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Editorial on the Research Topic

Commending 20 years since the formal discovery of immune priming:
the innate immune memory
For many decades, the prevailing paradigm has been that only vertebrates, but not

invertebrates, possess immune memory. However, already since the 1970s, studies in insects

and crustaceans suggested that organisms previously exposed to a sublethal pathogenic

challenge could better survive a following lethal challenge. Exposed individuals were also

shown to have enhanced immune responses, and to more effectively eliminate pathogens,

compared to those not pre-exposed (1–6). Nevertheless, these responses often lacked specificity,

which is considered a hallmark of immune memory. Thus, the belief in the absence of immune

memory in invertebrates largely prevailed until it was reported that immune memory in

invertebrates could show specificity to a degree that it could differentiate between siblings and

unrelated parasite lines (7). This sparked considerable debate among the scientific community

regarding the capacity for immune memory in invertebrates (8, 9), and over time, a growing

number of studies have revealed innate immune memory in various invertebrate groups (10).

Moreover, an increasing focus on immune memory provided by cells of the innate immune

system of vertebrates led to the discovery of “trained immunity” (11). Today, “trained

immunity” usually refers to innate immune memory in vertebrates, while the term “immune

priming” is normally restricted to invertebrates. While highlighting potential mechanistic

differences between these forms of innate immune memory (12, 13), this distinction may also

limit the exchange of ideas. Interactions between researchers in the fields of trained immunity

and immune priming thus bear large potential. Therefore, 20 years after the inaugural studies of

“immune priming”, we initiated this Research Topic to gather articles that provide further

evidence and review the status of immune priming and trained immunity, aiming to assess

future directions.

Several articles in this Research Topic provide further evidence for immune priming and

analyze conditions determining its occurrence. Immune priming has previously been suggested

to be contingent on parasite virulence, the evolutionary costs of immune memory and/or the

host immune response performance (14). Goerlinger et al. now propose that the route of
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infection is also an important determinant, at least, in insects

(Tenebrio molitor) against bacteria, and they also reveal another

interesting result: the host behavior seems to be very important

during immune priming. These are promising research avenues for

future investigations.

Recent studies highlight that immune priming carries

physiological costs. Cortacans et al. demonstrate that Drosophila

melanogaster primed and challenged with Candida albicans strain

4372 exhibited a strong antimicrobial peptide (AMP) response, with

sex-specific immune pathway activation (Toll in males, Imd in

females). However, this enhanced response did not improve

survival, suggesting potential costs of immune overactivation.

Similarly, Cime-Castillo et al. show that in mosquitoes,

heterologous priming with different Dengue virus serotypes (e.g.,

DENV-4 then DENV-2) reduced pupation rates but, in some cases,

increased adult emergence. These results suggest a trade-off

between development and immune activation, with implications

for vector control and transgenerational immunity, though further

generational data are needed.

Sułek et al. contribute to important evidence regarding

mechanistic underpinnings of immune priming, which can vary

strongly among different systems. They found that immune-primed

Galleria mellonella larvae upregulated a peptide (Pr13a) that

reduced bacterial load and altered pathogen surface properties,

pointing to potential effector molecules involved in immune

memory. Cho and Cho report that Gryllus bimaculatus primed

with heat-killed Bacillus thuringiensis exhibit increased survival and

extracellular trap formation, with evidence that immune protection

becomes more specific over time. As far as we know, this is the first

study reporting that extracellular traps are involved in immune

priming. Collectively, these findings underscore that immune

priming may not be universally beneficial and is shaped by host-

pathogen interactions, immune effectors, and timing. Long-term

studies are essential to fully understand the dynamics and costs of

invertebrate immune memory.

While the precise mechanisms by which organisms recognize

specific immune challenges, establish immune memory, and recall it

across successive encounters remain incompletely understood (15), the

studies featured in this Research Topic make a valuable contribution by

proposing a novel interplay between metabolism, epigenetics, and the

endocycle in shaping immune memory (Méndez-López et al.;

Mukherjee and Dobrindt). This integrative perspective advances

the field by highlighting potential molecular and cellular

frameworks underlying immune priming and its long-term

maintenance. Accordingly, Ng et al. in this Research Topic made

use of the same copepod-tapeworm system where specificity was

first demonstrated in invertebrate immune memory to identify

differential molecular mechanisms of specific versus non-specific

immune priming. A transcriptomic approach pointed to epigenetics

and metabolism associated with both forms of priming, while

splicing-associated processes were characteristic of specific

priming and oxidative phosphorylation and carbon metabolism of

unspecific priming. Importantly, epigenetics and metabolism are

also involved in trained immunity (16), so, these might be general

mechanisms underlying innate immune memory in animals.
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Accordingly, Boraschi et al. provide an important conceptual and

comparative approach to both trained immunity and immune priming.

They argue that for both types of immunity it depends on the challenges

and conditions whether innate memory is non-specific or specific, and

whether it is long- or short-lived. Vertebrate innate immune memory

can also show some degree of specificity, likely mediated by receptors

and pathway involved in the initial recognition process.

Within the scope of trained immunity, the authors contributing

to this Research Topic propose several potential applications. Sui

and Berzofsky suggest leveraging trained immunity to enhance

cancer immunotherapies, while Samuel et al. propose the use of

BCG vaccination to stimulate trained immune responses in bovines.

However, Bhargavi and Subbian caution the scientific community

about the potential drawbacks associated with the development of

non-specific vaccines. Specifically, they highlight that inflammation

induced by trained immunity may contribute to the emergence of

autoimmune pathologies. In light of these concerns, the authors

emphasize the importance of carefully designing novel therapeutic

strategies for both infectious and non-infectious diseases. Their

review focuses on the immunologic, metabolic, and epigenetic

mechanisms underlying trained immunity, particularly within

myeloid cells. Furthermore, evidence from invertebrate models

suggests that immune priming may incur evolutionary costs,

particularly in terms of reproductive fitness (17). Given these

considerations, the potential costs and trade-offs of immune

priming and trained immunity warrant further investigation,

especially in contexts where their application has been proposed.

The articles in the Research Topic highlight important features

of innate immune memory that may direct future research. The

field of immune priming–initially driven by input from

evolutionary ecology–has now identified a multitude of

mechanistic underpinnings in the diverse organisms studied.

Acknowledging this diversity allows for comparisons with

vertebrate trained immunity, where knowledge of mechanisms is

already very rich, while avoiding oversimplistic generalizations.

Future research may include evolutionary aspects to evaluate

consequences of applications of trained immunity and immune

priming in human and animal health and beyond.
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