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Hematopoietic stem cell transplant (HSCT) and hematopoietic stem cell (HSC)-
based gene therapy, including gene editing approaches, offer a promising strategy
for addressing numerous lymphohematopoietic genetic defects. Although
significant progress has been made since the first HSCT over 60 years ago, the
widespread application of allogeneic HSCT and autologous gene therapy is still
hindered by the need for pre-transplant conditioning. The eradication of host HSCs
and their progeny is widely thought to be necessary to create “space” in the bone
marrow niche and enable long term engraftment of transplanted cells. However,
despite decades of research, alkylating agents such as busulfan, melphalan and
treosulfan or total body irradiation still remain the backbone of most HSCT
condidtioning regimens. These genotoxic conditioning agents are non-targeted
and leave patients susceptible to infections, infertility, organ toxicities, and
secondary malignancies. As a result, there is an urgent need to develop
alternative, non-genotoxic conditioning regimens that can selectively deplete
HSCs while sparing cells outside the lymphohematopoietic compartment. A
growing body of preclinical and clinical breakthroughs demonstrate the
effectiveness of monoclonal antibodies, antibody-drug conjugates,
immunotoxins, radioimmunotherapy compounds, and even T cell redirection
strategies for achieving targeted HSC elimination. The use of these new agents
can transform HSCT, and in this review we aim to highlight the potential and
limitations of next-generation, non-genotoxic or minimally toxic conditioning
methods. These alternatives to conventional chemoradiation could reduce
toxicity and improve the safety of HSC-based gene therapies, ultimately
expanding patient access and eligibility for these transformative treatments.
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Introduction

The unique ability of hematopoietic stem cells (HSCs) to
differentiate into multiple lineages and self-renew has facilitated
the development of curative strategies such as allogeneic
hematopoietic stem cell transplant (HSCT) and autologous HSC-
based gene addition/editing approaches to treat genetic defects in
the lymphohematopoietic compartment. However, HSCs are a rare
population, with a frequency of only 1 in 10,000 bone marrow (BM)
cells, and the majority of long-term HSCs remain quiescent (1).
These HSCs are sustained by a specialized BM niche composed of a
diverse array of cell types, including mesenchymal stromal cells,
endothelial cells, osteolineage cells, non-myelinating Schwann cells,
and other hematopoietically derived cells, which collectively
support and maintain HSC function (2). This quiescent and well
nurtured rare population of HSCs can be classified as either long-
term (LT) or short-term (ST) depending on self-renewal potential.

10.3389/fimmu.2025.1653344

Hematological stressors activate the LT-HSCs with extensive self-
renewal potential to differentiate into ST-HSCs which are
committed to multilineage differentiation into the downstream
progenitors (3).

HSCT has been the primary definitive treatment modality for
genetic defects in the lymphohematopoietic compartment.
However, in allogeneic HSCTs there is an inherent risk of graft
versus host disease (GVHD) and a limited availability of human
leukocyte antigen-matched donors. Therefore, in hopes of reducing
the risk of GVHD and decreasing the toxicity of allogeneic HSCT,
autologous HSC-based gene addition and gene-editing strategies are
now being developed. Despite encouraging results from preclinical
studies and the clinical trials depicted in Table 1, both allogeneic
and autologous HSC-based gene therapy strategies remain limited
by the requirement for the patient to undergo conditioning prior to
transplant to create adequate “space” in the BM niche for the
homing of incoming allogeneic HSC or genetically-modified HSCs.

TABLE 1 Select clinical examples of conditioning agent and regimen intensity utilized in hematopoietic stem cell based gene addition/editing studies.

Disease Study ID Gene therapy Agent(s) Intensity Busulfan target AUC/dose
Immune deficiency
ADA NCT00598481 Y¥-RV Busulfan Nonmyeloablative = 19.2-22.4 mg*h/L
ADA NCT02999984 LV Busulfan Nonmyeloablative | 20 mg*h/L
X-SCID NCT01512888 LV Busulfan Nonmyeloablative | 22 mg*h/L
X-SCID NCT03311503 LV Busulfan Nonmyeloablative | 30 mg*h/L
Artemis NCT03538899 LvV Busulfan Nonmyeloablative | 20 mg*h/L
CGD Eggg?;z:zz: LV Busulfan Myeloablative 70-75 mg*h/L
WAS NCT01515462 Lv gl“;;‘i:';iigummab* Nonmyeloablative | 48 mg*h/L
LAD-1 NCT03812263 LV Busulfan Myeloablative 65 mg*h/L
Metabolic disorder
MLD NCT01560182 LV Busulfan Myeloablative 85 mg*h/L
Hurler NCT03488394 LV Busulfan Myeloablative 85 mg*h/L
Hemoglobinopathy
SCD NCT02140554 LV Busulfan Myeloablative 59-82 mg*h/L,
SCD NCT02186418 LV Melphalan Myeloablative 140 mg /m* (Melphalan)
SCD NCT03745287 CRISPR-Cas9 Busulfan Myeloablative 80-100 mg*h/L
Thalassemia NCT02906202 LV Busulfan Myeloablative 66-82 mg*h/L
Thalassemia NCT03655678 CRISPR-Cas9 Busulfan Myeloablative 80-100 mg*h/L
Bleeding disorder
HA NCT04418414 LV Treosulfan Fludarabine* ATG* Myeloablative 42 mg/kg (Treosulfan)
HA NCT03818763 LV xsﬁzge Nonmyeloablative = 120 mg /m? (Melphalan)

Data taken from searches conducted for clinical studies at https://www.clinicaltrials.gov based on hematopoietic stem cell gene therapy. Columns list disease categorization, study ID, gene
therapy, conditioning agent(s), regimen intensity, and then the specific area under the concentration-time curve (AUC) of busulfan for clinical outcome. Asterisk denotes additional conditioning
agents employed in cases where a multi-agent regimen is applicable. ADA, adenosine deaminase deficiency; X-SCID, X-linked severe combined immunodeficiency; CGD, chronic granulomatous
disease; WAS, wiskott-aldrich syndrome; LAD-1, leukocyte adhesion deficiency type 1; MLD, metachromatic leukodystrophy; SCD, sickle cell disease; HA, hemophilia A; y-RV, gamma-retroviral

vectors; LV, lentiviral vector; CRISPR-Cas9, clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9.
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Traditionally highly potent alkylating chemotherapy agents, or
irradiation, are utilized to enable engraftment of transplanted healthy
allogeneic or genetically-engineered autologous HSCs. However, as will
be discussed in this review, these non-targeted and DNA damaging
agents do not just limit their depletion to solely the LT/ST-HSCs, but
deplete the entire hematopoietic stem and progenitor cell (HSPC)
compartment. Since conditioning eradicates the recipient HSPCs which
saturate the BM niche in steady state, this depletion provides space for
the transplanted cells to home and engraft (4). HSPC populations can
also expand substantially in their native environment and maintain a
coordinated balance between quiescence and activation. Therefore, in
addition to depletion, these conditioning regimens also serve the benefit
of stimulating the BM niche to release cytokines and produce factors
that promote engraftment (5, 6). Finally, the intent of a conditioning
regimen is not solely myeloablation. These conditioning agents are also
used to achieve immunosuppression to prevent rejection of the donor
HSPC graft in allogeneic HSCTs or to suppress the immune response to
a transgene in some genetically-engineered autologous HSC-based
gene therapies.

The choice of conditioning regimen depends on both the patient’s
disease and source of HSCs, and is classified as myeloablative (MA),
reduced intensity conditioning (RIC), or non-MA (NMA). The
categorization of these conditioning regimens depends on
endogenous BM ablation, stem cell support, and degree of cytopenia
imposed by the regimen (7, 8). Taking these varying levels of intensity
into consideration, patients subject to MA conditioning will undergo
irreversible pancytopenia and require stem cell support compared to
RID and NMA regimens. These regimens need to be carefully tailored
to their specific disease setting where there are different extents of
progenitor depletion required. For example, extensive HSPC clearance
may be desired in disease states like leukemia where the conditioning
will eliminate any residual pathogenic clones. There may also be
benefits to this in the context of primary immunodeficiencies where
the high level of clearance could also help overcome host progenitor
competition. Since different conditioning regimens that are currently in
use have variable organ toxicity profiles and myeloablation/immune
ablation properties, it is critical for the intensity and selection of agents
to be tailored to the disease setting to provide patients with the most
ideal risk-benefit ratio.

Since the first HSCT was carried out in 1956 by E. Donnall
Thomas, MA conditioning regimens remain the gold-standard for
HSCT and utilize alkylating agents such as busulfan, treosulfan,
melphalan, and thiotepa (8, 9). Collectively though the field has
transitioned away from total body irradiation (TBI) and more
towards multi-agent conditioning regimens to achieve myeloablation.
Alkylating agents like busulfan are even now being personalized
in the regimens using patient-specific clearance parameters to
pharmacokinetically reduce target exposure, which is reflected in an
area under the plasma concentration-time curve (10) (Table 1). These
multi-agent conditioning regimens frequently require immune ablation
in addition to the myeloablation to fully or partially suppress the
immune system to decrease graft rejection, GVHD, or an immune
response to transplanted genetically modified cells. Table 1 highlights
some gene therapy strategies where additional immunoablative agents
are added to overcome underlying immune dysregulation or the
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immunogenicity of the transgene like in wiskott-aldrich syndrome
and hemophilia A, respectively. These MA regimens include
immunosuppressants like the antimetabolite fludarabine or for the
patient to receive serotherapy with anti-thymocyte globulin or
alemtuzumab to achieve selective depletion of mature lymphocytes.
However, in addition to this immunosuppression it has been shown
that some of these agents like fludarabine can also synergize in the
regimens to maximize depletion (11).

Unfortunately, these multi-agent MA regimens still cause
pancytopenia and require long-term stem cell support after
conditioning due to the profoundly cytotoxic nature of these
conditioning agents. Not only do they elicit DNA damage to the
BM compartment, but there is also cytotoxicity to cells and tissues
not targeted in the HSC niche. MA conditioning leaves patients
vulnerable to the risk of a wide range of harmful toxicities shown in
Figure 1 that include, but are not limited to, organ toxicity,
infertility, severe mucositis, increased risk of infections, and
secondary malignancies (12, 13). Despite the increasing use of
newer RIC and NMA conditioning regimens involving these
reduced doses of alkylating agents, the genotoxicity of these
standard agents still acts as a barrier to limit the broader
application of HSCTs for many non-malignant diseases (Figure 2).

There is an urgent need for the development of non-genotoxic,
HSPC-targeted conditioning that can serve as an alternative solution to
the genotoxic regimens currently in practice. Within the last twenty
years there has been ground-breaking preclinical and clinical progress
made in the HSCT field with respect to the development of
non-genotoxic conditioning regimens that selectively target HSPCs
and avoid serious adverse effects. Significant advances with
radioimmunotherapy (RIT) compounds consisting of radionucleotides
conjugated to monoclonal antibodies (mAbs) ultimately preceded the
development of next generation non-genotoxic antibody- and
immunotoxin-based conditioning agents (14). Recent preclinical
successes shown in the timeline of Figure 3 reveal the potential for
these mAb, immunotoxin, antibody drug conjugate (ADC), chimeric
antigen receptor (CAR)-T cell, and bispecific T-cell engager (BITE)
approaches in the context of non-genotoxic conditioning regimens.
Some of these strategies have been further optimized with antibody
enhancing technologies and have advanced beyond the laboratory
bench and into clinical trials where their safety and efficacy have been
tested in humans. In this review we aim to consolidate these pioneering
discoveries in non-genotoxic conditioning regimen development that
aim to replace conventional conditioning and expand HSCT treatment
for a wider range of HSC-targeted gene therapies.

A pathway to nongenotoxic
conditioning first paved by
radioimmunotherapy

TBI has served as the gold-standard for conditioning regimens
since the 1950s, and undoubtedly improves the success rates of
transplantation by ensuring high level and long-term multilineage
engraftment and reduced disease relapse. However, the extensive
toxicities and severe genotoxic risks, leading to infertility and
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Toxicities and genotoxic risks associated with radiation and chemotherapy conditioning in patients undergoing ex vivo autologous hematopietic
stem cell-based gene therapy. Step 1. Autologous hematopoietic stem cells (HSCs) are collected from the bone marrow (BM) niche by direct BM
aspiration or peripheral blood leukapheresis of peripheral blood following mobilization pre-treatment in the patient. Step 2. Generally CD34+ cells
are isolated via immunomagnetic bead section and then subject to ex vivo activation and culturing. Step 3. CD34+ cells are then genetically
modified with a gene therapy platform like retroviral transduction. Step 4. Patients undergo conditioning with radiation and/or chemotherapy in
order to clear the BM niche and suppress the patient’s immune system. Step 5. Genetically modified CD34+ cells are collected and reinfused back
into the conditioned patient who is then provided post-conditioning supportive treatment until their immune system rebuilds. [Schematic created

with BioRender.com].

secondary malignancies, associated with TBI remain the biggest
challenge limiting the transformative potential of HSCT gene
therapies. Although many of these complications have been clinically
well-documented for decades, ongoing research continues to further
characterize the extent and mechanisms of damage done following
these HSCT procedures. For example, a recent study showed allo-
HSCTs leave patients susceptible to develop osteoporosis due to
dysregulated mesecnchymal stem and progenitor cell (MSPC)
function from elevated oxidative stress and reduced fission and
mitophagy (15). Attenuating CDC42 activity in vivo after HSCT was
able to regenerate these MSPCs to increase bone volume and trabecular
bone thickness. These types of studies exploring HSCT genotoxicies are
critical since they emphasize the urgent need to develop targeted
conditioning platforms restricting depletion to just the HSPC niche.

Frontiers in Immunology

The targeted transition away from TBI conditioning began in the
early 1990s with the testing of radioimmunotherapy (RIT)
compounds by investigators at the Fred Hutchinson Cancer Center
(FHCC) as a solution to deliver cytotoxic doses of radiation to the
hematopoietic compartment while simultaneously sparing or limiting
toxicity to other tissues and organs. These RIT compounds, also
known as radioimmunoconjugates (ROICs), consist of o -, -, or y-
radioisotopes conjugated to either a cytolytic or neutralizing mAb
(Figure 4). ROICs are still genotoxic, but by sparing toxicity to
reproductive tissues and preserving reproductive capacity they
provide a more optimal risk-benefit ratio for patients. In addition
to ROIC platforms being applicable and FDA translatable, they
played an instrumental role in advancing the non-genotoxic
conditioning targets and strategies discussed in this review.
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Non-genotoxic conditioning platforms can help scale the genotoxic barrier and permit broad patient access to hematopoietic stem cell
transplantation for HSC-targeted gene therapies. Illustration highlights non-genotoxic conditioning platforms as an alternative to conventional
conditioning with chemotherapy and/or radiation which create a genotoxic barrier limiting broader application of hematopoietic stem cell
transplantation (HSCT) treatment. Key platforms currently being investigated in the field include monoclonal antibodies (mAbs), antibody drug
conjugates (ADCs), chimeric antigen receptor (CAR)-T cells, and lipid nanoparticles (LNPs). [Schematic created with BioRender.com].

CDA45-directed ROICs

One of the most critical targets of choice in non-genotoxic
conditioning is CD45 which is a leukocyte common antigen
expressed only on the surface of nucleated hematopoietic cells. CD45
plays a vital role in their proliferation and differentiation, making it an
attractive target for achieving depletion of the mature lymphoid lineage
(16-18). Cytolytic radio-labelled antibodies against CD45 are among
the most widely studied ROICs that have provided clinical evidence
that ROIC conditioning technology can decrease disease relapse and
transplant-related mortalities while still delivering targeted radiation to
hematopoietic tissues.

Preclinical in vivo work by FHCC investigators in the early
1990s in mice and non-human primates using an anti-CD45
antibody (BC8) conjugated to the radioisotope *'Iodine (**'I-
BC8) was one of the earliest demonstrations of the efficacy, safety,
and biodistribution of ROICs, and ultimately led to their
adaptations in the clinical setting (19-22). Subsequent clinical
studies revealed '*'I-BC8 can be safely combined with fludarabine
and low-dose TBI (2 Gy) in a RIC conditioning regimen prior to
allo-HSCT for acute myeloid leukemia (AML) or myelodysplastic
syndrome (MDS) patients over the age of 50 who would not be
eligible for MA conditioning (clinicaltrials.gov identifiers:
NCT02665065) (23). More recently, a phase III SIERRA trial is
investigating the efficacy of Iomab-B, a next generation "*'Todine-
anti-CD45 ROIC, when combined with fludarabine and low-dose
TBI in a RIC preparative regimen prior to allogeneic HSCT in
patients with active, relapsed, or refractory AML (24-26)
(clinicaltrials.gov identifiers: NCT02665065).

Another notable CD45-based ROIC involves the conjugation of
BC8 to the radioisotope Yttrium (°°Y-BC8). Preclinical studies

Frontiers in Immunology

showed administration of *°Y-BC8 in combination with
cyclophosphamide is able to replace TBI conditioning before
haploidentical HSCT in a syngeneic murine leukemia model to
permit long term engraftment and increase overall survival (27). A
subsequent phase I clinical trial in patients with AML, MDS, or
acute lymphoblastic leukemia (ALL) tested *°Y-BC8 in a RIC
regimen with fludarabine and low dose TBI, which further
showed the feasibility of using ROICs to achieve engraftment (28)
(clinicaltrials.gov identifiers: NCT01300572).

One limitation of this targeted genotoxic strategy is that B emitters
like "*'Todine and *°Yttrium have deep tissue penetration path lengths
that could be associated with off-target toxicities (Figure 4). Therefore,
within the RIT field, o, emitters like 2'*Bismuth and 2! Astatine, which
have shorter path lengths have also been conjugated to CD45 antibodies
and these particular ROICs have been extensively assessed in several in
vivo canine models of allogeneic stem cell transplantation (29-31).
Currently, phase I/I clinical trials are investigating the safety and
efficacy of *'' Astatine-CD45 mAbs in conditioning regimens prior to
HSCT in both patients with nonmalignant diseases and in patients with
AML, ALL, MDS or mixed-phenotype acute leukemia (clinicaltrials.gov
identifiers: NCT04083183 and NCT03128034, respectively).

FDA approved ROICs

In addition to targeting CD45, other ROICs targeting antigens
such as CD20 have also been tested in clinical studies and shown
promising transplant outcomes following conditioning. Out of
these promising ROICS, Zevalin (9°Yttrium ibritumomab
tiuxetan) was the first CD20 targeting RIT that received FDA
approval in 2002 for conditioning prior to HSCT for B-cell non-
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Pioneering preclinical discoveries in non-genotoxic conditioning for hematopoietic stem cell transplantations. Timeline illustrates major landmarks in the field of hematopoietic stem cell transplantation (HSCT)
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and HSC-directed gene therapies since the early 2000s, with various non-genotoxic conditioning platforms including monoclonal antibodies (mAbs), antibody drug conjugates (ADCs), chimeric antigen

receptor (CAR)-T cells, and lipid nanoparticles (LNPs). FA, Fanconi anemia; MDS, myelodysplastic syndrome; SAP, saporin; MHC, major histocompatibility complex; HA, hemophilia A; Cy, cyclophosphamide;

TPO, thrombopoietin; MPL, myeloproliferative leukemia protein; 5-AZA, 5-azacytidine. [Schematic created with BioRender.com].
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Mechanistic overview and clinical considerations of the primary approaches being studied in targeted bone marrow conditioning regimens prior to
hematopoietic stem cell transplantation. Radioimmunoconjugates (far left) bind a target antigen like CD117 and CD45 on hematopoietic stem and
progenitor cells (HSPCs) to deliver a cytotoxic payload of radiation. Monoclonal antibodies (middle left) deplete HSPCs by blocking ligand binding to
survival receptors on HSPCs like CD117 and CD45. Blockade of CD47 prevents binding of the inhibitory molecule to increase antibody-dependent
cell-mediated phagocytosis by effector cells like macrophages that recognize the Fc region of the antibody. Antibody drug conjugates (middle right)
are internalized by the HSPC after binding to their target antigen. After internalization, and cleavage of the linker in the lysosome, the cytotoxic
payload is released into the cytosol. Chimeric antigen receptor-T cells (far right) bind to their antigen of interest, which activates the cytotoxic
effects of the T cell to lyse the HSPC through the release of perforin and granzymes. [Schematic created with BioRender.com].

Hodgkin’s lymphoma (32). This approval was shortly followed by
the FDA approval of another RIT known as Bexxar, an anti-
CD20-""Todine conjugate (33).

Spectrum of preclinical non-
genotoxic conditioning

Monoclonal antibody approach

Antigen-targeted mAbs have great potential to replace non-
targeted conventional chemoradiation conditioning for HSCTs due
to their ability to specifically target cell types important for
engraftment. Similar to how the majority of ROIC approaches
focused on targeting cytolytic antigens, initial mAbs explored in the
context of non-genotoxic conditioning also targeted CD45. The first
in vivo application of an anti-CD45 (RT7%) mAb was performed in a
LEW.1W (RT1"RT7%) rat model in the early 2000s where the effects
of this anti-RT7* mAb under different dosages revealed its potential
to serve as an effective agent for depletion of both mature T cells and
early rat HSCs (34). A study published the following year showed not
only can these cytolytic CD45 mAbs achieve depletion, but this level
of depletion is then able to permit allogeneic HSCT in a murine
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model (35). However, donor hematopoietic engraftment was only
observed when the anti-CD45 mAb was combined with either a 5.5
or 8.0 Gy dose of irradiation and not when it was administered alone.
The potential of CD45 mAbs was further shown in phase I/II trial
testing two rat anti-CD45 mAbs (YTH24.5 and YTH 54.12) in
combination with alemtuzumab, fludarabine, and low-dose
cyclophosphamide in a minimal-intensity conditioning regimen
prior to HSCT in patients with primary immunodeficiencies that
had BM failure phenotypes (36). Engraftment in these initial CD45
mAb studies sparked a shift in the HSCT field away from the
paradigm of intensive chemoradiotherapy conditioning.

Additional mADb approaches targeted CD117, also referred to as
c-Kit or stem cell factor receptor (SCFR). CD117 is a dimeric
transmembrane receptor tyrosine kinase that is constitutively
expressed on HSPCs, but not exclusively restricted to the this
particular compartment. Other CD117-dependent cell types
include but are not limited to melanocytes, mast cells, germ cells,
interstitial cells in the gastrointestinal tract, and certain subsets of
neuronal and glial cells. Even though CD117 is expressed on other
cell types it is important to note receptor expression level as well as
function varies across these different tissues.

In the context of HSPCs, the interactions of CD117 with its
ligand, stem cell factor (SCF also known as SCF, c-kit ligand [KL]),
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are essential in mediating a multitude of functions such as homing,
adhesion, proliferation, maintenance, and survival of HSPCs.
Taking this into consideration, initial studies tested the
administration of a rat anti-mouse CD117 mAb recognizing and
antagonizing CD117 as a conditioning modality for transplantation
(37). The CD117 mAb led to rapid but transient depletion of >98%
of endogenous HSCs in RAG2”" yc”~ immunodeficient mice.
Subsequent studies showed conditioning with CD117 mAb
permits stable engraftment of exogenous HSCs with donor
chimerism levels up to 90% in these immunodeficient mice, but
not in immunocompetent mice. However, it was later found that
combining the CD117 mAb with low-dose irradiation (LD-IR)
permits donor-derived HSC engraftment after congenic
transplantation in immunocompetent wild-type mice (38).
Furthermore, this study demonstrated the CD117 mAb and LD-
IR conditioning facilitates efficient engraftment of autologous HSCs
modified ex vivo with a lentiviral vector in X-linked chronic
granulomatous disease (X-CGD) mice, demonstrating the
potential for mAb conditioning in transplantations for
gene therapy.

Similarly, CD117 mAb-mediated depletion of HSCs was
evaluated as a fetal conditioning strategy for neonatal congenic
HSCTs (39). In utero injections of low-dose CD117 mAb effectively
eliminated host HSCs in developing mouse embryos, and HSCT on
day one after birth resulted in significant levels of donor chimerism
that were sustained for at least 5 months post-transplant with
minimal toxicity, indicating the longevity of this conditioning
regimen. Additional progress has been made in the application of
non-genotoxic conditioning prior to HSC transplantation in utero
(IUTx) as evidenced by work recently presented by the Porada
group (40). A fetal sheep model tested HSC-transplanted fetuses
following non-genotoxic conditioning which promoted selective
depletion of recipient HSCs and successful long-term HSC
engraftment. However, these specific IUTx studies did not target
CD117 and instead of mAbs they employed the use of ADCs which
are a non-genotoxic conditioning strategy discussed in more detail
later in this review. Nonetheless, all these studies collectively
highlight not only the preclinical promise of antibody-based
conditioning but its potential for implementation in neonatal
contexts where the expression of targets receptors outside of the
hematopoietic niche could result in undesired non-HSPC
cellular cytotoxicities.

Although the CD117 mAb is clearly useful in the transplant
setting, it has a limited efficacy as a single agent for conditioning
immunocompetent mice unless it is administered in combination
with other agents. However, in a murine model of Fanconi anemia
(FA) it was shown that the addition of CD117-blockade with a CD4
depleting antibody was sufficient for donor engraftment following
HSCT (41). This success is due to the inherent DNA repair defects
underlying the pathology of FA, which drives HSPC dysfunction
and in turn progressive BM failure.

Collectively, these studies demonstrate the promise of anti-
mouse CD117 mAbs for HSCT's which prompted the development
of anti-human CD117 mAbs and the investigation of their
applicability in more clinically relevant transplantation settings.
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The proof-of-concept of these anti-human CD117 mAbs as BM
niche-clearing agents was demonstrated in humanized NSG mice
and non-human primates using an anti-human CD117 mAb, SR-1
(42). Further studies expanded the use of SR-1 by showing it is
capable of depleting MDS HSPCs and can facilitate the engraftment
of normal donor human HSCs in MDS xenograft mouse models,
serving as the foundation for the clinical advancement of the
clinical-grade humanized SR-1, AMGI191 (43), which is discussed
in more detail in the clinical section of this review.

Antibodies with enhancing technologies

CD47 is a transmembrane protein that serves as a “don’t eat
me” signal via interaction with its ligand SIRPc. on neutrophils and
macrophages to inhibit antibody-dependent cell-mediated
phagocytosis of CD47-expressing cells, such as HSPCs. Transient
upregulation of CD47, a myeloid-specific immune checkpoint, is a
crucial protective mechanism by which mobilized circulating
HSPCs can evade macrophage destruction. The depletion of
recipient HSPCs by anti-CD117 mAbs is dependent on this
effector cell involvement, in addition to the blockade of SCF
binding to CD117 (Figure 4). Therefore, the administration of
CD47 antagonists or CD47 mAbs to block the CD47-SIRPa
pathway will potentiate the antibody dependent cell mediated
cytotoxicity potential of co-administered mAbs directed against
CD117. In 2016 it was shown that preconditioning adult
immunocompetent mice with the anti-CD117 antibody ACK2 in
combination with an anti-CD47 antibody led to elimination of
>99% host HSCs (44). Given the robust synergism between ACK2
and CD47 blockade, this approach was then combined with T cell-
depleting antibodies to provide transient lymphocyte depletion
during conditioning of recipients for HSC allotransplantation in a
major histocompatibility complex (MHC)-mismatched model. This
regimen facilitated long-term engraftment of exogenous congenic
HSCs between MHC-mismatched donor/recipient pairs. The
limited efficacy of naked antibodies by themselves in a non-
genotoxic conditioning regimen for HSCTs can be overcome by
the potential incorporation of a CD47 blockade using an anti-CD47
antibody to promote phagocytosis of target cells by immune cells.
One notable example is magrolimab, also known as Hu5F9G4,
which was originally explored in combination with anti-CD117
antibodies before the focus of development became centered on
cancer immunotherapy. As a result magrolimab advanced to
clinical testing in patients with both myeloid and solid tumors.
However, some of these magrolimab clinical trials have been
discontinued or placed on hold due to safety concerns observed
in late-stage trials where the antibody was tested in the context of
blood cancers like AML and MDS (clinicaltrials.gov identifiers:
NCT04313881, NCT04778397, and NCT05079230).

In addition to blocking this dominant anti-phagocytic signal,
antibody combinations that extend the use of a CD47 blockade in
combination with the depletion of critical immune subsets has also
been investigated. For example, one study characterized a
conditioning strategy in immunocompetent mice using a six-
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antibody cocktail that consisted of the following mAbs: anti-CD117
to block HSC survival, anti-CD47 to promote macrophage assisted
HSPC depletion, anti-CD4 and anti-CD40L to inhibit T cell
mediated-rejection, anti-CD8 against cytotoxic T cells, and anti-
CD122 to eliminate host natural killer cells (45). Conditioning with
this six-antibody cocktail followed by transplantation enabled high
donor chimerism of fully MHC-mismatched HSCs. Furthermore,
fully mismatched chimeric mice were able to tolerate solid organs
from the same donor following HSCTs which affirmed the mice
retained their functional immunity.

CD47 blockade is not the only strategy that has been shown to
display synergy with anti-CD117 mAb eradication of HSPCs. A
2021 study showed that even widely used small molecule drugs like
hypomethylating agent 5-azacytidine (5-AZA), which had
previously unknown effects on HSPCs, could broaden their
clinical use in pre-transplantation conditioning (46). Combination
of anti-CD117 and 5-AZA significantly enhanced HSPC depletion
and enabled substantially higher levels of donor engraftment in
immunocompetent mice.

ADC approaches

ADCs are an attractive approach to HSCT conditioning that
involve the conjugation of an antibody to either an immunotoxin or
drug by a short linker molecule. One appeal of this design is it permits
the delivery of cytotoxic payloads while still retaining the specificity of
antibody-mediated cell targeting. Therefore, the efficacy of each ADC
depends on the careful selection of the antibody, the linker, and the
toxic payload. The first ADC demonstrated as a conditioning strategy
for HSCT's was CD45-SAP, a CD45-targeting antibody conjugated by
biotinylation to the Type I ribosome inactivating protein (RIP) saporin
(SAP), that was selected from an in vivo HSC depletion screen, and
induces cell death via apoptosis (47, 48). Unlike the prototypical ricin
holotoxin that is a Type II RIP, the Type I RIPs like SAP lack lectin
binding activity and in turn, a general cell entry mechanism unless
conjugated to a targeted antibody (49). The study found a single dose
of CD45-SAP was able to achieve 99% depletion of host HSCs and
donor chimerism levels of 75-90% post transplantation in an
immunocompetent mouse model of sickle cell anemia. In contrast
to the irradiated controls, the administration of CD45-SAP also
reduced toxicities to non-target expressing cells since ADC
administration avoided neutropenia and anemia by maintaining
progenitor proportions, spared the BM and thymic niches,
preserved anti-fungal immunity, and enabled quicker recovery of B
and T cells. Since CD45 is present on all lymphocytes the CD45-ADC
did lead to profound lymphodepletion which raises the concern of
opportunistic infection susceptibility. However, the translation of
CD45-ADC has applications beyond allotransplantations requiring
immune depletion. One notable example is in the control of
autoinflammatory diseases through depletion of both the HSPCs
and pathogenic immune cells. For example, Pala et al. showed
CD45-ADC conditioning achieved full donor chimerism and
immune reconstitution in a recombination activating gene 1
hypomorphic mouse model of combined immune deficiency with
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immune dysregulation (50). Collectively, all these approaches
highlight the broad applications of CD45-ADCs across a range of
hematological and immune-mediated disorders.

To expand the use of ADCs for HSCT conditioning where the
preservation of immunity may be desired, for example in many gene
therapy settings, Czechowicz et al. developed and characterized a
CD117-ADC using a 2B8 anti-mouse CD117 mAb clone conjugated
to SAP through biotin-streptavidin linkage (51). A single dose of the
ADC led to >99% selective host HSPC depletion and enabled safe and
effective HSCT of immunocompetent mice with both whole BM or
purified HSCs. The downstream immunocompetent effector cells were
spared due to a lack of CD117 expression, and there was a lack of
neutropenia, lymphopenia, or anemia after conditioning. The ADC
approach also permitted the preservation of immunity, as evidenced by
the mounting of effective responses by recipients to both viral and fungal
challenges. This anti-CD117-SAP conditioning approach was then
tested in combination with transient immunosuppression using
rapamycin and anti-CD8, anti-CD4, and anti-CD154 mAbs in order
to prevent acute rejection and extend the use of the ADC into fully
MHC-mismatched allotransplantation. This conditioning resulted in
robust (~99%) and long-term (>1 year) hematopoietic chimerism with
durable donor-specific skin allograft tolerance (52).

Based on these initial studies demonstrating the potential of
ADC-mediated HSPC depletion for non-genotoxic conditioning
prior to transplantation, subsequent studies aimed to expand the
utility of this immunotoxin approach to the context of HSC-based
gene therapies. The engraftment of gene-modified HSCs without
genotoxic conditioning was first shown in HA mice using a
combination of CD45.2 and CD117 ADCs conjugated to SAP in
a platelet-directed HSC-based fVIII gene therapy protocol (53).
Preconditioning with these agents and the supplementation of a
CD8-targeting ADC was found highly effective for the engraftment
of 2bF8 lentivirus (LV)-transduced HSCs, resulting in sustained
therapeutic platelet fVIII expression and phenotypic correction as
determined by a needle induced knee joint injury and a tail-bleeding
assay. Conditioning with CD117-SAP coupled with the
administration of a non-genotoxic mAb cocktail targeting host T
cells was investigated in a different preclinical murine HA gene
therapy model to demonstrate successful endogenous HSPC
depletion and transient immunosuppression, respectively (54).
This strategy provided high-level and long-term engraftment of
HSCs genetically modified ex vivo using a recombinant LV
encoding a bioengineered fVIII variant, termed ET3. No
immunological rejection was observed, and phenotypic correction
was achieved following transplantation of these ET3-modified
donor HSCs.

In addition to gene therapy for hemophilia, these ADCs have also
been studied in non-genotoxic conditioning for other hematologic
diseases. One group evaluated the conditioning ability of CD45-SAP
and CD117-SAP in a well-established mouse FA model (55). These
ADCs facilitated effective multi-lineage engraftment of FA-
heterozygous cells that was comparable to conventional
cyclophosphamide conditioning. Furthermore, Konturek-Ciesla
et al. have recently shown application of non-genotoxic
conditioning with CD45-SAP to introduce young HSCs into aged
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hosts as a prophylactic tool to prevent onset of age-associated
hematological disorders. Aged BM microenvironments can
interfere with HSC engraftment, and this study along with another
by the Weissman group showing myeloid-biased HSCs drive the aged
phenotype, both highlight the importance of assessing ADC efficacy
in the context of different aged recipients where the homing
efficiency, immunity, and inflammation may vary (56, 57).
Collectively, these different preclinical studies establish strong
proof-of-concept towards the translation of these non-genotoxic
conditioning platforms for allogeneic transplantations as well as
gene therapy strategies.

Immunotoxin payload considerations for
ADCs

There are several considerations that must be noted for the
selection of immunotoxins such as SAP for the payload. The clinical
translation of many of these ADCs that feature RIPs is limited by
the fact that many of these immunotoxins such as SAP are well
known to induce immune responses with neutralizing anti-toxin
antibodies (49). Therefore, studies are investigating the efficacy of
additional ADC designs with various payloads. For example, Pearse
et al. conjugated an anti-CD117 antibody to amanitin that is derived
from the Amanita phalloides species of mushroom. Interestingly,
this is also a Type I RIP and was the only toxin from their screen
able to achieve >90% depletion of human HSPCs in humanized
NSG mice (58). They followed these encouraging results in a rhesus
macaque model and showed >99% depletion of HSPCs while
preserving BM lymphocytes.

More recently, Saha et al. reported robust donor engraftment in
three distinct preclinical mouse models that were conditioned with
a novel CD45-ADC conjugated to a tesirine payload instead of a
RIP (59). Tesirine is an alkylating pyrrolobenzodiazepine dimer
with antimitotic and cytotoxic activity that achieves targeted HSC
depletion by interfering with DNA interstrand crosslinking which
leads to cell cycle arrest followed by death. Uchida et al. also utilize a
tesirine payload in their CD117 ADC which permitted engraftment
of gene-modified cells and preserved fertility in a rhesus macaque
lentiviral gene therapy model for hemoglobinopathies (60). Even
though these results suggest certain toxins and their mechanisms
are more favorable for targeted HSC killing when compared to
other drug conjugates, more studies are needed to further elucidate
the potency of these immunotoxins on the stem cell compartment.

CAR-T cell, BiTE, and LNP approaches

Chimeric antigen receptor T (CAR-T) cells are T cells
genetically modified to express a recombinant receptor targeting
the engineered T cell to a specific antigen. Typically, CAR antigen
specificity is mediated through a single chain variable fragment
(scFv) that consists of a variable heavy and light chain of a
monoclonal antibody fragment connected by a peptide linker.
However, natural receptor- or ligand-based CAR designs are also
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being explored. Binding of the CAR to the antigen of interest
subsequently activates the cytotoxic activity of the T cell through the
CAR cytosolic CD3{ domain, bypassing engagement of the major
histocompatibility complex. As shown in Figure 4, the release of
perforin and granzymes from the activated CAR-T will then induce
specific and rapid target cell lysis. Because the genetically
engineered CAR-T cells are only activated upon external binding
to the target antigen, it is an appealing strategy to apply in the
context of HSPC conditioning.

The first demonstration that CAR-T cells can be used for BM
conditioning was reported in 2018 by assessing HSPC depletion
with anti-CD117 directed CAR-T cells and subsequent engraftment
in immunocompetent mice (61). The study first showed mouse
CD117 CAR-T cells can effectively bind and kill CD117+ cells in
vitro. Subsequent studies in vivo revealed treating mice with a low-
dose of cyclophosphamide in combination with the CD117 CAR-T
cells permits donor chimerism of around 20-40%. Interestingly,
they also found mouse CD117 CAR-T cells required genetic
engineering to overepress the chemokine receptor 4 (CXCR4) and
achieve migration of the anti-CD117-CAR-T cells to the BM. A
limitation of this study is that cyclophosphamide is genotoxic; this
approach will require more optimization to become nongenotoxic.
Nonetheless, this important finding highlights the general principle
that co-expression of trafficking receptors can enhance the targeting
of CAR-T cells to desired anatomic locations to augment the
effectiveness of targeted cell killing.

Although targeting HSCs using scFV-based CAR-T cells shows
promise, novel strategies for applying CAR-T cell therapy to non-
genotoxic conditioning for HSCTs were developed. For example, it
was recently shown that anti-HSPC directed CAR-T cells could be
generated using a ligand binding domain targeting the antigen
thrombopoietin (TPO) (62). These TPO-CAR-T cells engage the
myeloproliferative leukemia protein (MPL) receptor that possesses
an integral role in survival signaling, quiescence, and DNA repair of
both normal HSPCs and megakaryocytic AML cells. TPO is an ideal
target for HSPC-directed conditioning regimens due to its minimal
expression within the non-hematopoietic compartment. Zoine et al.
demonstrated in AML xenograft models that TPO-CAR-T cells are
cytotoxic against the MPL+ fraction of leukemia cells in the BM
compartment. Subsequent studies are needed to evaluate the
preclinical potential of scFV based CAR-T cells like these in the
context of HSCTs.

Similar to CAR-T cells, there has been a recent rise in the
development and investigation of bispecific T cell engagers (BiTEs).
BiTEs are a class of artificial bispecific mAbs that permit
simultaneous targeting of two different antigens, i.e. a tumor
antigen and a T cell antigen such as CD3. This design allows
BiTEs to redirect T cells toward tumor cells, and as such they are
predominantly being developed as anti-cancer therapeutics.
However, recently a CD34-CD3 BiTE was shown to achieve T-
cell-mediated depletion of CD34+ HSCs and CD34+ blasts from
AML patients (63). Subsequent application in humanized AML
xenograft models confirmed the in vivo efficacy of the CD34-
specific BiTE. Another BiTE that could be repurposed in the
context of a conditioning regimen would be a CD117-specifc
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BiTE that has been shown to induce selective T cell-mediated
depletion of CD117-expressing healthy HSPCs and residual AML
or MDS cells (64). Lastly, it was shown that a BiTE targeting Fms-
like tyrosine kinase 3 (FLT3), which has restricted expression to
HSCs, facilitates in vivo elimination of both normal HSPCs and
AML cells in a humanized mouse model (65). All these preliminary
studies highlight the promise for the application of CD34, CD117,
or FLT3-specific BiTEs in the context of HSCT conditioning.

However, CAR-T cells and BiTEs are not the only
nonconventional modalities being investigated for their potential
in non-genotoxic conditioning. A study by Breda et al. utilized lipid
nanoparticles (LNPs) functionally coupled to CD117 antibodies to
provide transient delivery of messenger RNA (mRNA) to HSPCs
(66). Not only did this CD117/LNP-platform permit in vivo HSC
engineering through effective delivery of prokaryotic site-specific
Cre recombinase, but it was also able to deliver pro-apoptotic p53
up-regulated modulator of apoptosis (PUMA) mRNA to deplete
mouse HSPCs in the BM niche. Although the levels of donor cell
engraftment following a whole BM transplant in CD117/LNP-
PUMA conditioned recipient mice were low, this conditioning
shows the promise for the use of LNPs as a platform for
delivering mRNA to either deplete the HSPC compartment in
preparation for HSCT with ex vivo genetically engineered HSPCs
or to directly in vivo engineer HSPCs residing in the BM niche.

All non-genotoxic conditioning platforms have their own set of
limitations though and LNP delivery systems are no exception.
Among the several drawbacks of LNPs is their low drug load
efficiency and the considerable gap in knowledge regarding their
long-term immunogenicity (67). Using LNPs to target niche
populations like HSPCs also creates complications due to the
need for stem cell harvest, culture, or mobilization depending on
the context of either in vivo or ex vivo mRNA delivery. Nonetheless,
these barriers should not be deterrents for the exploration of LNPs
in conditioning and gene therapy contexts. It is encouraging to see
that groups like Shi et al. are already optimizing these platforms to
allow for higher delivery to HSPCs (68).

Mobilization approaches

Another approach that merits discussion is the addition of
mobilizing agents into these conditioning regimens to enable long-
term engraftment and multilineage differentiation. Mobilization
agents like plerixafor (PX) are frequently used clinically to mobilize
HSPCs out of the BM niche as a source of cells prior to HSCT, but
there is now growing preclinical evidence demonstrating their
application in genotoxicity-free conditioning strategies. For example,
Omer-Javed et al. show ex vivo cultured HSPCs have rescued CXCR4
expression and a competitive migration advantage over PX mobilized
HSPCs for engraftment in a mouse model of hyper IgM syndrome
(69). More recently Ojeda-Perez et al. combined anti-CD117 and anti-
CD47 antibodies with PX to achieve effective HSPC depletion and
multilineage engraftment in wildtype and RAG27~ mice, but also
increase survival in PKD mice (70). Although both of these studies
offer extensive and promising preclinical evaluation, the use of PX as a
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conditioning therapy remains inconclusive in the limited clinical
literature that is available (71-73). Even though this approach is still
in early stages of development, it is an innovative alternative that
warrants continued investigation.

Targeted conditioning in clinical care
Antibody-based strategies in the clinic

The preclinical studies discussed in the former section were
instrumental in helping advance some of these novel mAb,
immunotoxin, and CAR-T cell conditioning approaches into clinical
testing. Out of the mAbs the humanized antibody JSP191 targeting
CD117, also known as briquilimab and formerly called AMG191, has
advanced the furthest in Jasper-sponsored phase I/II clinical trials. For
example, it has already been evaluated in more than 120 healthy
volunteers and patients with SCID or AML/MDS (clinicaltrials.gov
identifiers: NCT02963064 and NCT04429191). Although there are
limited updates regarding the status of these trials, the preliminary
reports of the SCID study do show initial clinical proof-of-concept
benefits of targeted single-agent JSP191 conditioning which enables
donor HSC engraftment and immune reconstitution (74, 75). In
addition to these studies testing JSP191 as a single agent, an
additional FA clinical trial is investigating JSP191 in combination
with anti-thymocyte globulin, cyclophosphamide, fludarabine, and
rituximab (clinicaltrials.gov identifiers: NCT04784052). As we
discussed in the introduction, depending on the clinical setting there
can be many benefits to the use of a multi-agent conditioning regimen.
Therefore, it is promising to see the testing of the inclusion of non-
genotoxic conditioning platforms like mAbs alongside these
established agents where they have the potential to augment
HSCT outcome.

ADC administration strategies have also progressed to clinical
trials in recent years. For example, Magenta Therapeutics opened
phase I/IT clinical trials in late 2021 to evaluate the safety, efficacy,
and pharmacokinetics/pharmacodynamics of targeted conditioning
using an anti-CD117-amanitin ADC named MGTA-117 ADC
(clinicaltrials.gov identifier: NCT05223699). MGTA-117 revealed in
preclinical studies that it can achieve effective depletion of CD117+
HSCs and leukemic blasts (76). However, the clinical studies were
conducted in patients with relapsed/refractory AML and MDS which is
notably a different transplant setting than the original indication of the
ADC. In early 2023, the phase I/II dose escalation trials were halted due
to pulmonary toxicity. This discontinuation is not indicative of a failure
of the antibody though since it was only tested in the context of
relapsed AML/MDS. Therefore, its safety and efficacy in the transplant
setting for which it was designed remains unknown.

Technologies to overcome persistence of
circulating antibodies

It should be noted MGTA-117 was engineered to lack
fragment crystallizable receptor (FcRn) binding activity, and in
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turn had a half-life that was approximately half of a non-modified
antibody (76). This strategy is used in an attempt to overcome one
of the prime limitations of mAb and ADC approaches for HSCT
conditioning, which is that any residual mAbs or ADCs in
circulation at the time of transplant may interfere with the
engraftment of donor HSCs (Figure 4). Other potential
strategies to achieve rapid ADC clearance and limit cytotoxicity
to incoming donor cells that are being tested preclinically include
the use of enzymatic cleavage of IgG antibodies or the direct
targeting of FcRn. For example, regarding enzymatic digestion of
IgG, IdeS is a proteinase derived from Streptococcus pyogenes that
is a cysteine endopeptidase with a high degree of substrate
specificity for IgG (77). Regarding the targeting of FcRn, this
strategy prevents IgG antibody recirculation and decreases the
systemic half-life. Both strategies decrease the circulating plasma
half-life of antibodies, and thereby decreases the effects of the
antibody on transplanted cells, which can potentially improve BM
engraftment following mAb or ADC conditioning.

Conclusions

Recent clinical successes have revealed the power and potential
of autologous HSC-directed gene therapy as a curative treatment
modality for a variety of malignant and nonmalignant hematopoietic
diseases. Even though these results are encouraging, the conventional
use of DNA-damaging, genotoxic conditioning agents prior to
transplant continues to limit broad clinical impact of HSCT gene
therapy. Conventional conditioning with irradiation and alkylating
chemotherapeutics is non-targeted and creates an increased risk of
sterility, infection, and the development of secondary malignancies.
There is no denying that there has been important progress in terms
of conditioning patients with intermediate doses of standard
radiation and chemotherapy agents or even by using RIT
compounds as an alternative to complete myeloablation. However,
the long-term pathophysiological implications of any cells that
survive exposure to genotoxic agents during these RIC regimens
remains unknown and its risk-benefit ratio still poses a challenge for
the applicability of HSC-targeted gene therapies for the treatment of
younger patients.

One alternative to avoid conventional conditioning is to
simply use direct in vivo gene therapy as opposed to ex vivo gene
therapy, and there is a recent trend in the field where this strategy
is already being tested in the clinic (78). Companies are also
adopting this transition, but even though this trend is promising,
ex vivo gene therapy stands at the forefront and will likely remain
relevant for many contexts where in vivo gene therapy will simply
not be applicable. For example, lentiviral gene therapy for
hemophilia A has proven to be successful in clinical trials but this
is a disease context in which in vivo gene therapy contexts would
likely induce inhibitors (79). Therefore, the development of non-
genotoxic conditioning regimens that selectively target HSPCs
continues to be a high-priority translational objective that will
remove the acute and long-term toxicities associated with
conventional conditioning,
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Within this review we have synthesized the current preclinical
and clinical advancements supporting the use of non-genotoxic
strategies in conditioning regimens prior to HSCT. These studies
serve as proof-of-concept that antigen-targeted mAbs, ADCs, and
immunotoxins can be used as efficacious BM niche-clearing agents
that deplete donor cells while preserving BM architecture and
permitting engraftment of gene-modified HSCs. Promising results
have even ushered in a new era investigating the use of T cell
redirection strategies with CARs and BiTEs within the context of
BM depletion. However, as the field of non-genotoxic conditioning
continues to advance, there are a variety of challenges that are likely
to manifest as made evident during Magenta Therapeutic’s clinical
trials for MGTA-117. Currently HSPC targets for non-genotoxic
conditioning like CD117 are based on the steady state expression
of receptors, but an important area of research should be
assessing how the expression of these targets and the stability of
selected immunotoxins like amanitin is altered within disease-
specific contexts. Another inherent challenge for non-genotoxic
conditioning is the persistence of circulating antibodies that have
the potential to interfere with incoming gene-modified HSCs at the
time of transplant. Within the field, Fc engineering has already been
successfully used as a method to decrease antibody half-life, and it is
exciting to witness the further investigation of other alternatives
including, but not limited to, the use of FcRn inhibitors and
antibody cleavage strategies. Although conventional conditioning
with chemoradiation remains the gold standard of our current
generation for autologous HSCT, based on the pioneering
discoveries in this review it is evident that targeted non-genotoxic
conditioning will ultimately expand the utility of this potentially
curative gene therapy platform to a wider range of patients in the
next generation.
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