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macrophages to inhibit M1
polarization and associated
inflammatory responses
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Introduction: Ulcerative colitis (UC) is a chronic inflammatory bowel disease
marked by recurrent mucosal inflammation, leading to symptoms such as bloody
diarrhea and weight loss, which severely impair patients’ quality of life. Current
treatments are often limited by long-term efficacy and safety concerns. LTrl, a
trimeric compound derived from indole-3-carbinol (I3C), has shown anti-cancer
potential, but its role in inflammatory diseases remains unclear. This study aims to
investigate the protective effects and underlying mechanisms of LTrlin a dextran
sulfate sodium (DSS)-induced colitis mouse model.

Methods: UC was induced by administering 2.5% DSS in drinking water for 7 days,
while LTrl was orally administered at 100 mg/kg daily starting from day 1. Clinical
symptoms, histological changes, and pro-inflammatory cytokine levels in the
colon and serum were assessed. Macrophage infiltration and polarization in the
colon and spleen were analyzed by flow cytometry and qPCR. In vitro, the direct
effects of LTrl on macrophage polarization were examined using CCK-8, flow
cytometry, and gPCR. Network pharmacology was employed to explore
potential molecular mechanismes.

Results: LTrl significantly alleviated clinical symptoms, reduced histological
damage, preserved intestinal barrier integrity, and suppressed the production
of inflammatory cytokines. It also inhibited DSS-induced macrophage infiltration
and M1 polarization in vivo. Moreover, LTrl directly and effectively suppressed
LPS-induced M1 macrophage polarization in vitro. Finally, network
pharmacology analysis identified TP53, AKT1, HSP90AAl1, EGFR, and SRC as
potential targets of LTrl in the context of UC.
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Conclusion: These findings indicate that LTrl exerts protective effects against
DSS-induced colitis, at least in part by inhibiting macrophage infiltration and M1
polarization, thereby reducing pro-inflammatory cytokines production. This
study provides a theoretical foundation for optimizing UC treatment strategies
and highlights LTrl as a promising candidate for the development of novel

UC therapies.

colitis, LTrl, macrophages, M1 polarization, network pharmacology

1 Introduction

Ulcerative colitis (UC) is a chronic inflammatory bowel disease
(IBD) characterized by persistent inflammation of the colonic and
rectal mucosa (1). Its long duration and high recurrence rate
severely impair patients’ quality of life. The pathophysiology of
UC involves a complex interplay of genetic susceptibility,
environmental triggers, and immune dysregulation, which
compromise the colonic mucosal barrier. This breach permits
luminal antigens to penetrate and activate submucosal immune
cells, perpetuating a cycle of neutrophil infiltration, epithelial
damage, and crypt abscess formation (2, 3). Current therapeutic
strategies for UC include 5-aminosalicylic acid medications,
glucocorticoids, immunosuppressants, and biologics (4-6).
However, these treatments face challenges regarding long-term
efficacy and safety, highlighting the need to explore alternative
therapeutic options, including natural bioactive compounds (7, 8).

Macrophages play a central role in innate immunity,
inflammatory regulation, and tissue repair (9). Their functional
diversity is governed by polarization, a dynamic process by which
macrophages adopt distinct phenotypes in response to
microenvironmental stimuli, including cytokines and microbial
products. Broadly, macrophages are classified into two
phenotypes: classically activated (M1) and alternatively activated
(M2) (10). M1 macrophages, induced by stimuli such as
lipopolysaccharide (LPS) (11) and interferon-gamma (IFN-y)
(12), drive a pro-inflammatory response via heightened
production of interleukin-1f (IL-1B), IL-6, tumor necrosis factor-
o (TNF-0), and inducible nitric oxide synthase (iNOS) (13).
Conversely, alternatively activated M2 macrophages, stimulated
by IL-4, IL-10, IL-13, or transforming growth factor-p (TGF-),
exhibit anti-inflammatory and tissue-reparative functions. These
cells secrete IL-10, express Arginase-1 (Arg-1) and CD206,
promoting resolution of inflammation and tissue repair (9).
While our present work refers to the M1/M2 classification for
descriptive purposes, it is important to acknowledge that
macrophage polarization is a highly dynamic and context-
dependent process that extends beyond this simplified model.

In the intestinal mucosa, macrophages help maintain immune
balance by distinguishing between harmless antigens and harmful

Frontiers in Immunology

pathogens (14). However, in UG, this balance is disrupted: there is a
significant increase in the abundance and activation of
macrophages and often polarizing macrophages toward the M1
phenotype (15, 16). Studies have shown that macrophages from UC
patients exhibit abnormal signaling and functional profiles,
resulting in the excessive activation of inflammatory responses
and the persistence of tissue damage (17). This includes the
production of reactive oxygen species (ROS) and recruitment of
other immune cells such as neutrophils, which release ROS and
proteases, as well as T lymphocytes to the inflamed mucosa. These
processes further propagate inflammation, contributing to the
characteristic features of UC, including mucosal ulceration, crypt
abscesses, and inflammatory infiltrates. Consequently, macrophages
are considered to play a pivotal role in UC and have emerged as a
novel target to develop new treatment approaches in IBD (15, 18).

2-(Indol-3-ylmethyl)-3,3’-diindolylmethane (LTrl) is a
trimeric compound derived from indole-3-carbinol (I3C), a
natural bioactive compound abundant in cruciferous vegetables
and well recognized for its anti-cancer properties (19). Numerous
studies and meta-analyses have demonstrated an inverse correlation
between cruciferous vegetable intake and the risk of various
common cancers, such as colorectal (20, 21) and breast cancer
(22). Additionally, research has shown that LTr1 can effectively act
against acute myelocytic leukemia (AML) cells harboring FMS-like
tyrosine kinase 3 (FLT3) receptor mutations by inhibiting FLT3
phosphorylation and the expression of downstream proteins (23).
Further investigation revealed that LTr1 exhibits broad-spectrum
anti-cancer activity across several cancer cell lines, including MCF-
7 (breast cancer), A549 (lung cancer), and HepG2 (liver cancer)
(24). Thus, LTr1 is regarded as a potent cancer inhibitor, superior to
I3C and 3,3'-diindolylmethane (DIM), the latter being the most
active and effective metabolite of I13C, currently undergoing phase
II/III clinical trials to assess its efficacy in patients with breast cancer
(25, 26). Despite the growing evidence of LTrl’s anti-cancer
potential, its therapeutic value in inflammatory diseases such as
UC remains unexplored.

To address the pressing need for novel UC therapeutics with
improved safety and efficacy, we aimed to explore the potential of
LTrl as a candidate agent in the treatment of UC. Given the central
role of macrophages in the pathogenesis of UC and the growing
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interest in modulating macrophage polarization as a therapeutic
strategy, we focused on evaluating the effect of LTr1 on macrophage
dynamics in the context of intestinal inflammation. Specifically, we
sought to investigate whether LTr1 could alleviate colitis symptoms
and modulate macrophage polarization in a DSS-induced murine
colitis model. This study provides a foundation for assessing the
immunomodulatory potential of LTrl beyond its known anti-
tumor activity and may offer new insights into natural
compound-based interventions for inflammatory bowel diseases.

2 Materials and methods

2.1 Mice

Male BALB/c mice (6 weeks old) were obtained from the Model
Animal Genetics Research Center of Nanjing University (Nanjing,
China). Mice were housed under standard laboratory conditions
with free access to standard pellet chow and sterile, distilled water
on a 12/12h light/dark cycle.

2.2 DSS-induced colitis model conduction

2.2.1 DSS treatment and LTrl administration

Mice were allowed to adapt for 7 days with unrestricted access
to food and water before the experiments. They were randomly
assigned to three groups (n=5 per group): Control group, DSS
group, and DSS + LTr1 group. For induction of colitis according to
the references (27, 28), mice were administered with 2.5% (w/v)
dextran sulfate sodium (DSS) solutions (Sigma-Aldrich, Cat#
42867) ad libitum for 7 days, followed by normal water for 3 days
until being sacrificed under anesthesia. The DSS solution were
replaced every two days. For LTrl treatment, LTrl (LTrl was
synthesized according to the reference (19), dissolved in corn oil
to prepare a stock solution) was administered to mice by oral gavage
at 100 mg/kg once daily. Mice in the control and DSS groups
received an equal volume of corn oil as vehicle.

2.2.2 Evaluation of disease activity index

During DSS treatment, the severity of UC was assessed using
the DAI score system (29), which combines scores for body weight
loss, stool consistency, and hematochezia. The DAI scoring criteria
are as follows: Body weight loss: 0 for within 1% weight loss; 1 for 1-
5% weight loss; 2 for 5-10% weight loss; 3 for 10-15% weight loss; 4
for weight loss >15%. Stool consistency: 0 for normal stool; 2 for soft
stool; 4 for watery diarrhea. Hematochezia: 0 for normal stool; 2 for
moderate bleeding; 4 for gross bleeding. The average of three scores
was expressed as the DAL

2.2.3 Sample collection

At the end of experiment, mice were sacrificed under isoflurane
anesthesia. Mice were placed in an induction chamber with 3%
isoflurane in oxygen until complete loss of consciousness and
cessation of respiratory movement were observed. Cervical
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dislocation was then performed as a secondary method to ensure
death before tissue collection. The entire colon was collected, and
the lengths and weights were measured and photographed. The
spleen was also harvested, and the wet weights were recorded.

2.3 Histopathological analysis

The colon tissues were fixed in 4% formaldehyde (Sigma-
Aldrich, Cat# 1.00496), embedded in paraffin (Sigma-Aldrich,
Cat# 327212), and sectioned at 5 um thickness. Sections were
stained with Hematoxylin (Sigma-Aldrich, Cat# H3136) and
Eosin (Sigma-Aldrich, Cat# HT110116) (H&E) solution, and then
the sections were examined under light microscopy for evaluating
the histopathologic changes.

2.4 Immunohistochemistry

For immunohistochemical staining, the paraffin-embedded
colon tissue sections were deparaffinized, rehydrated, and treated
with 3% H,0, (Sigma-Aldrich, Cat# H1009) to block endogenous
peroxidase activity. Antigen retrieval was performed by microwave
heating, followed by blocking with 5% bovine serum albumin
(Sigma-Aldrich, Cat# 05470) for 30 minutes. After blocking,
sections were incubated overnight with primary antibodies
against Clandin4 (dilution 1: 200) (Cell signaling, Cat# 94478),
Occludin (dilution 1: 200) (Cell signaling, Cat# 91131), ZO-1
(dilution 1: 300) (Cell signaling, Cat# 13663), CD3 (dilution I:
100) (Cell signaling, Cat# 78588), and F4/80 (dilution 1:100) (Cell
signaling, Cat# 70076) at 4°C. Further, after washing with PBS
(Gibco, Cat #14190144), the sections were incubated with
polyperoxidase-anti-rabbit IgG secondary antibody (dilution
1:1000) (Sigma-Aldrich, Cat# A8275) at room temperature for
1 h. Nuclei were counterstained with DAPI (4’,6-diamidino-2-
phenylindole) (dilution 1:10000) (Thermo Fisher, Cat# D1306),
and sections were imaged under fluorescence microscopy.

2.5 Periodic acid Schiff and alcian blue
staining

Fresh colon was fixed in 10% buffered formalin, embedded in
paraffin, sectioned at 5 wm thickness, and stained with Periodic
acid-Schiff and Alcian blue stain kit (Abcam, Cat# ab245876)
according to manufacturer’s instructions. Finally, all samples were
observed and photographed with microscopy and the number of
goblet cells was normalized to the number of crypt units.

2.6 Determination of cytokines
Cytokines levels were assessed using enzyme-linked immune

sorbent assay (ELISA). Serum samples were collected via the orbital
venous plexus under isoflurane anesthesia. Additionally, RAW264.7
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cells were pre-treated with the indicated concentration of LTr1 for
1h and then stimulated with 1 ug/ml LPS (Beyotime, Cat# S1732)
for 24h. Conditioned medium was collected for the further analysis
by ELISA. This study employed Tumor necrosis factor-o. (TNF-or)
(R&D, Cat# MTAO00B), Interleukin-6 (IL-6) (R&D, Cat# M6000B),
Interleukin-1B (IL-1B) (R&D, Cat# MLBO00C), Interleukin-12
(R&D, Cat# M1270) kit to measure the levels of cytokines in
colon tissues and cell culture medium.

2.7 Quantitative reverse transcription-PCR

Total RNA of colon tissue and treated cells was isolated and
purified using the Total RNA Isolation Kit (QIAGEN, Cat# 74104).
Reverse transcription was performed using the Prime Script TM
RT-PCR kit (Takara, Cat# RR014A), and qRT-PCR was performed
using the Biorad CFX Connect (Biorad) following the
manufacturer’s instructions. The relative expressions of each
target gene mRNA were normalized to the housekeeping gene
Hypoxanthine-guanine phosphoribosyltransferase (Hprt) by using
the 22T method (30). The primers for the following genes were
synthesized by GenScript Biotech: Mouse IL-1f, forward,
ATGCCACCTTTTGACAGTGATG, and reverse, TGATGTGC
TGCTGCGAGATT; Mouse IL-6, forward, TAGTCCTTCCTA
CCCCAATTTCC, and reverse, TTGGTCCTTAGCCACTCCTTGC;
Mouse TNFe, forward, CCTGTAGCCCACGTCGTAG, and
reverse, GGGAGTAGACAAGGTACAACCC; Mouse IL-10, TTC
TTTCAAACAAAGGACCAGC, and reverse, GCAACCCAA
GTAACCCTTAAAG; Mouse IL-12, ACGAGAGTTGCCTG
GCTACTAG, and reverse, CCTCATAGATGCTACCAAGGCAG;
Mouse IFN-y%, CAGCAACAGCAAGGCGAAAAAGG, and reverse,
TTTCCGCTTCCTGAGGCTGGAT; Hprt, forward, GTCCCAG
CGTCGTGATTAGC, and reverse, TGGCCTCCCATCTCCTTCA.

2.8 Lamina propria lymphocytes
preparation

Freshly harvested colon tissue was washed with PBS and cut
into 1 x 1cm segments. Epithelial cells were removed by sequential
incubation: twice in PBS containing 3 mM EDTA (Sigma-Aldrich,
Cat# EDS) for 10 minutes at 37°C, followed by two rounds in RPMI
1640 medium (Thermo Fisher, Cat# 11875093) supplemented with
1% fetal bovine serum (FBS) (Gibco, Cat# 16000044), 1 mM EDTA,
and 1.5 mM MgCl, (Sigma-Aldrich, Cat# 208337) for 15 minutes.
The remaining tissues were digested in RPMI 1640 medium
containing 20% FBS, 100 U/mL collagenase D (Roche, Cat#
11088858001), and 5 U/mL DNase I (Sigma-Aldrich, Cat#
D8515) for 90 minutes at 37°C with occasional mechanical
disruption via syringe aspiration (40-50 times). The resulting cell
suspension was subjected to density gradient centrifugation using a
45%/66.6% discontinuous Percoll gradient (Solarbio) at 2500 rpm
for 20 minutes. Viable LPLs were counted using trypan blue

exclusion assay.
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2.9 Splenocyte preparation

Spleens were harvested and mechanically disrupted using the
back end of a syringe. The tissue was incubated with 100 U/mL
collagenase D and 5 U/mL DNase I in 50 mL of fresh RPMI 1640
medium at 37°C with 5% CO, for 20 minutes. Following digestion,
the suspension was filtered through 70-100 pm sterile filters and
centrifuged. Red blood cells were lysed using RBC lysis buffer
(Biolegend, Cat# 420301) for 5 minutes at room temperature.
Cells were then washed with fresh medium, centrifuged at 1500
rpm for 5 minutes, and resuspended in fresh medium. Cell viability
was assessed by trypan blue exclusion assay.

2.10 Flow cytometry analysis

Isolated LPLs and splenocytes were pre-incubated with
monoclonal antibody 2.4G2 (anti-mouse CD16/CD32 mAb) (BD
Biosciences, Cat# 553141) to block Fcy receptors. Cells were then
stained with fluorochrome-conjugated monoclonal antibodies in
PBS containing 2 mM EDTA and 2% FBS for 40 minutes. Cells were
analyzed on an LSRFortessa II instrument (BD Biosciences) with
FlowJo software (TreeStar). The following antibodies were used for
flow cytometry: CD3-Brilliant Violet 510 (eBiosciences, Cat#
464882), CD11b-Brilliant Violet 421 (Biolegend, Cat# 101235),
CD19-Brilliant Violet 650 (BD Biosciences, Cat# 563235), CD45-
FITC (Biolegend, Cat# 103108), F4/80-PE (BD Biosciences, Cat#
565410). iNOS-APC (Miltenyibiotec, Cat# 130-116-423), CD80-
Brilliant Violet 711 (Biolegend, Cat# 104743), CD206-PE/Cyanine7
(Biolegend, Cat# 141720).

2.11 Cell culture

RAW264.7 murine macrophage cells were obtained from
ATCC and cultured in high-glucose Dulbecco’s modified Eagle’s
medium (DMEM) (Sigma-Aldrich, Cat# D5796) with 10% (v/v)
FBS, 100 U/ml Penicillin and 100 U/ml Streptomycin (Gibco, Cat#
12090216). Cells were cultured in a 37°C humidified chamber under
a 5% CO, atmosphere.

2.12 Screening of cellular drug delivery
concentrations

RAW?264.7 cells were seeded at a density of 5000 cells per well in
96-well plates. Following 24h of incubation, cells were treated with
indicated concentrations of LTrl for 24h. CCK-8 solution
(MedChemExpress, Cat# HY-K0301) was added to the wells and
the plates were returned to the 37°C humidified chamber under a 5%
CO, atmosphere for 1h. The absorbance (A) values of cells were
assessed at 450 nm using microplate reader, and the cell viability was
computed. Cell viability (%) = (A sample — A blank)/(A control — A
blank) * 100%. The half maximal inhibitory concentration (IC50) of

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1651922
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhu et al.

LTrl on cell viability was determined by interpolation from dose-
response curves.

2.13 Network pharmacology analysis of
LTrl to colitis

2.13.1 Collection of UC-related therapeutic target
genes

Therapeutic target genes of UC were collected from Genecards
(https://www.genecards.org/) and DisGeNET (https://
www.disgenet.org/) databases using the keywords “Ulcerative
Colitis”. Upon integration of the data and the removal of
duplicated target genes, a comprehensive set of target genes
associated with UC was established.

2.13.2 Target prediction of LTrl

The SMILES chemical structure of LTrl was retrieved from
the PubChem database (https://pubchem.ncbi.nlm.nih.gov/).
This structure was utilized as input in the chEMBL (https://
www.ebi.ac.uk/chembl/), and DGIdb (https://www.dgidb.org/)
databases to predict target genes. Upon integration of the data
and the removal of duplicated target genes, a comprehensive set of
LTrl1-associated target genes was established.

2.13.3 Prediction of target genes of LTrl to UC

The integration of 302 LTrl-associated target genes and 5752
UC-related genes, a subset of 189 genes were found to be shared
among these datasets and delineated with the Venn diagram plotted
by the R language Venn Diagram package for intuitive vision.

2.13.4 Conducting protein-protein interaction
network

The identified 189 intersecting target genes were analyzed for
PPI network by using the STRING database (https://cn.string-
db.org/). The PPI network was visualized through graphical
representation using Cyto-scape software (version 3.9.1).
Concurrently, the Cytohubba plugin was employed, utilizing the
Maximum Clique Centrality (MCC) algorithm to identify the top
20 core target proteins. The Layout section was configured with the
Degree Sorted Circle layout.

2.13.5 Function and pathway enrichment analysis
The R software (version 4.2.0) was utilized to install
“colorspace,” “stringi,” and “ggplot2” packages. The Bioconductor

» o«

package, encompassing “DOSE,” “clusterProfiler,” and
“enrichplot,” was applied to perform Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses on the identified Top 20 intersecting target genes. The
“enrichGO” function was employed for Gene Ontology (GO)
enrichment analysis, with parameters set as OrgDb =
“org.Hs.eg.db,” keyType = “ENTREZID,” and ont = “ALL.
Additionally, the “enrichKEGG” function was utilized for the
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis, with parameters set as organism = “hsa” and keyType =
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“kegg.” The filter of the P value for both functions was set to 0.05.
The top 10 enrichment results from GO enrichment and KEGG
enrichment were visualized as a dot plot and a bar
chart, respectively.

2.14 Statistical analysis

Data were analyzed using a one-way analysis of variance
(ANOVA) and an LSD multiple comparison test to determine
statistical differences between groups. All statistical analyses were
performed using IBM SPSS Statistics software 25.0, and graphs were
prepared using GraphPad Prism software 10.2. All experimental
data were expressed as mean * standard deviation (SD) from at
least three independent experiments, with statistical significance set
at p-value < 0.05.

3 Results

3.1 LTrl reversed the symptoms and
histological damage in DSS-induced colitis
in mice

To investigate the therapeutic potential of LTrl in UC, we
initially established a DSS-induced murine colitis model
(Figure 1A). Mice receiving 2.5% DSS in drinking water for 7
days exhibited characteristic disease progression, including
progressive body weight loss (Figure 1B), developed severe colitis,
as indicated by an elevated disease activity index (DAI) score
(Figure 1C), reduced colon length (Figure 1D), and extensive
histopathological damage (Figure 1E) compared to the control
group. Notably, LTrl treatment effectively reversed these colitis-
induced effects, with the most pronounced effects observed in body
weight and colon length. Specifically, the extent of DSS-induced
weight loss was reduced by approximately 50%, and the colon
length was restored to a level comparable to that of the healthy
control group. After confirming that LTr1 plays a protective role in
the DSS-induced colitis model, we further examined the expression
of tight junction proteins in intestinal tissues to test the gut barrier
function. DSS exposure led to a significant reduction in tight
junction proteins Claudin4, Occludin, and ZO-1 expression levels,
which was reversed by LTrl treatment (Figure 1F). Similarly, RT-
PCR analysis further confirmed that DSS exposure led to a more
than 50% decrease in Claudin-4, Occludin, and ZO-1 mRNA
expression, and LTrl treatment reversed the transcriptional
downregulation of ZO-1 and Occludin mRNA. (Figure 1G). In
addition, goblet cells play an important role in maintaining
intestinal homeostasis and repair, PAS staining revealed more
than 60% depletion of goblet cells in DSS-treated mice compared
to the control group, which was significantly reversed by LTrl,
indicating its role in preserving mucosal integrity (Figure 1H).
Collectively, these results indicate that LTr1 can effectively protect
mice from clinical manifestations of colitis and intestinal tissue
damage due to DSS.
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FIGURE 1

Protective effect of LTrl in DSS-induced murine colitis. (A) Experimental procedure diagram. (B) Body weight changes of mice during the experimental
period. (C) Clinical symptoms of DSS-induced colitis were determined by the disease activity index (DAI). (D) Representative images of the colons

and colon length analysis of mice. (E) H&E staining and corresponding histological damage scores of mice colon tissue. Scale bars represent 100um.
(F) Immunohistochemical staining analysis of Claudin-4, Occludin, and ZO-1 protein expression in colon tissue. Scale bars represent 100um. (G) mRNA
expression levels of Claudim4, Occludin, and Zo-1 in colon tissue determined by quantitative RT-PCR. (H) AB-PAS staining (200X and 400X) and goblet
cells number counting of mice colon tissue. All experiments were performed with n = 5 mice per group and presented as means + SD. Statistical
analysis was performed using one-way ANOVA followed by LSD multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.2 LTrl reduces local and systemic
inflammation in DSS-induced colitis

Dysregulated immune response constitutes a hallmark of UC
pathogenesis. Our results demonstrated that DSS-induced colitis was
associated with pronounced splenomegaly, as reflected by a spleen
weight approximately threefold higher than that of normal controls.
Remarkably, LTrl treatment restored spleen weight to levels
comparable to the control group (Figure 2A). Given the spleen’s
critical role in immune regulation, we hypothesized that LTr1 could
modulate the inflammatory response induced by DSS. To assess the
anti-inflammatory effect of LTrl, we performed ELISA assay to

10.3389/fimmu.2025.1651922

determine the protein levels of cytokines present in the serum and
RT-PCR was conducted to determine the mRNA level of cytokines in
the colon of the mice. ELISA results showed serum levels of pro-
inflammatory cytokines IL-1B3, IL-6, IL-12, and TNF-o. were
significantly increased in the DSS group compared to those in the
control group. LTr] treatment led to an approximate 50% reduction in
the levels of IL-1pB, IL-6, and IL-12, although TNF-o. levels remained
unchanged (Figure 2B). Concordantly, RT-PCR results indicated that
DSS-induced mRNA transcription of pro-inflammatory cytokines in
colon tissue, including IL-1B, IL-6, IL-12, and IFN-y were inhibited by
the LTrl treatment, while TNF-o expression was unaffected
(Figure 2C). Additionally, the mRNA expression of the anti-

A B
830 IL-1B IL-6 TNF-a IL-12
NC - 250 800 1000~ 400+
a o Jk
= 0.15- i o ok | o o
= 200 600 g 800 . 3004 5
(=2}
© = 150 600 AlA
DSS E 0.10 %, 400- 200
g 2 100+ 400 A
2 0.05 - .
& - 200 2004 100
DSS +LTr1
0.00- 0- 0- 0- 0-
& &9 <& & &fo & & oga & & o"% \‘}‘\ & 099 \:\.:s
x\’ %x rgx e)( 6:(
3 3 & &
& 9 9 N
(]
IL-1B IL-6 TNF-a IL-12 IL-10
T 25+ - 5 15+ 5 15+ = 15+ 5 5 20+
S E S S S S S
. L L L L L *
K] K] " 3 ® K] 3 157 A
3 45 3 10- g 3 10- 3 101 3 H
< A < < < < < 4,0
P Z Z z z 210
% 104 [ [ [ [ [ 8
€ € 5 € 5 £ 54 £ €
o o A [ ] ] o 5
2 54 2 2 2 2 2
K K K k| k| K
[ [ Q [} [ Q
¢ o- € o- o 0- © o- x € o-
O D &
T
3
&
D
CD3
8 20
o s s
[} [7]
0 "
< e
o Qo
x x
@ )
[ o
2 2
K] K
[} Q
o ©
(=3
*
<
B
FIGURE 2

Anti-inflammatory effects of LTrl in DSS-induced colitis. (A) The representative images of the spleen and quantitative analysis of spleen weight.

(B) ELISA analysis of IL-1B, IL-6, TNFa, and IL-12 in mice ocular blood serum. (C) mRNA expression levels of IL-1B, IL-6, TNFa, IL-12, IFN-y, and IL-10
in colon tissue were determined by quantitative RT-PCR. (D) Immunohistochemical staining analysis of CD3, and F4/80 in colon tissue. Scale bars
represent 100um. All experiments were performed with n = 5 mice per group and presented as means + SD. Statistical analysis was performed using
one-way ANOVA followed by LSD multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001.
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inflammatory cytokine IL-10, whose expression was significantly
increased by LTrl treatment compared to the DSS group (Figure 2C).
A large infiltration of immune cells in intestinal tissues is another
characteristic of colitis. To further confirm the anti-inflammatory effect
of LTrl, we used immunohistochemistry to detect the infiltration of
immune cells in colon tissues. The results demonstrated that DSS
stimulation significantly enhanced the infiltration and accumulation
of CD3" T cells and F4/80" macrophages in intestinal tissue compared
with the control group. Notably, LTr1 treatment failed to reduce DSS-
induced T cells accumulation, but significantly reduced macrophages
infiltration (Figure 2D) in colon tissues. These findings suggest
thatxLTrl confers a potent anti-inflammatory effect in DSS-induced
colitis, potentially by modulating cytokine production and
macrophage infiltration.

3.3 LTrl reduces macrophage infiltration
and M1 polarization

Macrophages play a crucial role in maintaining homeostasis and
the development of inflammation in gut (14). Immunohistochemical
analysis revealed reduced macrophage infiltration in intestinal tissues
following LTr1 treatment (Figure 2D). To further explore the impact of
LTrl on macrophage dynamics, we used flow cytometry to quantify
macrophage infiltration in spleen and colon tissues. The gating strategy
is detailed in Supplementary Figure 1, and macrophages were identified
as ZombieNIR' CD45"CD3°CD19" CD11b*F4/80" cells. Under
physiological conditions, macrophages constituted approximately 1%
of the cellular population in spleen and colon tissues. DSS challenge
elevated the proportion of macrophages to about 7% in both tissues
while LTrl treatment markedly reduced this increase in both spleen
and colon tissue (Figure 3A). Dysregulation of macrophage
polarization plays a critical role for the development of UC (15). To
assess this, we examined colonic infiltrating macrophages, using iNOS
and CD80 as MI1-polarization markers. Flow cytometry revealed that
only approximately 5% of macrophages were iNOS®, while around 2%
were CD80" in the control group, while DSS-induced macrophages
exhibited an M1-polarized phenotype, with over 50% INOS™ and 40%
CD80" macrophages. In contrast, LTr1 treatment significantly reduced
the proportion of both iNOS™ and CD80" macrophages, along with a
decrease in their protein expression levels (Figure 3B). RT-PCR analysis
corroborated these findings, the mRNA levels of iNOS and CD80 were
reduced, while the mRNA levels of M2-polarization markers CD206
and Argl were increased after the LTr1 treatment compared to the DSS
group (Figure 3C). These data suggest that LTrl not only inhibits
macrophage infiltration but also promotes a shift from pro-
inflammatory M1 to anti-inflammatory M2 phenotypes in DSS-
induced colitis.

3.4 LTrl directly suppresses M1
polarization in macrophages in vitro

To determine whether LTrl directly influences macrophage
polarization, we conducted an in vitro experiment by using the
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murine macrophage RAW264.7 cell line. Cell viability assays
confirmed that LTrl up to 20 pM had no cytotoxic effect on cell
viability (Figure 4A). We then established an MI-like inflammation
model in RAW264.7 cells by stimulating cells with LPS to mimic the in
vivo DSS-induced colitis model. Flow cytometry analysis showed that
LPS robustly induced iNOS and CD80 expression with minimal effects
on CD206, indicative of M1 polarization compared to NT. LTrl
significantly inhibited LPS-induced cellular inflammation by
downregulating iNOS and CD80 in a concentration-dependent
manner, and notably, treatment with 10 uM LTrl reduced the
expression of iNOS and CD80 by over 50%, while showing no
notable effect on CD206 expression (Figure 4B). Additionally, LTrl
treatment also inhibited the LPS-induced pro-inflammatory cytokine
IL-1B and IL-6 production (Figure 4C), as well as suppressed LPS-
induced transcriptional activation of pro-inflammatory genes,
including iNOS, IL-1, and IL-6 (Figure 4D). These results confirm
that LTr1 directly restrains M1 polarization and inflammatory cytokine
expression in macrophages under inflammatory conditions.

3.5 Network pharmacology analysis of LTrl
in colitis

To analyze the potential molecular mechanisms underlying LTr1’s
therapeutic effects in UC, the network pharmacology analysis was
performed to s identify predicted protein targets correlated with LTrl.
Firstly, we obtained the SMILES representation of LTrl from the
PubChem database (Figure 5A). Computational predictions for target
genes were performed using the SwissTargetPrediction and
Pharmaceutical Target Seeker databases. After merging both datasets
and removing duplicates, we identified 302 potential target genes. To
identify UC-associated genes, we retrieved data from the GeneCards
(Relevance score > 1) and DisGeNET databases using the keyword
“Ulcerative Colitis”. This search yielded 5,332 genes from GeneCards
and 1,682 genes from DisGeNET. After consolidating the datasets and
removing duplicates, we compiled a total of 5,752 UC-related genes.
Subsequently, intersection analysis was performed using VennDiagram
to identify shared genes among the 5752 UC-related genes and the 302
LTrl target genes. This analysis revealed 189 overlapping genes, which
were designated as key targets for further investigation (Figure 5B,
Figure 5C) (Supplementary Table S1). Furthermore, we used the
CytoHubba plugin with the Maximum Neighborhood Component
(MCC) algorithm to identify the top 20 core target genes. In this
visualization, nodes transition from orange to red, with darker colors
indicating a higher correlation coefficient of action (Figure 5D)
(Supplementary Table S2). Additionally, we constructed a compound-
target network graph in Cytoscape, consisting of 190 nodes and 189
edges, where nodes represent targets and edges indicate the interactions
between components and targets (Figure 5E). Finally, we built a
constituent-core target-pathway network to illustrate the relationship
between target constituents, core targets and their associated pathways.
As shown in Figure 5F, the component-core target-pathway interaction
network has 41 nodes and 268 edges. The above results suggest that the
target ingredient assists in the treatment of ulcerative colitis through a
multi-targeted synergistic effect.
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FIGURE 3

LTrl reduces DSS-induced macrophage infiltration and M1 Polarization. (A) The proportions of macrophages in the splenocytes and LNLs were
determined by flow cytometry analysis. (B) Protein expression levels of iNOS and CD80 in macrophages of LNLs, along with the percentage of
iINOS* or CD80* macrophages as determined by flow cytometry. (C) mRNA expression levels of iNOS, CD80, Argl, CD206 in colon tissue
determined by quantitative RT-PCR. All experiments were performed with n = 5 mice per group and presented as means + SD. Statistical analysis
was performed using one-way ANOVA followed by LSD multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001.

3.6 Analysis of GO function and KEGG performed to investigate the biological roles and related pathways. GO

enrichment ana[ysis of 20 core target genes enrichment analysis (p < 0.05 and q < 0.05) categorized the target genes
into three major domains: Biological Process (BP), Molecular Function

Following the identification of top 20 core target genes associated  (MF), and Cellular Component (CC). In total, 214 GO terms were
with both LTr1 and UC, Gene Ontology (GO) and Kyoto Encyclopedia  enriched, comprising 245 BP terms, 62 MF terms, and 33 CC terms.
of Genes and Genomes (KEGG) pathway enrichment analysis were  Subsequently, we analyzed the data based on p-value for the TOP10 in
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3 major domains and visualized in a dot plot, the size of the dots
indicates the number of genes enriched, while the color of the dots
represents the p-value. The biological processes mainly involving
positive regulation of protein kinase B signaling, positive regulation
of nitric oxide biosynthesis process, negative regulation of gene
expression, positive regulation of gene expression, protein
autophosphorylation, and positive regulation of peptidyl serine
phosphorylation (Figure 6A). Cellular components mainly involving
the cell, cytoplasmic the cellular components mainly involve cell,
cytoplasm, plasma membrane, extracellular components of plasma
membrane, glutamatergic synapses (Figure 6B). The molecular
functions mainly involve enzyme binding, nitric oxide synthase
regulator activity, ATP binding, protein serine/threonine/tyrosine
kinase activity, and disordered structural domain-specific binding
(Figure 6C). Finally, we brought together the top 5 pathways
enriched in the 3 main domains using a bar chart histogram form

Frontiers in Immunology

(Figure 6D). For KEGG pathway enrichment analysis (p-value < 0.05
and g < 0.05), 145 signaling pathways were identified. The top 20
signaling pathways with the lowest p-value are illustrated in a chart
histogram (Figure 6E), and include Endocrine resistance, Thyroid
hormone signaling pathway, PI3K-Akt signaling pathway, mTOR
signaling pathway, Thl7 cell differentiation, MAPK signaling
pathway, which was reported to be correlated with inflammation,
apoptosis and other physiological activities, and critically impact the
pathogenesis of UC.

4 Discussion

UC is a chronic inflammatory disorder of the colonic mucosa with
an incompletely understood etiology (31). Despite therapeutic
advancements including biologics and small molecule inhibitors,
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approximately 30-40% of patients exhibit suboptimal responses to
current therapies (32), and acute enteritis often progresses to chronic
enteritis, which in turn develops into colorectal cancer (CAC), there
remains an urgent need for the development of novel and effective
therapeutic agents with fewer side effects (33). In the present study, we
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demonstrate for the first time that LTr]l administration significantly
alleviates disease severity in the DSS-induced murine colitis model.
Specifically, LTr1 treatment notably reduced clinical symptoms such as
body weight loss, colon shortening, inflammatory cell infiltration,
epithelial injury, and intestinal barrier dysfunction. Notably,
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mechanistic investigations revealed that LTr1 mediates its therapeutic
effects, at least in part, through immunomodulation of macrophage
polarization—specifically, by inhibiting M1 pro-inflammatory activity
—thus promoting resolution of intestinal inflammation. Finally, a
network pharmacology approach was employed to further elucidate
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the potential molecular mechanisms underlying the protective role of
LTrl in UC. Collectively, our studies indicated that LTrl may be a
potential novel agent for the treatment of UC.

Given the clinical and pathological similarities between DSS-
induced colitis in mice and human UC—including symptoms like
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Proposed mechanism of LTrl in treating DSS-induced colitis by regulating macrophage polarization.

diarrhea, hematochezia, mucosal inflammation, and barrier
disruption—this model serves as a reliable tool for investigating
UC pathogenesis and evaluating novel therapeutics (34, 35). LTr1 is
a trimeric compound derived from I3C, a naturally occurring anti-
cancer molecule found in cruciferous vegetables (24). Previous
studies have highlighted its anti-cancer effects in various cancer
types and its anti-inflammation effects (19, 23). However, whether
LTrl can treat intestinal diseases (such as UC) caused by
inflammation remains undetermined.

In our study, we constructed a DSS-induced colitis model by
oral administration of 2.5% DSS in drinking water for 7 days to
investigate the protective effect of LTr1 on attenuating UC (28). Our
results clearly demonstrated that LTrl treatment in UC mice
showed remarkable therapeutic effects, significantly inhibiting
body weight loss, diarrhea, hematochezia, and alleviating colon
damage. Moreover, inflammation and intestinal barrier dysfunction
are now widely recognized not only as hallmark pathological
features of UC, but also as critical therapeutic targets for
elucidating its underlying mechanisms and for the development
of effective treatment strategies (8, 34). In this context, our findings
demonstrated that LTrl significantly improved histological
outcomes by reducing DSS-induced damage to the intestinal
villus structure, and partly restored intestinal barrier integrity, as
evidenced by increased expression of tight junction proteins such as
Occludin and ZO-1, and the preservation of goblet cells in colonic
tissues. Interestingly, LTr1 treatment did not effectively restore the
DSS-induced downregulation of Claudin-4, suggesting that the
regulatory mechanisms governing Claudin-4 expression may
differ from those of Occludin and ZO-1, highlighting a potential
area for further investigation. Furthermore, the interplay between
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the intestinal barrier and mucosal immune responses plays a pivotal
role in the progression of UC (36). Barrier disruption can lead to
dysregulated immune activation and the subsequent
overproduction of pro-inflammatory cytokines, such as IL-1f3, IL-
6, and TNF-a, thereby exacerbating colonic inflammation and
tissue injury (37). Notably, LTrl treatment significantly
suppressed the expression of these pro-inflammatory cytokines in
both UC mice models. In parallel, LTrl also promoted the
expression of the anti-inflammatory cytokine IL-10, suggesting a
dual role in immune modulation and mucosal protection.

Among the immune cells implicated in UC, emerging evidence
has identified macrophages as key contributors to the pathogenesis
of UC (7, 8, 14). As the largest macrophage population in the body,
intestinal macrophages play a central role in regulating mucosal
immune responses and promoting tissue repair (38), thereby
representing a promising therapeutic target for IBD. Macrophage
polarization is closely linked to disease progression in UC (15).
Classically activated M1 macrophages are associated with pro-
inflammatory responses and have been shown to disrupt
epithelial barrier integrity and exacerbate intestinal inflammation
(38, 39). In contrast, alternatively activated M2 macrophages exhibit
anti-inflammatory properties and contribute to inflammation
resolution and mucosal healing (40). The polarization states of
macrophages can be characterized by distinct surface markers and
cytokine expression profiles: typical M1 markers include iNOS,
TNF-0, IL-6, IL-1f3, and CD80, whereas M2 macrophages are
characterized by the expression of Argl, IL-10, and CD206 (13,
18). We observed that LTrl treatment significantly reduced DSS-
induced macrophage infiltration in both colon and spleen. In
addition, LTrl effectively inhibited DSS-induced M1 macrophage
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polarization while promoting M2 polarization, suggesting its
immunoregulatory role in modulating macrophage-driven
inflammation in UC. To further validate the effect of LTrl on
macrophage polarization, an in vitro inflammatory model was
established using RAW 264.7 macrophages stimulated with LPS
(41). Consistent with previous reports, LPS stimulation induced M1
polarization, characterized by significantly elevated expression of
M1 markers such as iNOS and CD80, while M2 marker CD206
levels remained unchanged. Importantly, LTrl treatment
attenuated M1 marker expression and reduced the production of
pro-inflammatory cytokines, confirming its regulatory effect on
macrophage polarization in vitro. Taken together, these findings
demonstrate that LTrl exerts a potent inhibitory effect on Ml
macrophage polarization both in vivo and in vitro, underscoring its
therapeutic potential in modulating immune responses during UC.

To further elucidate the mechanisms of anti-inflammatory
effect of LTrl on the UC treatment, potential proteins and
signaling pathways were predicted using network pharmacology
analyses. Network pharmacology is an interdisciplinary approach
integrating high-throughput omics, bioinformatics, and systems
biology. It has become instrumental in elucidating the
mechanisms of complex biological systems. In recent years,
numerous studies have employed this approach to investigate the
potential mechanisms by which various natural products exert
therapeutic effects in UC (42, 43). This analysis identified that
LTrl targets multiple proteins and signaling pathways relevant to
UG, including TP53 (44, 45), AKT1 (46), HSP90AA1, EGFR (47,
48), and SRC (49, 50). Functional enrichment analyses (GO and
KEGG) suggested that LTrl may act through pathways such as
PI3K-Akt, mTOR, MAPK, Th17 differentiation, and endocrine
resistance—all of which are known to be involved in
inflammation, immune regulation, and epithelial regeneration (8,
42, 51). These data support a multi-targeted mechanism of action
for LTrl, aligning with the current understanding that UC is driven
by complex, interconnected signaling networks rather than
single pathways.

However, several limitations should be noted. Although the
network pharmacology analysis provided valuable insights, it
remains predictive in nature. Therefore, the direct molecular
interactions between LTrl and its proposed targets require
further validation through biochemical assays, gene silencing, and
target engagement studies. For example, the PI3K-Akt, mTOR, and
MAPK signaling pathways have been identified to play critical roles
in macrophage M1 polarization (52-54). Thus, elucidating whether
LTrl directly modulates these pathways would significantly
enhance our understanding of its pharmacological mechanisms.
In addition, as shown in Figure 3, LTrl treatment significantly
upregulated the mRNA expression of M2-associated markers Argl
and CD206, suggesting that LTrl may not only suppress Ml
polarization but also potentially promote M2 polarization—a
hypothesis that warrants further investigation. Moreover, in the
context of UC, macrophage-mediated pathogenesis involves not
only M1 polarization but also the activation of helper T cells (Th
cells) by M1 macrophages. This leads to the establishment of a
vicious cycle of mutual activation between Th1 cells (secreting IFN-
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v) and M1 macrophages, as well as the stimulation of Th17 cells
(producing IL-17). These Th17 cells in turn promote the release of
matrix metalloproteinases (MMPs) from various cell types,
contributing to extracellular matrix degradation and intestinal
barrier disruption, thereby perpetuating chronic inflammation
and tissue damage (55, 56). Interestingly, our network
pharmacology analysis also suggested that LTrl might modulate
Th17 cell differentiation. Therefore, further investigation is required
to determine whether LTrl can directly modulate Th17 cell
differentiation, which would provide deeper mechanistic insights
into its immunoregulatory functions and therapeutic potential in
UC. In addition, Comprehensive pharmacokinetic and safety
profiling of LTrl, especially in chronic or relapsing models, is
essential before clinical translation. Lastly, confirmation of LTr1’s
efficacy and mechanism of action in human-derived systems—such
as intestinal organoids or biopsy specimens—will be critical to
assess its translational relevance and therapeutic viability in
clinical settings.

5 Conclusion

In conclusion, this study demonstrates that LTrl exerts
significant therapeutic effects in a murine colitis model, mainly by
attenuating intestinal inflammation and restoring epithelial barrier
integrity. Mechanistically, LTrl modulates the innate immune
response by inhibiting macrophage infiltration and suppressing
M1 polarization, thereby contributing to the resolution of
mucosal inflammation (Figure 7). These findings provide new
insights into the immunopathogenesis of ulcerative colitis and
highlight LTrl as a promising candidate for developing novel
therapeutic strategies that target macrophage-driven inflammation
in inflammatory bowel disease.
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