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Background: Although precision-targeted therapies and tyrosine kinase inhibitors

(TKIs) have significantly improved outcomes in non-small-cell lung cancer (NSCLC),

patients with EGFR-mutant NSCLC with concurrent TP53 mutations often develop

drug resistance and experience poor clinical outcomes. This study aims to

investigate the molecular mechanisms underlying this aggressive subtype using

single-cell RNA sequencing.

Methods: Formalin-fixed paraffin-embedded (FFPE) tumor samples were

obtained from 40 hospitalized NSCLC patients. Somatic mutation profiles were

determined using a targeted 23-gene next-generation sequencing (NGS) panel.

Four samples harboring concurrent EGFR and TP53 mutations were selected for

single-cell transcriptomic profiling using the 10x Genomics platform.

Results: Two dominant malignant epithelial cell populations were identified:

C1_EGFR+, associated with proliferation and invasion, and C2_STAT1+, linked to

immunosuppression and drug resistance. These tumor subtypes cooperatively drive

CD8+ T cell exhaustion through the MDK–(ITGA4+ITGB1), MIF–(CD74+CXCR4),

and TGF-b signaling pathways. In addition, antigen-presenting cancer-associated

fibroblasts (apCAFs) recruit regulatory T cells via the CCL5–CCR4 axis, collectively

establishing an immune-excluded tumor microenvironment. Mechanistically, a

STAT1/ETS1-centered transcriptional program regulates the expression of key

immunosuppressive (e.g., MDK, MIF, TGFB1) and resistance-associated genes

(e.g., ERBB2, JAK2).

Conclusion: These findings reveal a coordinated transcriptional network that

promotes immune evasion and therapeutic resistance in EGFR/TP53 co-mutated
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NSCLC. Targeting the STAT1/ETS1 axis, in combination with EGFR-TKIs or immune

checkpoint inhibitors, may provide a novel strategy to overcome resistance and

improve patient outcomes. Further validation in larger patient cohorts and functional

studies is warranted to confirm these observations and support clinical translation.
KEYWORDS

EGFR/TP53 co-mutant NSCLC, single-cell transcriptome analysis, cellular interactions,
tumor microenvironment, STAT1/ETS1 axis
1 Introduction

Non-small cell lung cancer (NSCLC) is a highly invasive and

heterogeneous disease, accounting for approximately 85% of all lung

cancers (1, 2). In NSCLC, epidermal growth factor receptor (EGFR)

gene mutations are the most common oncogenic driver (3, 4). The use

of EGFR tyrosine kinase inhibitors (EGFR-TKIs) has brought

significant benefits to the survival of advanced NSCLC patients with

EGFR mutations (5). However, clinical observations have found that

some patients have poor responses to EGFR-TKIs, suggesting that the

biological mechanisms of drug resistance or poor prognosis have not

yet been fully revealed (6–8). With the development of next-generation

sequencing (NGS), a variety of co-mutations have been found in

NSCLC patients with EGFR mutations, among which TP53

mutations are the most common co-mutation type, with an

incidence rate as high as 17.3–72.5% (9, 10). Studies have shown that

patients with EGFR/TP53 co-mutations have a significantly worse

prognosis than patients with EGFR single mutations (11, 12).

Therefore, a deep understanding of the remodeling mechanism of

cellular composition and molecular characteristics in the EGFR/TP53

co-mutated NSCLC tumor microenvironment (TME) is of great

significance for identifying new targets for immunotherapy

intervention. TME is composed of immune cells, stromal cells and

extracellular matrix (ECM). They interact to provide energy sources for

tumors and regulate tumor cell progression through multiple signaling

pathways (13). Advances in single-cell RNA sequencing (scRNA-seq)

technology have enabled high-resolution characterization of the tumor

microenvironment in non-small cell lung cancer (NSCLC) with

different mutation types (2). In TME, T cells are an important

component of tumor immune microenvironment (TIME) and play a

major role in immune surveillance and tumor eradication. According

to the different expressions of surface molecules and functional points,

T cells can be subdivided into regulatory T cells (Treg), T helper cells

(Th), cytotoxic T cells (CTL), etc. During the development of tumors,

Treg maintains immune tolerance to self-antigens, allowing tumors to

escape and helping to destroy anti-tumor immunity (14, 15). CD8+

cytotoxic T play a key role in anti-tumor immunity. However, during

chronic infection and tumor progression, continuous antigen

stimulation can lead to CD8+ cytotoxic T cell exhaustion (TEX) (16–

18), resulting in the loss of their effector function and proliferation

ability. TEX status has been considered to be one of the important
02
mechanisms of tumor immune escape and immunotherapy resistance

(19–22). Therefore, in-depth analysis of the occurrence mechanism of

TEX and its dynamic changes in the TME is of great significance for the

development of more effective immunotherapy strategies. Cancer-

associated fibroblasts (CAFs) are one of the most important stromal

cells in TME, playing a multifaceted regulatory role in tumorigenesis,

immune escape and treatment resistance (23). In many tumor types,

including NSCLC, CAF tumor stemness and chemotherapy resistance

are associated with treatment efficiency (24, 25). CAFs can be divided

into multiple subtypes based on functional differences, such as

myofibroblast-like CAFs (myCAFs) and inflammatory CAFs

(iCAFs), which together shape the immunosuppressive

microenvironment through ECM remodeling, secretion of growth

factors, cytokines and chemokines (26). More and more studies have

shown that CAFs can not only indirectly regulate T cell infiltration and

function, but may also induce T cells to enter an exhausted state

through various mechanisms such as immunosuppressive factors,

metabolites or co-stimulatory signals, thereby promoting tumor

immune escape (27–29). In addition, there is a class of antigen-

presenting CAFs (apCAFs) that can express MHC-II molecules and

interact with T cells in an antigen-specific manner (30). However, the

origin and role of apCAFs in NSCLC remain unclear.

In this study, we leveraged scRNA-seq to systematically dissect

the diversity patterns of the TME in EGFR/TP53 co-mutant

NSCLC. We identified distinct tumor cell subpopulations,

characterized the immunosuppressive landscape, and uncovered

tumor–CAF–T cell interactions that contribute to CD8+ T cell

exhaustion. Our findings provide mechanistic insights into

immune evasion and resistance, and nominate potential targets

for precision immunotherapy in this aggressive NSCLC subtype.
2 Materials and methods

2.1 Ethics and tissue acquisition

A retrospective study was conducted involving 40 Chinese

patients with lung cancer who underwent surgical resection at the

Guangdong Provincial Hospital of Integrated Traditional Chinese

and Western Medicine between January 2024 and July 2024. A total

of 40 formalin-fixed, paraffin-embedded (FFPE) tissue specimens
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were collected for analysis. The study was approved by the Medical

Ethics Committee of Guangdong Provincial Hospital of Integrated

Traditional Chinese and Western Medicine and conducted in

accordance with all applicable ethical guidelines and regulations.

Written informed consent was obtained from each patient or their

legal guardian prior to any study-related procedures.
2.2 DNA extraction from PPFE tissue

Hematoxylin and eosin-stained sections of FFPE tumor biopsies

from all samples were reviewed to ensure tumor cell content of

>75% when possible, and the tumor area was marked by a

pathologist. Genomic DNA was extracted from unstained 10-µm

thick FFPE sections using the Kaishuo Biological Technology

(Xiamen) Co., Ltd. One-Step Extraction Type FFPE Genomic

DNA High-Sensitivity Kit (Cat. No.: RC1102). Extraction was

carried out using the Concert 48 Fully Automated Nucleic Acid

Extraction System. DNA sample quality was assessed by

spectrophotometry using the NanoDrop 2000. During each batch

of nucleic acid extraction, one extraction tube without sample was

added as a blank control, processed simultaneously with the

samples. The concentration range for the blank control should be

-5~10 ng/mL. If the blank control concentration abnormally

deviates from this range or if amplification is detected in the

blank control, the cause of the deviation must be evaluated: If

amplification occurs in the blank control, it indicates possible

contamination of the blank control tube by sample tubes or

inadequate cleaning/disinfection of the workspace during the

extraction process. Based on the evaluation results, it is necessary

to determine whether a full re-extraction of all samples is required.
2.3 Library preparation and sequencing

The target genomic regions were captured using the

KM_Solid210–17819 custom probe panel kit from NanoDigmbio

(Nanjing) Biotechnology Co., Ltd. This custom panel comprises

17,819 probes, covering approximately 2.13 megabases (Mb) of the

human genome. For detailed experimental procedures, refer to the

product’s DNA Library Hybridization Capture Operation Guide.

Hybridization-based capture library construction was performed

according to the QIAseq® FX DNA Library Kit Handbook

(Version: January 2020) from QIAGEN. Library sequencing was

conducted on the NovaSeq™ 6000 platform. Procedures for library

dilution, denaturation, and on-machine sequencing followed the

NovaSeq™ 6000 Sequencing System Operation Manual.
2.4 Targeted NGS panel-based variant
calling pipeline

Raw reads generated from next-generation sequencing

underwent quality control using fastp, where low-quality data

were filtered out (employing the software’s default parameters) to
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obtain clean reads. Subsequently, clean reads were mapped to the

human reference genome (GRCh37) using the alignment tool BWA

to assess the mapping rate. Coverage statistics were calculated using

bedtools. Following the generation of duplicate-marked BAM files

from the preceding steps, variant calling for SNPs and InDels was

performed using GATK, followed by final data quantification. The

analysis focused on:Single nucleotide variants (SNVs), Small

insertions and deletions (indels), Copy number variations (CNVs)

in selected genes, Gene fusions across 23 lung cancer-associated

genes (TP53, SLC34A2, SDC4, ROS1, RET, RAF1, PIK3CA, NTRK1,

MET, KRAS, KIF5B, FGFR3, FGFR2, FGFR1, EZR, ERBB2, EML4,

EGFR, CD74, BRAF, ARAF, ALK, AKT1).
2.5 Tissue dissociation, single-cell
transcriptome sequencing

Four NSCLC tumor specimens were obtained from patients who

underwent complete surgical dissection. Formalin-fixed paraffin-

embedded (FFPE) tissue samples were assessed for RNA quality using

the DV200 metric, with only those samples showing a DV200 value

greater than 50% considered suitable for further processing. Nuclei were

extracted from FFPE tissues following the manufacturer’s protocol (10x

Genomics, CG000632). Briefly, 50 µm tissue sections were

deparaffinized with xylene and rehydrated through a graded ethanol

series. After washing with PBS, the samples were incubated in a

dissociation mix (1 mg/ml Liberase in RPMI) at 37°C for 45 minutes

withmechanical dissociation. The dissociated samples were then filtered

through a 30 µm filter, and the nuclei were resuspended in buffer,

stained with AO/PI, and counted using a Countstar analyzer. Nucleus

suspensions with a nucleated cell ratio >60%, clumping rate <20%, and a

total cell count >40,000 were deemed suitable for library preparation.

Library construction was performed using the 10x Genomics

Chromium Fixed RNA Profiling protocol (CG000477). Human WTA

probes were used for 16-hour hybridization at 42°C. After hybridization

and washing, the nuclei were recounted and loaded onto the Chromium

X instrument for library construction. The resulting libraries were

sequenced on an Illumina NovaSeq platform. The sequencing data

(fastq files) were processed by mapping the data to the GRCh38

reference genome using the Cell Ranger toolkit (version 8.0.1).
2.6 Single-cell transcriptome data
collection and preprocessing

To characterize the compositional and functional status of normal

lung tissues and EGFR/TP53 co-mutated NSCLC, we collected single-

cell transcriptomic data from public databases for 11 cases of distant

normal lung tissues from GSE131907 (31) for inclusion in the analyses.

The datasets were all generated using 10x Genomics sequencing

technology. For more accurate analysis, we performed quality

measurements of the raw gene-cell barcode matrix for each cell

based on the following parameters: proportion of mitochondrial

genes ≤10%, proportion of hemoglobin genes ≤10%, number of

UMIs (nCount_RNA) between 500 and its 95% quartile, and gene
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count (nFeature_RNA) between 200 and 10,000. After quality control,

a total of 61,533 cells were retained, of which 31,672 cells were from

normal lung tissues (Normal) and 29,861 cells were from EGFR/TP53

co-mutated NSCLC tissues (Tumor) for further analysis.
2.7 Downscaling and clustering analysis

The scRNA-seq data were first normalized by the “NormalizeData”

function in the Seurat (version 5.1.0) (32) package, and then scaled

using the “ScaleData” function to scale the data. Then, the

“FindVariableFeatures” function was used to identify the top 2000

highly variable genes. For dimensionality reduction, we performed

principal component analysis (PCA) on the scRNA-seq data using the

“RunPCA” function. In order to integrate different datasets and

eliminate batch effects, we used the “RunHarmony” function in

Harmony (version 1.2.0) (33) for anchor identification and data

integration to ensure the consistency of unsupervised cluster analysis

in the shared space. The principal components were sorted by the

“ElbowPlot” function in the Seurat package, and the top 25 principal

components were selected based on the elbow plot. These principal

components were then subjected to UMAP/TSNE dimensionality

reduction analysis using the “RunUMAP” and “RunTSNE” function

to generate a 2D plot for cell visualization. Cell clustering analysis was

performed by the “FindClusters” function with a resolution of 0.8. To

detect gene expression markers, we also used the “FindAllMarkers”

function. Finally, the cell types in the study were annotated using the R

package SingleR (version: 2.4.1) (34), the CellMarker (35) dataset, and

known cell marker genes.
2.8 Identification of malignant cells in
EGFR/TP53 co-mutated NSCLC

To distinguish malignant cells within epithelial cells, we

assessed somatic large-scale chromosome copy number variation

(CNV) scores of individual epithelial cells using the infercnv R

software package (version 1.1.1). Raw count matrices, annotation

files, and gene/chromosome location files were carefully prepared

according to the data prerequisites outlined in the GitHub

repository for this project (https://github.com/broadinstitute/

inferCNV). During this analysis, normal epithelial cells

(“Normal”) were specified as the reference standard for

normality, with tumor tissue as the observation group. Using the

default parameters (cut.off = 0.1; cluster_by_groups = T), the CNV

score was calculated as the cumulative value of CNV regions. Using

the copy number score of normal epithelial cells as a reference, cell

clusters with CNV, especially those with a significantly higher copy

number score than normal cells, were considered malignant.
2.9 Cell developmental trajectory analysis

We performed cell developmental trajectory analysis using

Monocle2 (version 2.30.1) (36), a widely adopted tool for
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pseudotemporal inference that assumes high-dimensional gene

expression profiles can be projected onto a one-dimensional

“pseudotime” axis. Following standard workflows, the data were

processed through log-normalization and dimensionality reduction

using DDRTree. This enabled the effective visualization of cellular

trajectories in a two-dimensional space, revealing a branching

structure that reflects potential lineage progression and cell

state transitions.
2.10 Cellular communication

To infer ligand-receptor interactions between cells, we used the

database (CellChatDB) provided by CellChat (version: 2.1.2) (37).

The communication probabilities were calculated using the

computeCommunProb function, setting type = trimean, trim =

0.1, raw.use = FALSE to use the projection data, thus ensuring the

accuracy of the results.
2.11 Transcription factor analyses

We used pySCENIC (v0.11.2) (38) to perform transcription factor

regulatory network analysis of single-cell transcriptome data to reveal

cell type-specific transcriptional regulatory mechanisms. The analysis

process consisted of three steps: first, co-expression relationships

between transcription factors and their potential target genes were

inferred from the normalized expression matrix using the GRNBoost2

algorithm; subsequently, co-expression modules enriched with

transcription factor binding sites were screened in combination with

the cisTarget motif database to construct high-confidence regulons;

finally, the AUCell method was used to calculate regulatory units and

activities at the single-cell level.
2.12 Statistical analysis and feature-rich
analysis

Gene Ontology (GO) annotation and enrichment analyses were

performed using clusterProfiler (version: 4.10.1) in R. p.adjust

values less than 0.05 were considered significant. All statistical

analyses in this study were calculated in R (version: 4.3.3). Data

visualization was performed using the communication functions in

the R package used for this study or in R using ggplot2 (version:

3.5.1). The flowchart in this article refers to the 10x genomics and

bioGDP platforms (39).
3 Results

3.1 NGS testing and pathological findings
in cancer patients

We analyzed NGS panel results from 40 lung cancer patients

(26 male, 14 female) over the January to July 2024. Among the 23
frontiersin.org
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lung cancer-associated genes, gene fusions were detected in 2

samples: one with EML4-ALK fusion and another with ALK-

unknown gene fusion. Copy number variations (CNVs) were

identified in MET (1 sample), PIK3CA (1 sample), and EGFR (4

samples). For SNP and indel mutations: ERBB2 and RETmutations

were each detected in only 1 sample; BRAF,MET, FGFR2, and ROS1

mutations were found in 2 samples each; PIK3CA mutations in 4

samples; KRAS mutations in 5 samples; EGFR mutations in 21

samples; and TP53 mutations in 20 samples. Notably, 11 samples

showed co-occurring EGFR and TP53 mutations. These findings

indicate that EGFR and TP53 mutations demonstrate significantly

higher prevalence than other genetic alterations in lung cancer

tissues. From these, we identified 4 cases with high-quality RNA

suitable for single-cell transcriptomic analysis. Detailed mutation

profiles, clinical characteristics, and histopathological staining

results for these 4 patients are provided in Appendix Table 1.
Frontiers in Immunology 05
3.2 Single-cell transcriptome profiling of
EGFR/TP53 co-mutated NSCLC

To delineate the cell type–specific transcriptional landscape of

EGFR/TP53 co-mutated non–small cell lung cancer (NSCLC) and

its tumor microenvironment (TME), we performed single-cell

transcriptome sequencing on tumor specimens from 4 patients

harboring concomitant EGFR and TP53 mutations using the 10x

Genomics Chromium Fixed RNA Profiling platform. Moreover, to

understand tumor-specific changes, we included scRNA-seq data

from 11 normal lung tissue samples (Supplementary Table S1).

After stringent quality control and batch correction, our combined

dataset comprised 61,533 cells for downstream analysis (Figure 1A).

Based on canonical marker genes, cells were categorized into 14

major cell types (Figures 1B, C). Within the TME, we identified

eight immune subsets—T cells (25.3%), natural killer (NK) cells
FIGURE 1

Single-cell transcriptome profile of EGFR/TP53 double-mutated NSCLC. (A) Overall framework of the study. (B) The t-SNE plots showing different cell
type populations and proportions. Each dot denotes one cell; color represents cluster origin. (C) Dotplot showing expression markers for 14 cell types.
(D) Proportional distribution of cells in normal and tumor tissues (left: Sample, right: Tissue). (E) Distribution of the proportion of EGFR+ Epi and immune
cells in normal and tumor tissues (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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(11.5%), macrophages (15.5%), monocytes (5.6%), dendritic cells

(2.8%), mast cells (2.0%), B cells (1.6%) and plasma cells (3.6%)—

three stromal populations—fibroblasts (7.0%), endothelial cells

(3.7%) and smooth muscle cells (0.5%)—and three epithelial

clusters, including EGFR−positive epithelial cells (EGFR+ Epi,

13.4%), alveolar cells (6.5%) and ciliated cells (1.0%). Given that

lung adenocarcinoma originates from epithelial cell lineages, we

used the R package inferCNV to infer large-scale chromosomal

CNVs and used the normal lung epithelial cell spectrum as a

reference. We found that tumor-derived EGFR+ Epi exhibited

pronounced CNV signals across multiple chromosomes
Frontiers in Immunology 06
(Supplementary Figures S1A, B) and were significantly enriched

in tumor samples compared to normal controls (Figures 1D, E). In

contrast, alveolar and ciliated epithelial populations showed

minimal CNV alterations and maintained comparable

abundances between tumor and normal tissues (Supplementary

Figure S1C). These findings nominate EGFR+ Epi as the

predominant malignant compartment in EGFR/TP53 co-mutated

NSCLC. Notably, the tumor immune microenvironment exhibited

depletion of multiple immune cell populations in tumor samples,

suggesting that the expansion of malignant cells may be linked to

the reduction of immune cells (Figures 1D, E).
FIGURE 2

Identification of malignant cells and their developmental trajectories in EGFR/TP53 co-mutated NSCLC. (A) The t-SNE plot displays the re-clustering
results of the three initially annotated epithelial subgroups. (B) The t-SNE plot depicting the re-clustering of newly defined epithelial subgroups. (C)
Line graph depicting changes in the EGFG gene fragment on chromosome 7 and the TP53 gene fragment on chromosome 17. (D) The bar graph
illustrates the functional enrichment results for the C1 and C2 groups (p_val_adj < 0.05 & avg_log2FC > 0.25). (E) The bar graph presents the
enrichment results for drug resistance in the C1 and C2 groups (p_val_adj < 0.05 & avg_log2FC > 0.25). (F) The evolutionary trajectory of epithelial
cells, including information across different groups (cell type, tissue, and State). Each dot represents a cell and is colored according to its assigned
category. Arrows indicate the direction of development. (G) Temporal dynamics of immunosuppression-related gene expression. The left end
represents the starting point of development, while the right end marks the endpoint.
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3.3 Inference of malignant cells in EGFR/
TP53 co-mutated NSCLC

To elucidate the transcriptional changes and heterogeneity of

malignant cells in EGFR/TP53 co-mutated NSCLC, we divided

epithelial cells into six subgroups and tumor cell EGFR+ Epi into

two subgroups (C1 and C2) by unsupervised clustering (Figures 2A,

B). Both C1 and C2 exhibited marked genomic instability,

confirming their identity as dominant tumor compartments

(Supplementary Figures S2A, B). Focal amplification of EGFR on

chromosome 7p was observed in both clusters, accompanied by
Frontiers in Immunology 07
abnormal expression in the TP53-harboring region on chromosome

17p, supporting the presence of a dual-mutation genotype involving

EGFR and TP53 (Figure 2C). Notably, large−scale loss of MHC

class II loci on chromosome 6 was detected in four samples,

indicative of compromised antigen presentation and potential

immune−evasion mechanisms (Supplementary Figures S2C, D).

To characterize tumor cell functional heterogeneity, we compared

pathway enrichment between C1 and C2. C1 was selectively

enriched for gene sets governing cytoskeletal morphogenesis, cell–

cell junction organization, non−canonical Wnt signaling, and small

GTPase activity—processes intimately linked to tumor
FIGURE 3

Functional characterization and developmental trajectory of T cells in EGFR/TP53 co-mutant NSCLC. (A) TSNE plot of individual T cells. Each dot
denotes one cell; color represents cluster origin. (B) Dot plots show the expression of selected genes. (C) The bar graph illustrates the changes in
the proportion of T cell subsets between groups (blue: normal, red: tumor). (D) Dot plots displaying the expression of toxicity (GZMB, GNLY, GZMH)
and exhaustion markers (LAG3, KLRG1, PDCD1, HAVCR2) in CD8T_GNLY+ cells from normal and tumor tissues. (E) The bar graph illustrates the
functional enrichment results of CD8T_GNLY+ cells in normal and tumor tissues (p_val_adj < 0.05 and avg_log2FC > 0.25). (F) Scoring of pro-
inflammatory (IL6, CXCL8, CXCL3, etc.) and anti-inflammatory (IL10, HAVCR2, LGALS9, etc.) markers in CD8T_GNLY+ cells from normal and tumor
tissues (****p < 0.0001). (G) Developmental trajectory of CD8 T cells, including information on different groups (cell types, tissues). Each dot
represents a cell and is colored according to its assigned category. Arrows indicate developmental direction. (H) Temporal dynamics of expression of
toxic (GNLY, GZMB) and exhaustion genes (KLRG1, LAG3). The left end represents the starting point of development, while the right end marks the
endpoint. (I) Kaplan-Meier curve showing the survival rate of lung cancer patients with exhaustion genes.
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proliferation, invasion, and microenvironmental remodeling

(Figure 2D). By contrast, C2 showed enrichment for immune

−regulatory pathways, lymphocyte proliferation, and cell

−adhesion programs, suggesting a role in sculpting an

immunosuppressive niche (Figure 2D). By further exploring the

relationship between tumor cells and treatment resistance. In the

‘Drug Resistance: Anti-tumor Drugs’ module, it was found that C1

were associated with ‘EGFR tyrosine kinase inhibitor resistance’,

which aligns with their intrinsic or early resistance to targeted

EGFR inhibition. Notably, C2 exhibited a broader spectrum of

resistance traits, including ‘endocrine resistance’, ‘platinum drug

resistance’, and ‘EGFR tyrosine kinase inhibitor resistance’,

underscoring their potential to evade both molecular targeted

therapies and cytotoxic treatments (Figure 2E). To characterize

C1 and C2 cells more clearly, the results of differential gene analysis

redefined their names: C1 cells upregulated EGFR (named

C1_EGFR+), while C2 cells preferentially expressed STAT1

(named C2_STAT1+) (Supplementary Figure S2E), highlighting

their differences in signaling states. Trajectory analysis revealed

that C2_STAT1+ cells were derived from the C1_EGFR+ cell

population, marking a transcriptional shift of tumor cells toward
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a highly immunosuppressive and multidrug-resistant tumor

phenotype (Figure 2F, Supplementary Figure S2F). Along this

developmental axis, key immunoregulatory mediators—including

IL6ST, LGALS1, STAT1, and TNFRSF6B—were progressively

upregulated (Figure 2G), implicating C2_STAT1+ cells as central

drivers of immune evasion, therapeutic resistance, and sustained

tumor progression in EGFR/TP53 co-mutated NSCLC.
3.4 T cells in the tumor immune
microenvironment

To interrogate the immune landscape accompanying the

immunosuppressive tumor cell phenotypes, we next examined the

composition and functional states of T cells, which are pivotal for

anti−tumor immunity. Notably, the proportion of T cells was

markedly reduced in tumor samples relative to adjacent normal

tissue (Figure 1E). T cells are divided into five different subsets after

marker labeling: cytotoxic CD8+ T cells (CD8T_GNLY+), effector

−memory CD8+ T cells (CD8T_CXCR4+), naive/central CD4+ T

cells (CD4T_TCF7+), regulatory T cells (CD4T_FOXP3+), and
FIGURE 4

The interaction network between tumor cells and CD8T_GNLY+ T cells. (A) Interactions between tumor cells and CD4T_FOXP3+ and CD8T_GNLY+
cells in TME. (B) The river plot illustrates the target genes regulated by each cell TF, with the width representing the regulatory weight. The target
genes of C1_EGFR+ and C2_STAT1+ are ligands involved in cell communication, while the target genes of CD8T_GNLY+ are associated with
exhaustion markers. (C) The bar graph shows the expression of transcription factors (STAT1, EST1) in each group. (D) Kaplan-Meier curves showing
the survival of lung cancer patients with key transcription factors.
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proliferative CD8+ T cells (CD8T_MKI67+) (Figures 3A, B,

Supplementary Figures S3A, B). In tumor specimens, the

proportion of CD4T_FOXP3+ Tregs rose, whereas CD8T_GNLY+

cells declined (Figure 3C). Functionally, CD8T_GNLY+ cells from

normal lung tissue exhibited high expression of cytotoxicity

markers (GZMB, GNLY, GZMH) and were enriched for antiviral

and tumor−lytic pathways. In contrast, CD8T_GNLY+ cells from

tumor samples upregulated exhaustion markers (LAG3, KLRG1,

PDCD1, HAVCR2) and showed enrichment in pathways that
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shifted from antiviral responses to immunosuppression and signal

regulation programs, including PD-L1/PD-1 checkpoints, TNF,

MAPK, and HIF-1 signaling pathways (Figures 3D, E). Notably,

CD8T_GNLY+ in tumor samples were also enriched in multiple

resistance pathways, including the EGFR tyrosine kinase inhibitor

resistance pathway, suggesting that the immunosuppressive

microenvironment is promoting or maintaining EGFR-TKI

resistance (Figure 3E). Immune−function scoring further

confirmed this transition: CD8T_GNLY+ cells in normal tissue
FIGURE 5

Functional characteristics, developmental trajectories and cell communication of fibroblasts in EGFR/TP53 co-mutant NSCLC. (A) UMAP plot of
individual fibroblasts. Each dot denotes one cell; color represents cluster origin. (B) Dot plots show the expression of selected genes. (C) The bar
graph illustrates the changes in the proportion of fibroblasts subsets between groups (blue: Normal, red: Tumor). (D) Developmental trajectory of
fibroblasts, including information on different groups (cell types, tissues). Each dot represents a cell and is colored according to its assigned
category. Arrows indicate developmental direction. (E) The developmental trajectory of fibroblasts, including three differentiation states. River chart
showing the changes in the proportion of fibroblast subpopulations between states. (F) Heatmap showing changes in cell communication between
fibroblast subsets and CD4T_FOXP3+ and CD8T_GNLY+ cells in tumor samples compared to normal samples. Red indicates a high intensity of
interaction between the two cell types in the tumor, while blue indicates a low intensity of interaction. (G) Interactions between fibroblast subsets in
the TME and CD4T_FOXP3+ and CD8T_GNLY+ cells in normal and tumor samples (blue: Normal, red: Tumor).
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exhibited a high pro−inflammatory and low anti−inflammatory

score, whereas those in tumors displayed the inverse pattern

(Figure 3F) (40, 41), underscoring their acquisition of an

inhibited, exhaustion−like state. We then studied the dynamic

evolution of CD8+ T cells during tumor development. Trajectory

analysis results showed (Figure 3G) that in the early stages of

tumorigenesis, CD8T_GNLY+ cells were activated and the

expression of GNLY and GZMB increased. However, as the

malignancy progressed, these cytotoxic markers gradually

weakened, while exhaustion genes (KLRG1, LAG3) steadily

increased (Figure 3H, Supplementary Figure S3C). Clinically, high

expression of exhaustion markers correlated with poorer patient

prognosis (Figure 3I). These data suggest that immunosuppressive

signals in the tumor microenvironment drive CD8T_GNLY+ cells

from a tumor-clearing, proinflammatory state to functional

exhaustion, thereby weakening effective antitumor immunity and

promoting immune escape and drug resistance.
3.5 Cellular communication in the tumor
immune microenvironment

Building on our delineation of tumor−cell and T−cell

phenotypes, we next sought to unravel the ligand–receptor

crosstalk that underlies immune evasion. By integrating single

−cell transcriptomes with known ligand–receptor pairs, we

constructed an intercellular communication network between

malignant subpopulations (C1_EGFR+, C2_STAT1+) and

cytotoxic CD8T_GNLY+ cells (Figure 4A). This analysis revealed

substantially more complex and intimate signaling between

C2_STAT1+ and CD8T_GNLY+ cells than between C1_EGFR+

and CD8T_GNLY+. Across both tumor clusters, MDK–(ITGA4

+ITGB1) and MIF–(CD74+CXCR4) emerged as prominent axes.

Midkine (MDK) engages extracellular−matrix receptors to foster an

immunosuppressive, pro−angiogenic niche (42), while the MIF–

CD74 pathway dampens innate immunity to facilitate tumor

progression (43). Notably, C2_STAT1+ cells additionally deployed

unique chemokine and cytokine signals—CXCL12–CXCR4, CCL5–

CCR5/CCR3/CCR1, and TGF−b ligands—that reinforce T−cell

exclusion and dysfunction. Tumor−derived CXCL12 and CCL5

are known to recruit suppressive myeloid and regulatory T cells,

promote tumor growth, and stimulate neoangiogenesis (44, 45),

whereas TGF−b directly attenuates CD8+ T cell cytotoxicity and

drives exhaustion in chronic inflammatory contexts (46). To

identify the upstream drivers of immunomodulatory ligands, we

analyzed the activity of key transcription factors. In C1_EGFR+

cells, STAT1 mainly regulates the expression of MIF; whereas in

C2_STAT1+ cells, STAT1 drives the transcription of TGFB1, and

ETS1 and EOMES control the expression of CCL5. It was also

observed that in CD8T_GNLY+ cells, exhaustion-related genes were

also co-regulated by ETS1 and STAT1 (Figure 4B). Notably, we

found that these transcription factors that regulate key ligand

signals also regulate pathways associated with drug resistance

(Supplementary Figure S4). Interestingly, STAT1 and ETS1
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activities gradually increased from C1_EGFR+ cells to

C2_STAT1+ cells and further intensified during the subsequent

suppression of CD8T_GNLY+ cells (Figure 4C). Clinically, high

expression levels of STAT1 and ETS1 are associated with poor

survival outcomes in lung cancer patients (Figure 4D). Taken

together, these findings suggest the presence of a STAT1 and

ETS1-driven transcriptional module in malignant cells that

orchestrates a multifaceted immunosuppressive network that not

only induces T-cell exhaustion but also enables tumor immune

evasion and therapeutic resistance during progression.
3.6 Tumor-associated CD74+
fibroblasts

are associated with the progression of
EGFR/TP53 co-mutated NSCLC

CAFs are considered to be key regulators of the malignant

environment (47). Six subpopulations of fibroblasts have been

identified in EGFR/TP53 co-mutated NSCLC, of which three

predominated in tumors: myofibroblastic CAFs (myCAFs:

Fib_POSTN+), antigen−presenting CAFs (apCAFs: Fib_CD74+),

and inflammatory CAFs (iCAFs: Fib_CXCR4+) (Figures 5A, B,

Supplementary Figure S5A). Relative abundance analysis showed

that the proportion of tumor CAFs was increased compared with

adjacent normal tissues (Figure 5C, Supplementary Figure S5B).

Time series analysis revealed the state evolution trajectory of the

fibroblast population during disease progression (State 1→State 2).

As the disease advanced, Fib_FBLN1+ fibroblasts—associated with

tissue repair and homeostasis gradually transitioned into cancer-

associated fibroblasts (CAFs), including Fib_POSTN+, Fib_CD74+,

and Fib_CXCR4+ subpopulations (Figures 5D, E, Supplementary

Figure S5A). Comparative ligand-receptor analysis comparing CAF

subsets with key T cell populations revealed that Fib_CD74+–

CD4T_FOXP3+/CD8T_GNLY+ interactions were significantly

enhanced in tumor samples (Figure 5F). In normal lung tissue,

immune-related axes (MHC-I, CLEC, CypA, LCK) predominate,

while in tumors, ECM signals (collagen, FN1, laminin) are

significantly upregulated (Supplementary Figure S5C). Notably,

regarding Fib_CD74+–CD4T_FOXP3+ MHC-I ligands (HLA-A/

B/C) only exist in normal samples, while in the tumor

microenvironment, Fib_CD74+ promotes the recruitment of

CD4T_FOXP3+ through the binding of CCL5 to the CCR4

receptor (Figure 5G). In addition, two tumor-specific ligand-

receptor pairs, SPP1-CD44 and THBS2-CD47, were identified. In

other malignancies (Figure 5G), SPP1–CD44 signaling exacerbates

CD8+ T cell exhaustion and fosters resistance to immune

−checkpoint blockade (48), while THBS2 promotes epithelial

−mesenchymal transition and can induce apoptosis of activated T

cells via CD47 (49–53). These data suggest that in EGFR/TP53 co-

mutated NSCLC, apCAFs (Fib_CD74+) regulate CD8+ T cell

function by recruiting Tregs, amplifying the immunosuppressive

chemokine network, and remodeling the extracellular matrix,

thereby cooperating with tumor cells to drive cytotoxic CD8+ T

cells from an activated state toward exhaustion.
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4 Discussion

Despite the recent remarkable success of cancer immunotherapy

and targeted therapy, it is not effective for everyone, and the

mechanism of non-response is not fully understood. Multiple clinical

studies have found that TP53 co-mutation is a poor prognostic marker

for EGFR-mutated NSCLC and a predictor of poor clinical outcomes

for EGFR-TKI treatment (54). In addition, intratumor heterogeneity is

an important cause of treatment failure (55). In the past two years,

single-cell transcriptomic studies of NSCLC have focused on EGFR or

KRAS mutation types (56–58). There is an urgent need to collect

single-cell transcriptomic data of NSCLC with TP53/EGFR co-

mutation and analyze cell-cell interactions in the tumor

microenvironment and their impact on immunotherapy. This study

collected samples from NSCLC patients with TP53/EGFR co-

mutations and provided a comprehensive landscape of the TME and

its adjacent normal tissues at single-cell resolution through scRNA-seq

analysis. It was found that tumor cells C2_STAT1+ and apCAF

(Fib_CD74+) would induce the exhaustion of cytotoxic T cells

(CD8T_CNLY+), leading to enhanced resistance to tumor treatment.

Tumor heterogeneity is a core feature of tumor biology. Its

intratumor heterogeneity is manifested by differences in

proliferation, invasion, metabolism and immune escape

capabilities among cell populations within the same tumor (59,

60) The widespread application of single-cell sequencing has

enabled the characterization of tumor heterogeneity at the single-

cell level, thereby identifying driver subpopulations, tracking clonal

evolution trajectories and revealing interactions between

microenvironmental cells (61, 62). In this study, based on single-

cell CNV inference, we identified C1_EGFR+ and C2_STAT1+ as

the main malignant cell populations in EGFR/TP53 co-mutated

NSCLC. Both showed local amplification of EGFR on 7p and

abnormalities in the TP53 region on 17p, confirming the

existence of dual driver mutation genotypes; and functionally, the

C1_EGFR+ tumor cells that promote proliferation and invasion

dynamically transformed into the C2_STAT1+ tumor cells with a

highly immunosuppressive and multidrug-resistant phenotype.

These findings highlight the key role of intratumor heterogeneity

in driving diverse malignant phenotypes, which is one of the main

reasons for the failure of targeted therapy and immunotherapy,

because certain subpopulations of tumor cells can resist treatment

pressure through gene amplification, mutation, or regulation of

immune checkpoint molecules (63, 64). It suggests that precise

intervention targeting the C2_STAT1+ subpopulation may break

through the dilemma of immune escape and broad-spectrum drug

resistance in EGFR/TP53 co-mutated NSCLC.

In the past decade, the study of T cells in the TIME has

significantly promoted the development of cancer immunotherapy.

Recent single-cell transcriptomic analysis has revealed to some extent

the heterogeneity of various types of T cells in tumors and their

functional states (65, 66). For example, CCR8 Tregs inhibit the

proliferation of CD8 T cells (67, 68). IL-17+CD8+ T cells, which

originate from tissue-resident memory T cells, can differentiate into

exhausted T cells and promote tumor progression (69). In this study,

we systematically deciphered the heterogeneity and characteristics of T
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cells and found a substantial transition from toxic T cells to exhausted

T cells during tumor progression. It is explained that this transition

may be caused by multiple factors. On the one hand, tumor cell

C1_EGFR+ and C2_STAT1+ directly act on CD8T_GNLY+ through

the MDK–(ITGA4+ITGB1) axis and the MIF–(CD74+CXCR4) axis

to promote tumor proliferation. More importantly, C2_STAT1+,

which has a highly immunosuppressive and multidrug-resistant

phenotype, also secretes TGF-b family ligands. TGF-b can directly

inhibit the cytotoxic activity of CD8+ T cells and drive their exhaustion

in the chronic tumor inflammatory environment (46). In addition,

TCGA data showed that high expression of MDK, MIF, and TGFBV1

is associated with poor prognosis in patients with non-small cell lung

cancer (Supplementary Figure S4C). On the other hand, we found that

after apCAF (Fib_CD74+) lost its MHC II-mediated antigen

presentation ability in the tumor microenvironment, it no longer

directly activated T cells. Instead, it recruited a large number of

CD4T_FOXP3+ regulatory T cells by highly expressing CCL5 and

binding to the tumor chemokine CCR4 axis, forming a dense

immunosuppressive “chemical barrier” (70, 71). Beyond their

immunosuppressive function, CD4+ T cells may also modulate the

activity and recruitment of other immune cells, contributing to the

broader immunoregulatory network within the tumor. This apCAF-

mediated chemical chemotactic network synergizes with ECM

remodeling, not only blocking the physical infiltration of CD8+ T

cells, but also further strengthening immunosuppression by secreting

proinflammatory factors, forming a “multi-layer barrier” to help

tumor immune escape and treatment resistance.

Unlike previous studies that focused on the immune checkpoint

pathway itself or downstream effects, our study focused on the

upstream transcriptional regulation process that drives the generation

of key immunosuppressive signals. For the first time, we constructed

and systematically characterized a transcriptional regulation module

with STAT1 and ETS1 as the core (Supplementary Figures S4A, B).

This module not only plays a key role in regulating the expression of

immunosuppressive-related genes, but also significantly promotes the

functional exhaustion of CD8+ T cells, tumor immune escape, and the

formation of immunotherapy resistance. Although STAT1 has

traditionally been considered a classic tumor suppressor, an

increasing number of studies have shown that STAT1 has a pro-

tumor effect in certain tumor contexts, including colorectal, ovarian,

and pancreatic cancers (72–75). We found that the expression level of

STAT1 in the treatment response group of patients with NSCLC who

received PD-1/PD-L1 immunotherapy was significantly higher than

that in the non-response group (p = 0.0448) (Supplementary Figure

S5C). At present, studies have attempted targeted intervention with

STAT1 inhibitors and have shown positive tumor suppressor effects in

a variety of solid tumors such as glioblastoma, squamous cell

carcinoma, and colorectal cancer (72, 76, 77). ETS1 has been shown

to regulate multiple pathways involved in extracellular matrix

remodeling, angiogenesis, and immune cell recruitment, thereby

promoting tumor invasion and metastasis (78). ETS1 promotes the

growth andmetastasis of different cancer cell lines. Clinical studies have

shown that knockdown of ETS1 inhibits cell transformation and

reverses multidrug resistance in breast cancer cells (79). Our analysis

found that ETS1 is co-expressed with STAT1 in immunosuppressive
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tumor subpopulations and promotes the upregulation of immune

checkpoint ligands and T cell exhaustion markers.

This suggests that STAT1 is not only a potential prognostic or

predictive marker, but also has the potential to become a new target

for combined immunotherapy intervention. These findings

highlight the STAT1/ETS1 transcriptional module as a critical

upstream regulator of the immunosuppressive network in EGFR/

TP53 co-mutant NSCLC. These factors may serve not only as

biomarkers of treatment resistance but also as potential targets

for novel combinatorial immunotherapy strategies.

However, the clinical translation of targeting the STAT1/ETS1

axis still faces significant challenges, including the lack of highly

specific small-molecule inhibitors, potential off-target toxicities, and

the broad physiological roles of these factors in normal biological

processes. Future therapeutic approaches may focus on targeting

downstream effectors or tumor-specific regulatory elements to

achieve more precise and safer interventions. Additionally, low-

dose inhibition of STAT1/ETS1 combined with immune checkpoint

blockade could synergistically enhance anti-tumor efficacy while

minimizing adverse effects. Moreover, our data indicate that TGF-b
signaling and related chemokines, such as CCL5, may serve as more

druggable downstream mediators, representing alternative targets

for indirect modulation of this immunosuppressive network. We

have incorporated these points into the Discussion section to

broaden the clinical translational implications of our study.

This study has certain limitations related to sample size and

clinical information, including the lack of longitudinal clinical

staging data. Nevertheless, we comprehensively evaluated intra-

sample and inter-patient heterogeneity using single-cell CNV and

transcriptomic analyses, consistently identifying the C2_STAT1+

subpopulation across multiple patients, which suggests a level of

universality in its underlying mechanisms. Despite these

limitations, our findings provide novel insights into the

transcriptional regulation of immune evasion in EGFR/TP53 co-

mutated NSCLC and highlight the STAT1/ETS1 axis as a promising

therapeutic target, laying important groundwork for future

mechanistic and translational studies. Moving forward, we aim to

expand the sample cohort and utilize immunohistochemistry, flow

cytometry, and animal models to further validate and explore the

role of this subpopulation across various disease stages and

treatment settings. Furthermore, ongoing advancements in spatial

transcriptomics and multi-omics technologies will facilitate the

integration of spatial data, offering deeper understanding of cell–

cell interactions and their dynamic changes over time.
5 Conclusion

These findings suggest that the combined effects of C2_STAT1+

tumor cells and apCAF (Fib_CD74+) cells lead to the exhaustion of

CD8 cytotoxic T cells and enhanced drug resistance. We propose

that, mechanistically, the key signaling molecules (MDK, MIF,

TGF-b, etc.) that cause the failure of CD8 cytotoxic T cells and

the genes associated with drug resistance (ERBB2, ERBB3, JAK2,

etc.) are regulated by the common transcription factor STAT1/
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ETS1, forming an upstream transcriptional regulatory network that

systematically drives the formation of dual phenotypes of

immunosuppression and drug resistance. The network we

mapped not only reveals the potential molecular mechanisms of

resistance to immunotherapy, but also provides a clear direction for

targeted intervention. In the future, combined blockade of the

STAT1/ETS1 regulatory axis with immune checkpoint inhibitors,

or combined with EGFR-TKI targeted therapy, is expected to break

the treatment bottleneck of EGFR/TP53 co-mutated NSCLC and

improve patients’ response rate to immunotherapy and overall

survival benefits.
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