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in patient-derived uterine
leiomyosarcoma
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Background: Uterine leiomyosarcoma (ULSA) is a highly aggressive gynecologic

malignancy characterized by early metastasis, profound immunosuppression, and

resistance to conventional therapies, including immune checkpoint blockade (ICB).

The intricate tumor microenvironment (TME) and cellular heterogeneity driving its

progression and therapy resistance remain poorly defined.

Methods: We performed single-cell RNA sequencing (scRNA-seq) on metastatic

lesions (pelvic cavity, rectum, peritoneum, bladder) from a treatment-naïve ULSA

patient and compared them to normal uterinemyometrium,MMM (n=5). Integrated

analyses included cellular composition mapping, copy number variation (CNV)

assessment, pseudotemporal trajectory reconstruction, cell-cell communication

inference, functional enrichment, and validation via multiplex immunofluorescence

(mpIF). Survival correlations were assessed using the TCGA-SARC cohort.

Results: In this study, the main finding is that the tumor microenvironment (TME)

has a strong immunosuppressive effect. Firstly, its characteristic is exhausted

CD8+T cells. This study found that as time progresses, the initial cell markers

(CCR7, MAL) gradually disappear, while the exhaustion markers (LAG3, HAVCR2,

TIGIT) are enriched. This is associated with poor prognosis. Secondly, the M2-

polarized macrophages are mainly composed of M2-like tumor-associated

macrophages (TAMs) with tumor-promoting characteristics (CD163, FTH1, FTL,

TIMP1), and there is a polarization from M1 to M2. Finally, the immature, tumor-

promoting N2 neutrophils (CD15+EDARADD+) enriched in the metastatic foci are

associated with poor prognosis. The cell communication involves the interaction

of MIF-(CD74+CD44) between T/B cells, as well as the role of the CXCL8 signaling

axis in promoting angiogenesis, TAM polarization, and immunosuppression.

Conclusion: For the first time, a comprehensive single-cell map of ULSA was

constructed, depicting a metastasis-susceptible cell subset (U11-EDARADD) and

an extremely immunosuppressed tumor microenvironment dominated by
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depleted CD8+T cells, M2 macrophages and N2 neutrophils. These features shed

light on the underlying mechanisms of chemotherapy resistance and

immunotherapy failure. The biomarkers identified here (EDARADD, CLDN10,

TMIGD2) as well as the dysregulated pathways (TGF-b, angiogenesis, MIF

signaling) provide possible targets for future development of combined

immunotherapy strategies against this deadly disease.
KEYWORDS

uterine leiomyosarcoma, metastasis, tumor microenvironments, single-cell RNA
sequencing, prognosis, T cell, macrophage
1 Introduction

Uterine leiomyosarcoma (ULSA), representing approximately

3%–9% of uterine malignancies, is a highly aggressive yet rare

gynecological cancer that poses significant diagnostic and

therapeutic challenges (1–3). Most leiomyosarcomas display high-

grade histology, which correlates with poor prognoses (4). The

current standard treatment for early-stage ULSA is hysterectomy;

however, recurrence rates remain high (53%–71%), often with early

hematogenous dissemination (5). In advanced or recurrent disease,

first-line systemic therapy relies on doxorubicin-based regimens,

yet outcomes remain suboptimal, demonstrating overall response

rates (OR) of merely 25%–38% and a median overall survival (OS)

of less than two years (5, 6).

However, advancing targeted therapies is impeded by insufficient

knowledge of the immune landscape (7–9). ULSA exhibits an

immunosuppressive microenvironment that typically confers

resistance to immunotherapies. Although immune checkpoint

blockade (ICB) has demonstrated effective in other treatment-

refractory malignancies, clinical studies indicate minimal response

in ULSA (10). A phase 2 single-center trial found that nivolumab-

mediated PD-1 inhibition conferred no clinical benefit in advanced

ULSA patients (11). George S et al. implicated PTEN loss potentially

contributes to ICB resistance in metastatic ULSA (12). DeWispelaere

W et al. suggested that dysregulated PI3K/mTOR signaling may

further reinforce an immunosuppressive tumor microenvironment

(TME), possibly explaining ICB resistance in ULSA (13). In the

multicenter phase 3 LMS-04 trial, first-line doxorubicin combined

with trabectedin significantly improved progression-free survival

(PFS) compared to doxorubicin alone in metastatic or advanced

leiomyosarcoma (14). However, the increased toxicity of combination

regimens necessitates careful patient selection (14). Despite these

advances, the genetic drivers and signaling pathways underlying

ULSA pathogenesis remain poorly defined, underscoring the need

for further mechanistic investigation.

Recent advances in single-cell sequencing have enabled high-

resolution characterization of tumor heterogeneity (15, 16), the tumor

microenvironment (TME), and molecular mechanisms driving

oncogenesis and progression (17–19). Here, we present a treatment-
02
naïve metastatic ULSA patient who underwent three cytoreductive

surgeries over four years, with metastatic lesions collected from the

pelvic cavity, rectum, abdominal wall, and bladder for single-cell

profiling. By integrating TCGA database analyses, we systematically

investigated the immune microenvironment within ULSA metastatic

foci to identify potential therapeutic vulnerabilities. Although prior

studies have cataloged ULSA transcriptomic and genomic alterations

(20–22), this study provides the first single-cell resolution atlas of

ULSA pathophysiology. Our findings advance the understanding of

ULSA TME biology and may offer novel insights for developing

targeted treatment and prevention strategies.
2 Materials and methods

2.1 Human studies statement

This investigation received approval after review by the

Institutional Ethics Committee of Shanghai Tongji Hospital,

School of Medicine, Tongji University, Shanghai, China (No. K-

W-2024-016). Tumor specimens were obtained from a ULSA

patient following provision of written informed consent. Freshly

resected lesions were immediately placed in specialized tissue

preservation medium on ice and prepared for immediate transfer.
2.2 Sample preparation

Surgical resection under aseptic conditions was performed to

obtain ULSA tumor specimens from the diagnosed patient and

normal myometrial tissues from five age-matched (within 5 years),

premenopausal patients undergoing hysterectomy for benign

conditions. To ensure anatomical consistency, all tissues were

harvested from the deep myometrial layer, avoiding endometrial

contamination. Immediately after excision, specimens were rinsed

with ice-cold sterile PBS to remove debris and preserve viability.

Using sterile instruments, tissues were dissected into 1–5 mm

fragments. Within 24 hours, fragments were enzymatically

digested in a pre-warmed solution with 5 mM EDTA, 1 mM
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DTT, 15 mMHEPES in PBS with 10% heat-inactivated FBS at 37°C.

After initial digestion, samples were washed twice with PBS to

remove residual enzymes. Secondary digestion was performed using

0.38 mg/mL collagenase VIII and 0.1 mg/mL DNase I in complete

DMEM supplemented with 100 U/mL penicillin and 100 mg/mL

streptomycin. Gentle pipetting at 10-minute intervals over 60

minutes ensured efficient dissociation while minimizing cell

damage. The resulting suspension was filtered through a 100-mm
nylon mesh via gravity flow to prevent shear stress. The filtrate was

centrifuged at 300 rpm for 5 minutes, and the pellet was

resuspended in complete DMEM. FBS (Thermo Fisher Scientific,

Uppsala, Sweden) and enzymes (Sigma-Aldrich, Steinheim,

Germany) were quality-controlled for lot consistency and activity.

Cell viability and counts were assessed, and only samples meeting

predefined thresholds were processed for scRNA-seq.
2.3 scRNA sequencing

Single-cell gel bead manufacturing was performed in strict

accordance with the 10x Genomics Chromium 3’ v3 kit protocol

(10x Genomics, Pleasanton, CA). For sequencing library preparation,

both single-cell RNA libraries and TCR V(D)J libraries were

constructed following standardized procedures. Sequencing was

carried out on an Illumina NovaSeq 6000 system using 150 bp

paired-end reads (PE150). To ensure data reproducibility and

quality, all manufacturer-recommended protocols were rigorously

followed, including pre-use validation of instruments and reagents.

Additionally, laboratory ambient conditions, particularly temperature

and humidity, were maintained within specified tolerances to

minimize technical variability.
2.4 Data screening and quality control

Processed single-cell sequencing data were analyzed using R

(v4.3.2). Prior to quality control (QC), potential doublets—artificial

cell aggregates resulting from multiple cell encapsulations—were

identified and removed using DoubletFinder (v2.0.3). Doublet scores

were computed based on gene expression profiles, with thresholds

optimized according to expected doublet rates derived from cell

loading densities. Cells exceeding the calculated threshold were

excluded to ensure each analyzed unit represented a single cell.

Quality control procedures implemented via Seurat (23) (v5.1.0) in

R (v4.3.2) involved excluding cells exhibiting: fewer than 200

detected genes, mitochondrial gene content exceeding 10%, or

total UMI counts below 500. This filtration step eliminated

potentially compromised cells that might bias subsequent analyses.

Following filtration, data normalization was performed using

Seurat’s NormalizeData function. Genes demonstrating high

biological heterogeneity were then identified through the

FindVariableFeatures function. To address technical variability

across different sequencing batches, batch effect correction was

applied using the Harmony package (v0.1.1) with the

RunHarmony function, which integrates batch-corrected
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dimensions into the downstream analysis workflow. This step

adjusts for systematic differences between batches while preserving

genuine biological variation, as validated by reduced batch-specific

clustering in post-correction visualization.
2.5 Dimensionality reduction, clustering
and cell type identification

Dimensionality reduction was achieved via Principal Component

Analysis (PCA) using the RunPCA function on the harmony-corrected

data, with the analysis restricted to the top 2000 highly variable genes

identified in Section 2.4 to focus on biologically meaningful variation.

The RunPCA function was implemented with the parameter npcs = 50

to generate a sufficient number of principal components (PCs) for

downstream analysis. Optimal principal component quantity was

established through the elbow method, with the inflection point on

scree plots typically identified between PCs 15–20 based on the

stabilization of explained variance. Subsequent clustering utilized the

FindClusters function with the Louvain algorithm (algorithm = 1),

where the resolution parameter was optimized through iterative testing

across the range 0.4–1.2. The final resolution (0.8) was selected based

on two criteria: (1) consistent separation of clusters with distinct

marker gene expression and (2) minimal over-clustering of

biologically homogeneous populations, as validated by silhouette

width analysis. Cell type annotation was performed using SingleR

(v2.8.0). Cluster-level identity assignment was conducted in method =

“cluster” mode, which aggregates expression profiles across all cells

within a cluster. Differential gene expression analysis was then applied

(de.method = “wilcox”) to identify statistically significant marker genes.

Annotation confidence thresholds were stringently set at >0.7 (SingleR

pruned.labels score) to ensure robust transcriptomic matching.

Computational assignments underwent manual validation using

Seurat’s FeaturePlot and VlnPlot, with expert investigators evaluating

cluster distributions. Marker gene expression was quantified

(AverageExpression, assay=“RNA”) to verify cluster-specific

enrichment (log2FC >1.5, adj.p <0.01), cross-referenced against

established signatures. Discrepancies triggered iterative re-analysis,

including clustering resolution adjustments (± 0.1 increments) and

PCA re-runs with refined variable gene sets, until alignment with

canonical phenotypes was achieved.
2.6 Copy number variation analysis

Copy number variations were evaluated in ULSA using the

inferCNV R package version 1.20.0 to assess genomic instability,

with uterine myometrium, MMM serving as the reference group.

The “infercnv::run” function was applied with key parameters

including a 0.1 expression cutoff to filter lowly expressed genes,

group-based clustering to avoid confounding effects, denoising to

reduce technical noise, and a six-state Hidden Markov Model for

robust CNV prediction. Processed expression matrices were

exported for downstream analysis (16). A 101-gene sliding

window approach was used for signal smoothing. Comparative
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analysis revealed consistent amplification and deletion patterns in

ULSA relative to MMM, demonstrating chromosomal instability

and further supporting the malignant nature of this tumor type.
2.7 Analysis of differentially expressed
genes

Differential gene expression analysis was performed using the

Seurat package (v5.1.0) in R. Tumor and normal cell groups were

defined based on sample metadata and cell-type annotations, and

subsetted from the integrated Seurat object via the subset function

(parameter: idents). The FindMarkers function was applied with the

following parameters: test.use = “wilcox” for non-parametric group

comparisons; logfc.threshold = 0.25 to identify genes with modest

expression changes; min.pct = 0.1 to exclude genes expressed in

<10% of cells in either group, mitigating low-expression noise; and

min.cells.group = 3 to ensure robust group representation. The

RNA assay (assay = “RNA”) provided normalized input data, with

significance thresholds set at adjusted P-value <0.05. Output

included gene symbols, average log2 fold changes, expression

frequencies per group, raw P-values, and Benjamini-Hochberg-

adjusted P-values, enabling downstream biological interpretation.
2.8 Pseudotime analysis

Pseudotemporal trajectory reconstruction was performed using

Monocle 2 (v2.34.0) in R (24), beginning with the construction of a

CellDataSet object from single-cell RNA sequencing data (25). This

process integrated gene expression matrices, cellular metadata, and

analytical parameters. Data preprocessing included normalization and

feature selection via the preprocessCDS function, followed by

dimensionality reduction using the reduceDimension method,

which internally applied PCA or tSNE. Cellular pseudotemporal

ordering was then inferred through the orderCells function,

reconstructing developmental trajectories based on transcriptional

dynamics along the inferred paths. Finally, trajectory visualization

and transcriptional profiling were achieved using plot_cell_trajectory,

enabling chronological interpretation of differentiation states.
2.9 Cell-to-cell communication

Cell-cell communication analysis was conducted using the

CellChat package version 2.1.0 in R as previously described (26).

Single-cell transcriptomic data were preprocessed through integration

of cellular annotations with gene expression matrices. The analytical

workflow followed four key steps: initial creation of a CellChat object

using the createCellChat function, identification of cell-type-specific

overexpressed genes and shared upregulated genes through the

identifyOverExpressedGenes and identifyOverlappingGenes functions

respectively, computation of intercellular communication probabilities

via the computeCommunications function based on these gene sets,

and rigorous filtering of interactions. Statistical significance was
Frontiers in Immunology 04
determined using a permutation test-derived p-value threshold of

less than 0.05, with additional false discovery rate control set at less

than 0.1 through Benjamini-Hochberg adjustment. The resulting

interaction networks and their signaling intensities were subsequently

visualized using the netplot function, revealing systematic patterns of

intercellular crosstalk.
2.10 Functional analysis

Transcriptomic data derived from single-cell experiments were

analyzed using the irGSEA package (v2.1.5) in R (27, 28). Gene set

enrichment analysis (GSEA) was performed via the gsea function,

with predefined gene sets curated from standardized databases (29).

This method quantified the statistical overrepresentation of

functionally annotated gene sets within specific cellular

subpopulations or experimental conditions. Results included

enrichment scores, adjusted P-values, and false discovery rates

(FDR), facilitating systematic interpretation of transcriptional

patterns in biological contexts.
2.11 Hematoxylin and eosin staining

Lesion specimens underwent overnight fixation in 10%

formaldehyde for structural preservation. Sequential dehydration

through ascending ethanol concentrations (70%, 80%, 90%, 100%)

preceded paraffin embedding. Microtome sectioning produced 5 µm-

thick tissue slices. Dewaxing occurred through xylene incubation

followed by descending ethanol rehydration. Rehydrated sections

received hematoxylin application (5 minutes) for nuclear staining,

subsequently rinsed under flowing water. Cytoplasmic

counterstaining employed eosin immersion (2 minutes). Final

processing included ethanol dehydration, xylene clearing, and slide

mounting for microscopic evaluation.
2.12 Multiplex immunofluorescence

The multiplex immunofluorescence (mpIF) assay was

performed according to the protocol established by Cao et al.

(30). Formalin-fixed, paraffin-embedded (FFPE) patient

specimens were sectioned at 4 mm thickness and subjected to

immunofluorescent staining using the following markers:

neutrophils (CD15, 1:100 dilution, Thermo Fisher Scientific),

tumor cells (SMA, 1:500, Cell Signaling Technology), EDARADD

(1:100, Thermo Fisher Scientific), and CLDN10 (1:100, Thermo

Fisher Scientific). Primary antibody incubation (30 min) was

followed by secondary antibody application (10 min), with

nuclear counterstaining using diamidino-2-phenylindole (DAPI,

Sigma-Aldrich). Tyramide signal amplification (TSA 570)

fluorescence labeling was conducted for 10 min. After TBST

washing, slides were immersed in preheated citrate solution and

subjected to microwave irradiation (15–20 min) before

equilibration to ambient temperature. Digital imaging was
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performed using the PanoVIEW VS200 slide scanner (Panovue),

with biological triplicates ensuring experimental reproducibility.

3 Results

3.1 Diagnosis and management of a ULSA
patient

A 50-year-old patient with uterine leiomyosarcoma was treated at

Shanghai Tongji Hospital. The initial presentation 4 years ago included

lower abdominal discomfort, and physical examination revealed

abdominal distension with a fixed pelvic mass. MRI identified a large

uterorectal space-occupying lesion, raising suspicion for malignancy,

particularly uterine sarcoma. Metastatic workup (abdominal and

thoracic CT) showed no distant involvement. Surgical management

comprised cystoscopic bilateral ureteral Double-J stent placement,

exploratory laparotomy with total hysterectomy, bilateral salpingo-

oophorectomy, and pelvic mass cytoreduction. Intraoperative findings

included a uterus of normal dimensions (18 × 15 × 12 cm) with a

multicomponent mass adherent to the posterior wall, predominantly

localized to the left pelvis. Complete resection of the uterus, adnexa,
Frontiers in Immunology 05
and tumor was achieved (Figure 1). Histopathology confirmed uterine

leiomyosarcoma, with immunohistochemistry showing SMA (+),

Desmin (+), Ki67 (+30%), and negative MDM2, p53, BRCA1, and

PD-L1. Adjuvant chemotherapy (six cycles) and genetic testing were

advised; however, the patient declined further treatment (including

radiotherapy, immunotherapy, targeted therapy) due to socioeconomic

constraints. Ureteral stents were removed two months postoperatively.

The patient did not follow clinical follow-up recommendations.

Four years after initial resection, she presented with 3-day absence

of flatus and bowel movements. Imaging showed a 20-cm

pelviperitoneal solid mass, indicative of colonic metastasis, and

secondary cytoreductive surgery was performed. After obtaining

informed consent for tumor microenvironment studies, scRNA-seq

was done on pelvic and colon metastatic lesions. She declined

postoperative adjuvant therapy and was discharged after recovery.

Nine months after the second surgery, she was readmitted for severe

abdominal pain. Pelvic MRI revealed a neoplastic lesion

compressing the bladder and rectum; third cytoreduction was

performed, showing transmural tumor invasion of the bladder

mucosa and peritoneum. ScRNA-seq profiling was conducted on

specimens from bladder metastasis and abdominal wall metastasis.
FIGURE 1

Clinical management algorithm for a ULSA case. The patient initially presented 4 years ago with complaints of lower abdominal pain and a palpable fixed
mass in the lower abdomen. Pelvic magnetic resonance imaging (MRI) revealed a large mass located between the uterus and rectum, raising suspicion for a
malignant neoplasm, with uterine sarcoma being among the differential diagnoses. An exploratory laparotomy was subsequently performed, during which a
total hysterectomy, bilateral salpingo-oophorectomy, and cytoreductive surgery for the pelvic mass were carried out. Postoperative histopathological
examination confirmed the diagnosis of uterine leiomyosarcoma (ULMS). The patient declined any form of adjuvant therapy following the surgical
intervention. Four years later, the patient returned with metastatic ULSA involving the pelvis and rectum, prompting a second cytoreductive surgery. Despite
the recurrence, the patient again refused any adjuvant treatment. Nine months after the second surgery, the patient presented with abdominal wall and
bladder metastases, necessitating a third cytoreductive surgery. During the third surgical procedure, metastatic tumor specimens were procured from the
pelvic cavity, rectum, peritoneum, and bladder. Single-cell analysis was performed on these specimens, and in conjunction with data from The Cancer
Genome Atlas (TCGA) database, we conducted a comprehensive analysis of the immune microenvironment within metastatic lesions of ULSA. This
integrated analysis elucidated the genetic characteristics and immunological landscape of the tumor microenvironment (TME) in ULSA.
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3.2 Single-cell RNA sequencing
characterized ULSA-related cellular
composition within tumor tissues

To characterize transcriptional alterations in uterine

leiomyosarcoma (ULSA), patient-derived samples underwent

single-cell RNA sequencing. Metastatic foci from pelvic, rectal,

peritoneal, and vesical sites were enzymatically dissociated into

single-cell suspensions. Control specimens comprised uterine
Frontiers in Immunology 06
smooth muscle tissue from five disease-free individuals. The 10×

Genomics platform generated 50,818 high-quality transcriptomes

post-quality control. Processing involved: low-quality read

filtration, CellRanger-based reference genome alignment, gene

annotation, and unique molecular identifier (UMI) correction.

Uniform manifold approximation and projection (UMAP)

visualization resolved eight principal cellular populations

(Figure 2A), which were annotated using canonical markers

including T lymphocytes (CD247/CD3D/CD3E), NK cells
FIGURE 2

Dimensionality reduction analysis in uterine leiomyosarcoma single-cell profiling. (A) UMAP visualization of four metastatic ULSA specimens versus
five normal myometrial controls. (B) Cellular composition distribution among eight annotated populations across metastatic and control cohorts.
(C) Top five discriminatory markers per cell lineage. (D) Differential gene expression volcano plot highlighting most significantly dysregulated
transcripts per population.
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(NKG7/PRF1/GZMB), B lymphocytes (MS4A1/IGHM),

neutrophils (S100A8/TREM1), endothelial cells (CLDN5),

monocytes (CD14/ITGAX), macrophages (CD68/FCGR3A), and

smooth muscle derivatives (ACTA2/CALD1/TAGLN) (31).

Cellular distribution heterogeneity across samples is depicted in

Figure 2B. Metastatic cohorts exhibited neutrophilic expansion

relative to MMM, particularly prominent in colonic and vesical

metastases. This implicates neutrophil-mediated mechanisms in

uterine sarcoma dissemination. Abdominal wall metastases

demonstrated >80% smooth muscle derivatives, correlating with

hematoxylin-eosin staining (Figure 1). Lineage-specific top markers

include (Figure 2C): Macrophage: C1QA; Monocyte: RETN;

Neutrophil: S100P; T cell: IL7R; NK cell: KLRC3; B cell: HPGD;

Smooth muscle: BAMBI; Endothelial: MMRN1. Volcano plot

visualization in Figure 2D exhibits significantly dysregulated

genes across all eight populations.
3.3 Identification of an invasive ULSA
cellular subpopulation

Malignant cells were distinguished from normal counterparts

within smooth muscle derivatives using ULSA markers (32)

(COL1A1, COL1A2, ACTA2, PDGFRA, PDGFRB, DCN;

Figure 3A) alongside inferCNV-based copy number variation

assessment (Figure 3B). Tumor phylogenetics demonstrated multi-

branch evolution in bladder, colonic, and abdominal wall metastases

(Figure 3C), exhibiting recurrent chromosomal alterations across

lineages. Contrastingly, pelvic wall metastases displayed singular

evolutionary trajectories, aligning with recurrence chronology and

implantation metastasis sequences. tSNE analysis resolved 17 cellular

subpopulations across ULSA and myometrial tissues, refined to 16

clusters following exclusion of one underpopulated subset (Figure 3D),

highlighting the inherent heterogeneity of ULSA. Notably, cluster 11

(1,182 cells) appeared exclusively in ULSA specimens (Figures 3D, E),

concentrated primarily within abdominal wall metastases, suggesting

its involvement in distant dissemination. Cluster 11 (U11) exhibited

EDARADD expression (Figure 3F), a TNFR superfamily member

implicated in metastatic progression and adverse prognosis across

malignancies. U11-EDARADD concurrently demonstrated elevated

EREG and SLC16A10 transcription (Figure 3G), both recognized

oncogenic drivers. Correlation heatmap revealed that EDARADD

expression was correlated with U4-CLDN10 (Figure 3H).

Functionally, tumor-promotive pathways including TGF-b signaling,

angiogenesis, epithelial-mesenchymal transition, and TNF-a/NF-kB
activation were significantly enriched in cluster 11 (Figure 3I). TCGA-

SARC survival analysis incorporating cluster-specific gene signatures

established that elevated EDARADD and CLDN10 expression

correlated with diminished survival (P<0.05, Figure 3J), validating

prior observations. To validate these findings, co-staining analysis of

EDARADD and CLDN10 in previous specimens showed similar and

consistent results (Figure 4F, Supplementary Figure S1). Overall, the

U11-EDARADD cell subset exhibits certain invasive characteristics,
Frontiers in Immunology 07
with enhanced metastatic ability and potentially significant

prognostic implications.
3.4 Neutrophil compartmental diversity
during developmental trajectories

To elucidate neutrophil heterogeneity, we collected 4,535 high-

quality neutrophils post-quality control and classified them into twelve

distinct lineages (N0-N11, Figure 4A). Pseudotemporal ordering via

Monocle revealed a tightly orchestrated differentiation trajectory. This

trajectory initiated from the N10-EDARADD, N11-XKR4, and N8-

IFNLR1 branches and terminated at lineages N3-SH3RF2, N4-KRT81,

N6-LILRB5, and N7-SH2D1B (Figure 4B). Neutrophil maturation

scores were computed using established differentiation-associated

genes (37)(Figure 4C). Lineages positioned at the trajectory origin

(N10-EDARADD and N11-XKR4) exhibited minimal maturation

scores. Intermediate scores characterized N2-CD209, N6-LILRB5,

N4-KRT81, and N5-B4GALNT3, whereas maximal scores defined

N8-IFNLR1 and N3-SH3RF2. Functional polarization was evaluated

using N1/N2-associated markers (38)(Figure 4D). The highly mature

N8-IFNLR1 and N3-SH3RF2 lineages predominantly displayed an N1

phenotype (~90% N1 neutrophils). Conversely, the minimally mature

N10-EDARADD lineage demonstrated N2 polarization (>70% N2

neutrophils). Substantial proportions of non-polarizable neutrophils

populated the N7-SH2D1B and N11-XKR4 lineages.

Survival analysis incorporating lineage-specific markers

(Figure 4E) indicated that elevated expression of the N10 marker

EDARADD correlated with adverse patient outcomes (P<0.05),

implicating pro-tumor effects from immature, N2-polarized

neutrophils in ULSA. Validation employed mpIF on metastatic tissue

sections (pelvic, colon, abdominal wall metastases) (Figure 4F).

CD15+EDARADD+cells (orange: CD15 [red], EDARADD [yellow])

appeared in all samples. These round or oval cells localized within

tumor stroma, adjacent to carcinoma or stromal cells. Notably, colon

and abdominal wall metastases exhibited significantly enhanced

CD15+EDARADD+cell density and fluorescence intensity versus

pelvic metastases, with abdominal wall lesions demonstrating

widespread positivity and cell cluster formation.
3.5 Angiogenic and metastatic propensity
in malignant endothelial subsets

Pseudotemporal trajectory analysis resolved twelve malignant

endothelial clusters (Figure 5A) and seven cellular states

(Figure 5B). Cluster-defining markers revealed distinct state

distributions: E3-CXCR3, E6-KRT81, E7-FOXP3, E8-CCDC141

and E0-CRLF2 predominated in early states, whereas E1-CCR9,

E10-ZNF536 and E11-PROX1 accumulated in terminal states. E2-

TMIGD2 and E9-METTL7B strongly associated with angiogenic

and metastatic potential (Figures 5C–E). E4-CLDN4 and E5-

SEL1L2 exhibited pan-state distribution without bias (Figure 5C).
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FIGURE 3

Malignant Cell Characterization and Functional Enrichment in ULSA. (A) UMAP visualization of ULSA-defining markers (COL1A1, COL1A2, DCN, PDGFRA,
PDGFRB, ACTA2). (B) Copy number variation heatmap from inferCNV analysis (red: gain; blue: loss). (C) Phylogenetic reconstruction across four metastatic
lesions. (D) tSNE projection contrasting ULSA and myometrial tissues; dashed circle demarcates metastasis-associated oncogenic subset. (E) UMAP
representation of oncogenic subpopulation. (F) tSNE resolution of 16 cellular subclusters (excluded underpopulated cluster). (G) Expression bubble plot
across 17 cellular clusters. (H) Marker correlation heatmap for 16 subclusters. (I) Robust rank aggregation (RRA) enrichment heatmap. (J) TCGA-SARC survival
stratification by EDARADD/CLDN10 expression (high vs low groups).
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FIGURE 4

Characterization and pseudotemporal ordering of neutrophil subsets in ULSA. (A) Neutrophil subpopulation classification within ULSA defined twelve distinct
clusters: N0_CD40LG, N1_NPHS1, N2_CD209, N3_SH3RF2, N4_KRT81, N5_B4GALNT3, N6_LILRB5, N7_SH2D1B, N8_IFNLR1, N9_TNFRSF13B,
N10_EDARADD, N11_XKR4. (B) Pseudotemporal reconstruction resolved neutrophil developmental trajectories across ten discrete states. (C) Maturation
scoring applied to neutrophil subpopulations. (D) Relative abundance of N1-polarized versus N2-polarized neutrophils among identified subsets. (E) Patient
survival stratified according to median expression levels of neutrophil subcluster-defining markers. (F) The mpIF validating CD15+EDARADD+ neutrophil
immunolocalization in pelvic, colonic, and abdominal wall metastatic lesions. *P<0.05, **P<0.01, ****P<0.0001.
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Functional assessment identified TGF-b, TNF/NF-kB angiogenesis

and EMT pathways as significantly enriched in terminal-state

clusters (E1, E2, E9-E11) (Figure 5E). Survival analysis of

malignancy-associated transcripts (Figure 5F) within the TCGA-

SARC ULSA cohort demonstrated significantly reduced overall

survival in patients exhibiting elevated expression of endothelial

cluster genes (TMIGD2, KRT81, CLDN4, METTL7B, ZNF536;

P<0.05). This correlation suggests that endothelial enrichment in

latent states, 5, 6, and 7, is likely to predict poor clinical outcomes.
Frontiers in Immunology 10
3.6 The analysis of T and B cell subsets
revealed an immunosuppressive tumor
microenvironment in ULSA patients

To elucidate intrinsic cellular organization and potential

functional states within T-cell populations, we performed

unsupervised clustering using UMAP visualization. Five distinct

clusters were identified, encompassing effector memory CD8+ T

cells, central memory CD8+ T cells, mucosal-associated invariant T
FIGURE 5

Endothelial subpopulation characterization and pseudotemporal dynamics in ULSA. (A) Twelve malignant endothelial clusters resolved via clustering
analysis. (B) Seven cellular states derived from pseudotemporal ordering. (C) Angiogenic and metastatic trajectory dynamics in endothelial monocle
analysis. (D) Heatmap evaluating expression patterns and consistency of angiogenesis-associated genes across twelve subtypes. (E) Robust rank
aggregation (RRA) enrichment heatmap. (F) TCGA-SARC survival analysis of malignancy-associated transcripts.
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(MAIT) cells, Th17 cells, and non-Vd2 gd T cells (Figure 6A).

Developmental trajectories of T cells in ULSA were reconstructed

using reverse graph embedding to position cells along a

pseudotemporal continuum. Pseudotime ordering delineated five

cellular states, with Th17 and central memory CD8+ T cells

occupying initial pseudotime positions. Effector memory CD8+ T

cells and MAIT cells populated subsequent developmental stages,

while non-Vd2 gd T cells emerged as discrete lineages at states 4

and 5 (Figures 6B–F). Spatial mapping demonstrated MMM cell

accumulation in regions enriched for Th17 and non-Vd2 gd T cells.
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Conversely, ULSA cells predominantly colocalized with central

memory CD8+ T cells, effector memory CD8+ T cells, and MAIT

cell populations (Figures 6D, E). Longitudinal profiling revealed

progressive depletion of naïve T cells defined by TSHZ2, CCR7,

MAL and BDBD11expression along the pseudotemporal trajectory

(Figures 6G, I). Conversely, terminally exhausted CD8+ T cells

expressing canonical exhaustion markers LAG3, HAVCR2 and

TIGIT demonstrated substantial enrichment during later pseudotime

intervals, indicating a phenotypic transition from activated to

exhausted states in CD8+ T lymphocytes (Figures 6G, H).
FIGURE 6

Characterization and pseudotemporal ordering of T lymphocyte subpopulations in ULSA. (A) Unsupervised clustering delineated five principal T-cell
subsets: MAIT cells, effector memory. CD8+ T cells, central memory CD8+ T cells, Th17 cells, and non-Vd2 gd T cells. (B) Cellular developmental
trajectories resolved through pseudotime analysis revealed five discrete states. (C) Monocle-derived trajectory visualization stratified by cellular
phenotypes. (D) Pseudotemporal progression mapping organized according to immunophenotypes. (E) Cell trajectory arrangement classified
through subgroup partitioning. (F) Developmental pathway representation segregated by sample cohorts. (G) Heatmap delineating expression
patterns of 50 most significant differentially expressed genes (lowest q-values). (H) Pseudotime-dependent expression profiles of exhaustion markers
(HAVCR2, LAG3, TIGIT) across identified states. (I) Relative abundance of trajectory-associated gene markers.
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Pseudotemporal analysis identified three distinct transcriptional

clusters among the top 50 differentially expressed genes (DEGs) in

CD8+ T cell trajectories (Figure 6G). Cluster 1 exhibited ascending

expression of metallothioneins (MT1X, MT1E), KIR2DL1, and the

exhaustion biomarker LAIR2 toward trajectory endpoints. Conversely,

naïve T-cell markers (CCR7, MAL, BDBD11) within Cluster 2

displayed progressive downregulation. Cluster 3 contained

decreasing regulators including CXCL2, PLAUR, and TAF4B. The

observed enrichment of exhausted T cells coupled with declining naïve

T-cell frequencies and diminished regulatory molecule expression

along developmental trajectories collectively indicates establishment
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of an immunosuppressive microenvironment during tumor

progression and metastatic dissemination.

Comprehensive B-cell profiling of 797 cells identified six

distinct lineages—Breg, plasma B, pre B, pro B, memory B, and

immature B cells—within this patient’s tumor microenvironment

(Figure 7A). Substantial inter-sample heterogeneity in lineage

distribution (Supplementary Figure S2) suggested varied humoral

immunity across metastatic lesions. Developmental trajectory

reconstruction via pseudotime ordering revealed progressive

maturation from initial Pro-B/Breg branches toward immature B,

pre B, memory B, and plasma cell states (Figures 7B–D).
FIGURE 7

Characterization and developmental ordering of B lymphocyte subpopulations in ULSA. (A) Unsupervised clustering resolved six principal B-cell
subsets: plasma cells, immature B cells, pre-B cells, pro-B cells, memory B cells, and regulatory B cells (Breg). (B) Pseudotemporal ordering classified
B lymphocytes into five discrete developmental states. (C) Monocle-derived trajectory representing developmental progression of the six B-cell
subsets. (D) Evolutionary pathways of B lymphocytes documented through pseudotime analysis. (E) Heatmap illustrating expression patterns of 50
most significant differentially expressed genes (lowest q-values). (F) Expression dynamics of B2M, FABP4, FTH1, and FTL throughout pseudotemporal
states. (G) Violin plots depicting expression distributions of B2M, FABP4, FTH1, and FTL across developmental states.
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Trajectory analysis of B lymphocytes resolved three clusters

comprising the top 50 differentially expressed genes (DEGs)

(Figure 7E). Cluster 1, defined by markers associated with B-cell

proliferation and development (B2M, FTH1, FABP4, FTL)

(33), exhibited progressive diminution across the trajectory

(Figures 7E–G). B2M constitutes an essential component of major

histocompatibility complex class I (MHC-I), critical for antigen

presentation. Tumor-infiltrating B cells may downregulate B2M to

evade MHC-I-mediated immune surveillance. FABP4 modulates B-

cell functionality within tumor microenvironments and potentially

mediates crosstalk with immunosuppressive populations (e.g.,

tumor-associated macrophages, regulatory T-cells), fostering

tumor-permissive niches. Ferritin components FTH1 and FTL

contribute to malignant B-cell persistence by regulating iron

storage, thereby supporting heightened metabolic demands during

neoplastic proliferation. Cluster 2 demonstrated progressive

enrichment, encompassing cells expressing canonical B-cell

markers (Bank1, BLK), memory markers (FCRL1), and regulatory

factors IRF8/SPIB that direct progenitor differentiation. Elevated

expression of FCER2 (enhancing antibody production) and

KHDRBS2 (ensuring functional BCR development) further

characterized this cluster. Cluster 3 featured transcriptional

regulators (PRKX, ZNF10, PRKCB, ZNF331, RCOR1) governing

B-cell maturation and antibody synthesis, accumulating at

trajectory termini. Cell-cell interaction analysis implicated the

MIF-(CD74+CD44) ligand-receptor was involved in T-cell and B-

cell crosstalk (Supplementary Figure S3). Tumor cells potentially

exploit MIF-(CD74+CD44) signaling to subvert immune

surveillance, wherein MIF binding impairs immune effector

functions. Collectively, these findings delineate B-cell

heterogeneity in antitumor immunity and underscore the

immunosuppressive landscape of ULSA.
3.7 Compartmental heterogeneity among
myeloid cell lineages in ULSA

Comprehensive profiling of 2,401 myeloid cells resolved four

distinct categories, namely: M1-like tumor-associated macrophages

(TAMs), M2-like TAMs, monocytes, and others (Figure 8A).

Pseudotemporal trajectory analysis segregated these cells into

three discrete developmental states, revealing differential

distribution patterns across cell types and sample origins

(Figures 8B–D). Trajectory reconstruction indicated monocyte

differentiation into M1-like TAMs and M2-like TAMs

(Figure 8E). Transcriptional clustering of the top 50 trajectory-

associated DEGs identified three signature groups (Figure 8F).

Cluster 1 exhibited progressive enrichment of CD163 (a canonical

TAM/M2 marker) alongside TAM-associated genes FTH1, FTL,

MT2A, and TIMP1 (34) (Figures 8F, G). Conversely, Cluster 2

demonstrated declining expression of M1-polarization regulators

TREM1, PDE4D, MCEMP1 and MAP4D (35, 36), indicating

directional polarization shift from M1 to M2 phenotypes in

ULSA (Figure 8F). Cluster 3 displayed terminal diminution of

M2-associated markers (VEGFA, HBEGF, ADGRE2, EMILIN2)
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along the trajectory, suggesting the coexistence of M1 and M2

macrophages in myeloid cells in ULSA.

Cellular interaction analysis implicated CXCL8-ACKR1 signaling

in monocyte-endothelial cross-talk (Supplementary Figure S4), where

aberrant ACKR1 expression elevates CXCL8 to promote angiogenesis,

metastasis, and TAM polarization toward immunosuppressive M2

states. Neutrophil-monocyte interactions involved ICAM1-(ITGAV

+ITGB2) pairing (Supplementary Figure S4), with dysregulation

promoting pro-tumor TAM differentiation. THBS pathway

activation mediated monocyte-smooth muscle communication

(Supplementary Figure S4), driving pro-tumorigenic M2-like

polarization to facilitate tumor growth. Collectively, these data

demonstrate myeloid compartment heterogeneity in ULSA while

highlighting convergent pro-tumorigenic functions across

distinct lineages.
4 Discussion

ULSA is associated with a poor prognosis, demonstrating high

rates of local and distant recurrence and a median overall survival of

only two years following metastasis (39). Current treatment

modalities, including surgical resection combined with

chemotherapy and radiotherapy (40), as well as immunotherapies

such as immune checkpoint blockade, show limited efficacy in

ULSA patients (10, 41). The development of more effective

therapies has been hindered by inadequate understanding of

tumor heterogeneity and the complex immune microenvironment

(42, 43). To address this, analyzed scRNA-seq data from a ULSA

patient and five non-tumor patients, generating a comprehensive

profile of ULSA and MMM microenvironments at single-cell

resolution. Our findings identify CD8+ T cell exhaustion, pro-

tumor M2 macrophages, and N2-polarized neutrophils as key

contributors to the immunosuppressive ULSA microenvironment.

A distinct U11 subpopulation in ULSA may play a pivotal role in

metastatic dissemination. Single-cell analysis revealed tumor

heterogeneity during ULSA progression, identifying subclusters with

divergent functional properties. Among these, the U11-EDARADD

cluster, enriched in EMT and angiogenesis signatures, was

predominantly localized in abdominal wall metastases. EMT

activation drives tumor invasion, dissemination, and therapy

resistance, contributing to aggressive disease progression (43–45).

Furthermore, U11 exhibited marked upregulation of TNF-a-induced
NF-kB signaling, a pathway known to enhance cancer cell invasiveness

and metastatic potential (46–48). Prior studies in melanoma

demonstrate that the TNF-a/NF-kB/MMP9 axis promotes early

metastasis by facilitating detachment from primary tumors and

systemic dissemination via vascular or lymphatic routes (49–51).

Clinically, these mechanisms align with the observed rapid disease

course in the patient, who developed two recurrences with multiorgan

metastases within 17 months, reflecting a highly aggressive phenotype.

ULSA exhibits a profoundly immunosuppressive tumor

microenvironment. Our results demonstrate a phenotypic shift in

CD8+ T cells from activated to exhausted states, a process driven by

chronic antigenic and inflammatory stimulation during tumor
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progression. Exhausted CD8+ T cells are characterized by co-

expression of inhibitory receptors (HAVCR2, LAG3, TIGIT) (52),

diminished memory recall, and progressive functional decline in

cytokine secretion and cytotoxic activity, collectively promoting

immune evasion (53, 54). Despite therapeutic efforts to reverse T-

cell exhaustion, sustained recovery remains elusive, with frequent
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relapse to exhausted states post-treatment (55). Although immune

checkpoint inhibitors (anti-PD1/anti-CTLA4) are foundational in

immunotherapy, they often fail to achieve durable responses in

ULSA (39). Ligand-receptor interaction analysis identified MIF-

(CD74+CD44) as a key mediator of T-cell–B-cell crosstalk. MIF

acts as a pleiotropic immunomodulator, influencing both
FIGURE 8

Characterization and developmental ordering of myeloid cell subpopulations in ULSA. (A) The clusters were identified as 4 myeloid cell subgroups:
Monocytes, M1-like TAMs, M2-like TAMs, and Others. (B) Pseudotemporal ordering of myeloid cell developmental progression. (C) Monocle-derived
trajectory visualization stratified by sample cohorts. (D) Evolutionary pathways representing seven distinct myeloid subpopulations. (E) Pseudotime-
dependent cellular density distribution mapping. (F) Heatmap illustrating expression patterns of 50 most significant differentially expressed genes
(lowest q-values). (G) Expression dynamics of FTH1, FTL, MT2A, and TIMP1 across pseudotemporal states.
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inflammatory and oncogenic pathways (56, 57). Upon binding to

(CD74+CD44) complexes, extracellular MIF triggers downstream

signaling that exacerbates inflammation, tumor growth, and

metastasis (58). Intracellularly, MIF further regulates Toll-like

receptor signaling and inflammatory cascades (59). Our findings

implicate MIF-(CD74+CD44) axis activation as a mechanistic

contributor to ULSA pathogenesis.

Macrophage activation polarizes cells into M1-like (pro-

inflammatory) and M2-like (immunoregulatory) phenotypes, both

critical mediators of inflammatory responses (60). In tumor

microenvironments, tumor-associated macrophages (TAMs) primarily

exhibit an M2-like phenotype, driving immunosuppression and

metastatic progression through upregulated signaling pathways

(61, 62). Our findings demonstrate coexisting M1-like and M2-like

macrophage populations in ULSA, withM2-like subsets dominating the

myeloid infiltrate. The observed M1-to-M2 shift implies that M2-like

TAMs play a pivotal role in ULSA pathogenesis and immune escape.

Importantly, we discovered that ICAM1 binding to the ITGAX/ITGB2

heterodimer facilitates neutrophil-monocyte crosstalk, skewing

monocyte differentiation toward pro-tumor TAMs and fostering

tumorigenesis (63, 64). Consequently, targeting ITGAX/ITGB2-

ICAM1 interactions may represent a viable strategy to block

immunosuppressive TAM recruitment and function (65).

Neutrophils demonstrate functional duality within tumor

microenvironments, a phenomenon long overlooked due to technical

limitations in isolation and phenotypic characterization (66, 67).

Recent advances leverage maturation indices and N1/N2 polarization

frameworks to resolve their functional heterogeneity (68, 69). In ULSA,

immature neutrophils with low maturation scores predominantly

adopt N2 polarization, whereas mature subsets retain N1 phenotypes

—consistent with evidence linking tumor-infiltrating immature

neutrophils to pro-oncogenic functions (70). This dichotomy

corroborates the established N1 (antitumor) and N2 (protumor)

paradigm (71), illustrating their plasticity in adapting to

microenvironmental cues to either suppress or promote tumor

progression (72).

Under the influence of TGF-b, IL-8, IL-6, and IL-17, neutrophils

polarize into the N2 subtype, characterized by prolonged lifespan, an

immature phenotype, reduced cytotoxicity, and pro-tumor functions,

including promotion of tumor growth, invasion, metastasis,

angiogenesis, and immune suppression (73). N2 neutrophils exhibit

pro-tumor activity, primarily through the secretion of arginase, matrix

metalloproteinase-9 (MMP-9), vascular endothelial growth factor

(VEGF), and various chemokines, which facilitate tumor metastasis

and angiogenesis within the tumor microenvironment (74, 75).

Retrospective studies have identified significant differences in

absolute neutrophil count (ANC) and neutrophil-to-lymphocyte

ratio (NLR) between leiomyoma and leiomyosarcoma, with elevated

NLR strongly correlating with poor overall survival in sarcomatoid

analyses (76, 77). CD74, a key receptor for macrophage migration

inhibitory factor (MIF), has been implicated in cancer prognosis;

CD74+ neutrophils are associated with improved patient outcomes in

multiple malignancies by inducing antigen-specific T-cell responses

and fostering an immunogenic (“hot”) tumor microenvironment,

suggesting their potential as an immunotherapy-sensitizing strategy
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(78, 79). However, the interplay between N2 neutrophils and the MIF/

CD74 regulatory axis remains insufficiently explored.

The mpIF analysis demonstrated significant enrichment of

CD15+EDARADD+ neutrophils in colonic, and abdominal wall

metastases, implicating this subset in pro-metastatic processes.

CD15, an adhesion molecule predominantly expressed on immature

N2 neutrophils, has been shown to actively promote tumorigenic

progression (80). EDARADD, a transcriptional co-regulator associated

with EGFR signaling pathways, appears to orchestrate multiple

metastatic processes including epithelial-mesenchymal transition

(EMT), tumor proliferation, invasion, angiogenesis, extravasation,

and T-cell suppression through EGFR activation, cytokine

production, and extracellular matrix modulation (81–83). Clinical

correlation analyses revealed that elevated EDARADD expression in

neutrophils significantly associates with poorer patient outcomes,

positioning CD15+EDARADD+ neutrophils as a potential

therapeutic target for metastasis suppression. The observed

accumulation of these neutrophils at metastatic sites may reflect

their role in circulating tumor cell entrapment during premetastatic

niche formation, consistent with the distinct metastasis patterns

documented in colonic and bladder tissues (84–86). Collectively,

neutrophil plasticity dictates functional complexity, with immature

subsets potentially driving detrimental outcomes during target therapy.

While this study represents the first application of single-cell

sequencing to investigate the genetic heterogeneity and tumor

microenvironment across metastatic lesions and tumor cells in

uterine leiomyosarcoma (ULSA), several limitations must be

acknowledged. First, the analysis included metastatic specimens from

only one patient and five myometrial control samples, as the rarity and

diagnostic complexity of ULSA constrained the cohort size.

Additionally, the scarcity of ULSA cases and the absence of publicly

available RNA-sequencing datasets for metastatic survival analysis

precluded a comprehensive meta-analysis, necessitating reliance on

the TCGA-SARC cohort for exploratory survival assessments.

Furthermore, the dynamic changes in immune cell populations

within metastases are inherently nonlinear, involving multifaceted

processes such as migration, local reprogramming, and

microenvironmental crosstalk. Monocle’s linear differentiation model

may oversimplify this complexity by artificially representing it as a

“pseudo-continuous spectrum,” particularly in samples enriched with

mature cells. Future studies should integrate multi-omics validation,

microenvironmental signaling analysis, and nonlinear computational

approaches to more accurately reconstruct the immune ecology of

ULSA. Finally, the functional properties of the identified cell clusters

and their associated signaling pathways need to be confirmed by

expanding sample size through continuous case collection and

experimental validation in the future.
5 Conclusion

In our research, this pioneering investigation revealed the

inaugural single-cell transcriptomic atlas of ULSA, delineating

microenvironmental characteristics and metastasis-associated

cellular subpopulations to inform future potential therapeutic
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targeting. The ULSA microenvironment exhibits marked

immunosuppression, evidenced by exhausted CD8+ T cell

populations, predominant M2 macrophage polarization, and

prevalent N2 neutrophil infiltration. This immunophenotypic profile

potentially underlies the limited clinical efficacy observed with

monotherapeutic immune checkpoint inhibition. Combinatorial

approaches integrating multimodal immunotherapy with

conventional chemotherapy may represent viable treatment avenues.

Our findings elucidate molecular aberrations and tumor

microenvironmental dynamics in ULSA, providing foundational

insights for advancing precise interventional strategies.
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SUPPLEMENTARY FIGURE 1

Immunostaining images of CLDN10 in metastases in the pelvis, colon, and
abdominal wall. The scale bar is 100 mm.

SUPPLEMENTARY FIGURE 2

B cell distribution across pseudotime in primary and four metastatic foci.

SUPPLEMENTARY FIGURE 3

Intercellular interactions among eight cell types with key receptor-ligand
pair identification.
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SUPPLEMENTARY FIGURE 4

Critical signaling pathways identified through cellular communication
analysis. (A) Significant upregulation of CXCL8-ACKR1 signaling in

monocyte-endothelial cell interactions. (B) Interaction strength for CXCL2-
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ACKR1 between monocytes and endothelial cells. (C) ICAM signaling network
activity across all eight cell types. (D) ICAM1-(ITGAX+ITGB2) mediated

communication within the cellular cohort. (E) THBS signaling pathway
network among the characterized cell populations.
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