence of hypoxia in different tumor and immune cell types. (E) Heatmap showing hypoxia marker expression in both tumor and immune cells,
identifying key genes associated with hypoxia in these cellular populations.
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(N1, N2, N3, N4). We characterized the molecular signatures of

these clusters, with marker genes such as MT-RNR2, MT-CO1, MT-

ND4, and MT-CO3B2M being enriched in hypoxic cells

(Figure 3D). Hypoxia scores for each cluster were visualized,

revealing higher scores in hypoxic subtypes (Figures 3A–C).

GOBP enrichment analysis of the marker genes uncovered

processes related to glycoprotein metabolism and cellular response

to oxygen levels (Figure 3E). WGCNA analysis identified two key
Frontiers in Immunology 06
gene modules (green-yellow and red) associated with hypoxia, and

further GO enrichment revealed significant involvement in

metabolic and oxygen-sensing pathways (Figures 3F, G). Cytotrace

analysis (Figure 3H) and pseudo-time analysis using Monocle3

(Figure 3I) confirmed the differentiation trajectories of these

tumor subpopulations. Supplementary Figures 2, 3 provide

additional details on hypoxia scores and Hallmark pathway

enrichment in various tumor subgroups.
FIGURE 2

Immune cell subpopulations and their hypoxic status in CRC. (A-C) UMAP plots of immune cell subpopulations, showing distinct clustering and
hypoxic status of immune cells, including macrophages and T cells, indicating immune cell adaptation to the hypoxic TME. (D) Sankey diagram of
immune cell types, sample types, and hypoxic status, emphasizing the relationship between immune cells and the hypoxic environment. (E, F) Cell
communication analysis between immune and tumor cells, showing key ligand-receptor interactions, particularly between LGALS9-CD44, indicating
significant immune-tumor interactions in the hypoxic microenvironment. (G, H) Expression of LGALS9 and CD44 in immune cells and tumor cells,
demonstrating their role in hypoxia-mediated immune modulation.
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FIGURE 3

Tumor cell subgroup analysis reveals hypoxia-dependent tumor heterogeneity. (A-C) UMAP plots of hypoxic and non-hypoxic tumor cell clusters,
along with ridge plots of hypoxia scores, revealing distinct hypoxic and non-hypoxic subpopulations within CRC tumors. (D) Heatmap of marker
gene expression across tumor cell clusters, highlighting genes associated with hypoxia (e.g., MT-RNR2, MT-CO1), which distinguish hypoxic and
non-hypoxic tumor subgroups. (E) GOBP enrichment analysis of marker genes from tumor subgroups, showing the biological processes enriched in
hypoxic versus non-hypoxic tumor cells. (F) Heatmap showing the correlation between WGCNA gene modules and tumor cell subgroups,
identifying specific gene modules associated with hypoxic tumor clusters. (G) GOBP enrichment analysis of WGCNA gene modules (green-yellow,
red), revealing significant biological processes such as glycoprotein metabolism and oxygen response in hypoxic tumor cells. (H) CytoTRACE analysis
of tumor cell differentiation potential, suggesting differential differentiation abilities between hypoxic and non-hypoxic tumor subgroups.
(I) Pseudotime analysis of tumor cell differentiation using monocle3, showing the trajectory of tumor cell evolution and differentiation under hypoxic
conditions.
Frontiers in Immunology frontiersin.org07
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FIGURE 4

Hypoxia-associated pathways, CNV, and transcription factor alterations in CRC tumor cells. (A) Scatter plots showing the correlation between
hypoxia scores and tumor progression signatures, including angiogenesis, apoptosis, EMT, and invasion, indicating hypoxia’s role in promoting
aggressive tumor phenotypes. (B) Box plots comparing signature scores across different tumor cell clusters, highlighting significant differences
between hypoxic and non-hypoxic subpopulations. (C) CNV analysis using inferCNV, identifying copy number variations in tumor cells compared to
endothelial cells, revealing genomic alterations linked to hypoxic tumor cells. (D) Network graph of top transcription factors associated with hypoxic
(H3) and non-hypoxic (N3) tumor clusters, highlighting key regulatory factors involved in tumor progression. (E) Venn diagram of overlapping
transcription factors and genes between H3 and N3 clusters, emphasizing unique molecular signatures of hypoxic and non-hypoxic tumor cells.
(F) Correlation heatmap of transcription factors and Hallmark pathways, showing significant associations between transcriptional regulators and key
cancer-related pathways in hypoxic tumor cells.
Frontiers in Immunology frontiersin.org08
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Hypoxia-driven tumorigenic pathways,
CNV alterations, and transcription factor
networks

We observed a strong correlation between hypoxia scores and

tumor-related processes, including angiogenesis, apoptosis, epithelial-

mesenchymal transition (EMT), and invasion (Figure 4A). Notably,

H3 tumor cells exhibited the highest hypoxia scores, while N3 had the

lowest (Figure 4B). CNV analysis revealed significant genomic

alterations in tumor cells relative to endothelial cells (Figure 4C),

with Supplementary Figure 4 providing further insights into the CNV

profiles across subgroups. Transcription factor analysis focused on H3

and N3 revealed unique regulatory networks, and a Venn diagram

highlighted the top transcription factors specific to H3 (Figures 4D, E).
Frontiers in Immunology 09
Further correlation of these factors with Hallmark pathways identified

key pathways involved in tumorigenesis (Figure 4F).
Development and validation of a
prognostic model based on hypoxia-
related genes

A univariate Cox regression analysis was performed to identify

prognostic genes within the H3 hypoxic cluster. Using Lasso

regression on the TCGA dataset, we constructed a prognostic

model based on these hypoxia-associated genes (Supplementary

Figure 5). Survival analysis demonstrated that high-risk patients,

stratified by gene expression, had significantly shorter overall
FIGURE 5

Prognostic model based on hypoxia-related genes identifies high-risk CRC patients. (A) Heatmap of model gene expression along with clinical
indicators (e.g., age), demonstrating the predictive power of hypoxia-related genes for CRC prognosis. (B) Gene set variation analysis (GSVA) of
TCGA dataset, showing pathway enrichment differences between high-risk and low-risk CRC groups based on the prognostic model. (C) Forest plot
of multivariate Cox analysis, confirming the prognostic value of the risk scores derived from hypoxia-related genes, adjusted for clinical factors like
age. (D) Survival analysis in the external cohort (GSE39582), showing that high-risk patients have significantly shorter overall survival compared to
low-risk patients, validating the prognostic model’s robustness.
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survival (OS) compared to the low-risk group (Figures 5A,B,

P=0.0026). Multivariate Cox regression further confirmed the

model’s robustness in predicting CRC prognosis, with clinical

parameters also correlating with risk scores (Figure 5C). External

validation using the GSE39582 dataset reinforced the prognostic

value of the model, with high-risk patients exhibiting poorer

survival (Figure 5D, P=0.011). These results highlight the

prognostic potential of hypoxia-related genes in CRC.
Drug sensitivity profiling and identification
of therapeutic targets

To investigate the potential clinical applications of our findings,

we conducted drug sensitivity analysis based on the GDSCv2

database. Genes and transcription factors from the H3 hypoxic

cluster were correlated with drug sensitivity, revealing key

compounds targeting PI3K/mTOR signaling, DNA replication,

and apoptosis regulation (Figures 6A, B). A network diagram

visualized the connections between the model gene GIPC2,

associated drugs, and target pathways, suggesting that GIPC2 may

influence apoptosis through its interaction with UMI-77

(Figure 6C). Volcano plots highlighted the ranking of compounds

across various cell lines, and a summary of target pathways for each

compound was presented (Figures 6D–F).
Frontiers in Immunology 10
GIPC2 promotes CRC cell proliferation and
modulates key oncogenic processes

To explore the functional role of GIPC2 in CRC, we quantified

its mRNA expression in paired CRC and adjacent normal tissues by

qRT-PCR, finding a significant upregulation in tumor tissues

(Figure 7A). Further analysis across CRC cell lines revealed that

GIPC2 expression was markedly elevated in SW480 and LoVo cells

(Figure 7B). Knockdown of GIPC2 in LS180 and HT-29 cells via

siRNA significantly inhibited cell proliferation over a four-day

period (Figures 7C–E), confirming GIPC2’s role as an oncogenic

driver in CRC.
GIPC2 knockdown induces apoptosis and
inhibits EMT, migration, and invasion

We further investigated the impact of GIPC2 on CRC cell

survival and motility. Flow cytometry analysis revealed that GIPC2

silencing significantly increased apoptosis in LS180 cells

(Figures 8A, B). Western blot analysis confirmed the activation of

apoptosis (elevated cleaved caspase-3) and reversal of EMT

(elevated E-cadherin, reduced vimentin) in GIPC2 knockdown

cells (Figure 8C). Transwell assays demonstrated that GIPC2

silencing impaired cell migration and invasion (Figures 8D, E).
FIGURE 6

Drug sensitivity and pathway analysis reveals potential therapeutic targets for CRC. (A) Bar chart correlating transcription factors and drug sensitivity,
showing the potential for targeting hypoxia-related genes in CRC treatment. (B) Bar chart of drug target pathways, identifying key pathways involved
in the response to drugs, including PI3K/mTOR signaling and apoptosis regulation. (C) Network diagram of GIPC2, showing its interactions with
drugs and target pathways, suggesting GIPC2 as a therapeutic target in CRC. (D) Volcano plots from CMap analysis, showing compound scores
across various CRC cell lines, highlighting potential drugs that can target hypoxia-related pathways. (E) Bubble chart of top 5 compounds with the
highest scores across CRC cell lines, providing insight into promising drug candidates. (F) Bubble chart summarizing the target pathways for the top
5 compounds, focusing on those with the highest efficacy in CRC cell lines.
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These results indicate that GIPC2 promotes CRC progression by

suppressing apoptosis and facilitating EMT, migration, and

invasion, underscoring its potential as a therapeutic target.
Discussion

In this study, we conducted a comprehensive analysis of the

TME in CRC, with a particular focus on HRGs and their influence

on CRC prognosis and treatment response. Our findings contribute

to the understanding of the complex interactions within the TME

and propose a novel prognostic model that could potentially

improve patient outcomes.

TME is defined as the complex network of cells and extracellular

matrix components that surround and support the growth and

progression of a tumor (14, 15). This includes various cell types such

as immune cells, fibroblasts, endothelial cells, and cancer-associated

fibroblasts, as well as the secreted factors, signaling molecules, and the

physical structure of the extracellular matrix (16, 17). The TME plays a

crucial role in tumor initiation, growth, metastasis, and response to

therapy (18, 19). In CRC, the TME is particularly significant as it can

influence the behavior of cancer cells and affect patient prognosis (20,

21). Hypoxia, or low oxygen levels, is a common characteristic of the

CRC TME, which can lead to the stabilization and accumulation of

HIF (22). These factors promote angiogenesis, glycolysis, and immune

evasion, contributing to tumor aggressiveness and resistance to

chemotherapy and radiation therapy (23). Additionally, the TME in

CRC can modulate the immune response, with tumor-associated
Frontiers in Immunology 11
immune cells either suppressing or enhancing anti-tumor immunity

(24). The interaction between CRC cells and the TME is dynamic, with

reciprocal signaling (25). Understanding the TME in CRC is essential

for developing targeted therapies and improving patient outcomes. Our

research findings indicate that macrophages may be closely associated

with the hypoxic state of CRC. Previous studies have demonstrated that

tumor-associated macrophages (TAMs) play a regulatory role in

tumorigenesis, progression, metastasis, angiogenesis, and

chemoresistance. For instance, colony-stimulating factor-1 (CSF-1)

can promote the malignant transformation of breast cancer by

attracting macrophages. TAMs can also facilitate the intravasation

and extravasation of tumor cells by releasing epidermal growth factor

(EGF) and vascular endothelial growth factor (VEGF). The EGF

secreted by TAMs promotes the intravasation of tumor cells into

blood vessels, while VEGF triggers the disruption of the endothelial cell

barrier by breaking intercellular adhesion junctions. Furthermore,

TAMs regulate the epithelial-mesenchymal transition (EMT) process,

affecting tumor metastasis, through the STAT/miR-506-3p/FoxQ1

signaling pathway and the TAT/miR-506-3p/FoxQ1 pathway, and

promote the degradation of the extracellular matrix by secreting

matrix metalloproteinases and C-C motif chemokine ligand

18 (CCL18).

Our research also reveals intriguing associations between LGALS9

and CD44 with the hypoxic state in CRC. A study by Huang et al.

indicated that LGALS9 expression is generally reduced in CRC tissues

and is correlated with a poorer prognosis. Concurrently, they also

found a strong positive correlation between the expression of LGALS9

andCD137, and demonstrated through amouse model that the role of
FIGURE 7

GIPC2 expression and its role in CRC cell proliferation and tumorigenesis. (A) Relative GIPC2 mRNA levels in paired CRC tissues and adjacent normal
tissues, showing significant upregulation in tumor tissues. (B) GIPC2 expression in CRC cell lines compared to FHC control, revealing significant
upregulation in SW480 and LoVo cell lines. (C) Efficiency of GIPC2 knockdown in LS180 and HT-29 cells, demonstrating effective silencing (>90%)
after siRNA transfection. (D, E) CCK-8 assays of cell proliferation, showing that GIPC2 knockdown significantly reduces proliferation in LS180 (D) and
HT-29 (E) cells over time (**P < 0.01; ***P < 0.001; ****P < 0.0001).
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LGALS9 in CRC may depend on the expression of CD137 (26).

Another study showed that in KRAS mutant cells, LGALS9 acts as a

lysosomal inhibitor, suppressing the fusion of autophagosomes with

lysosomes, leading to the accumulation of autophagosomes, excessive

swelling of lysosomes, and cell death, offering a potential therapeutic

avenue for anti-tumor treatment of CRC (27). CD44 may be involved

in the ferroptosis process of CRC, thereby affecting the prognosis of

CRC (28). Other research has found that CD44s is highly expressed in

mesenchymal cell lines, while CD44 is highly expressed in epithelial

cell lines. Knockdown of CD44 leads to reduced levels of vimentin

expression and significantly inhibits cell proliferation, migration, and

invasion. In CRC patients, the survival rate of the mesenchymal group

and the high CD44 status group is significantly lower than that of the

epithelial group and the low CD44 status group. Multivariate analysis

indicates that CD44 status is an independent prognostic factor,

suggesting that the status of EMT and CD44 is a key prognostic

factor, and the switch of CD44 isoforms may be a trigger for EMT in

CRC (29). These studies explore the possible links between LGALS9

and CD44 and the poor prognosis of CRC from different perspectives.

Our study, combining single-cell sequencing with the tumor immune

microenvironment, reveals the potential link between them and the

poor prognosis of CRC from the perspective of hypoxia. Of course,

these results require further validation through molecular

mechanism experiments.

An exciting and novel aspect of our study is the identification of

GIPC2 as a potential oncogene in CRC. Our findings show that

GIPC2 is upregulated in CRC tumor tissues, which correlates with

increased cell proliferation, migration, and invasion, suggesting that
Frontiers in Immunology 12
it functions as an oncogenic driver in CRC. This aligns with findings

from other cancers, including gastric and breast cancer, where

GIPC2 promotes tumorigenesis (30, 31). In cancers like acute

lymphoblastic leukemia (ALL), GIPC2 is silenced through

promoter hypermethylation, suggesting an epigenetic mechanism

of downregulation (32). In contrast, we observed no such epigenetic

silencing in CRC, which may imply that GIPC2 regulation in CRC

follows different molecular pathways, such as genetic mutations or

post-translational modifications. This hypothesis is further

supported by the identification of F74Y, G102E, and E216X

mutations in GIPC2 in CRC, which could disrupt its functional

domains and contribute to tumorigenesis. Although our study

highlights the upregulation of GIPC2, the precise molecular

mechanisms by which it promotes CRC progression remain

unclear. Existing literature suggests that GIPC2 interacts with

Frizzled receptors in the WNT signaling pathway, a known

regulator of CRC progression, and may also influence the PI3K/

AKT pathway, which regulates cell survival and migration (33).

These interactions, if validated in CRC, could position GIPC2 as a

central player in the hypoxic TME, further promoting tumor

aggression and metastasis.
Limitations and future directions

This study provides important insights into the role of hypoxia

and HRGs in CRC; however, several limitations should be

acknowledged. First, the single-cell analysis was based on 15 CRC
FIGURE 8

GIPC2 silencing promotes apoptosis, inhibits EMT, and reduces migration/invasion in CRC cells. (A) Flow cytometry analysis of Annexin V-FITC/PI
staining in LS180 cells transfected with si-GIPC2 or si-NC, showing increased apoptosis following GIPC2 knockdown. (B) Quantification of total
apoptotic cells (early + late) from three independent experiments, indicating a significant increase in apoptosis after GIPC2 silencing (**P < 0.01;
***P < 0.001). (C) Western blot analysis of cleaved caspase-3, Bcl-2, E-cadherin, and vimentin, showing activation of apoptosis and inhibition of EMT
in GIPC2-knockdown cells. (D) Transwell assay images showing migration (top) and invasion (bottom) of LS180 cells following GIPC2 knockdown,
highlighting reduced invasive capacity. (E) Quantification of migrated and invaded cells from three independent Transwell experiments,
demonstrating significantly reduced migration and invasion after GIPC2 silencing (**P < 0.01; ***P < 0.001).
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samples, which may limit the generalizability of the findings. While

we utilized two independent datasets, further validation with larger

or additional public datasets would strengthen the conclusions.

Second, the prognostic model requires validation in larger, multi-

center clinical cohorts to confirm its clinical applicability. Third,

although GIPC2 is identified as a potential oncogene, its molecular

mechanisms—particularly under hypoxic conditions—remain to be

elucidated, and experimental validation in vivo is warranted.

Finally, the potential of targeting the hypoxic TME with

immunotherapy remains unexplored; future work should focus

on the interactions between GIPC2, immune cells, and the

hypoxic microenvironment to identify novel therapeutic strategies.
Conclusion

In conclusion, our study unveils the intricate role of hypoxia in

the tumor microenvironment of CRC, highlighting its influence on

tumor biology and patient outcomes. The hypoxia gene signature

prognostic model we developed not only predicts CRC prognosis

with robust accuracy but also identifies potential therapeutic targets,

paving the way for personalized treatment strategies.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

Ethical approval was not required for the studies on humans in

accordance with the local legislation and institutional requirements

because only commercially available established cell lines were used.
Author contributions

X-CD: Data curation, Formal Analysis, Investigation, Resources,

Software, Supervision, Validation, Visualization, Writing – original

draft, Writing – review & editing. YZ: Conceptualization, Formal

Analysis, Investigation, Project administration, Resources,

Supervision, Validation, Visualization, Writing – original draft,

Writing – review & editing. FF: Conceptualization, Data curation,

Investigation, Project administration, Resources, Software,

Validation, Visualization, Writing – original draft, Writing – review

& editing. H-BJ: Conceptualization, Formal Analysis, Investigation,

Methodology, Validation, Writing – original draft. M-LW:

Conceptualization, Formal Analysis, Investigation, Methodology,

Visualization, Writing – review & editing. ZH: Conceptualization,

Data curation, Investigation, Methodology, Project administration,

Writing – original draft. H-FP: Conceptualization, Formal Analysis,

Investigation, Methodology, Visualization, Writing – original draft.
Frontiers in Immunology 13
Y-HL: Conceptualization, Formal Analysis, Investigation,

Methodology, Project administration, Supervision, Writing –

original draft. H-ZJ: Data curation, Investigation, Methodology,

Project administration, Resources, Validation, Writing – review &

editing. MH: Conceptualization, Data curation, Formal Analysis,

Investigation, Project administration, Resources, Software,

Supervision, Validation, Visualization, Writing – original draft,

Writing – review & editing. H-PX: Conceptualization, Data

curation, Formal Analysis, Investigation, Methodology, Resources,

Software, Supervision, Validation, Visualization, Writing – original

draft, Writing – review & editing. Y-YW: Conceptualization, Data

curation, Formal Analysis, Funding acquisition, Investigation,

Resources, Software, Supervision, Validation, Visualization, Writing

– original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. The project was

supported by Hebei Medical Scientific Research Project

(20250410) and Xinghuo Research Project (XH202414).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.1651749/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Cell communication patterns in CRC TME (A) . Heatmap of cell

communication results showing interactions between immune and tumor
cells in CRC, including both incoming and outgoing signals. (B) Heatmap
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illustrating MIF signaling pathway communication patterns, showing its role in
immune modulation across different cell types.

SUPPLEMENTARY FIGURE 2

Tumor subgroup and hypoxia scores (A). UMAP plot of tumor cell subgroups,

demonstratingclusteringbasedonhypoxicstatus. (B)UMAPplotofhypoxiascores,
highlightingthedistributionofhypoxicregionsacrosstumorsubgroups.(C)Boxplots
ofhypoxiascoresforhypoxictumorsubgroups,revealingvariabilityinhypoxialevels.
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SUPPLEMENTARY FIGURE 3

Pathway enrichment in tumor subgroups. (A) Heatmap of GSVA scores for
Hallmark pathways, showing pathway enrichment in various tumor

subgroups, with a focus on hypoxia-related pathways.

SUPPLEMENTARY FIGURE 4

Model construction and validation (A, B). LassoCox model-building results,
showing the selection of key prognostic genes
References
1. Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040.
Transl Oncol. (2021) 14:101174. doi: 10.1016/j.tranon.2021.101174

2. Li J, Li ZP, Ruan WJ, Wang W. Colorectal cancer screening: The value of early
detection and modern challenges. World J Gastroenterol. (2024) 30:2726–30.
doi: 10.3748/wjg.v30.i20.2726

3. Meyiah A, Khan FI, Alfaki DA, Murshed K, Raza A, Elkord E. The colorectal
cancer microenvironment: Preclinical progress in identifying targets for cancer therapy.
Transl Oncol. (2025) 53:102307. doi: 10.1016/j.tranon.2025.102307

4. Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer:
molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther.
(2023) 8:70. doi: 10.1038/s41392-023-01332-8

5. Druker J, Wilson JW, Child F, Shakir D, Fasanya T, Rocha S. Role of hypoxia in
the control of the cell cycle. Int J Mol Sci. (2021) 22:4874. doi: 10.3390/ijms22094874

6. Taneja N, Chauhan A, Kulshreshtha R, Singh S. HIF-1 mediated metabolic
reprogramming in cancer: Mechanisms and therapeutic implications. Life Sci. (2024)
352:122890. doi: 10.1016/j.lfs.2024.122890

7. Dang CV, Kim JW, Gao P, Yustein J. The interplay between MYC and HIF in
cancer. Nat Rev Cancer. (2008) 8:51–6. doi: 10.1038/nrc2274

8. Bouleftour W, Rowinski E, Louati S, Sotton S, Wozny AS, Moreno-Acosta P, et al.
A review of the role of hypoxia in radioresistance in cancer therapy. Med Sci Monit.
(2021) 27:e934116. doi: 10.12659/MSM.934116

9. Minassian LM, Cotechini T, Huitema E, Graham CH. Hypoxia-induced resistance
to chemotherapy in cancer. Adv Exp Med Biol 2019. (1136) p:123–39. doi: 10.1007/978-
3-030-12734-3_9

10. Smith V, Mukherjee D, Lunj S, Choudhury A, Hoskin P, West C, et al. The effect
of hypoxia on PD-L1 expression in bladder cancer. BMC Cancer. (2021) 21:1271.
doi: 10.1186/s12885-021-09009-7
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