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tumour microenvironment
and advancing precision
combination strategies
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Biliary tract cancer, which includes intrahepatic cholangiocarcinoma,

extrahepatic cholangiocarcinoma, and gallbladder cancer, presents a

significant clinical challenge because of its aggressive nature and limited

therapeutic options. Although standard chemotherapy regimens, such as

gemcitabine and cisplatin, are used, the prognosis for advanced biliary tract

cancer patients remains poor due to the rapid development of resistance.

Recently, advancements in immunotherapy, particularly immune checkpoint

inhibitors, have shown promise. However, the response rate in patients with

biliary tract cancer is still suboptimal primarily because of the highly

immunosuppressive tumour microenvironment. This microenvironment

includes a complex network of tumour-associated macrophages, regulatory T

cells, and myeloid-derived suppressor cells, all of which contribute to immune

evasion. In this review, we discuss the molecular mechanisms that drive biliary

tract cancer, focusing on genetic alterations and the role of the TME in immune

suppression. We also examine current combination strategies that integrate

immune checkpoint inhibitors with chemotherapy and targeted therapies,

which have demonstrated superior efficacy over monotherapy. Furthermore,

we explore emerging therapeutic approaches, such as metabolic modulation,

CAR-T-cell therapy, and mRNA vaccines, which are reshaping the treatment

landscape. Finally, we highlight the need for personalized treatment strategies

and the development of predictive biomarkers to guide therapy selection. Future

research should focus on refining these combination therapies, optimizing

patient selection, and validating biomarkers to improve clinical outcomes and

survival in biliary tract cancer patients.
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1 Introduction

Biliary tract cancers (BTCs) are malignant tumours that

originate from the biliary system, including intrahepatic

cholangiocarcinoma (iCCA), extrahepatic cholangiocarcinoma

(eCCA), and gallbladder cancer (GBC). Despite its relatively low

incidence globally, BTC is associated with a poor prognosis and

limited treatment options. The median overall survival of patients

with advanced BTC is typically less than one year (1, 2). Although

traditional chemotherapy regimens, such as gemcitabine combined

with cisplatin (3, 4), offer short-term relief for some patients, their

efficacy is limited, and most cancers rapidly develop resistance.

Therefore, new therapeutic strategies are urgently needed to

improve patient survival and quality of life.

In recent years, immunotherapy, particularly immune checkpoint

inhibitors (ICIs), has become a standard treatment for various

malignancies and has demonstrated significant efficacy in some

tumour types. However, the response of BTC to immunotherapy

remains poor, with only approximately 5% of patients benefiting from

single-agent immune checkpoint inhibitors (5). This low response rate

is primarily due to the unique tumour microenvironment (TME) of

BTC, which is highly immunosuppressive and characterized by the

accumulation of tumour-associated macrophages (TAMs), regulatory

T cells (Tregs), and myeloid-derived suppressor cells (MDSCs). These

immunosuppressive cells play critical roles in tumour immune escape

(6). As a result, single-agent immunotherapy has limited efficacy,

necessitating the exploration of combination therapies to improve

treatment outcomes.

Recent studies have proposed that reshaping the TME to reduce

the number of immunosuppressive cells may significantly increase

the efficacy of immunotherapy (7, 8). Compared with monotherapy,

combination strategies that integrate immune checkpoint inhibitors

with targeted therapies and chemotherapy have shown superior

efficacy. Precision combination strategies, which combine molecular

targeted therapy with immunotherapy, not only enhance immune

responses but also overcome tumour resistance (9–11).
2 Molecular mechanisms and immune
landscape of biliary tract cancer

2.1 Molecular heterogeneity in BTC

BTCs exhibit distinct genomic alterations that orchestrate

oncogenic signalling and immune evasion. For example, FGFR2
Abbreviations: BTC, Biliary tract cancer; ctDNA, circulating tumour DNA; TLA,

Three letter acronym; LD, Linear dichroism; iCCA, Intrahepatic

cholangiocarcinoma; GBC, gallbladder cancer; eCCA, extrahepatic

cholangiocarcinoma; cfDNA, circulating free DNA; CCA, Cholangiocarcinoma;

TAMs, tumour-associated macrophages; Tregs, regulatory T cells; CAFs, Cancer-

associated fibroblasts; HSCs, hepatic stellate cells; TME, tumour

microenvironment; ECM, extracellular matrix; VM, vasculogenic mimicry;

MDSCs, myeloid-derived suppressor cells; CSCs, Cancer stem cells; ICIs,

immune checkpoint inhibitors; AI, Artificial intelligence.
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fusions (≈15%) constitutively activate the MAPK/STAT3 pathways,

upregulating PD-L1 via STAT3 binding to its promoter and

recruiting immunosuppressive TAMs through CCL2 secretion,

thereby establishing an immune-cold microenvironment (12).

Similarly, IDH1/2 mutations (≈20%) drive the accumulation of

(R)-2-hydroxyglutarate, which inhibits TET2-mediated

demethylation and T-cell GAPDH activity, leading to impaired

HLA-I antigen presentation and reduced IFN-g production (13). In

contrast, TP53 loss (35.5%) activates NF-kB-dependent IL-8

secretion, recruiting MDSCs that deplete arginine via ARG1

overexpression and deposit extracellular matrix (ECM) barriers to

block T-cell infiltration (14–16). Moreover, KRAS mutations

(≈27%) induce IL-8-mediated NETosis to physically trap T cells

and compete for glutamine, suppressing mTOR-dependent T-cell

function (17, 18). In GBC, HER2 amplification (27.2%) transfers

HER2 to dendritic cells via tumour-derived exosomes, inhibiting

DC maturation and antigen presentation (19), whereas SMAD4

inactivation in eCCA (11.3%) hyperactivates TGF-b signalling to

directly promote Treg differentiation and collagen deposition by

CAFs (20, 21). Notably, BRCA-deficient tumours (3.6%) presented

elevated TMB (10.0 vs. 6.0 mut/Mb; P<0.001) and microsatellite

instability (MSI-H: 17.9%), suggesting increased susceptibility to

immune checkpoint blockade (22, 23). Overall, these driver

mutations define molecular subtypes and offer therapeutic targets.

Genomic heterogeneity stems from clonal evolution during chronic

inflammation. In PSC-associated BTC specifically, TP53/KRAS

mutations synergize with bile acid metabolic aberrations. This

synergy drives malignancy (24, 25). Single-cell analyses revealed

that ErbB pathway mutations in GBC promote tumour progression

via T-cell exhaustion (26). Cellular origins further diversify ICC

molecular profiles: Hepatocyte-derived iCCA frequently exhibits

TERT promoter mutations, whereas cholangiocyte-derived

tumours harbour BAP1 deletions (27–29). Epigenetic

dysregulation (e.g., RBM10 splicing factor mutations) and

homologous recombination defects (e.g., BRCA germline

mutations) contribute to genomic instability (30, 31). In addition,

spatial multiomics approaches, including single-cell sequencing and

spatial transcriptomics, have revealed the significant intratumor

heterogeneity present in BTCs. These technologies provide deeper

insights into the complex cellular composition of tumours and their

microenvironments, shedding light on how these heterogeneous

regions influence treatment resistance (32, 33). For example,

intratumor variation in immune cell infiltration and metabolic

reprogramming has been linked to the development of resistance

to immunotherapies and targeted therapies (33, 34). These findings

underscore the importance of considering the spatial organization

and functional diversity of tumours when therapeutic strategies are

designed, as localized subpopulations within the tumour may

exhibit differential responses to treatment (35, 36) (Figure 1).
2.2 Epigenetics in BTC

In the development and progression of BTC, abnormal DNA

methylation, histone modifications, and noncoding RNA regulation
frontiersin.org
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form a complex epigenetic network. Abnormal DNA methylation,

through the collaborative action of UHRF1/DNMT1 [by recruiting

the HELLS chromatin remodelling complex to facilitate the

recognition of hemimethylated CpG (37)] and methylation

recogni t ion mechanisms mediated by MBD2, dr ives

chemotherapy resistance (38) and presents genome-wide

differential methylation features across anatomical subtypes

(iCCA, eCCA, and GBC) (39). In clinical practice, methylation

markers in bile [such as early cholangiocarcinoma (CCA) markers

in PSC patients (40)], differentially methylated regions (DMRs/

DHMRs) in plasma circulating free DNA (cfDNA) (41, 42), and the

F12 gene CpG site (43) can serve as liquid biopsy tools, improving

diagnostic accuracy for malignant biliary strictures. Targeted

therapies for IDH1 mutat ion-associated methylat ion

abnormalities (44) and DNMT3A overexpression [persistently

present in the progression from cholelithiasis to gallbladder
Frontiers in Immunology 03
cancer (45, 46)] have shown potential for personalized treatment

(47, 48). With respect to histone modifications, abnormal

expression of the histone acetyltransferase KAT2B (49) and

methyltransferase G9a [which promotes BTC invasion through

the Hippo pathway LATS2/YAP regulation (50, 51)] drives

tumour progression, whereas the heterochromatin protein HP1a
regulates iCCA proliferation by interfering with the interferon

pathway (52). Among noncoding RNAs, downregulation of

circUGP2 (53) and abnormal expression of circACTN4 and

cPKM [which promote chemotherapy resistance through the

PKM2/b-catenin axis (38)] influence prognosis. LINC00511 (54)

and miR-27a-3p [targeting the FOXO1/PI3K/AKT pathway (55,

56)] regulate tumour stem cell properties, whereas exosomal

circRNAs [such as bile-derived CCA-circ1 (57)] and circNFIB

[through miR-412-3p/PIK3R3 inhibition of metastasis (58)] can

serve as molecular subtype biomarkers. These mechanisms, which
FIGURE 1

This diagram illustrates the genetic and molecular alterations in Biliary Tract Cancer (BTC) that contribute to immune evasion and tumour
progression. BTC, Biliary tract cancer; TAMs, Tumour-associated macrophages; NETs, Neutrophil Extracellular Trap formation; MDSCs, Myeloid-
derived suppressor cells; EMC, Extracellular matrix; GBC, Gallbladder cancer; DC, Dendritic cell; CAFs, Cancer-associated fibroblasts; Tregs,
Regulatory T cells.
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are mediated by RNA splicing via RBM10 (59) and signalling

pathways such as the PI3K/AKT pathway (60), lay the foundation

for prognosis evaluation and targeted therapy development in

BTC (Figure 2).
2.3 Changes in the tumour
microenvironment

In iCCA, TAMs play a pivotal role in driving immunosuppression

by upregulating PD-L1, which promotes T-cell exhaustion (61). This

process is further enhanced by abnormally activated regulatory T cells

(Tregs), which decrease antitumour immunity by suppressing effector

T-cell function and the secretion of proinflammatory cytokines, such as

IL-10 and TGF-b (62). The cross-talk between TAMs and Tregs creates

a mutually reinforcing immunosuppressive loop in which TAMs

secrete factors such as IL-6 and GM-CSF, which can promote Treg

expansion and activation (63–65). IL-6, produced by both tumour and

stromal cells, not only enhances cancer stem cell (CSC) proliferation

but is also a keymediator of systemic inflammation, which is correlated

with poor prognosis in CCA patients (66, 67). IDH1-mutant tumours

exacerbate immune suppression through metabolic reprogramming,

increasing the production of metabolites such as 2-HG, which inhibits

the function of TET2 and reduces T-cell activation, contributing to

resistance against ICIs (68–70). Furthermore, VEGF-C-driven

lymphangiogenesis contributes to an immunosuppressive

microenvironment by facilitating lymph node metastasis and further
Frontiers in Immunology 04
suppressing immune responses through the recruitment of

immunosuppressive cells (71, 72).

Additionally, cancer-associated fibroblasts (CAFs), derived

from TGF-b1-activated hepatic stellate cells (HSCs) that express

a-SMA, play a critical role in remodelling the TME. CAFs secrete

extracellular matrix (ECM) components that create mechanical

barriers to promote invasiveness and chemoresistance in iCCA

(73–75). CAFs not only increase tumour progression through the

secretion of protumour factors, such as VEGF and IL-6, but also

induce vasculogenic mimicry (VM), which accelerates metastasis

in gallbladder cancer (67, 76, 77). Heterogeneous CAF

subpopulations interact with myeloid-derived suppressor cells

(MDSCs) and inh ib i t T-ce l l func t i on by sec r e t ing

immunosuppressive cytokines, such as IL-10 and TGF-b. This
interaction is facilitated by the Notch1 signalling pathway, which

not only amplifies tumour malignancy but also helps CAFs recruit

MDSCs to the TME (78, 79). CAFs can transfer oncogenic

molecules, such as miRNAs and proteins, via exosomes, further

contributing to resistance in genomically distinct subtypes,

including ERBB2-amplified tumours (80–82). These interactions

between CAFs, TAMs, Tregs, and MDSCs create a complex

immune-suppressive network that supports immune evasion

and tumour progression in cholangiocarcinoma. These findings

underscore the importance of targeting the functional diversity of

these immune cells using combinatorial strategies, such as Notch

inhibitors or immunotherapies, to overcome resistance and

improve therapeutic outcomes (65, 83) (Figure 3).
FIGURE 2

This diagram illustrates key epigenetic mechanisms involved in the development and progression of BTC. BTC, Biliary tract cancer; Me, Methylation;
AC, Acetylation; ncRNA, Non-Coding RNA.
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2.4 Tumour-induced immune evasion
mechanisms

Multiomics remodelling has revealed profound metabolic

heterogeneity in ICCA, including enhanced glycolysis, lipid

dysregulation, and mitochondrial adaptation (84–86). Tumour cells

prioritize endogenous glycogen over glucose as the primary glycolytic

carbon source under hypoxia, with elevated glycogen phosphorylase

activity fuelling tumour progression (84). Lipid metabolism

alterations, such as increased synthesis and oxidation, and PGC-1a-
mediated mitochondrial reprogramming sustain proliferation and

represent therapeutic vulnerabilities (87). IDH1 mutations generate

(R)-2-hydroxyglutarate, which inhibits a-ketoglutarate-dependent
enzymes to induce epigenetic dysregulation and immune evasion

(68). Cancer stem cells (CSCs) rely on mitochondrial metabolism,

whereas TAMs exacerbate immunosuppression via glycolytic shifts

(86, 87). These metabolic adaptations correlate with anatomical

subtypes (e.g., ERBB2-amplified iCCA vs. PIK3CA-mutant

extrahepatic tumours) and influence chemotherapy/targeted therapy

efficacy (88–90). Multiomics analyses further revealed metabolic

heterogeneity across subtypes: gallbladder cancer shows lipid-driven

hypoxia adaptation, whereas extrahepatic tumours exhibit

PI3KCAH1047R-driven transformation (90–92). Metabolic crosstalk

within the TME involves CAFs that secrete lactate to promote

immunosuppression and TAMs that enhance glycolysis to suppress
Frontiers in Immunology 05
immunity (53, 93, 94). Exosome-mediated signalling coordinates

angiogenesis and fibrosis, whereas metabolic–immune network

dysregulation (e.g., GPR109A pathway anomalies) underpins poor

prognosis and therapy resistance (95–97). IDH1-mutant tumours

resist ICIs via epigenetic–immune crosstalk, whereas CPS1-deficient

tumours disrupt the urea cycle to alter the pH of the TME (98–100).

Targeting metabolic nodes, such as glycolytic enzymes, mitochondrial

pathways, or FGFR2/IDH1-related aberrations, may reverse

immunosuppression and increase treatment sensitivity (18, 53, 94,

101). Overall, the bidirectional feedback between metabolic

reprogramming and TME remodelling drives cholangiocarcinoma

progression, necessitating precision strategies that integrate

metabolic subtyping with immune and targeted therapies (86, 102,

103) (Figure 4).
3 Current immunotherapy approaches
for BTC

3.1 Monotherapy with immune checkpoint
inhibitors

ICIs, particularly PD-1/PD-L1 inhibitors and CTLA-4

inhibitors, are among the most successful immunotherapy

strategies. PD-1/PD-L1 inhibitors work by disrupting immune
FIGURE 3

This diagram provides an overview of the TME in BTC, highlighting key cellular and molecular interactions that drive immune evasion and tumour
progression. TME, tumour microenvironment; CAFs, Cancer-Associated Fibroblasts; TAMs, Tumour-Associated Macrophages, Tregs, Regulatory T-
cells; MDSCs, Myeloid-Derived Suppressor Cells; EMC, Extracellular matrix; HSCs, Hepatic Stellate Cells; CSC, Cancer stem cells.
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suppression between tumour cells and immune cells, promoting the

activation of T cells and enhancing antitumour immune responses

(104–106) . PD-1 inhibi tors , such as nivolumab and

pembrolizumab, have entered clinical trials for the treatment of

BTC and have shown some efficacy (107, 108). This finding

indicates the limitations of monotherapy in BTC and highlights

the immune suppressive characteristics of the tumour

microenvironment in this cancer.
3.2 Combination therapies

The combination of immune checkpoint inhibitors with

chemotherapy has been increasingly investigated in BTC, with

preliminary results suggesting that this combination can

significantly improve clinical outcomes. For example, the

combination of pembrolizumab with gemcitabine/cisplatin has

improved progression-free survival (PFS) and overall survival

(OS) in advanced BTC patients compared with chemotherapy

alone (3). This combination approach harnesses the cytotoxic

effects of chemotherapy while activating the immune response

through immune checkpoint inhibitors, providing a more

effective treatment option for BTC patients (109). Combining

immunotherapy with targeted therapy is another promising

strategy currently being explored for BTC. The combination of

PD-1 inhibitors with FGFR2 inhibitors or IDH1 inhibitors aims to

enhance immune responses and overcome tumour resistance

mechanisms. For example, the combination of PD-1 inhibitors

with FGFR2 inhibitors has shown potential in clinical trials, with
Frontiers in Immunology 06
some patients experiencing delayed disease progression (88, 110–

113). These combination therapies aim to target both immune

escape pathways and molecular drivers of tumour growth, offering a

multipronged approach to improve BTC treatment outcomes.

These combination strategies offer several advantages in BTC

treatment. First, they increase treatment efficacy by simultaneously

targeting immune evasion pathways and molecular drivers of

tumour growth, which improves clinical outcomes. Mechanistic

studies support these clinical findings: Mechanistically, targeting

TAMs and their PD-L1 upregulation can effectively alleviate

immune suppression and promote T-cell-mediated tumour killing

(114). Additionally, combining chemotherapy with immune

checkpoint inhibitors synergistically amplifies the therapeutic

response and improves PFS and OS (115). In addition, the

combination of targeted therapies with immunotherapy helps

overcome tumour resistance mechanisms, providing a more

comprehensive treatment approach. Targeted drugs, such as

FGFR2 inhibitors and IDH1 inhibitors, block tumour cell

proliferation and signalling pathways, thus increasing the

effectiveness of immunotherapy and restoring the ability of the

immune system to recognize tumours (116, 117). This multifaceted

strategy aims to address the complexity of BTC and may increase

the sustainability of clinical responses.

However, combination therapy also faces several challenges.

The combined use of chemotherapy and immune checkpoint

inhibitors may increase toxicity and immune-related adverse

events (irAEs), which may limit the tolerability of these

treatments in some patient populations (115). Additionally,

tumour heterogeneity in BTC is a significant challenge because
FIGURE 4

This diagram depicts the metabolic reprogramming in BTC driven by hypoxia and IDH mutations. TME, Tumour microenvironment; CSC, Cancer
stem cells; TAM, Tumour-Associated Macrophages.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1651769
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xue et al. 10.3389/fimmu.2025.1651769
the molecular characteristics of a patient may dictate the response

to combination treatment. Mechanistic research suggests that

molecular features, such as FGFR2 and IDH1 mutations, may

influence immune evasion and resistance mechanisms (118, 119).

Further research on the relationship between tumour molecular

characteristics and treatment response is crucial to optimize

combination therapies. Finally, reliable biomarkers to identify

patients who will benefit the most from combination therapies

are lacking, and the discovery of such biomarkers remains a

significant challenge. Mechanistic studies have pointed to the

potential of identifying biomarkers, such as key molecules in the

tumour microenvironment, which may help optimize patient

selection. Ongoing research is needed to identify suitable

biomarkers for patient selection and refine these combination

treatment strategies. Despite these challenges, combination

therapy remains a promising avenue for improving BTC

treatment outcomes (120), and further clinical trials and

mechanistic studies are necessary to optimize these approaches.
4 Clinical trials and applications in
BTC

Currently, clinical trials on immunotherapy in BTC are ongoing,

and many are evaluating the effects of combining immunotherapy

with chemotherapy and targeted therapies. As research advances,

more immunotherapy regimens are expected to enter clinical

practice, particularly in the areas of precision medicine and

individualized treatment. Moreover, new immunotherapy targets

and strategies that combine immunotherapy with metabolic

modulation are being explored, and future research is expected to

identify more treatment options for BTC patients (Table 1).
5 Reshaping the TME

5.1 TME Components and their impact on
immunotherapy

Critically, TAMs are the predominant immune cells in the BTC

TME. They play pivotal roles in promoting both tumour

progression and immune suppression. TAMs secrete cytokines,

such as IL-6 and TNF-a, that inhibit T-cell activation while

promoting the proliferation of cancer stem cells. Moreover,

TAMs upregulate immune checkpoints, such as PD-L1, which

further suppresses CD8+ T-cell activity, thereby facilitating

immune escape and promoting tumour growth (87, 121, 122).

Tregs are another crucial cell type in the BTC TME that

significantly contribute to immune suppression. Tregs secrete

immunosuppressive cytokines, such as TGF-b and IL-10, to

directly inhibit the function of effector T cells (e.g., CD8+ T

cells). This action suppresses antitumour immunity. The

accumulation of Tregs in the BTC TME is associated with poorer

prognosis, indicating their role in immune evasion and resistance to

treatment (123–125). MDSCs constitute another class of immune-
Frontiers in Immunology 07
suppressive cells that accumulate in the TME under the influence of

tumour-secreted factors. MDSCs suppress T-cell activation and

promote tumour progression by secreting immunosuppressive

molecules, such as arginase-1 (Arg1) and inducible nitric oxide

synthase (iNOS) (126). In BTC, the presence of MDSCs is

correlated with immune suppression and disease progression

(121, 127). CAFs are a key cell type in the TME and contribute to

tumour progression through the secretion of ECM components

(such as collagen and fibronectin) and protumourigenic factors

(such as VEGF and IL-6). CAFs remodel the ECM, which can create

physical barriers that impede immune cell infiltration. In addition,

CAFs promote immune evasion by secreting lactate and other

metabolic products, further suppressing immune responses (128).
5.2 Strategies to reshape the TME

One approach to reshaping the TME involves targeting

immune-suppressive cells, such as TAMs, Tregs, and MDSCs.

TAMs can be targeted using antibodies against CD40 or CSF1R,

which reduce the number of TAMs and restore immune responses

(129, 130). Targeting Tregs using anti-CTLA-4 antibodies or anti-

CCR4 antibodies, which can deplete Tregs and promote effector T-

cell function, has been proposed as another strategy to reshape the

TME (131). Additionally, targeting MDSCs with anti-GM-CSF

antibodies can reduce their accumulation and reverse immune

suppression in the TME (130). The dense ECM in the TME often

acts as a physical barrier that prevents immune cells from

infiltrating tumour tissues. Strategies to target ECM components

are being developed to increase immune cell infiltration. For

example, the use of matrix metalloproteinase (MMP) inhibitors

has been shown to degrade the ECM barrier, promoting immune

cell entry and enhancing the effects of immunotherapy (132).

Furthermore, targeting ECM components secreted by CAFs can

help alleviate mechanical barriers in the TME and improve immune

responses (133, 134). The metabolic reprogramming of both

tumour and immune cells in the TME plays a crucial role in

immune evasion. The acidic and hypoxic conditions in the TME,

which are caused by altered metabolic pathways, suppress immune

cell function. Targeting these metabolic pathways in tumour and

immune cells, such as glycolysis and lipid metabolism, has been

proposed as a strategy to restore immune function and increase the

efficacy of immunotherapy (135, 136). For example, inhibiting

lactate metabolism in tumour cells can reverse immune

suppression and enhance the antitumour effects of immune

cells (137).
5.3 Combination of immunotherapy and
TME reshaping

Combining immunotherapy with strategies to reshape the TME

has shown promising results in preclinical models. Targeting both

immune-suppressive pathways in the TME and enhancing immune

responses has synergistic effects (138). For example, combining PD-
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TABLE 1 Clinical trials of BTC.

Trial ID Phase
(Estimated
number);
line

Tumour
type

Molecular
target

Treatment
type

Status Last
update
posted

Primary
outcome

Location Results

NCT04466891 IIb(N=87); 1st GBC Her2 Zanidatamab Completed Aug 21, 2024 ORR US ORR:41.3%

NCT01308840 II(N=31);1st BTC; GBC Kras/B-
raf mutations

GEMOX-
Panitumumab

Completed Aug 21, 2024 ORR US ORR:50%;
mPFS:10.5
months;
mOS:24.8
months
ORR:41.3%

NCT02265341 II(N=12);1st BTC FGFR2 fusion Ponatinib
Hydrochloride

Completed Aug 6, 2019 CBR
(≥4 moth)

US CBR:5%

ORR:20.7%;

DCR82.8%

NCT01752920 I-II(N=29)1st iCCA FGFR genetic
aberrations;
FGFR2
gene fusion

Derazantinib Completed June 5, 2023 ORR; DCR US

NCT03230318 II(N=29)2nd iCCA FGFR2
fusions;
FGFR2
mutations

Derazantinib Completed Dec 19, 2023 ORR; DCR;
mPFS

US ORR:20.7%;
DCR:82.8%;
mPFS:5.7
months

NCT02924376 II(N=)2nd BTC FGFR2
translocation

Pemigatinib Completed ORR;
DCR;
mDOR

Feb 23, 2023 US ORR:37.0%;
DCR:82.4%;
mDOR9.1
months

NCT02034110 II(N=43)1st BTC BRAF
V600E
mutation

Dabrafenib
+ Trametinib

Completed Aug 21, 2023 Best
Response

US CR:2%;
PR:53%;
SD:35%

NCT01935843 I(N=11)1st PCs; BTC HER2-positive CART-
HER2 cell

Completed Jan 28, 2016 PFS China PFS:4.5months

nab-paclitaxel

Cyc

NCT04088188 I (N=8)1s BTC IDH Pemigatinib;
Cisplatin;
Gemcitabine;
Ivosidenib

Completed May 6, 2024 OS;PFS US mOS(22.9
months
vsNA);mPFS
(15.4months
vs 4.9months)

NCT04722133 I(N=34)2nd BTC HER2-positive Trastuzumab Completed Oct 11, 2023 ORR; DCR Korea ORR:29.4%;
DCR:79.4%

FOLFOX

NCT02989857 III(N=185)3rd BTC IDH1
mutations

Ivosidenib Completed Aug 20, 2024 mPFS; US mPFS(2.7
months
vs1.4months)

NCT04329429 II(N=57)2nd BTC HER2
Overexpressed

RC48-ADC Active,
not recruiting

December
20, 2023

Best
Response

China Results
pending

NCT04579380 II(N=217)1st Solid
Tumours;
BTC

HER2
alterations

Tucatinib;
Trastuzumab;
Fulvestrant

Active,
not recruiting

March
25, 2025

ORR China Results
pending

NCT06282575 III (N=286) BTC HER2 Zanidatamab
+ CisGem

Recruiting May 13, 2025 OS US Results
pending
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GEMOX, Gemcitabine+ Oxaliplatin; N, None; ADC, Antibody-Drug Conjugate; Cyc, cyclophosphamide; PC, Pancreatic cancers; iCCA, Intrahepatic Cholangiocarcinoma; GBC, Gallbladder
Cancer; BTC, Biliary Tract Cancer; ORR, Overall Response Rate; PFS, Progression-Free Survival; OS, Overall Survival; DCR, Disease Control Rate; CR, Complete Response; SD, Stable Disease.
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1 inhibitors with CAF-targeting therapies has resulted in increased

antitumour effects in preclinical studies (139). This approach not

only improves immune cell function but also suppresses tumour

growth, providing a more effective treatment strategy for BTC.
6 Advancing precision combination
strategies

6.1 Combination of immunotherapy with
targeted therapy

FGFR2 gene fusions or amplifications are common in iCCA, with

approximately 10–15% of iCCA patients harbouring FGFR2 alterations.

FGFR2 inhibitors, such as pemigatinib and futibatinib, have shown

significant efficacy in FGFR2 fusion-positive patients (93, 140).

Combining FGFR2 inhibitors with PD-1 inhibitors (e.g., nivolumab)

may enhance the effects of immunotherapy. This potential benefit arises

because FGFR2 inhibitors inhibit tumour cell proliferation. Moreover,

they enhance immune system responses (141). IDH1 mutations occur

in a subset of BTC patients, particularly in iCCA patients. IDH1

inhibitors (e.g., ivosidenib) restore normal metabolic pathways,

inhibiting tumour cell growth. In early clinical trials, the combination

of IDH1 inhibitors with immunotherapy has shown potential for

enhancing immune responses (142). HER2 overexpression or

amplification is observed in some gallbladder cancers and iCCA.

HER2-targeted therapies (e.g., trastuzumab) in combination with

immunotherapy (e.g., PD-1 inhibitors) may enhance antitumour

immune responses and overcome immune evasion (55, 143).
6.2 Combination of immunotherapy with
chemotherapy

The combination of immune checkpoint inhibitors, such as nivolumab

or pembrolizumab, with chemotherapy (e.g., gemcitabine and cisplatin) has

shown superior efficacy in BTC treatment (3). Compared with

chemotherapy alone, the combination of PD-1 inhibitors with

chemotherapy significantly improves PFS and OS. Additionally,

immunotherapy helps overcome chemotherapy resistance, enhancing

immune responses against tumours (144). Chemotherapy induces

tumour cell death, leading to the exposure of tumour antigens, which

enhances immune system recognition of the tumour (145). Moreover,

chemotherapy increases immune cell infiltration into the tumour, creating a

more favourable environment for immunotherapy. The combination of

chemotherapy and immune checkpoint inhibitors not only enhances

immune responses but also provides complementary mechanisms to

combat tumour growth, improving therapeutic efficacy (105, 107).
6.3 Combination of immunotherapy with
metabolic modulation

Tumour cells enhance glycolysis and lipid metabolism to

promote growth while suppressing immune cell function.
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Inhibiting tumour cell glycolysis or lipid biosynthesis restores

immune cell antitumour functions, increasing the efficacy of

immunotherapy. The combination of metabolic inhibitors with

immunotherapy has demonstrated significant synergistic effects in

preclinical models, particularly in BTC models (3, 146). Metabolic

reprogramming in the TME creates an acidic and hypoxic

environment that suppresses immune cell activity. Targeting these

metabolic pathways and restoring normal metabolic states may

reverse the immune-suppressive environment in the TME, thereby

enhancing the effects of immunotherapy (147). For example, the use

of glucose metabolism inhibitors or lactate removal agents has been

shown to effectively restore antitumour responses of the immune

system and improve immunotherapy response rates (148).
7 Challenges in clinical translation

Despite advancements in targeted and immunotherapies,

several challenges hinder their clinical translation for BTC. The

molecular heterogeneity of BTC, with varying genetic profiles across

subtypes (iCCA, eCCA, and GBC), complicates the identification of

universal therapeutic targets. The difficulty in obtaining sufficient

tissue samples for molecular profiling is addressed by liquid biopsy

technologies, particularly cfDNA, which offer a noninvasive method

to monitor mutations and treatment responses in real time (149).

The immunosuppressive tumour microenvironment, dominated by

Tregs, MDSCs, and TAMs, limits the efficacy of ICIs. Overcoming

this barrier requires strategies such as combining ICIs with

immunomodulatory agents. Additionally, the development of

predictive biomarkers, such as tumour mutational burden and

specific genetic alterations, is essential for patient selection and

optimizing treatment strategies.

Chemotherapy, targeted therapy, and immunotherapy each

offer distinct advantages and limitations in the management of

advanced CCA (150). Chemotherapy remains a cornerstone of

treatment, particularly for advanced cases, but its effectiveness is

often limited by systemic toxicity and a lack of durable responses

(151). Targeted therapies, such as those targeting specific genetic

alterations such as FGFR2 fusions or IDH mutations, have shown

promising results in selected patients but are limited by the genetic

heterogeneity of CCA and the development of resistance over time

(152). Immunotherapy, particularly ICIs, offers a new approach by

targeting immune evasion mechanisms within the tumour

microenvironment (153). However, the immunosuppressive

nature of the CCA microenvironment, which is dominated by

regulatory T cells (Tregs), myeloid-derived suppressor cells

(MDSCs), and TAMs, limits the effectiveness of ICIs in many

patients (154). Overcoming this challenge may require combining

ICIs with immunomodulatory agents or other treatment strategies

to enhance the immune response (155). Furthermore, predictive

biomarkers, such as tumour mutational burden (TMB) and

specific genetic alterations, are crucial for patient selection and

optimizing the therapeutic approach, ensuring that patients most

likely to benefit from each modality receive the appropriate

treatment (156).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1651769
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xue et al. 10.3389/fimmu.2025.1651769
8 Overcoming clinical challenges in
immunotherapy for BTC

8.1 Mechanisms of immunotherapy
resistance

BTC tumour cells evade immune surveillance through several

mechanisms. These processes primarily involve 1) the upregulation

of immune checkpoints (such as PD-L1 and CTLA-4), 2) the

accumulation of TAMs and regulatory Tregs, and 3) the

reprogramming of tumour metabolic pathways. These

mechanisms limit the immune response and contribute to

tumour immune escape, thereby exacerbating resistance (157).

For example, high PD-L1 expression in BTCs directly inhibits

CD8+ T-cell-mediated antitumour effects (158). TAMs and Tregs,

through the secretion of immunosuppressive cytokines such as IL-

10 and TGF-b, further weaken immune responses (159). Metabolic

reprogramming in the TME is another important factor leading to

immune evasion. BTC cells promote glycolysis, lipid synthesis, and

lactate secretion, creating an acidic, hypoxic, and nutrient-deprived

microenvironment. This environment not only provides a growth

advantage to tumour cells but also suppresses immune cell

functions. For example, the accumulation of lactate in the TME

impairs T-cell efficacy and suppresses immune responses (160).
8.2 Immune-related adverse events

Although ICIs have demonstrated efficacy in various cancers,

immune-related adverse events (irAEs) associated with these

treatments have become a significant clinical challenge. irAEs

refer to autoimmune reactions triggered by the activation of the

immune system, which can result in damage to various organs,

including the skin, liver, lungs, and endocrine system (161, 162). In

BTC patients, the incidence of irAEs due to ICIs is relatively high,

and their management requires careful consideration of the

patient’s immune status and comorbidities. This management is

especially challenging in patients with advanced BTC or those with

multiorgan metastasis, where irAEs complicate treatment.

Therefore, balancing efficacy with the management of irAEs

remains a major clinical challenge in BTC immunotherapy.

The management of irAEs in BTC patients involves a range of

strategies aimed at controlling immune overactivation while

maintaining the antitumour efficacy of ICIs. First-line treatment

typically involves systemic corticosteroids, with additional

immunosuppressive agents such as mycophenolate mofetil or

infliximab for severe cases (163–165). Temporary interruption of

ICIs may be recommended for mild irAEs, with reintroduction

upon symptom resolution. Preventive measures focus on

pretreatment screening to identify high-risk patients, particularly

those with a history of autoimmune disorders. Low-dose

corticosteroids before treatment and personalized monitoring

using biomarkers predictive of immune activation are areas of

active research. Although these strategies can reduce the severity
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of irAEs, further clinical validation is needed before they can be

widely implemented.

Balancing efficacy with safety is a critical challenge in BTC

immunotherapy, especially given the potential for severe irAEs. To

optimize outcomes, clinicians must tightly monitor patients by

assessing organ function and tracking symptoms regularly. An

individualized approach is necessary, wherein the decision to

continue or pause ICI therapy is based on the patient’s overall

health, the severity of irAEs, and potential survival benefits (166).

Furthermore, combining ICIs with other therapies, such as

chemotherapy or targeted treatments, may help mitigate the

immune activation seen with monotherapy, potentially reducing

the risk of irAEs while retaining treatment efficacy (167, 168).

Ongoing research into biomarkers to predict irAEs and methods

to prevent their occurrence will be essential for improving the safety

profile of ICIs in BTC and enhancing the clinical management of

these patients (169).
8.3 Patient selection and the lack of
biomarkers

Currently, the response rate of BTC patients to immunotherapy

remains low, making patient selection crucial. However, accurately

identifying patients who are most likely to benefit from

immunotherapy is difficult due to the lack of effective predictive

biomarkers. While some biomarkers, such as PD-L1 expression,

microsatellite instability (MSI), and the TMB, have been shown to

have predictive value in other cancers, their utility in BTC remains

unval idated (170, 171) . Biomarker ident ificat ion for

immunotherapy response in BTC remains in its early stages.

Emerging technologies, such as liquid biopsy, ctDNA, and

genomic analysis, offer the potential for earlier and more accurate

assessment of treatment efficacy and resistance. Furthermore,

research suggests that the interaction between immunotherapy

and the TME may affect the treatment response, highlighting the

potential of TME components as predictive biomarkers (172).
8.4 Challenges in TME reshaping

Although reshaping the TME to increase immunotherapy

efficacy has become a significant research focus, translating this

strategy into clinical practice still faces multiple challenges. First, the

complexity and heterogeneity of the TME hinder the complete

elimination of immunosuppressive components (172, 173).

Additionally, TME-reshaping drugs may interact with

immunotherapies, potentially causing side effects. For example,

targeting CAFs (cancer-associated fibroblasts) may lead to

adaptive changes in tumour cells that result in therapy resistance

(174). Therefore, precisely targeting immune-suppressive

components within the TME while minimizing side effects and

maximizing the effectiveness of immunotherapy remains a key

focus for future research.
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8.5 Limitations and challenges in clinical
trials

Although numerous clinical trials related to immunotherapy

are underway, some limitations still remain in the design of clinical

trials for BTC. First, most clinical trials have focused on late-stage

BTC patients, often overlooking patients with early-stage or locally

advanced disease. Second, the heterogeneity of trial results is

significant, due in part to individual patient differences, tumour

heterogeneity, and variations in immune responses. Therefore,

larger, more rigorously designed clinical trials are needed to

validate the true effects and safety of immunotherapy in BTC

(175) Table 2.
9 Future directions and emerging
therapies

9.1 Next-generation immunotherapies

Chimeric antigen receptor T-cell (CAR-T) therapy is an

emerging treatment strategy that involves genetically modifying a

patient’s own T cells to recognize and attack tumour cells. Although

CAR-T-cell therapy has achieved significant success in

haematologic cancers, its application in solid tumours, including

BTCs, faces challenges. Research indicates that the primary

challenge for CAR-T-cell therapy in solid tumours is the ability to

effectively penetrate the tumour microenvironment and enhance T-

cell infiltration (176, 177). Current research focuses on optimizing

CAR-T-cell therapy design, including targeting specific antigens

found in BTCs, such as Mucin 1 and CEA, to improve efficacy and

reduce side effects (178). Tumour vaccines, particularly mRNA-

based vaccines, constitute another emerging strategy in

immunotherapy. mRNA vaccines deliver specific tumour antigen

genes to the patient’s body, inducing the immune system to

recognize and attack tumour cells. mRNA vaccines that target

BTCs are currently in the preclinical phase, and these vaccines

have the potential to enhance antitumour immune responses (179).

For example, mRNA vaccines that target KRAS mutations have

shown therapeutic potential in other solid tumours and may be used

for BTC treatment in the future (180).
9.2 Targeting novel immune checkpoints

T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and

lymphocyte-activation gene 3 (LAG-3) are newly identified

immune checkpoint molecules that play critical roles in immune

suppression in various cancers. Research indicates that the

upregulation of TIGIT and LAG-3 is closely associated with

immune evasion and tumour resistance (181–183). Currently,

monoclonal antibodies that target TIGIT and LAG-3 are

undergoing clinical trials. Combining PD-1/PD-L1 inhibitors with

TIGIT or LAG-3 inhibitors may improve treatment responses in

BTC patients (184). V-domain Ig suppressor of T-cell activation
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(VISTA) is another newly discovered immune checkpoint molecule

that plays a key role in regulating T-cell function (185). VISTA

upregulation in the TME has been shown to play a role in immune

suppression, particularly in solid tumours. Antibodies that target

VISTA are currently under development and may offer new

treatment options for BTC patients when combined with existing

immunotherapies (186).
9.3 Artificial intelligence and
immunotherapy

AI and deep learning technologies can analyse patient genomic

data, immune phenotypes, and clinical characteristics to identify

biomarkers associated with immunotherapy response. These

technologies can help clinicians select the patients most likely to

benefit from immunotherapy and provide personalized treatment

plans (187). AI algorithms can assist in optimizing immunotherapy

regimens, including selecting the best immune checkpoint

inhibitors, targeted therapies, and combination therapies. By

simulating different treatment pathways and predicting treatment

responses, AI can provide more precise therapeutic decisions for

BTC patients (188). Furthermore, AI can integrate the analysis of

the gut microbiome to further enhance personalized treatment

strategies (189). Increasing evidence shows that the gut

microbiome significantly influences immune therapy responses,

with certain microbiome compositions enhancing immune

responses and improving the efficacy of immunotherapy (190,

191). AI can analyse the microbiome data of patients to identify

those whose microbiome features may affect immune therapy

outcomes, thereby optimizing treatment plans (192). By

integrating genomic data, immune phenotypes, clinical

characteristics, and microbiome data, AI provides more

comprehensive decision support for personalized treatment plans,

helping to improve treatment efficacy and patient survival (193).
10 Future directions

As we move forward in the treatment of BTC, several key areas

need further exploration and development to optimize patient

outcomes. The identification of molecular subtypes in BTC,

driven by specific genetic alterations such as FGFR2 fusion, IDH1

mutation, and BRAF mutation, will be essential for personalizing

treatment strategies. These molecular profiles are critical for guiding

targeted therapies and optimizing treatment plans. Ongoing clinical

trials aim to integrate molecular profiling with precision medicine

to identify patients who are most likely to benefit from specific

therapies, and such efforts are expected to reshape the landscape of

BTC treatment (93, 194).

The use of liquid biopsy technologies, particularly cfDNA-based

assays, will play a pivotal role in the future of BTC treatment. Liquid

biopsy is a noninvasive, real-time method for monitoring tumour

evolution, assessing treatment responses, and detecting resistance

mechanisms (42). The ability to track genetic alterations
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TABLE 2 Clinical trials of immunotherapy for biliary tract cancer.

Trial ID Phase tumour Molecular Treatment type Status Last update Primary
utcome

Location Results

PFS; US PFS: A 59.4%
B 21.2%
OS:A:6.6months
VS 10.6months

S

OS:B 3.9months VS 8.2months

mPFS US PFS: 8.4months (atezo+bev
+CisGem) VS 7.9months
(atezo+ placebo+CisGem)

ORR US ORR:21%

ORR US ORR: 22.9% vs 3%

RR China ORR:30.6%

PFS, OS China PFS:6.1months,
OS:11.8months
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Type target posted

NCT03101566 II(N=75);1st BTC / Cisplatin Completed Feb 23, 2023

Gemcitabine

Nivolumab

Ipilimumab

NCT04677504 II(N=162)1st BTC / Atezolizumab Completed July 3, 2024

Bevacizumab

NCT02703714 II(N=21)2nd BTC / MK3475 + GM-CSF Completed Jan 25, 2022

NCT03875235 III (N= 341 vs
344) 1st

BTC / Durvalumab + GP chemotherapy VS
placebo + GP Chemotherapy

Completed Mar 25, 2025

NCT03796429 II(N=50)1st BTC / Toripalimab Completed Nov 29,
2023

Gemcitabine

S1

NCT03486678 II(N=38)1st BTC / Camrelizumab Completed Oct 28, 2021

GEMOX
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TABLE 2 Continued

Trial ID Phase tumour Molecular Treatment type Status Last update
posted

Primary
outcome

Location Results

July 31, 2024 ORR; PFS;
OS

UK ORR:4%;
PFS:6.1months;
OS:6.4months

Completed Mar 29, 2023 ORR China ORR:32.3%

Completed July 7, 2021

ORR China ORR:80%

Completed Dec 10, 2019 ORR US ORR:12.5%

Completed Sep 08, 2022 ORR US ORR:20%

Completed Jun 12, 2022 ORR Korea Results pending

iliary Tract Cancer; ORR, Overall Response Rate; PFS, Progression-Free Survival; OS, Overall Survival; DCR, Disease Control Rate; CR, Complete
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number); line

Type target

NCT02443324 I(N=26)2nd BTC / Pembrolizumab

Ramucirumab

NCT03892577 Real-world Study
(N=31)1st

GBC / PD-1 inhibitors

Lenvatinib

NCT03951597 II(N=30)1st BTC / Toripalimab

lenvatinib

GEMOX

NCT01853618 II(N=30)2nd BTC / Tremelimumab

microwave ablation

NCT03482102 I(N=30)2nd BTC / Durvalumab/

Tremelimumab

Radiotherapy

NCT03110328 I(N=33)2nd Meta BTC / MK3475

Met, Metastatic; MK3475, pembrolizumab; GEMOX, Gemcitabine+ Oxaliplatin; GBC, Gallbladder Cancer; BTC, B
Response; SD, Stable Disease.
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dynamically during treatment provides a powerful tool for adapting

therapies and personalizing care. However, integrating these

technologies into clinical practice poses challenges, including the

standardization of assays, ensuring high sensitivity and specificity,

and achieving cl inical val idat ion for broader use in

routine diagnostics.

While monotherapies have demonstrated limited efficacy in

BTC, combination therapies that involve targeted therapies, ICIs,

and chemotherapy are being actively explored to improve survival

outcomes. The development of reliable biomarkers to identify the

patients who will benefit from these combination therapies remains

a crucial research priority (110, 113, 146). The ability to accurately

predict treatment response is key to enhancing patient outcomes

and avoiding ineffective treatments. Additionally, the mechanisms

of resistance to combination therapies need to be better understood

to refine treatment protocols and prevent relapse.

Another significant development in BTC treatment is the

growing use of artificial intelligence (AI) and machine learning

(ML) technologies to analyse large datasets from clinical trials and

patient registries. These tools are being leveraged to identify

potential biomarkers, predict patient responses to different

therapies, and optimize patient selection for clinical trials. AI-

driven approaches are expected to improve clinical trial designs,

helping to identify more appropriate patient populations and

accelerating the development of new therapies for BTC (41, 195–

197). However, challenges remain in integrating AI into clinical

decision-making, particularly in ensuring the interpretability and

clinical relevance of AI-generated insights.
11 Conclusion

Immunotherapy has shown great potential for treating BTC,

particularly by enhancing antitumour immune responses and

overcoming immune evasion mechanisms. However, the highly

immunosuppressive TME in BTCs limits the efficacy of

monotherapy. Combination strategies, such as immune

checkpoint inhibitors with targeted therapies (e.g., FGFR2 and

IDH1 inhibitors) and chemotherapy, have demonstrated

promising results, significantly improving treatment outcomes.

Additionally, combining immunotherapy with metabolic

modulation offers new therapeutic possibilities. Although

challenges such as resistance and immune-related adverse events

persist, emerging therapies such as CAR-T-cell therapy, mRNA

vaccines, and novel immune checkpoint inhibitors hold promise for

more personalized and effective treatment options. Future research

should focus on refining combination therapies, developing precise
Frontiers in Immunology 14
biomarkers, and conducting rigorous clinical trials to optimize

immunotherapy in BTC, ultimately improving patient outcomes

and quality of life.
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