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The link between gut microbiota
and multiple sclerosis from the
perspective of barrier function
Jingru Ren, Zhenyu Niu, Jianchun Wang, Jing Guo,
Hongjun Hao, Feng Gao, Ran Liu* and Zhaoxia Wang*

Department of Neurology, Peking University First Hospital, Beijing, China
Recently, more and more studies have begun to focus on the role of gut

microbiota in neurological diseases, especially immune-mediated disorders

including multiple sclerosis (MS). The bidirectional communication between

the gut microbiome and the central nervous system (CNS) is known as the

gut-brain axis, which includes two key barriers, namely blood-brain barrier (BBB)

and the gut barrier, and has become a crucial framework for understanding the

pathophysiological mechanisms of various neurological disorders. Gut microbes

co-evolved with humans and play important roles in maintaining steady state via

various pathways, including immune regulation. An altered gut microbiota,

referred to as dysbiosis, not only induces increased intestinal permeability

locally, but also promotes systemic immune responses in the CNS. Increased

BBB permeability has been considered the core mechanism for MS, and a “leaky”

gut has also been reported in MS as well as its animal models. Therefore, the gut-

brain axis is increasingly being considered as playing a crucial role in the

pathogenesis of MS, with a major focus on specific gut microbiota alterations

associated with the disease. Here, we review how the possible dysfunction of the

gut-brain axis might impact MS, with particular emphasis on the barrier function.
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1 Introduction

In recent years, a growing body of evidence has indicated the significant role of gut

microbiota in neurological diseases, particularly multiple sclerosis (MS). The bidirectional

communication between the gut microbiome and the central nervous system (CNS) is

known as the gut-brain axis, a concept that has become a crucial framework for

understanding the pathophysiological mechanisms of various neurological disorders.

With the advancement of metagenomics and other omics technologies, the brain-gut

axis is increasingly being considered as playing a central role in the pathogenesis of MS. The

gut barrier and the blood-brain barrier (BBB), as two key components of the brain-gut axis,

are important gateways for communication between the CNS and the gut, ensuring the

selective and secure exchange of information and substances. Furthermore, increased BBB
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permeability has been considered the core mechanism for MS, and a

“leaky” gut has also been reported in MS as well as its animal

models. Studies have shown that the gut microbiota and its

metabolites may play crucial roles in maintaining the integrity of

these barriers via various mechanisms. And growing evidence

suggests that the interaction between gut microbiota and the host

immune system is also a key factor in regulating brain-gut

communication. In this review, we describe the complex,

multidirectional interactions between the brain and the gut

microbiome in MS, mainly focusing on the impact of BBB and

intestinal barrier.
2 Epidemiology and pathophysiology
of MS

MS is a complex multifactorial disorder of the CNS that affects

approximately 2million individuals globally. It is recognized as the

leading cause of neurological disability among young adults (1, 2).

Characterized as a chronic neurodegenerative and neuroinflammatory

condition, MS involves an aberrant immune response targeting the

CNS. It is now understood that the interplay between genetic

predispositions as well as environmental factors culminates in the

development of demyelinating plaques in MS. Environmental risk

factors include Epstein–Barr virus (EBV) infection, vitamin D3

deficiency, low UV radiation exposure, cigarette smoking, obesity,

and dietary habits (3, 4). All these environmental factors would have

the ability of changing the proportion of different cell subsets, leading

to aberrant immune processes in the disease. The Human Leukocyte

Antigen (HLA) gene complex, has been identified as a significant

genetic risk factor for MS (5, 6). Therefore, among individuals with

genetic predispositions, the intricate interactions between

environmental triggers can surpass systemic and CNS immune

tolerance mechanisms, thereby facilitating the onset of chronic

inflammation and the pathogenic processes.

A recently proposed environmental risk factor for MS is the gut

microbiome, a complex ecosystem comprising approximately

100 trillion microbes. Notably, the gastrointestinal (GI) tract is

also recognized as the largest immune organ within the body,

housing a diversity of immune cell types closely related to the gut

microbiota (7). Research into autoimmune and inflammatory

conditions, particularly MS and its animal model, experimental

autoimmune encephalomyelitis (EAE), was among the pioneering

studies in the microbiome research. Consequently, the commensal

gut microbiota is now acknowledged to play a crucial role in

regulating the development, homeostasis, and function of host

immune systems and the CNS, particularly in MS (8, 9).
3 Gut microbiota and MS

3.1 Gut microbiota and inflammation

The human gastrointestinal tract is inhabited by a vast array of

microorganisms, including viruses, bacteria, and fungi, collectively
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referred to as the gut microbiota (GM) (10). This microbiome

establishes a symbiotic relationship with the host, wherein the host

supplies nutrients and habitat necessary for microbial survival and

proliferation, while the microbes contribute to the host’s health by

facilitating various physiological processes (11, 12). Recent research

has highlighted the capability of gut microbiome to engage in

bidirectional communication with the CNS (13, 14).

Consequently, the concept of the microbiota-gut-brain (MGB)

axis is increasingly popular in the fields of neurobiology,

medicine, and immunology.

GM significantly influences various physiological functions

within the human body, including immunomodulation (15, 16).

The interplay between the GM and gut immunity is pivotal in

determining the occurrence and propagation of inflammation.

When microbial debris and its metabolites translocate to

subepithelial sites, the resultant immune response intensifies and

disseminates into the systemic circulation (17). The pathogenesis of

systemic inflammation associated with GM is multifaceted, and

several key factors may facilitate this process, including: (1)

intestinal barrier disruption, which is influenced by the

equilibrium between gut mucosal immunity and luminal

microorganisms (18); (2) gut dysbiosis induced by dietary habits

or aging, can modify T cell activity within pro-inflammatory

environment (19); (3) metabolites derived from the GM or

components of gut, including small molecules and microbial

components (17, 18, 20); and (4) epitope spreading and

molecular mimicry mechanisms (21). Immune responses to

microbial antigens may lead to tissue damage and release of self-

antigens; the subsequent presentation of both microbial and self-

antigens may result in the autoimmunity through a process known

as epitope spreading. Molecular mimicry occurs when microbial

molecules resemble host tissues.
3.2 Microbiota and MS

3.2.1 Microbiota in MS
In fact, early evidence suggesting the involvement of the GM in

autoimmune diseases can be traced back to studies on EAE. Germ-

free (GF) mice, which are bred and maintained in isolators to

prevent exposure to and colonization by microbiota, exhibit

immunological immaturity. The mice show a marked reduction

in proinflammatory Th17 cells and a skewing toward Th2 responses

(22). Furthermore, GF mice demonstrate reduced severity of EAE,

corresponding with lower levels of proinflammatory cytokines in

the intestine and spinal cord, alongside an increase in regulatory T

cells (Tregs) (23, 24). Perhaps most importantly, GM from patients

with MS (PwMS), when transplanted into GF transgenic mice

expressing myelin-reactive T cells, leads to an increased incidence

of spontaneous EAE, which underscores the sufficiency of GM

changes in MS for driving CNS autoimmunity (25).

Numerous studies have documented that PwMS experience gut

dysbiosis (26–31) as summarized in Table 1. Specifically, PwMS

exhibit an enrichment of bacterial genera such as Ruminococcus,

Blautia, Dorea, Bifidobacterium, Bilophila, Sutterella, Pedobacteria,
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Flavobacterium, Pseudomonas, Acinetobacter, Eggerthella, and

Akkermansia. Conversely, there is a reduced abundance of genera

including Clostridium, Faecalibacterium, Eubacterium,

Parabacteroides, Haemophilus, Adlercreutzia, Ruminococcus,

Butyricimonas, Bacteroides, Coprobacillus, Lactobacillus, and

Prevotella in PwMS. Furthermore, PwMS have been observed to

possess a distinct mycobiome (fungus) (29, 32).

Studies also indicate the correlation between gut microbiota

species richness and MS phenotypes. Patients who were clinically

non-active exhibited an increased abundance of Faecalibacterium

prausnitzii, Gordonibacter urolithinfaciens, Anaerostipes hadrus,
Frontiers in Immunology 03
Gemmiger formicilis, and Roseburia inulinivorans (28). Specific

microbial taxa were also found to be linked with a reduced risk of

MS relapse, such as Butyricicoccus desmolans, Odoribacter

splanchnicus, Lachnospiraceae NK4A136, and Ruminococcaceae,

whereas Blautia, Lachnoclostridium, Lachnospiraceae_UCG-004,

and Coriobacteriales were associated with an increased risk (33).

In both relapsing-remitting MS (RRMS) and progressive MS,

Clostridium bolteae, Ruthenibacterium lactatiformans, and

Akkermansia was observed, while a decrease in Blautia wexlerae,

Dorea formicigenerans, and Erysipelotrichaceae CCM was noted.

The administration of disease-modifying therapies (DMTs) also
TABLE 1 Summary of MS microbiome studies.

Authors MS type and
sample size

Altered abundance of genera or OTUs in
PwMS

Treatment Geographical
location

References

Cantoni C
et al.

RRMS (n=24)
HC (n =25)

Decreased: Prevotella, Lachnospiraceae, Anaerostipes sp.,
Bifidobacterium longum, Clostridium leptum,
Faecalibacterium prausnitzii

All untreated America (27)

The
iMSMS
Conortium

RRMS (n=437)
SPMS (n=68)
PPMS (n=71)
HC (n=437, paired
housholds)

Decreased: Firmicutes bacterium sp., Fusicatenibacter
saccharivorans, Blautia sp., Blautia obeum, Clostirum sp.,
Faecalibacterium praunitzii,
Increased: Akkeransia muciniphila, Ruthenibacterium
lactatiormans, Hungaella hathewayi, Eisenbergiela tayi

367 treated (71
Fingolimod, 86 DMF,
68 GA, 87 Interferon,
28 anti-CD20, 27
Natalizumab)
209 untreated

America, England,
Spain

(28)

Thirion F
et al.

RRMS (n=128)
CIS (n=20)
HC (n=148)

Decreased: Ruminococcus torques, Flavonifractor plautii,
Lawsonibacter phoceensis, Hungatella effluvia,
Pseudoflavonifractor capillosus, Erysipelatoclostridium
ramosum, Ruminococcus gnavus, Sellimonas intestinalis,
Coprobacillus cateniformis, and Clostridium innocuum

94 treated (32 Beta-
interferon, 2 GA, 43
natalizumab, 17
fingolimod)
54 untreated

Denmark (29)

Tremlett H
et al.

Paediatric-onset
RRMS (n=32)
HC (n=36)
ADS (n = 41)

Decreased: Anaerosporobacter sp., Ruminococcaceae,
(Eubacterium) eligens, Anaerosporobacter, Clostridiales
vadin BB60
Increased: Pseudomonas sp., Enterorhabdus

23 treated (11 Beta-
interferon, 7 GA, 4
dimethyl fumarate, 4
others)
9 untreated

Canada, America (31)

Jangi S
et al.

RRMS (n=60)
NC (n=43)

Decreased: Butyricimonas, Collinsella, Slackia
Increased: Methanobrevibacter, Akkermansia

32 treated (18 Beta-
interferon, 14 GA)
28 untreated

America (34)

Takewaki
D et al.

RRMS (n=62)
SPMS (n=15)
Atypical MS (n=21)
HC (n=55)
NMOSD (n=20)

Decreased: Megamonas, Roseburia,Ruminococcus sp.,
Eubacterium rectale,
Increased: Bifidobacterium, Streptococcus, Akkermansia
muciniphila

48 oral PSL, 12
immunosuppressive
drugs, 23 Beta-
interferon, 3 GA, 7
fingolimod, 1
natalilizumab, 2 DMF
Untreated: not reported

Japan (205)

Chen, J
et al.

RRMS (n=31)
HC (n=36)

Decreased: Parabacteroides, Erysipelotrichaceae,
Lachnospiraceae, Veillonellaceae, Lactobacillus,
Coprobacillus, Haemophilus
Increased: Pedobacter, Flavobacterium, Blautia, Dorea,
Pseudomonas, Mycoplana

20 treated (14, Beta-
interferon, 1 GA, 5
Natalizumab)
11 untreated

America (327)

Cosorich I
et al.

RRMS (n=19)
HC (n=17)

Microbiota isolated from the small intestinal mucosa;
Decreased: Bacteroidetes, Prevotella
Increased: Firmicutes, Streptococcus,

3 Fingolimod, 7 Beta-
interferon, 9 GA

Italy (338)

Cantarel
BL et al.

MS (n=7)
HC (N = 8)

Decreased: Bacteroidaceae, Faecalibacterium;
Increased: Ruminococcus
Decreased after VitD3: Ruminococcus, Eubacterium
Increased after VitD3: Faecalibacterium, Enterobacteriaceae,
Akkermansia, Janthinobacterium

5 GA with VitD3, 2
only use VitD3

America (360)
PwMS, patients with multiple sclerosis; RRMS, relapsing-remitting multiple sclerosis; HC, healthy control; The iMSMS Conortium, the International Multiple Sclerosis Microbiome Study; SPMS,
secondary progressive multiple sclerosis; PPMS, primary progressive multiple sclerosis; DMF, Dimethyl fumarate; GA, glatiramer acetate; CIS, clinically isolated syndrome; ADS, acquired
demyelinating syndrome; NMOSD, neuromyelitis optica spectrum disorders; PSL, prednidolone; Rebif, an approved IFNbeta-1a formulation.
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impacts the microbiota composition. For instance, reduced levels of

Prevotella and Sutterella have been observed in patients with

untreated MS (34).

3.2.2 How microbiota influence MS
The altered gut microbiome observed in MS has fueled intense

research interest in elucidating the factors that shape this microbial

community and the mechanisms through which these microbes

may influence MS pathogenesis. Microbiota dysbiosis can initiate a

cascade of events, including the proliferation of pathogenic bacteria

and the release of harmful toxins, resulting in a proinflammatory

environment and a compromised gut barrier (35, 36). The leaky gut

syndrome (LGS) is further characterized by increased intestinal

permeability, which facilitates bacterial translocation and the

growth and colonization of pathobionts, thereby triggering

systemic inflammation. Numerous studies have demonstrated that

EAE mice exhibit increased gut permeability (35, 37). Thus, LGS is

linked to MS and can play an important role. We will discuss the

specific relationship among between LGS, MS, and gut microbiota

dysbiosis in Section 3.1.3.

Furthermore, certain bacteria can directly modulate the

immune system in MS, influencing the development and behavior

of immune cells, such as CD4 T cells, B cells, DCs, and

macrophages, which are the main culprits in the pathophysiology

of MS (38). MS is predominantly mediated by myelin-specific CD4

+ T helper cells, with the Th17 cell lineage being particularly

implicated. Th17 cells are known to produce the pro-

inflammatory cytokine IL-17 and migrate to the CNS during

active disease phase (39, 40). Concurrently, PwMS display

dysregulation in CD4+ Tregs, characterized by a marked

reduction in their suppressive ability (41, 42). GF mice

demonstrate resistance to EAE and a lack of Th17 cells (24).

However, mono-colonization with segmented filamentous bacteria

(SFB) is sufficient to restore susceptibility to EAE disease and to

induce the expansion of Th17 cells in the CNS (24). These findings

underscore the necessity of gut bacteria in the EAE pathology.

Interestingly, certain bacterial species, such as Akkermansia

muciniphila and Acinetobacter calcoaceticus, are also capable of

activating intestinal Th17 cells and promoting inflammation in the

spinal cords of EAE mice (7, 43–45). These bacteria are found in

increased abundance in the small intestine of PwMS, potentially

enhancing the pathogenicity of CNS-autoreactive T cells within the

intestine. The microbiota can also influence the expansion and

maintenance of Tregs (32). Kasper et al. showed that the

Bacteroides fragilis can enhance Treg numbers in cervical lymph

nodes, which leads to amelioration of EAE (46). Moreover,

alterations in gut microbiota composition may indirectly

influence the capacity of Tregs to control autoimmunity by

inducing of Th1 and Th17 cells or by modulating the T cell

microenvironment (47). Besides well-established T cell, recent

research has elucidated a gut microbiota-dependent, anti-

inflammatory function of B cells in MS. Rojas et al. found a

marked reduction in immunoglobulin A (IgA)+ plasma cells
Frontiers in Immunology 04
within the gut during EAE (48, 49). A subsequent study revealed

that IgA+ B cells migrate across the BBB during active MS and

exhibit specificity for MS-associated immunostimulatory

bacterial strains.

Microorganisms also influence the innate immune response.

Toll-like receptors (TLRs), widely distributed on immune cells and

nonimmune cells including intestinal epithelial cells, neurons, and

glial cells, are pattern recognition receptors (PRRs) capable of

detecting exogenous and endogenous pathogenic molecules (50–

52). They can be activated by microbe-related antigens like

peptidoglycan, lipoteichoic acid, and LPS in the intestine, thereby

initiating downstream reactions by recruiting signaling molecules

through the myeloid differentiation factor 88 (MyD88) pathway or

MyD88-independent signal transduction (53). MyD88 signaling

results in the activation of transcription factors including the

nuclear factor kB (NF-kB) and activating protein-1 (AP-1), which

activate the expression of a variety of genes encoding

proinflammatory cytokines and chemokines, as well as molecules

important in antigen presentation. This could facilitate the

reactivation of myelin-reactive T cells in the target tissue in EAE

and MS (54, 55). MyD88 knockout mice are resistant to the

development of active EAE, further supporting for a role of

MyD88-dependent signaling in disease development (56). The

composition of the intestinal flora also impacts TLRs expression,

thereby influencing intestinal barrier integrity and immune

homeosis (57). Microbiota is also a source of signaling molecules,

immune mediators, and gut hormones, which have been shown to

be involved in TLR signaling (51, 58, 59).

GMs co-evolved with humans to provide essential enzymes for

digesting complex fibers, transforming humans into holobionts

dependent on gut bacteria for functions such as vitamin

production, nutrient digestion, and immune regulation (60–62).

Dysbiosis can result in alterations in the metabolites, contributing

to a proinflammatory environment (63). Recent advancements in

metabolomics technology have revealed significant changes in

microbial metabolites like short-chain fatty acid (SCFAs),

tryptophan metabolites, bile acids, and phytoestrogens in MS.

Furthermore, various classes of bacterial compounds like LPS,

have been shown to penetrate systemic circulation, even reaching

the CNS. We will discuss these topics in Section 3.3.
4 Gut microbiota and biological
barrier in MS

There are two natural barriers within the BGM axis: the

intestinal barrier and the BBB. Gut microbes, stress, and

inflammation can alter the permeability of both structures. In this

section, we will explore the roles of the two biological barriers in MS

and their interactions with gut microbiota. Given the higher

susceptibility of women to MS and the recent emphasis on the

important role of gut microbiota in the female reproductive system

and its mucosal immunity, we also briefly discuss related content.
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4.1 Gut microbiota and BBB

BBB breakdown is an early pathological event in MS, occurring

before lesion formation and in normal-appearing white matter,

alongside pathogenic immune cell infiltration. Thus, limiting

proinflammatory immune cells from crossing the BBB into the

CNS could be an effective treatment strategy. Research indicates

that gut microbiota disorders are related to BBB damage. Here, we

summarize BBB components and their dysregulation in the context

of gut-induced inflammation in MS.

4.1.1 The composition and function of the BBB
and neuron-vascular unit

The BBB refers to the barrier between plasma and brain cells,

formed by brain endothelial cells (BECs), the perivascular foot

processes of astrocytes, a basement membrane (BM), and pericytes

(PCs). In July 2001, the National Institute of Neurological Disorders

and Stroke introduced the neurovascular unit (NVU) concept to

highlight the dynamic interactions between the BBB, neurons,

extracellular matrix, and microglia, which collectively regulate

BBB structure and function (64, 65).

BECs exhibit low penetrance to intravascular materials due to a

thick luminal glycocalyx layer, specialized tight junction (TJ)

structures, lack of fenestration, and selective transporters, which

underpin the trans-endothelial permeability and guarantee

metabolic and immunological homeostasis for normal brain

functions (66). BECs also actively recruit inflammatory cells into

the CNS to suppress local inflammation at BBB (67). NVU

astrocytes have versatile roles, supporting vascular endothelium,

responding to immune stimuli, forming endfeet and the glia

limitans, and regulating intracerebral fluid flow. Astrocyte

endfeet, together with secreted basal material, form the glia

limitans, an immune barrier preventing T cells entry into the

parenchyma (68). Connexin 43 in astrocytes helps maintain the

BBB, and its loss causes continuous immune cell recruitment

(69).Pericytes ensure endothelial integrity, regulating astrocytic

endfeet, leukocyte trafficking, and vascular immune homeostasis

and vasomotor (69, 70). Pericytes can regulate astrocytic endfeet

and BBB endothelium formation. They also limit lymphocyte and

monocyte transmigration into the brain (71, 72).

The BM of the BBB is a multilayered extracellular matrix

composed of laminin, collagen IV, nidogen, and proteoglycan,

formed by the interplay between astrocytes, BECs, and pericytes

(66, 73). It allows fluid and soluble molecule passage while blocking

leukocyte infiltration and binding growth factors (73). BM laminins

affect T lymphocyte extravasation and migration into the brain. The

perivascular space (PVS), situated between the BM secreted by

BECs and astrocytes, is a key component of the highly organized

glymphatic system, which include meningeal lymphatic vessels

(MLVs) (69, 74). This system, characterized by astrocyte endfeet

expressing polarized aquaporin-4 (AQP4) water channels, shares

key functions with the peripheral lymphatic vessels and aids in CSF-

interstitial fluid (ISF) exchange, waste removal, and immune cells

trafficking (75, 76). The CSF exchanges with ISF through the PVS of

the penetrating arteries and is ultimately drained by arachnoid
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granulations and MLVs, aiding nutrient delivery and metabolic

waste clearance within the brain parenchyma (77, 78).

Macromolecules in the subarachnoid space are transported to

deep cervical lymph nodes (dCLNs) and superficial cervical

lymph nodes via MLVs (79). MLVs also work with CNS immune

cells, including microglial, to regulate immuno-lymphatic interface

and enhance neurotrophic signaling (79, 80). Studies have shown

that AQP4 serves as a crucial regulator of fluid dynamics within the

brain (81).

Unlike the BECs, the choroid plexus vascular barrier (PVB) is

fenestrated, allowing small molecules, water, and solutes to pass,

which is crucial for CSF production (82). Animal models have

demonstrated that the PVB remains permissive under normal

physiological conditions but can close in response to intestinal

and systemic inflammation (82, 83).

Oligodendrocytes and microglia are also crucial for BBB

integrity, although they do not directly form the BBB. Seo et al.

revealed oligodendrocytes can enhance TJs via TGF-b signaling

(84). Studies indicate that BBB leakage initially causes astrocyte

damage, followed by alterations in oligodendrocytes. Multiple

mechanisms, such as imbalances in protein synthesis and

degradation (85, 86), the impact of aquaporin-1 and AQP4 (87),

and ionic equilibrium (88), have been suggested to explain

this phenomenon.
4.1.2 BBB disruption in neuroinflammation
and MS

To function as an exquisite machine with highly regulatable

dynamics, the BBB or NVU is crucial for brain health. Maintaining

brain homeostasis requires the NVU coupling to work

synergistically among BECs, pericytes, astrocytes, microglia,

neurons as well as cerebral lymphatic system.

BECs, with a thick glycocalyx layer on the luminal surface as

mentioned above, block macromolecule leakage and leukocyte

adhesion. Hypoxia, inflammation, and TNF-a can disrupt the

glycocalyx. Therefore, attenuated glycocalyx coats are involved in

the early pathogenesis of neuroinflammation and brain aging.

Microglia, central players in neuroinflammation, can transform

into a phagocytic state and remodel neuronal connectivity,

damaging the BBB by engulfing astrocyte endfeet AQP4 when

peripheral inflammation breaches microvessels (89). Activated

microglia also stimulate astrocytes to release TNF and glutamate

(90), interacting with BECs and neurons to produce chemokines to

recruit leukocytes into the CNS (91). Importantly, they also

communicate with infiltrating lymphocytes and other immune

cells, potentially worsening CNS inflammation (75). The cerebral

lymphatic system affects MS progression by influencing immune

cell movement, inflammatory responses, and oligodendrocytes

function. In acute MS lesions, glial cells retraction and astrocyte

damage occur, leading to reduced diffusivity along the PVS, which

correlates with increased disability and longer disease duration in

MS (92, 93). Impaired lymphatic fluid flow results in the

accumulation of inflammatory cells and neurotoxic elements,

impairing the clearance of toxic molecules and metabolites from

the ventricles and deep gray matter, as well as the clearance of
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inflammatory microglia, thereby exacerbating cortical

demyelination and gray matter pathology (94–96). MLVs

facilitate meningeal T cells migration to dCLNs, and their

ablation attenuates CD4+ T cell infiltration and spinal cord

demyelination, improving EAE prognosis (97, 98). However,

MLVs may also exert neuroprotective effects in MS by

modulating the function of oligodendrocytes and astrocytes (99).

Chemokines, cytokines, and immune cells, may also influence

BBB during systemic or local inflammation. Pro-inflammatory

cytokines such as IL-1, TNF-a, and IL-6 have been linked to

neuroinflammation in the CNS and peripheral nervous diseases

including MS, Parkinson’s disease (PD), Alzheimer’s disease (AD)

and diabetic neuropathy (100, 101). They activate signaling pathways

like NF-kB and JAK/STAT, leading to neuroinflammation and BBB

disruption (102–104). This disruption allows more immune cells and

cytokines into the inflammation lesions, worsening inflammation in

MS and other conditions (105, 106). Persistent cytokines activity

leads to neuronal loss, demyelination, and chronic activation of

microglia, astrocytes, and peripheral immune cells. These cytokines

initiate and sustain a neuroinflammatory feedback loop, culminating

in BBB breakdown, increased oxidative stress, synaptic dysfunction,

and neuronal death. The persistence of this inflammatory

environment is a significant element in the genesis and progression

of neurological disorders, including MS (107–109). Many other

cytokines like IL-22, and IFN-g also damage the BBB by

modulating TJs and increasing the expression of transmigratory

molecules expression on BECs (110–112). Circulating cytokines

also enhance inflammasome activation like NLRP3, which could

downregulate TJ proteins and increase BBB permeability (113).

Chemokines are crucial for BBB integrity, lymphocyte

chemotaxis, CNS immunosurveillance, and neural regulation

(114). Studies have found the chemokines levels, such as

CXCL13, CXCL9 and CCL2, are significantly increased in MS

(115, 116), potentially activating the p38 mitogen-activated

protein kinase (MAPK) pathway and compromising the BBB

(117). The NVU controls peripheral leukocytes entry into the

CNS, a process that can be disrupted by cytokines. IL-17, in

particular, impairs NVU function by attracting circulating

neutrophils and downregulating TJs like occludin and ZO-1

(118). Human BECs express low levels of IL-17R normally but

increase expression near active MS lesions. It also facilitates CD4+T

cell transmigration and enhances the ICAM-1-dependent

monocyte adhesion through the BBB (119).

MS has long been seen as a T-cell-mediated disease, especially

involving CD4 myelin-reactive T cells including Th1 cells and Th17

cells. Th1 cells primarily secret IFN-g and TNF-a, which play a

crucial role in activating local glial cells and antigen-presenting cells

(APCs). Th17 cells can secrete matrix metalloproteinases 3 (MMP-

3) and MMP-9, which can degrade the BM and facilitate peripheral

leukocyte migration through the BBB (111, 120). Furthermore,

Th17 lymphocytes highly express granzyme B, which

subsequently kills neurons and recruits more CD4+ lymphocytes

(119). Activated Th cells interact with various autoantigens like

CNS resident cells, leading to a rapid clonal expansion and an

amplified immune response. This ultimately triggers a cascade of
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inflammatory, demyelinating, and neurodegenerative events,

thereby further affecting BBB permeability in MS (121). Recent

studies have demonstrated that plasma cells originating from the

gut, which secrete IgA, play a role in mitigating neuroinflammation

in the CNS through the production of IL-10 (49). In contrast, the

accumulation of IgA-producing cells that are reactive to gut

bacterial strains associated with MS has been correlated with

acute inflammatory episodes in MS (122).

NVU coupling relies heavily on the canonical Wnt/b-catenin,
Sonic Hedgehog (SHH), PDGF-b, and TGF-b signaling pathways

(123, 124). Additionally, inflammatory mediators, including

mitochondrial reactive oxygen species (ROS), can stimulate

proinflammatory signaling pathways (Jak-STAT, NF-kB, and

NLRs) in BECs, pericytes, and astrocytes, potentially damaging

the BBB and interfering with the morphogen signaling (Wnt/b-
catenin and SHH) as well as transcriptional program of the BECs,

leading to NVU breakage.

The BBB disruption will finally leads to transcytosis, cerebral

ion metabolism imbalance, brain perfusion abnormalities, and

influx of erythrocytes, cytotoxic iron, as well as fibrinogen,

thrombin, and immunoglobulins, which might further drive

pathology of MS. The plasminogen cascade activation is

associated with MMP activity and BBB disruption in acute MS

lesions (125, 126). In progressive MS, postmortem brain tissue

shows increased fibrin and fibrinogen deposition in the motor

cortex (127). Plasma-derived extracellular vesicles in RRMS are

also enriched in fibrinogen (128). Studies reported that fibrin and

fibrinogen deposition likely follow BBB breakdown, with blood-

derived thrombin mediating further BBB breakdown, eliciting a Ca2

+ influx, nitric oxide and ROS production, stress fibers formation,

and TJ disruption in MS (129). In the NVU, BECs regulate ion

transport through modulating TJ, receptors, and ion channel

expression (130). In MS, the BBB disruption might impair

selective ion exchange and lead to the neurotoxicity. Iron buildup

has been associated with increased ROS, lipid peroxidation,

decreased antioxidants, and neurodegeneration in these patients

(126). Lastly, modern approaches to BBB disruption in MS also

focus on the vascular changes at the NVU, where BBB function and

cerebral perfusion are closely interconnected. The NVU

harmoniously couples cerebral blood flow with neural activity in

different regions of the brain through vascular activity, which has

been reported to play a central role in MS pathology (125, 130, 131).

Under MS pathology, increased NVU permeability is secondary to

BECs dysfunction. Additionally, pericytes contract and undergo

apoptosis, leading to capillary constriction and increased BBB

damage. Global hypoperfusion in both the white and gray matter

is associated with active MS with cognitive dysfunction (132).

Therefore, the involvement of the NVU in MS highlights the

importance of cerebral hypoperfusion in MS pathology and could

represent a potential treatment target.

4.1.3 The impact of gut microbiota on the BBB
Studies increasingly show that gut microbes significantly impact

BBB integrity. In 2014, Braniste et al. found that GF mice exhibited

higher BBB permeability in various brain regions compared to
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pathogen-free (PF) mice, which was linked to reduced occludin and

claudin-5 expression. After fecal transplantation from PF mice or

administration of SCFA-producing bacteria to GF mice restored

BBB integrity by increasing TJ expression. Current research

suggests that the gut microbiota regulate the BBB through a

variety of pathways, including the vagus and sympathetic nerves

(133), the immune system (134), the endocrine systems (135), and

microbial metabolites such as SCFAs, microbial structural

components such as LPS and peptidoglycans (8), and microbial

membrane vesicles (136). We will discuss this part in the

following section.

4.1.3.1 Microbial metabolites as signaling molecules

The GM converts dietary components into various metabolites,

which play crucial roles in metabolism and signaling functions,

affecting host homeostasis, including BBB integrity and brain

function. Recognizing the significance of structural components

derived from bacterial cell walls, such as LPS and bacterial

membrane vesicles, is also crucial due to their effect on host

physiology. These components, often called microorganism-

associated molecular patterns (MAMPs), which can play crucial

roles that extend beyond innate immunity (137). In Section 4, we

will discuss in detail the effects of gut microbial metabolites and

their components on the biological barrier.

4.1.3.2 Vagus nerve

The vagus nerve is a key channel for the communication

between the intestinal microbiota and the brain. GM influence

the intestinal neurons and the CNS by modifying the vagus signals

to trigger anti-inflammatory reflexes, releasing mediators like

acetylcholine (Ach), and interacting with immune cells (133).

Vagus nerve stimulation decreases the co-localization of

neutrophils and ICAM-1 induced by LPS stimulation, decreasing

gene expression of hypothalamic inflammatory mediators and brain

inflammatory responses (138). In a rat model of ischemic stroke,

non-invasive vagus nerve stimulation was observed to reduce BBB

leakage, improve TJ levels, and reduce MMP-2/9 expression,

thereby protecting the BBB integrity (139).

Intestinal microbes are also bale to secrete neurotransmitters

like Gamma-aminobutyric acid (GABA), 5-HT, catecholamine, and

histamine (140). While being transported to the brain via

circulation and neural channels, they can also activate the vagal

nerve chemoreceptors by paracrine signaling, and ultimately

stimulate anti-inflammatory reflexes (141, 142). They also

regulate information transmission between periphery and the

CNS by controlling BBB function (143, 144).

4.1.3.3 Endocrine pathway

Neuroendocrine hypothalamic-pituitary-adrenal axis. The

endocrine pathway allows the transfer of humoral factors to

mediate bidirectional activity between the gut microbiota and the

brain (145, 146). Changes in the gut microbiota structure lead to the

increased intestinal barrier permeability; therefore, LPS crosses

the barrier into circulation and activates the HPA axis (147, 148).
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As a result, mast cells are activated and corticotropin-releasing

hormone (CRH) is released, resulting in increased permeability of

the BBB. CRH and adrenocorticotropic hormone can also directly

activate microglia to release neuroinflammatory mediators and

promote the brain inflammation (149).

Enterogenous hormones. GM influence enteroendocrine cells

(EECs) and production hormones, such as leptin, ghrelin, and

glucagon-like peptide 1 (GLP-1), through local stimulation and

production of metabolites (150, 151). GLP-1, secreted by intestinal

L cells, can participate in the regulation of a variety of CNS

functions including BBB integrity (152). Clostridium butyricum

(Cb) boosts butyrate production in the intestinal tract, stimulating

the production of gastrointestinal hormones in the colon (153). In

traumatic brain injury mice, Cb supplementation reduces

inflammatory reactions and intestinal permeability, thereby

improving the neurological dysfunction and BBB injury, likely

due to increased GLP-1 secretion (154).

4.1.3.4 Immune pathway

Under normal conditions, the GM and host coexist

symbiotically. When disrupted, the microorganisms and their

metabolites may interact with the host immune system (155,

156). Changes in GM composition increase the intestinal

permeability and trigger an immune response. Activated immune

cells and the signaling molecules then reach the BBB via the blood

circulation, causing systemic inflammation and elevated levels of

circulating cytokines that upregulate adhesion molecules,

chemokines, and MMPs in the BBB (157, 158), while

downregulating TJs to increase the permeability of the BEC layer

(159). The compromised BBB permits fibrin entry, which is

deposited as insoluble fibrin and activates further immune

response (160). Solutes and toxins entering the brain increase

inflammation and attract immune cells (157), which stimulate the

inflammatory signaling of the NVU (161). Thus, intracerebral

inflammation and neurodegeneration are exacerbated via a

vicious cycle.

As discussed above, GM can influence the BBB, brain neurons,

and the endocrine and immune systems to guard against the CNS

pathology associated with ageing and inflammation.
4.2 Gut microbiota and intestinal barrier

The human gastrointestinal tract features physical and

biological barriers whose function is not only to isolate the

internal host’s milieu from the outside, but also to regulate

the immune system, nutrients absorption, and to limit the

microorganism access. Hence, the intestinal mucosa operates in a

dynamic manner to maintain intestinal integrity and immune

homeostasis. Disruption in these barriers is linked not only to

digestive system diseases but also to autoimmune disorders outside

the gut like MS, in both experimental models and humans. In this

section, we examine the multiple lines of evidence linking the

intestinal barrier function and MS pathophysiology.
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4.2.1 The composition and function of the
intestinal barrier

The intestinal barrier consists of mucus layer, epithelial barrier,

and gut vascular barrier, behaving as a coordinated and

multilayered network that protects host physiology from external

insults and regulates several gut functions. Intestinal immune

compartments are divided into inductive sites, like mesenteric

lymph nodes and gut-associated lymphoid tissue (GALT), where

adaptive immune cells are primed and differentiated, and effector

sites, such as the intestinal lamina propria and epithelium, where

these cells localize to support barrier integrity and immunity (162).

The gut epithelial barrier, made up of columnar epithelial cells

(enterocytes) and specialized secretory cells (Paneth and goblet

cells), is underpinned by intestinal stem cells in mucosal crypts

(163, 164). The mucus layer, secreted by goblet cells, shields gut

epithelial cells from harmful substances and provides a habitat for

microbiota, facilitating beneficial interactions while preventing

pathogen entry (165, 166). Components such as TJs,

antimicrobial peptides (AMPs), secretory IgA, and glycosylated

proteins contribute to this protective mechanism (167–169).

Mucosal surfaces also serve as an immune barrier acting as part

of the innate immune response against microbial pathogens (170).

Beneath the mucus layer, the gut epithelial lining acts as a

semipermeable barrier, maintaining a balance between microbial-

host interactions. Enterocytes are connected by junctional

complexes that regulate paracellular transport and maintain

intestinal permeability (166, 171). The gut barrier also features

ATP-binding cassette transporters that prevent toxin accumulation

and inflammation, influenced by gut microbiota (172, 173). Enteric

glial cells, similar to astrocytes in regulating BBB, can also impact

gut epithelial barrier function (130, 174, 175).

The immunological layer of the intestinal barrier, following the

mucus and the epithelial lining includes innate lymphoid cells and

intraepithelial lymphocytes that protect against pathogens and

modulate immune responses (176–178). The GALT consists of

multifollicular lymphoid tissues, including Peyer’s patches,

isolated lymphoid follicles, the appendix, cecal and colonic

patches and rectal lymphoid tissues, with all dependent on the

microbiota (179, 180). These tissues house diverse immune cells

including CD4+ Th cells, Tregs, CD8+ T cytotoxic cells, DCs,

macrophages, and innate lymphoid cells (ILCs) that initiate and

propagate immune responses, with the IgA+ Marginal Zone B cells

(MBCs) being particularly prominent. IgA+ B cells from GALT are

vital for the gut-meningeal immune axis and protect the CNS from

gut-derived infections (179, 181). GALT that drains mucosal

surfaces will constantly encounters foreign structures from

commensal microbiota, infectious pathogens and antigens, which

also establish tolerance to autoantigens with the changes in

autoreactive T cells phenotypes, including peptides from the CNS

(182). The gut vascular barrier, with fenestrated endothelium and

TJs, prevents microbial entry into circulation and controls the

access of dietary compounds (183). This barrier is crucial for gut-

brain axis communication, with disruptions linked to the closure of

PVB in mice (83). This finding suggests a functional linkage

between barriers along the BGM axis, potentially underlying the
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frequent comorbidity of neurological and gastrointestinal

symptoms (184).

The enteric nervous system (ENS), an autonomous division of

the autonomic nervous system (ANS), autonomously regulates

gastrointestinal functions through its submucosal and myenteric

plexuses (185). It contains neurons, glia, and immune cells, forming

intrinsic circuits for gastrointestinal motility, secretion, immunity,

and tissue repair (186). ENS neurons can release many

neurotransmitters and are closely related to vagus efferent input,

forming intrinsic sensorimotor circuits (187, 188). Enteric glial cells

interact with neurons, EECs, immune cells and epithelial cells,

thereby modulating barrier function (175, 189, 190). Studies of

human Peyer’s patches also reveal peptidergic innervation including

Substance P, Vasoactive Intestinal Peptide (VIP) and Calcitonin

gene-related peptide (CGRP) immunoreactivity in cells within the

GALT (191).Microbiota and enterochromaffin cell (ECC)-derived

5-HT further influence glial homeostasis. Interstitial cells, including

interstitial cells of Cajal (ICCs) and platelet-derived growth factor

receptor alpha-positive (PDGFRa+) cells, can facilitate gut motility

via electrical coupling with smooth muscle (192, 193).

Macrophages, the most abundant immune cells in the GI tract,

can modulate barrier homeostasis, with their activation influencing

ENS integrity and being linked to microbiota dysbiosis (194–197).

4.2.2 Intestinal barrier homeostasis, the
microbiome and neuroinflammation

The intricate interplay between gut microorganisms and the

immune system is regulated at the gut barriers through multifaceted

mechanisms. Intestinal microorganisms and their metabolites

impact both immune system and intestinal epithelial barriers

(IEBs), while intestinal layers reciprocally shape microbial

composition and immune activity. This microbiome-mediated

barrier homeostasis is pivotal in regulating of neuroinflammation.

The mucus layer critically governs gut microbial community

and immune interactions. Adhesion to host epithelial cells and

mucus is a key property for gut bacteria colonization, which can be

modulated by host-specific mucin glycosylation (198–200).

Dysregulated mucin glycosylation is correlated with increased

inflammation and microbial translocation by regulating mucin

degradation (201–203). The transmembrane mucins also enhance

the intestinal immune functions (204). The IEB impairment is a

crucial mechanism for several inflammatory and immune-mediated

disorders (205). As result of gut barrier imbalances, some

microorganisms, bacterial products, and toxins may translocate

across the epithelium uncontrollably, leading to both the local

and systemic inflammation (34, 206–209). Paracellular

translocation, often linked to the impairment of TJs, has been

associated with direct damage to enterocytes and their supporting

structures, along with significant changes in intestinal TJs gene

expression and downregulation of both ZO-1 and occludin

(210, 211).

The interplay between intestinal epithelial cells (IECs) and

mucosal immune components, such as intraepithelial

lymphocytes and lamina propria immune cells, sustains intestinal

immune homeostasis. IECs detect antigens, secrete antimicrobials,
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and modulate immune responses, while immune cells regulate IEC-

derived cytokines (212, 213). Interactions between DCs and IECs

maintain anti-inflammatory environments under steady-state

conditions (214). Commensals reinforce IEB integrity via TJ

regulation and IECs proliferation (215). IECs-associated

inflammasomes like NLRP6 are critical for mucosal homeostasis

and infection defense (216). Inflammasome-deficient mice exhibit

microbiota dysbiosis, amplifying inflammatory responses and IBD

susceptibility (217, 218). NLRP6 deficiency also disrupts goblet cell

mucus secretion and the production of epithelial IL-18 and AMPs,

impairing bacterial control (219, 220), and leading to AMPs

imbalance, dysbiosis, and autoimmunity.

Additionally, as previously mentioned, gut microbiota can

regulate the expression and phenotype of inflammatory cells both

locally and at distant sites. Studies indicate that the microbiota in

the GALT remotely influences T cell development in the thymus via

soluble factors (221). In the EAE model, MOG-specific T cells

proliferate substantially in the GALT under SPF conditions, but less

so in germ-free environments, suggesting microbiota-induced T

cells stimulation (221). Recent findings emphasize the crucial role of

IgA antibody-secreting cells (ASCs) in the CNS, acting as a “brain

firewall” to protect the BBB and maintain intestinal homeostasis

(222). In both mice and humans, meninges contain gut-derived,

commensal-specific IgA ASCs, which help prevent pathogens from

entering the CNS (223). Gut bacteria stimulate secretory IgA

production, which compartmentalizes commensal bacteria away

from the host epithelium and modulates chemotaxis and TLRs

signaling (224, 225). In mice, non-invasive bacteria residing gut are

coated with IgA, promoting the production of diverse, species-

specific IgA in mice (226). In an adaptation to this specific

microenvironment, intestinal plasma cells (PCs) might have a

distinct metabolic profile. IgA ASCs can utilize diet- and gut

microbiota-derived SCFAs as one carbon source to maintain

metabolism (227). Inflammatory responses induced by

environmental factors or intestinal dysbiosis might dramatically

change oxygenation and the metabolic profile of the PC niches in

the gut.

Recently identified ILCs are key regulators of intestinal immune

responses and have also been implicated in CNS autoimmunity.

Among ILCs, ILC3s are notable for their similarities to Th17 cells,

which are crucial in CNS inflammation and can be modulated by

many cues from the gut microbiota (228, 229). ILC3s are critical for

the generation of the organized lymphoid tissue in the intestinal

wall and regulating microbiota content and the integrity of the

intestinal barrier (230, 231). Found in different GALT

compartments, ILC3 interact with immune cells including Th1

cells, Th17 cells, and Tregs, efficiently controlling effector T cells

and promoting a Treg balance (232–234). ILC3s produce IL-17 to

attract neutrophils to the intestine during bacterial and fungal

infections (235, 236), which can also induce AMPs and TJs

production (237). They are also a key source of IL-22, crucial for

maintaining the intestinal barrier (238). IL-22 production is

stimulated by a glial-derived neurotrophic factor from enteric

glial cells in response to TLR ligands (239), and is also enhanced

by SCFAs that act through AhR and FFAR, respectively (240–243).
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An altered microbiome also affects bacteria-associated products

that influence neuroimmune responses. Besides microbial

metabolites, structural components derived from bacterial cell

walls and membrane vesicles also significantly impact host

physiology and gut permeability, see Section 3.3.

Overall, barrier permeability is dynamic and must be carefully

orchestrated and constantly adapted to maintain homeostasis, with

gut microorganisms playing a major part in achieving this goal.

4.2.3 The intestinal barrier in MS: consequences
of a leaky gut

The topic of intestinal permeability (IP) in neuroinflammation

is actively being studied, with several lines of investigation exploring

the plausible relationships between gut barrier disruption and MS,

as well as on translational implications based on IP.

In a study of 12 jejunal biopsies from MS patients, Lange and

Shiner observed subtle histological changes, including villous

atrophy and intestinal inflammatory cell infiltration (244). The

latest study used the lactulose/mannitol test to evaluate intestinal

permeability in MS patients and found that 73% of cases presented

with abnormal permeability (245). Elevated serum zonulin levels in

both RRMS and SPMS further confirm diminished intestinal barrier

function in MS, as zonulin can rapidly increase both intestinal and

BBB permeability in vitro. Similar findings were also described in

the EAE model, with increased intestinal permeability, reduced

submucosal thickness, and altered TJ expression in IECs, which

have been associated with a mucosal imbalance between Th1/Th17

and Treg cell subsets in intestinal lamina propria, Peyer’s patches,

and mesenteric lymph nodes (41, 246). They also found that

treatment with probiotic Escherichia coli strain Nissle 1917

preserved TJs and decreased intestinal permeability, leading to

reduced EAE severity and decreased pro-inflammatory

cytokines (41).

The above studies indicate that PwMS indeed experience an

alteration in the intestinal barrier due to an altered intestinal

immune response and microbial dysbiosis (247). The leaky gut

may be involved in the pathophysiological process of MS via the

following mechanisms. Firstly, intestinal barrier dysfunction has

been associated with susceptibility to systemic infections, which are

common complications in MS patients (247, 248). Furthermore, the

interaction between intestinal barrier and commensal microbiota

could modulate the immune response pathologically, shaping the

development of immune cells such as CD4+ T cells, B cells, DCs and

macrophages. Additionally, changes in intestinal permeability could

exacerbate neuroimmune dysregulation by allowing transmucosal

passage of injurious or immunogenic antigens. Interestingly, recent

work suggests a connection between the IP changes (IPC) and MS

risk factors. For example, Vitamin D deficiency may reduce

intestinal calcium absorption, causing gut stasis and subsequent

IPC, which would allow gut microbiota to transfer more endotoxins

into the blood and trigger inflammatory cytokines production

within the CNS (249).

Alterations in the gut homeostasis in MS could increase

translocation of bacterial and their toxic products through an

impaired intestinal barrier. A recent study found higher plasma
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levels of endotoxin LPS in MS, linked to in vivo IL-6 production and

in vitro Th17-like responses (195). In another study, investigators

also found increased LPS-binding protein levels in the serum of MS

patients (196). Besides LPS, MAMPs such as bacterial lipoproteins

and double-stranded RNA can enter the bloodstream and modulate

the immune system through TLRs, which are present in microglia

and to modulate the initiation and severity of EAE models (197).

Dysbiosis may alter gut bacteria metabolites, reducing health-

promoting ones like SCFAs and dietary tryptophan, which may

further contribute to increased gut barrier permeability and pro-

inflammatory setting. Additionally, microbiota dysbiosis disrupts

IgA synthesis and AMPs production, which act as anti-

inflammatory mediators beyond the gut.

Increased intestinal permeability, alterations in TJs functioning,

and modifications in intestinal morphology occurred along with the

changes in the immune cells including T cells, IgA ASCs and ILCs,

as well as gut microbiota dysbiosis in GALT, thus indicating that

disruption of intestinal homeostasis was dependent on the immune

response at the initiation of EAE. Thus, the combination of LPS-

and MAMPs-induced inflammation, leaky gut, metabolic

imbalance, and immune activation creates a perfect storm for

dysregulated immune activation that can fuel chronic disease in MS.
4.3 Sex and microbiota-gut-reproductive
tract axis in MS

Autoimmune diseases, including MS, are more common in

females, who also exhibit stronger immune responses and higher

relapse rates than males with RRMS, while males face a greater risk

of long-term disability progression (250–252). Mechanisms

involved may include gene-environment interactions or epigenetic

factors. Additionally, sex chromosome as well as sex hormone

effects on peripheral and the CNS autoimmunity and

neurodegeneration have been shown in MS preclinical models

(253, 254).

Studies have found a relationship between microbiota and sex

hormones (255). The gut microbiome influences sex hormone levels

through its metabolites, the immune system, chronic inflammation,

and neuroendocrine axes, including the gut-brain axis. The

microbiome can metabolize estrogens via b-glucuronidase, allowing
estrogen to enter the bloodstream and act on its receptors, impacting

reproductive health, cardiovascular risk, metabolism, bone health,

and the CNS (256). GM can also impact the function of the

hypothalamic-pituitary-gonadal (HPG) axis by modulating key

reproductive hormones (257). Microbiota and their metabolites,

like SCFA and LPS, can impact female health by colonizing the

vaginal tract. SCFAs link reproductive hormone regulation with gut

microbial activity via metabolic and immune mechanisms, reducing

inflammation and modulating gonadotrophin-releasing hormone

(GnRH) secretion. SCFAs can suppress NF-kB activity, regulate

cytokine profiles, and promote regulatory Treg activity (258),

which helps establish immune tolerance at the maternal–fetal

interface. Gut microorganisms influence neurotransmitter

production, such as serotonin and GABA, adding a layer of
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neuroendocrine control over fertility by affecting GnRH pulsatility

and hypothalamic communication (16, 17). This links gut health to

reproductive hormone regulation. Changes in cytokine levels, like IL-

6 and TNF-a, can impact endometrial receptivity and ovulation,

further connecting microbial balance to reproductive outcomes (259).

Sex hormones and stress affect gut motility, sensitivity, and

microbiota by interacting with brain-gut axis receptors in a

reciprocal manner (260). This interplay leads to the concept of

microbiota-gut-reproductive tract axis (261).

The gut microbiota plays a crucial role in regulating extra-

intestinal mucosal and barrier homeostasis. Key bacteria, such as

Bifidobacterium, Lactobacillus, and others, are common in both the

gut and vaginal tract (262). The gut microbiota also influences

reproductive health by maintaining intestinal barrier integrity,

which, if compromised, can lead to chronic low-grade

inflammation and disrupt critical reproductive processes (257). In

the reproductive system, especially the vaginal tract, microbiota

protect against harmful bacteria by strengthening the mucosal

barrier and producing antimicrobial substances (263). Cervical

mucus acts as a barrier by trapping pathogens and enabling

immune responses (264). Vaginal dysbiosis bacteria can disrupt

the epithelial barrier through oxidative stress and miRNA changes,

leading to cell cycle arrest, apoptosis, and necrosis, while also

secreting harmful metabolites that cause immune disorders and

contain factors such as IgG, IgA, and lactoferrin (265). Gut

dysbiosis can trigger abnormal systemic and mucosal immune

responses, increasing pro-inflammatory cytokines and cytokines

and impairing embryo implantation and placental development,

which is linked to infertility and repeated implantation failure (266).

Sex hormones play a role in the peripheral and central immune

regulation of MS. Gut microbiota regulate the appropriate effects of

sex hormones through multiple mechanisms, including

metabolism, chronic inflammation, and neuroendocrine

functions. However, the dysregulation of gut microbiota in MS

may affect this process. Additionally, microbiota are involved in

maintaining local and systemic barrier homeostasis and

inflammatory processes, which play an important role in

maintaining reproductive health.
4.4 The impact of metabolites and
structural components of microbiota on
biological barriers

As detailed above, compounds produced by gut microbes act

locally on immune, epithelial, and EECs to affect barrier integrity,

systemic immune responses, and hormone secretion (8). There are

obviously many thousands of different microbiota-derived

molecules that could potentially circulate to reach and penetrate

the CNS. The effects of structural components derived from

bacterial cell walls and of bacterial membrane vesicles on host

physiology are also important extend beyond innate immunity,

frequently termed MAMPs as stated above. We summarize the

content covered in this article in Table 2 and further discuss it in the

following chapters.
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4.4.1 Diet-related metabolites and microbiota in
MS

Produced by microbiota fermenting dietary fiber and resistant

starch in the intestines, SCFAs (acetate, propionate, and butyrate)

provide energy for both the host and the gut microbiota, and can

enter host circulation and cross the BBB, enabling a role in

maintaining barrier integrity (60, 267–269). Lower levels of

SCFAs have been observed in MS patients (270–273).

Furthermore, diminished SCFAs have been correlated with

increased intestinal permeability and worsening EDSS in MS

(270, 271, 273). Moreover, known SCFAs-producing gut

microbiota are reduced in MS, including Butyricimonas,

Bacteroides, Lachnospira, and Eubacterium (272, 273). GF mice,

naturally lacking SCFAs, show a compromised BBB, while

introducing butyrate or butyrate-producing bacteria like
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Clostridium tyrobutyricum can improve BBB dysfunction in these

mice (141). The mechanism by which SCFAs influence barrier

function is not fully understood. SCFAs bind G protein-coupled

receptors (GPCRs) (141) and the free fatty acid receptors (FFAR2 or

FFAR3) on intestinal epithelial cells and brain ECs, protecting the

barrier from oxidative stress (274–278). Knox et al. also found that

butyrate and propionate promote remodeling of actin cytoskeleton

and TJs in an BBB model (279). In GF mice, SCFAs can improve

barrier function and TJs expression at the choroid plexus in

antibiotic-treated mice (280). SCFAs are also known to support

mitochondrial function (281, 282), as they protect against

mitochondrial disruption in brain endothelial cell treated with

LPS (279). For intestinal homeostasis, SCFAs can mediate sodium

transport, energize intestinal epithelial cells, and influence gene

transcription that supports colon homeostasis by inhibiting histone
TABLE 2 Effects of gut microbiota and their metabolities on the gut barrier or BBB.

Intervention
target

Gut microbiota
genera

Changes observed Targeted
barrier

Rsferences

GF mice and SPF
mice

Clostridium
tyrobutyricum,
Bacteroides
thetaiotaomicron

Maternal gut microbiota can influence prenatal development of the BBB, increased
occludin, and claudin-5 in GM mice, associated with an increase in histone
acetylation in brain lysates

BBB (101)

CONV-R mouse,
GF mice

unfractionated
microbiota from
CONV-R donor,
Escherichia coli,
Bacteroides
thetaiotaomicron

Increased SCFA concentration, decreased GLP-1 levels and Gcg levels in the colon,
accelerate intestinal transit

Gut barrier (118)

TBI mice Clostridium butyricum Decreased brain edema, increased expression of the occlu-
din and ZO-1 proteins in brain, increased level of Occludin, decreased level of d-
lactate in serum, increased colonic GLP-1 and GLP-1R in the brain

BBB and gut
barrier

(122)

GF mice and SPF
mice

unfractionated
microbiota from SPF
mice, Lactobacillus

Increased P-gp expression in the colon Gut barrier (139)

GF mice and WT
SPF mice,
transgenic mice

SFB, Akkermansia
muciniphilia,
Bacteroides fragilis,
Clostridium spp.,
unfractionated
microbiota from SPF
mice

Reduced gut-extrinsic sympathetic neurons activity, improve gastrointestinal
motility

Gut barrier (153)

T84 cell, WT SPF
mice, IL-10-
deficient mice

Bifidobacterium infantis
(BiCM)

Increased T84 cell monolayer resistance, increased MAPK phosphorylation,
increased expression of claudin-4, ZO-1, and occludin, protects against IFN- and
TNF- induced permeability and TJs disruption, improved intestinal function and
epithelial ionic function in IL-10-deficient mice

Gut barrier (180)

EAE mice Escherichia coli Nissle
1917 and K12 E. coli
strain MG1655

preserved intestinal barrier function, increased antimicrobial peptides Reg3g and
Reg3b, preserved level of claudin-9 and ZO-1

Gut barrier (192)

SPF mice, GF
mice, AB mice, Vx
mice, AppNL‐G‐F

mice

unfractionated
microbiota from SPF
mice

reduced choroid plexus barrier function in AB mice and rescued upon gut
microbiota reconstitution, reduced level of TJs and increased level of CSF IgG in GF
mice and AB mice, increased levels of ZO‐1 and OCLN in SCFAs -treatmented AB
mice, SCFAs treatment improves BBB integrity in Vx mice, increased levels of TJs
and decreased Ab burden in SCFAs-treatmented AppNL‐G‐F mice

BBB (213)

Caco-2 cell Escherichia coli (EPEC) EPEC infection inhibited IFN-b induction and decreased IEC barrier function Gut barrier (366)
BBB, blood-brain-barrier; SPF mice, specific pathogen-free mice; GF mice, germ-free mice; P-gp, P-glycoprotein; GLP-1, glucagon-like peptide-1; BiCM, Bifidobacterium infantis conditioned
medium; TJs, tight junction; AB mice, SPF mice orally with broad-spectrum antibiotics; Vx mice, vagotomized mice; AppNL‐G‐F mice, an Alzheimer’s mouse model; CSF, cerebrospinal fluid;
SCFAs, short-chain fatty acid; Ab, b amyloid; Caco-2 cells, colon cancer cells, can differentiate to form a polarized monolayer with functional TJs; MAPK, ZO-1, zonula occludens-1; MAPK,
mitogen-activated protein kinase; OCLN, occluding.
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deacetylase activity (283–285). SCFAs also reduce T cell

proliferation and cytokine production in the gut, partly by

inhibiting the activation of NF-kB pathway in immune cells and

intestinal epithelial cells (286–288).

Bile acids (BAs), derived from cholesterol metabolites in the liver

and modified in the gall bladder, become primary bile acids

conjugated with glycine or taurine. Primary Bas, cholic acid and

chenodeoxycholic acid (CDCA), can be further metabolized by gut

microorganisms into secondary bile acids (2BAs), such as

Deoxycholic acid (DCA), chenodeoxycholic acid (CDCA) and

lithocholic acid (LCA) (289), which can enter systemic circulation

and affect the CNS (290, 291). DCA and CDCA have been shown to

have disruptive effects on the gut barrier (292, 293), whereas LCA

seems to have a protective role (294). CDCA and DCA have also

shown disruptive effects on the BBB in animal models, which may

suggest common mechanisms of disruption across barriers (295).

BAs can interact with many receptors such as Farnesoid X receptor

(FXR), the VDR, PXR and Takeda G protein-coupled receptor 5

(TGR5), to exert various functions (296–298). Without these

receptors, the intestinal barrier weakens, allowing the translocation

of bacteria (299). Moreover, FXR modulates gut immune responses

driven by microbes during inflammation, potentially linking them to

BA metabolism dysregulation (300). Gut microbes can activate

TGR5, affecting the expression of EECs involved in immune

regulation (301). This, in turn, directly influences macrophage

polarization and the subsequent inflammatory response. Once

TGR5 is activated, BAs may suppress the production of

inflammatory cytokines such as IL-1, IL-6, and TNF-a (302).

Tryptophan is acquired through digestion of dietary protein in

the small intestine (303–305). This essential amino acid is crucial

for protein synthesis and the production of serotonin (5-HT) and

kynurenine (155, 306, 307). Studies have noted reduced levels of

tryptophan and its metabolites in PwMS, also correlating with EDSS

scores (308–310). Dietary tryptophan restriction in EAEmodels can

abolish BBB disruption, leukocyte infiltration, and CNS

demyelination, likely by inhibiting Th1/Th17 skewing and

impairing migratory capacity (311). This effect is partially lost in

GF mice, suggesting a microbiota-dependent mechanism. However,

tryptophan and its metabolites can also exert protective effects,

which are partially mediated by binding to the aryl hydrocarbon

receptor (AhR). AhR regulates astrocyte and microglial crosstalk in

the CNS, which controls inflammation and neurodegeneration

(312, 313). Furthermore, tryptamine-mediated EAE suppression

relies on AhR and modifies the gut microbiome composition to

increase butyrate-producing microbiota (310).

Microbial fermentation can also produce compounds like

methylamines, indoleacetate, phenylacetate, and phenolic

compounds (314), as well as branched-chain amino acids

(BCAAs) such as 2-methylbutyrate, isovalerate, and isobutyrate

(314). BCAAs may play a role in autism spectrum disorder

pathophysiology and barrier modulation (315). Gut microbes

convert dietary methylamines dylcholine into trimethylamine

(TMA), which is subsequently rapidly converted into TMA N-

oxide (TMAO) in the liver and circulates systemically (314). TMAO

can enhance BBB function through annexin A1 signaling (307, 311).
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Bacterial fermentation of dietary tyrosine and phenylalanine into p-

cresol (314), whose metabolite, p-cresol glucuronide, protect

human BECs line hCMEC/D3 upon LPS challenge (316).

Kynurenine has been shown to protect barrier function in a

colitis mouse model (317) and, along with tryptophan, crosses the

BBB via the amino acid transporter SLC7A5 or L-type amino acid

transporter 1, affecting neurotransmitter production (307).

In summary, the gut microbiome significantly influences how

diet-related metabolites affect health and disease. A better

understanding of how these diet- related metabolites alter the

composition and function of gut bacteria could pave the way for

improved treatments for PwMS.

4.4.2 Microbial structural components and
microbial membrane vesicles in MS

Recognizing the significance of structural components derived

from bacterial cell walls and bacterial membrane vesicles is also

crucial due to their effects on host physiology. Microbial structures,

such as LPS and bacterial membrane vesicles, have previously been

discussed as regulators of gut barrier function as well as BBB

through various signals at the micro-gut-brain axis (193, 289, 318).

LPS, a component of Gram-negative bacteria cell wall, is

recognized for its association with compromised gut barrier

function and activation of immune system (194, 279, 280). Gut

microbiota disorders can increase LPS release, leading to higher

intestinal permeability and activation of gastrointestinal immune

cells to release inflammatory cytokines (319, 320). In MS, elevated

levels of LPS have been detected in the bloodstream (321). The same

study also reported increased levels of LPS in the brain, spinal cord,

and blood of EAE model (321). LPS activates TLR4 on microglia,

leading to the release of inflammatory cytokines and chemokines

(322), and promotes neuronal apoptosis and endothelial cells

damage (323, 324). And Singh et al. showed that LPS also

interacted with lipoteichoic acid on the cell wall of G+ bacteria,

reduced mRNA levels of ZO-1, occludin, and JAMs, while

increasing levels of TNF-a and IL-1b at the border of NVU.

Additionally, LPS also affects adhesion proteins, membrane

transporters, the basal lamina, and the extracellular matrix in the

BBB (324). Therefore, LPS affects the integrity of BBB and NVU

through a variety of mechanisms, providing a potential target for

the treatment of related diseases.

Peptidoglycans, found in the cell walls of G+ and, to a lesser

degree, G- bacteria, play key roles in host physiology. Bacterial

membrane vesicles are lipid bilayer capsules released from the outer

membranes of both Gram-negative and Gram-positive bacteria.

They can transport and protect various cargoes, including proteins,

DNA, RNA, metabolites, enzymes, peptidoglycans, polysaccharides,

and toxins (325, 326). Gut microbial membrane vesicles can

traverse the intestinal barrier, enter the bloodstream, and cross

the BBB, constituting a key component of the BGM axis (200, 327).

Notably, these vesicles influence gut barrier function by modulating

mucosal innate immune cells such as macrophages and DCs

(328). Thus, LPS and other MAMPs could constitute another

pathway through which compromised barrier function impacts

neuroimmune responses in MS.
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4.5 The synergistic effect of other risk
factors with microbiota dysbiosis in MS

Recent studies highlight the crucial role of the immune system’s

interaction with gut microbiota as a link through which

environmental factors such as Vitamin D deficiency, EBV,

smoking, and obesity impact MS (83).These factors commonly

disrupt immune regulation and gut microbiota, promoting MS

development. This underscores the need to view MS through a

comprehensive lens that considers both individual risk factors and

its underlying pathogenic processes.

EBV infects over 90% of the global population and is linked to a

2–3 fold higher risk of MS after infectious mononucleosis (IM)

(329, 330). MS patients show elevated EBV-specific immune

responses correlate with disease activity (331–333). EBV interacts

with the main genetic risk factor for MS, HLA-DRB1*1501, leading

to higher Epstein-Barr Nuclear Antigen 1 (EBNA1)-specific

antibody levels in carriers (334). Molecular mimicry is a key

mechanism in EBV-MS immune response, with EBV proteins

BamHI Rightward Reading Frame 2 (BRRF2), BamHI Fragment

Rightward Open Reading Frame 3 (BFRF3), and EBNA1 exhibiting

cross-reactivity with CNS autoantigens like myelin basic protein

(MBP) and glial cell adhesion protein (GlialCAM) (335–337). This

cross-reactive contributes to the formation of oligoclonal bands,

produced by clonal B cell-derived plasma cells in the CNS (335,

338). Some findings locate this B cell response for the cross-reactive

within the GALT. EBV infection induces the expression of the

integrins a4b7 and CX3CR on memory B cells, which subsequently

migrate to GALT, interact with the microbiota, and engage with

CD4+ T cells (339). CXCR3+EBV-infected memory B cells may

reactive viral antigen specific and autoimmune T cell responses in

intestinal and CNS lymphoid tissues including meninges and brain

parenchyma during MS, potentially stimulating CD8+ T cells and

contributing to CNS inflammation (340–342). In gut lymphoid

tissues, microbiota composition influences autoimmune T cell and

B cell stimulation through cross-reactivity with bacteria, EBV and

autoantigens (343). EBV infection also generates a large pool of

antigen-presenting B cells, with latent EBV infection transforming

B cells into potent antigen-presenters and inducing mutations in B

cell receptors (BCRs) and co-stimulatory molecules, facilitating

antigen uptake and presentation to CNS specific CD4+ T cells

(344–346). EBV can infect human intestinal epithelial cells via cell

contact, establishing latent infections (347, 348). This triggers

immune responses that activate inflammatory pathways like NF-

ĸB pathways, potential damaging the normal intestinal immune

environment (349, 350). EBV latency type I genes, such as EBNA1

and LMP2A, downregulate the miR-200 family and reduce E-

cadherin expression, compromising epithelial tissues integrity

(351). In intestinal inflammatory diseases and gastrointestinal

tumors, microbiota, especially H. pylori and its interaction with

the EBV are significant. EBV latent proteins and the H.pylori

Cytotoxin-Associated Gene A (CagA) synergistically enhance

inflammatory signaling and oncogenic pathways, such as NF-kB

and MAPKs, potentially causing gastric epithelium transformation

and increased pro-inflammatory cytokines (352, 353). There has
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been reported that H. pylori infection is more frequent in MS, with

recent data indicating its immunomodulatory proteins in MS

experimental model (354, 355), suggesting a possible role of H.

pylori in the disease. Colonization by H. pylori and/or EBV is linked

with extra-gastric diseases and neuroinflammatory pathways,

potentially affecting the gut–brain axis and leading to neurological

disorders (356). Lastly, studies described the effect of virus infection,

such as HIV and SARS-CoV-2, can alter the composition of the gut

microbiome and metabolites (357–360). Therefore, EBV may be

involved in the brain-gut-microbiota axis communication in MS

through various mechanisms, including affecting gut microbiota

composition and metabolites, inducing an inflammatory

microenvironment in the gut, damaging the intestinal barrier and

influencing the phenotypes of immune cells in the gut and CNS by

cooperating and antagonizing with the bacteria.

Low VitD levels, along with insufficient ultraviolet B (UVB)

exposure, increase the risk of MS. VitD acts as a steroid hormone,

crucial for calcium and phosphate metabolism, immune balance,

and brain function (361). Different studies demonstrated a decrease

of around 41% in MS risk with increased serum Vit D level (362).

VitD receptor elements (VDREs), regulated by VitD, are present in

more than 80% of MS-associated genes (363). Moreover, VDR and

CYP27B1, are found in the neurons and astrocytes, suggesting these

cells might be involved in Vit D regulation (364). VitD also

regulates immune cell epigenetics, promoting immunological

tolerance in T cells, and reducing the inflammatory response,

both of which contribute to MS pathogenesis (361). It also helps

protect against CNS inflammation by regulating microglial and

astrocytic activation and maintaining BBB integrity by reducing

endothelial cell apoptosis and inhibiting TJ loss (365–367).

Interestingly, reduced serum levels of EBNA-1 antibodies have

been reported in vitamin D-supplemented MS patients (368, 369).

VitD and its receptor help maintain intestinal balance by boosting

bacterial diversity, reducing inflammation, and improving barrier

function (370). Vitamin D3 can positively influence microbiota,

fostering the growth of microorganisms that produce anti-

inflammatory compounds beneficial to overall health (371).

Vitamin D3 administration in MS increased the prevalence of the

mucosal-integrity-promoting species such as Akkermansia,

together with Fecalibacterium and Coprococcus (372). Studies

conducted on mice found that the number of Bacteroidetes was

higher in groups with VDR gene deletions or those on a low VitD

diet (373). Meanwhile, microbiota-derived metabolites may

modulate immune cell activity, enhancing vitamin D-mediated

anti-inflammatory effects (371, 374, 375). GF mice exhibited

hypocalcemia and decreased levels of 1,25-dihydroxyvitamin D

and 24,25-dihydroxyvitamin D, in contrast with conventional

mice, which showed elevated levels of FGF-23, an essential

regulator of VitD metabolism (144). The gut microbiota may

hinder the vitamin’s activity through secondary bile acids,

particularly lithocholic acid, which interferes with vitamin D

binding to and stimulating the VDR. Metabolic byproducts of

bacteria, particularly SCFA-like butyrate, enhance intestinal

expression of VDR by mitigating inflammation (376). The

connection between the immune system and microbiome is clear,
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with vitamin D as a crucial intermediary. The interactions between

vitamin D, the gut microbiota, and the immune system may also be

among the determining mechanisms in the pathogenesis of MS.
5 Microbiota-brain-gut axis

The BGM system describes the complex, bidirectional

interactions between the brain, the gut connectome, the gut-

associated immune system, and the gut microbiome (377). This

system involves intricate signaling pathways, including neuronal

(378), hormonal (379), immune (380), and microbial factors (381)

to maintain homeostasis and influence various physiological
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processes. Alterations in these interactions are implicated

involved not only in the classic functional gastrointestinal

disorders, but also in a growing list of psychiatric and neurologic

pathologies including MS (382–386). Here, we discuss the

mechanisms of BGM axis and its role in MS, as shown in Figure 1.

Current evidence indicates that bottom-up modulation of the

CNS by the microbiome occurs primarily through neuroimmune

and neuroendocrine pathways, often involving the vagus nerve

(153, 387, 388). This communication is mediated by several

microbially derived molecules, including SCFAs (388–392), 2BAs

and tryptophan metabolites (392, 393), which not only enter the

systemic circulation but also interact with gut EECs, ECCs and the

mucosal immune system locally (394–396). The microbiota can also
FIGURE 1

Pathways of the effects of gut microbiota on the BBB and intestinal barrier in MS. The gut microbiota can affect the structure and function of the
BBB and gut barrier as well as BGM axis communications through various pathways, such as (1) microbial metabolites, which act on both the BBB
and the intestinal barrier, (2) Intestinal microbiota structures, such as LPS and microbial membrane vesicles, enter the bloodstream through a “leaky
gut”, act on the BBB, and enter the CNS, causing immune dysregulation, (3) The ANS regulate gut functions and influence microbiota composition
and activity, among which vagal fibers can also activate enteric neurons. Additionally, the vagus nerve can sense signals from gut microbiota, enteric
neurons, hormones, and peptides and transmit them to the CNS, (4) Neuroendocrine system can directly interact with microbiota via release of
signaling molecules, like GLP-1, 5-HT, dynorphin, from neurons and ECCs. HPA axis, the main humoral component of the gut-brain axis, can
modulate micoribiota composition and gut function by releasing glucocorticoids. The gut microbiota can also secrete neurotransmitters, such as
GABA and 5-HT, which can further modulate CNS activity and the HPA axis. and (5) Gut microbiota can directly and indirectly influence immune
cells of the CNS through a variety of pathways. The lymphoid tissues in the gut regulate immune cells within the gut and in the systemic circulation
in conjunction with the gut microbiota. BBB, blood-brain-barrier; NVU, neurovascular unit; IgA, immunoglobulin A; MAMPs, microbe-associated
molecular patterns; LPS, lipopolysaccharide; AMPs, antimicrobial peptides; HPA axis, hypothalamic-pituitary-adrenal axis; CRH, corticotropin-
releasing hormone; ACTH, adrenocorticotropic hormone; ANS, autonomic nervous system; GLP-1, glucagon-like peptide-1; EECs, enterochromaffin
cells; ECCs, enteroendocrine cells; ENS, enteric nervous system; 5-HT, 5-hydroxytryptamine; DCs, dendritic cells; IL-17, interleukin-17; IL-6,
interleukin-6; TNF, tumor necrosis factor.
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independently produce various neuroactive molecules, such as

GABA (397), 5-HT (398), norepinephrine (398, 399), and

dopamine (398, 399). On the other hand, the CNS exerts

regulatory control over intestinal microorganisms through

multiple mechanisms, including the ANS efferent pathways and

transmitter release. Furthermore, signals originating from the CNS

can directly influence intestinal motility, intestinal barrier integrity,

intestinal cell functions, and the living environment of intestinal

microbiota, thereby impacting overall intestinal health

and function.
5.1 Signaling mechanisms from the gut
microbiota to the brain

SCFAs, BAs, and other metabolites have been implicated as

signaling molecules mediating host-microbe communication via

EECs and ECCs by acting on the corresponding receptors, which

can regulate many CNS activities, including energy and glucose

metabolism as well as HPA activity (400–404). 5-HT and its

precursor, tryptophan, both play important roles in the BGM axis

(401). 5-HT is mainly produced by the ECCs and is affected by gut

microbiota for CNS synthesis, as the host is unable to produce

tryptophan (405). The EAE model has identified direct

neuroimmune regulatory roles for gut microbiota, as they can

regulate immune cell trafficking and influence the development

and function of the CNS-resident immune cells, particularly

microglia (406–408). Relative to SPF mice, GF mice have

compromised microglial maturation and morphology, resulting in

weaker responses to pathogen exposure (408). Additionally,

antibiotic treatment in SPF adult mice causes microglia to revert

to an immature state, which can be normalized by recolonization

with complex microbiota, indicating the necessity of microbial

signaling throughout adulthood to preserve microglial maturation

(408). Intestinal immune cells like IFN-producing meningeal NK

cells and some IgA-secreting plasma cells, can directly influence

neuroimmune responses, which are also regulated by gut

microbiome (49, 409). Lastly, vagal receptors can detect

regulatory gut peptides, inflammatory molecules, dietary

elements, and bacterial metabolites to relay signals to the CNS via

direct neural signaling (410), but there is also some evidence for

direct activation of neurons by the gut microbiota. L. rhamnosus

(JB-1), B. fragilis, and its isolated polysaccharide A all have been

shown to activate intestinal afferent neurons ex vivo (411).

Microbial metabolites are also candidates mediating direct

activation of neurons, including microbially derived SCFAs.
5.2 Signaling from the brain to the gut
microbiota

The ANS regulate gut functions including regional motility,

secretion of gastric acid, mucus, bicarbonate, gut peptides,

antimicrobial peptides, epithelial fluid maintenance, intestinal

permeability, and mucosal immune response. These changes
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influence the microbial habitat, thereby modulating microbiota

composition and activity. Vagal efferent fibers also influence

immune responses and cytokine production, and they can also

activate enteric neurons by synapsing with the ENS in the myenteric

plexus (412–414). The sympathetic nervous system affects intestinal

immune activity, while the HPA axis, the main humoral component

of the gut-brain axis, responds to environmental stress or intestinal

inflammation by releasing glucocorticoids and then restoring

homeostasis or causing GI dysfunction by modulating enteric

immune cells, gut function, and microbial composition (415).

MS can cause a variety of GI symptoms, including constipation

and gastroparesis (416–419). GI function tests can also show

delayed colonic transit time in MS (420). Regional intestinal

transit times influence water content, nutrient availability, and

microbial richness and composition (421, 422). The CNS can

influence intestinal motility through multiple mechanisms, such

as efferent vagus nerves, ENS, and neurotransmitters like 5-HT.

Stress and inflammation can cause epithelial barrier defects by

directly modulating epithelial permeability and altering the

intestinal mucosal properties (420). The ANS influences mucus

secretion by intestinal goblet cells, impacting intestinal mucus layer

thickness and quality. Stress through catecholamine signaling can

reduce mucus protective capacity and alter its composition and size

(423). Changes in the intestinal barrier will further induce gut

microbiota alterations.

Besides CNS-induced changes in the intestinal microbial

environment, the neuroendocrine system can directly interact

with microbiota via release of signaling molecules, like

catecholamines, 5-HT, dynorphin, and cytokines, from neurons,

immune cells, and ECCs (424, 425). Epinephrine and

norepinephrine have been shown to enhance the virulence of

certain enteric microbes by activating native quorum-sensing

mechanisms (424, 426, 427). These findings support the notion

that host neuroendocrine system can directly influence microbiota

composition and function.

Therefore, pathology-associated barrier disruption may occur at

several levels along the BGM axis, compromising its bidirectional

communication due to the high molecular and cellular similarities.

Changes in gut microbiota and microbial-derived products could

contribute to damaged barriers in both gut and brain. Dysfunctional

gut barriers allow these products, which could in turn reach and

potentially alter brain barriers. Furthermore, gut microbiota dysbiosis

could further influence barrier function by modulating neuroimmune

signals. Additionally, signals from the brain, especially via the

sympathetic and parasympathetic nervous systems and the ENS, can

trigger intestinal inflammation and increased barrier permeability

following CNS injury (428). This, in turn, will lead to

gastrointestinal dysfunction, immune cell activation in the gut, gut

dysbiosis, and finally escalate CNS inflammation.
5.3 Gut-brain communication in MS

As discussed above, gastrointestinal manifestations are

common in MS. In the EAE model, gut dysbiosis causes increased
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intestinal permeability that precedes the CNS immune changes and

induces symptoms of neuroinflammation, which suggests that gut

dysbiosis promotes humoral signaling of inflammatory factors

across the BGM axis (429).

Chronological age is the most significant factor influencing the

clinical course of MS (430). PwMS with later onset often experience

faster disability progression and poorer treatment response,

possibly due to the immune system and CNS. Aging also raises

the risks of age-related comorbidities like vascular and metabolic

issues (431). Importantly, aging-related cognitive decline is

associated with a chronic, low-grade enteric and central

inflammatory state, including an increase in microglia, T cells,

and border-associated macrophages in the CNS, as well as altered

gut microbiota (432, 433). Aging-associated B cells also invade the

meninges from the periphery and differentiate into IgM-producing

plasma cells (434).

Diet-induced inflammation constitutes another important

trigger in MS. It has been reported that unhealthy diet can induce

cellular and neurobehavioral changes through the BGM axis (435).

A Western diet, high in saturated fat and sugar, can change the

expression of intestinal barrier markers, decrease EEC-derived

GLP1, and induce hypothalamic inflammation through

proinflammatory cytokines released by microglia (435–437). This

inflammation is lessened in the absence of gut microbiome.

Furthermore, transplantation of fecal content from high-fat diet–

treated mice to naïve mice leads to behavioral abnormalities,

indicating that diet-induced gut microbiome dysbiosis may

contribute to CNS phenotypes (435). Besides diet-induced

inflammation, environmental factors including obesity, viruses,

smoking, tobacco use and VitD deficiency, are also considered

risk factors for MS, potentially altering the microbiome and causing

a leaky gut observed in PwMS and EAE animals (438).

Migration of intestinal immune cells to the CNS may also

contr ibute to the pathogenes i s o f neuro logica l and

neurodegenerative diseases. In MS, the gut microbiota promotes

the development of myelin-reactive Th1 and Th17 cells as well as

Treg cells in the intestines, which then migrate to the CNS to

promote or suppress inflammation, respectively (439). Although

bacterial metabolites such as polysaccharide A and SCFAs can

induce Treg cells, specific microbial components that activate

proinflammatory T cells remain unclear (439).

As discussed previously, gut-derived metabolites and EECs are

also crucial in the BGM axis. Metabolites from diet fibers such as

SCFAs play key roles in the host’s metabolism and immune system.

Metabolites like tryptophan, 2Bas have also been found to be

dysregulated in both MS patients and EAE model. Changes in

these gut derived metabolites and related microorganisms can exert

different effects through the BGM axis. Neurotransmitters such as

5-HT, dopamine and GABA, secreted by the gut microbiome,

impact the body’s defense system via immune cell receptors. A

preclinical study on EAE-induced mice showed increased 5-HT

levels within the neural region, enhanced 5-HT innervation of the

spinal cord, and decreased EAE severity after treatment with a

monoamine oxidase inhibitor (440). Therefore, the connection

between these neurotransmitters and microbial regulation
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highlights their potent role in gut-brain interactions in

neuroinflammation and MS.

In summary, the mechanism underlying the BGM communication

is intricate and dynamic. Recent discoveries in the field have highlighted

the significance of gut bacteria in this neuroimmunoendocrine process.

This bidirectional communication not only plays a crucial role in

maintaining the health of the two systems but also offers new avenues

for therapy.
6 Therapeutic implications for barrier
function in MS

Considering the impact of gut microbiota on immune

modulation and barrier function, targeted interventions to

normalize the gut microbiota could be a promising treatment for

MS. Various approaches are currently being explored, as detailed in

the following sections.
6.1 Probiotics

Using probiotics to replenish health-promoting gut bacteria has

been suggested to maintain gut integrity and prevent pathological

alterations. Probiotics are live organisms that, when administered in

adequate amounts, can confer a health benefit (441). In one study,

administration of probiotics increased certain taxonomic groups,

such as Lactobacillus species which were depleted in MS, and

decreased others that have been associated with MS, including

Akkermansia and Blautia species (442). Research in laboratories

and animal models has suggested multiple mechanisms by which

probiotics could mediate beneficial effects, including induction of

antimicrobial peptides, release of antimicrobial factors, suppression

of immune cell proliferation, and enhancement of gut barrier

function (443, 444). Animal models also suggest that probiotics

can mitigate EAE by boosting IL-10 and TGFb production from

immune cells, amplifying Treg cell populations in gut-associated

lymphoid organs and the CNS, and reducing levels of TNF, IFNg
and IL-17 (445–448).
6.2 Prebiotics

Prebiotics are non-digestible short-chain carbohydrates that

promote some beneficial colonic bacteria production when

selectively consumed (441). Their health benefits stem from their

resistance to hydrolysis in the upper gastrointestinal tract and from

fermentation in the large intestine by mainly anaerobic bacteria (449).

Common prebiotics include disaccharides (lactulose), oligosaccharides

(fructooligosaccharides, FOS; galactooligosaccharides, GOS) and

polysaccharides (inulin) (450). Other sources of prebiotics include

resistant starches, pectin, whole grains, and polyphenols (451). Animal

studies have shown that prebiotics can influence brain function (452,

453) and modulate mood as well as stress responses by affecting the

HPA axis. In healthy mice, supplementation with FOS or GOS can
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decrease anxiety and increase social behavior by promoting the growth

of beneficial species such as Bifidobacteria (452, 454). However,

human studies investigating the benefits of prebiotics on the brain

are limited and inconclusive. Synbiotics, a combination of prebiotics

and probiotics, have been found to improve age-related memory

impairment in rats and are currently being tested in humans to

promote intestinal health (455–457).
6.3 Fecal microbiota transplantation

FMT involves transferring fecal contents from a healthy donor

into a patient, typically after broad-spectrum antibiotics, to correct

disease-induced dysbiosis. It is gaining attention for treating

neurodegenerative diseases by modulating gut microbiota and

restoring homeostasis in the gut–brain axis primarily. Research

highlights its potential in managing conditions such as PD, AD, and

MS (330). In PD, FMT has been shown to alleviate motor

dysfunction, reduce neuroinflammation, and regulate microbial

populations by suppressing pro-inflammatory signaling pathways,

including TLR4, MyD88 and NF-kB, while boosting dopamine and

serotonin levels within the substantia nigra (458, 459). FMT has

demonstrated benefits in reducing amyloid-b plaques, enhancing

cognitive performance, and modulating neuroinflammation in AD.

Furthermore, It also alters the gut metabolome, increasing SCFAs

and reducing inflammatory cytokines (460). In MS, FMT has

proven promising in preclinical studies by restoring gut microbial

balance, reducing microglial activation, strengthening BBB

integrity, and alleviating axonal damage (461). Some case–control

studies have reported encouraging outcomes, showing that FMT

can improve neurological symptoms in PwMS for 10 to 15 years,

proving to be safe and tolerable (462, 463).

Reproducibility, scalability, and safety concerns may limit fecal

FMT practice. Donor fecal material heterogeneity can cause

outcome variability, and the risk of transmitting pathogens

persists despite testing. A new method involves delivering defined

bacterial communities instead of undefined fecal contents to

colonize the recipient’s gut and restore a healthy microbiome

(429). This approach is more compatible with standard

manufacturing practices, addressing FMT’s limitations. Future

efforts should refine FMT through personalized strategies like

microbiota profiling, dietary interventions, and engineered

probiotics development to enhance therapeutic results and

address stability and safety issues. Understanding underlying

mechanisms and advancing controlled clinical trials are critical

steps toward establishing FMT as a dependable intervention for

neurological conditions (330).
6.4 Diet and DMT

In MS, several dietary interventions have been suggested to

reduce inflammation and promote clinical improvement, with some
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beneficial effects attributable to their impact on the gut microbiota.

These interventions include the ketogenic diet, the palaeolithic diet

(along with modified versions), and intermittent fasting, among

others (464–467). In summary, modifying dietary patterns may be a

viable, feasible, and cost-effective intervention with potential

benefits in MS. Nonetheless, dietary interventions are notoriously

difficult to enforce, and limited RCTs have been conducted to date.

Therefore, there is a pressing need for larger, more rigorous

clinical studies.

Current interventional therapies for MS, known as DMTs,

include dimethyl fumarate (468), fingolimod (469), natalizumab

(470), ocrelizumab (471) and others. Many DMTs have been found

to alter gut microbiota composition and actively act on the barrier

function, including both the BBB and intestinal barrier (372, 472–

476). Glucocorticosteroids are still prescribed for acute MS relapses,

which may improve BBB function by enhancing TJs and adherens

junctions, and downregulate inflammation-induced endothelial

CAMs in vitro. The first approved DMT, IFNb, has shown

stabilizing properties in biological barriers (such as the intestinal,

BBB and blood–lung barriers), partly by upregulation of TJ proteins

in endothelial cell layers (476). IFNb also reduces trans-endothelial

migration of proinflammatory CD4+ Th1 cells in RRMS patients

(476). The commensal microbiota also can boost DCs to produce

IFNb, increasing Treg proliferation in the intestine (477).

Natalizumab, a monoclonal antibody against a4b1 integrin, the

cognate ligand of VCAM-1, directly disrupts the migration of

immune cells, thereby reducing further damage and inflammation

of the BBB. Natalizumab can also affect on integrins and

lymphocyte trafficking in the gut, potentially modulating gut

inflammatory in MS (477). These findings suggest that

therapeutic properties of DMT in MS might rely, at least in part,

on communication within the BMG axis.

As stated, probiotics and SCFAs metabolites play a colossal part

in MS. Recently, the anti-inflammatory compound butyrate and its

derivative, 4-phenyl butyrate, approved by the US FDA, have been

shown to enhance BBB integrity and ameliorate EAE course (478).

Sodium butyrate is a potent HDAC inhibitor that mainly interferes

with the activity of class I HDAC enzymes. Sodium butyrate and

other HDAC inhibitors, such as belinostat, exert anti-inflammatory

and neuroprotective effects, which are also advantageous in acute

EAE (479, 480). Besides mechanisms mediated by viable bacteria,

host responses to conserved bacterial structures are crucial for

intestinal homeostasis (481). Thus, immune responses can be

beneficially modulated by directly sensing such bacterial

structures. For instance, oral administration of commensal-

derived cell wall components has been shown to promote

immune tolerance in mouse models of IBD (482, 483) via specific

interactions with host TLRs. These findings suggest that using either

artificial ligands that mimic bacterial structures and their associated

signaling responses, or isolated cell wall components from beneficial

gut microbes, could support microbiome manipulation for therapy.

However, care must be taken, as molecules like LPS can cross the

intestinal barrier and trigger harmful immune responses.
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Additionally, the success of the regimen depends on delivering

bacterial cell wall structures to the right place.
7 Conclusion

Significant advancements have been achieved over the past

decade in characterizing the interaction between the gut

microbiome and the CNS in various CNS inflammatory disorders.

The disruption of the intricate ecosystem of the intestinal

microbiota is now implicated in numerous conditions affecting

both the intestine and the brain. Some pathways through which

microbes influence the gut-brain axis are beginning to be

elucidated. Consequently, manipulating the microbiota is

garnering attention as a promising strategy for the prevention or

treatment of various extra-intestinal diseases. The beneficial effects

of an ‘optimized’ gut microbiota include the immune and epithelial

homeostasis, enteric nervous system regulation, and optimal

digestion and metabolism.

The study of the BGM system is dynamically and rapidly

advancing due to ever-more-powerful biological techniques, such

as metagenomics and metatranscriptomics, combined with novel

bioinformatic and computational methods that enable multi-omic

integration of microbial and host data via machine learning

approaches. While some initial evidence suggests changes in the

BGM axis in MS and EAE, the putative role of the gut microbiota

and different barriers in the pathogenesis of brain autoimmunity

has yet to be fully investigated. Furthermore, the causal link between

an altered enteric barrier and CNS pathology has yet to be

established. An appropriate test for assessing intestinal barrier

impairments still needs to be established. Human studies on

prodromal and untreated patients are essential to determine

whether intestinal barrier changes occur early in CNS diseases or

result from systemic immune and inflammatory conditions. Lastly,

it is also unclear whether these intestinal barrier abnormalities are

consistent across different CNS conditions. The primary trigger for

the dysfunctional gut-brain axis in MS remains within a chicken-

and-egg causality dilemma, with an apparent self-perpetuating loop

of brain-gut inflammation.

Research on the BGM system also tends towards therapeutic

transformation. Current strategies involve modifying gut microbial

by altering nutrient availability to boost specific bacteria (prebiotics),

introducing or expanding ‘beneficial’ species (probiotics), or

transplanting entire communities or portions thereof from other

intestinal donors (FMT and more selective stool transplants).

Although these methods have demonstrated encouraging results in

small-scale studies involving MS patients and EAE models, the

absence of large-scale prospective randomized controlled trials

means that these findings still suffer from limited reproducibility

and challenges in generalizability across diverse populations.

Furthermore, given that exogenous interventions in the gut
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secondary complications, the aforementioned treatments possess

inherent limitations. Consequently, significant progress is required

before these methods can be effectively applied in the clinical

management of patients with MS and other neurological diseases.

The BGM system presents several emerging research areas and

unanswered questions, including the investigation of microbial

metabolites and their specific effects on the host, the roles of viral and

fungal components within the gut ecosystem, and the impact of

environmental factors (the exposome) on the system. Further research

should also focus on the role of the BGM system in different phases of

the lifespan, in particular in neurodevelopmental and neurodegenerative

disorders, the gut microbiota-immune system interaction, the

underexplored contributions of the virome and its interactions with

the gut bacteria and the interaction of the gut microbiota with the

female reproductive system in maintaining homeostasis. Furthermore,

integrating machine learning and artificial intelligence with multi-omics

imaging and microbiome datasets has the potential to significantly

enhance our understanding of the BGM system at a systems biology

level. Lastly, large-scale, highly controlled, longitudinal human studies

are urgently needed to identify the causes and sequelae of dysbiotic gut

states and explain interindividual differences in susceptibility to BGM-

related diseases.

All in all, these and other improvements in our understanding of

microbe–host interactions at the gut and brain barriers will hopefully

accelerate research into the use of microbiota-modulating therapies to

prevent and treat neurological and neurodegenerative diseases.
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