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With the rapid advancement of nanotechnology, the application of
nanomedicine has become increasingly widespread, demonstrating remarkable
potential for highly precise targeting and efficacious drug delivery. Compared to
conventional drug delivery approaches, nanomedicine effectively addresses
issues such as nonspecific drug distribution and severe adverse effects,
significantly enhancing therapeutic efficacy through its targeted delivery
mechanisms. As an innovative drug delivery vehicle, liposomes exhibit
tremendous application potential owing to their outstanding biocompatibility,
extensive applicability, remarkable ability to improve drug stability and
bioavailability, precise targeting capabilities, membrane structures that facilitate
drug permeation, and high degree of tunability. In the field of chronic disease
management, liposomes serve as sophisticated vehicles for targeted and
controlled drug delivery, offering innovative therapeutic approaches for various
chronic conditions. Macrophages, which play a pivotal role in modulating
inflammatory responses and promoting tissue repair, have emerged as crucial
targets for alleviating inflammatory symptoms. Nevertheless, achieving precise
and efficient targeting of macrophages remains a significant challenge in current
research. This article systematically reviews recent advances in liposome-based
therapies for chronic diseases, including cardiovascular diseases, cancers,
chronic respiratory diseases (e.g., chronic obstructive pulmonary disease,
pulmonary fibrosis, and asthma), and metabolic disorders (e.g., diabetes), with
particular emphasis on the therapeutic potential of liposomes in modulating
macrophage activity. Furthermore, it summarizes and analyzes the major
challenges and obstacles currently faced in liposome research, providing novel
insights for future research directions and facilitating the translation of research
findings into clinical applications.
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1 Introduction

Chronic diseases (non-communicable diseases, NCDs) have
long courses and complex causes, involving the interaction of
genetic, environmental and behavioral factors. These diseases
mainly include cardiovascular diseases, malignant tumors, chronic
respiratory diseases (e.g., pulmonary fibrosis, chronic obstructive
pulmonary disease (COPD), and asthma), and metabolic disorders
(e.g., diabetes). Accounting for approximately 80% of all NCD-
related deaths, they represent the leading cause of global disability
and mortality (1, 2). The World Health Organization (WHO)
predicts that by 2030, the mortality rate of NCDs will account for
70% of the total global deaths (3). Moreover, the cumulative
economic losses from 2011 to 2030 are expected to reach 47
trillion US dollars (the above four categories account for 64%)
(4). The pathogenesis of these diseases is closely related to
macrophage dysfunction: abnormally activated macrophages in
cardiovascular diseases drive atherosclerosis (5); tumor-associated
macrophages in malignant tumors promote cancer progression and
metastasis (6); macrophages mediate chronic inflammation and
fibrosis in respiratory diseases (7); and they are directly involved in
insulin resistance in metabolic disorders occur (8). Therefore,
targeting the regulatory mechanism of macrophages will enable

Abbreviations: Non-communicable diseases, NCDs; Pulmonary fibrosis, PF;
Chronic obstructive pulmonary disease, COPD; World Health Organization,
WHO; Pathogen-associated molecular patterns, PAMPs; Damage-associated
molecular patterns, DAMPs; Programmed cell death protein 1, PD-1; Cluster
of Differentiation 47, CD47; Monocyte chemoattractant protein-1/C-C
chemokine receptor type 2, MCP-1/CCR2; Resolvin D1, RvD1; Signal
Regulatory Protein o, SIRPa; cyclic GMP-AMP Synthase-Stimulator of
Interferon Genes, cGAS-STING; Cancer stem cell, CSC; Interferon-gamma,
INF-y; Vascular Cell Adhesion Molecule 1, VCAM-1; Interleukin-1 beta, IL-10;
Toll-Like Receptor 4, TLR4; Tumor Necrosis Factor-alpha, TNF-o; C-C Motif
Chemokine Ligand 2, CCL2; Interleukin-6, IL-6; Cluster of Differentiation 206,
CD206; Arginase-1, Arg-1; Cluster of Differentiation 36, CD36; Nuclear factor
erythroid 2-related factor 2, Nrf2; Interleukin-10, IL-10; Transforming Growth
Factor-beta, TGF-B; Interleukin-4, IL-4; Interleukin-13, IL-13; Complement
activation-related pseudoallergy, CARPA; Pattern recognition receptors, PRRs;
Food and Drug Administration, FDA; Tumor-associated macrophages, TAMs;
Cardiovascular diseases, CVDs; myocardial infarction, MI; myocardial ischemia-
reperfusion injury, MIRI; Ischemia-reperfusion injury, IRI; MicroRNA-21, miR-
21; Atherosclerosis, AS; ATP - binding cassette transporter A1/G1, ABCA1/G1; 3
- hydroxybutyrate dehydrogenase 1, BDH1; Orosomucoid 1(ORMI; Ribosomal
protein S27 - like, RPS27L; Hyaluronic acid, HA; Nitric oxide, NO; Reactive
oxygen species, ROS; Vascular endothelial growth factor, VEGF;
Docosahexaenoic acid, DHA; Oxidized low-density lipoprotein, oxLDL;
Lipopolysaccharide, LPS; Immunogenic cell death, ICD; Tumor
microenvironment, TME; Tumor - associated antigens, TAAs; Photothermal
Therapy, PTT; Photodynamic therapy, PDT; Radiotherapy, RT; Doxorubicin,
DOX; Cancer stem cells, CSCs; Inducible nitric oxide synthase, iNOS; Metabolic
diseases, MDs; Type 2 diabetes, T2D; Non-alcoholic fatty liver disease, NAFLD;
Diabetes mellitus, DM.
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the development of innovative therapeutic interventions and
significantly alleviate the global health burden and socio-
economic pressure.

In the occurrence and development of chronic diseases,
macrophages, serving as the core effector cells of the innate
immune system and the “immune sentries” of the body’s
homeostasis, play a crucial triple regulatory role in inflammatory
responses, pathogen clearance, and tissue repair owing to their
unique polarization plasticity (9-12). They recognize pathogen-
associated molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs) through pattern recognition
receptors (PRRs), thereby initiating a precise dual regulatory
program: (1) pro-inflammatory M1-type macrophages secrete
TNF-0, IL-6 and CCL2, and generate nitric oxide (NO) via
inducible nitric oxide synthase (iNOS) to enhance pathogen
clearance ability; (2) reparative M2-type macrophages highly
express arginase-1 (Arg-1), cluster of differentiation 36 (CD36),
and nuclear factor erythroid 2-related factor 2 (Nrf2), secrete anti-
inflammatory factors such as IL-10 and TGF-f, and promote tissue
remodeling and fibrosis (13-17). This dynamic balance in M1/M2
polarization states constitutes the core mechanism through which
macrophages coordinate inflammation control, pathogen clearance
and tissue repair.

However, in chronic pathological environments (e.g., tumor
microenvironment), this balance is frequently disrupted. Notably,
DAMPs exhibit complex bidirectional effects: they can not only
initiate protective immune responses but may also, due to excessive
accumulation, exacerbate inflammation, reshape the
microenvironment, and accelerate disease progression (18) (19). In
tumors, infiltrated tumor-associated macrophages (TAMs) mainly
present a pro-tumor M2-like phenotype and drive tumor progression
by promoting angiogenesis, metastasis, immunosuppression, and
matrix remodeling (20) (21). The plasticity of macrophages
(including TAMs) between inflammation and repair, as well as
between promoting and resisting disease, and their core regulatory
roles make them highly attractive targets for therapeutic interventions
through reprogramming their polarization states.

Against this backdrop, the rapid development of
nanotechnology has pushed nanomaterials to the forefront of
biomedicine. Among them, liposomes, as the most mature and
clinically verified nanocarriers, have demonstrated unique
advantages in targeted therapy. Since Bangham et al. discovered
the phospholipid vesicle structure in 1965 (22), liposomes have
developed into biomimetic membrane delivery systems (as
evidenced by multiple U.S. Food and Drug Administration
(FDA)-approved formulations) (23, 24). The core features
include: (1) an amphiphilic phospholipid bilayer structure (25)
that enables hydrophobic drug incorporation into lipid
membranes while encapsulating hydrophilic drugs within aqueous
cores (26), achieving flexible adaptation to dual drug-loading
modalities; (2) multiple functional advantages including targeted
delivery capability (through surface engineering for lesion-specific
targeting) (27), excellent biocompatibility and biodegradability, low
toxicity and immunogenicity, as well as prolonged drug circulation
time and enhanced stability (28, 29). These characteristics establish
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liposomes as an ideal platform for regulating the pathological
microenvironment, with demonstrated applications in the
following areas: cardiovascular diseases—precisely delivering
therapeutics to plaque-resident macrophages to attenuate
inflammatory progression (27); oncotherapy—targeting TAMs to
reprogram M2 polarization and reverse immunosuppression (30);
pulmonary diseases—enhancing pulmonary tissue bioavailability
through alveolar macrophage-targeted sustained drug release (31);
and diabetic ulcers—modulating macrophage polarization to
promote wound healing (32).

Liposome-based nanotherapeutic strategies represent an
innovative intervention approach for the treatment of chronic
diseases by precisely regulating the balance of macrophage M1/
M2 polarization. Engineered liposomes achieve efficient delivery to
pathological sites through surface-modified targeting moieties (e.g.,
carbohydrates, peptides, antibodies, and proteins) and accurately
drive macrophage phenotype switching via loaded
immunomodulators. In cancer treatment, they promote M1l
polarization to enhance anti-tumor immunity; in cardiovascular
and respiratory diseases, they induce M2 polarization to accelerate
tissue repair; and in diabetes, they modulate the M1/M2 balance to
improve insulin sensitivity and facilitate wound healing. Given the
crucial role of macrophages in chronic inflammatory diseases, this
review systematically analyzes the application mechanisms of
liposomes in four major areas: cardiovascular diseases, malignant
tumors, chronic respiratory diseases, and metabolic disorders
(Figure 1). It critically discusses how liposome platforms leverage
macrophage biology to achieve targeted therapeutic effects, while
also outlining current challenges and future directions in the field,
providing new perspectives for advancing the clinical application of
liposome-based therapies in the management of chronic diseases.
Although this review aims to cover major chronic diseases, the more
extensive body of research in oncology is emphasized, reflecting
both the historical dominance and ongoing innovation of liposome
technology in the field of cancer therapy.

2 Cardiovascular diseases

Cardiovascular diseases (CVD) have become a major global
health burden (33-35). Although surgical operations are effective
for some patients, they carry inherent surgical risks (36-38). To
address these clinical challenges, liposome nanocarriers have been
developed as a promising therapeutic alternative (22, 39, 40). The
core therapeutic mechanism lies in precisely regulating the function
of macrophages - which is precisely the key pathogenic link of
cardiovascular diseases.

Myocardial infarction (MI) results from ischemic necrosis of
the myocardium due to coronary artery occlusion (41). However,
reperfusion therapy, as the cornerstone therapeutic strategy,
presents a paradoxical dilemma. While restoring blood flow is
essential, the reperfusion process itself precipitates a cascade of
pathological events, including reactive oxygen species (ROS) burst,
intracellular calcium overload, and maladaptive inflammatory
responses. These mechanisms collectively contribute to the
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demise of otherwise salvageable cardiomyocytes (termed
ischemia-reperfusion injury, IRI), with sustained inflammatory
activation serving as the central pathogenic driver (42, 43).
Consequently, effective modulation of inflammatory responses
remains a major therapeutic challenge in myocardial infarction
and reperfusion injury. Targeting the central pathological feature of
macrophage polarization imbalance, research groups have
investigated novel liposome-based delivery strategies. For
instance, Tan et al. (44) constructed platelet-mimicking liposomes
(PLP), which precisely delivered microRNA-21 (miR-21) to
circulating monocytes via membrane fusion, driving M2
polarization and improving cardiac function. This strategy is
minimally invasive and highly targeted, but it relies on the
overlap of monocyte recruitment timing and the window period
of the enhanced permeability and retention effect (EPR), which may
limit its clinical applicability. Dong et al. (45) developed spleen-
targeted liposomes (ST-MT@lipo2) to reduce inflammatory cell
migration by regulating the heart-spleen axis monocyte
chemoattractant protein-1/C-C chemokine receptor type 2 (MCP-
1/CCR2) pathway. However, the size-dependent targeting efficiency
of the nanoparticles cause inconsistent therapeutic effects, and the
heterogeneity of the spleen microenvironment may pose off-target
risks. Similarly, Cheng et al. (46) designed isogenic repair
macrophages (PS-c@M) to restore immune homeostasis by
synergistically inhibiting the STING pathway and repairing
mitochondrial function. Their advantage lies in low
immunogenicity and long-term retention characteristics, but the
complexity of the preparation process and high production costs
make it difficult to meet clinical demands. Additionally, Tan et al.
(47) adopted a synergistic strategy of transgenic macrophages
combined with CD47 antagonists, which can restore efferocytosis
and block the “do not eat me” signal. However, the potential
immunogenicity and long-term safety of gene editing have not
been fully verified. Weng et al. (48) developed a ROS-responsive
RvD1 delivery platform that achieves inflammation-targeted
controlled release through a biomimetic platelet membrane. The
challenge lies in the need to adapt the ROS response threshold to
different pathological gradients, and the biological half-life
limitation of RvDI still needs to be overcome. Despite these
strategies breaking through the limitations of insufficient targeting
and single-pathway regulation of traditional therapies, they are still
mired in three major translational quagmires. The mass production
crisis of complex carriers, the safety black hole of gene/biomimetic
materials, and the common predicament of dynamic pathological
response mismatch.

Given the central role of macrophages in infarct repair and their
dual value as therapeutic targets and drug delivery vehicles, Che
et al. (49) revealed an innovative mechanism for the uptake of
methotrexate liposomes (MTX-liposomes) by target cells, as a
process dependent on a precisely regulated neutrophil-mediated
cascade transport system. This study found that neutrophils carry
MTX-liposomes and undergo physiological changes, safely
releasing the nanocarriers into target macrophages through a
strictly controlled cell lysis process, thereby achieving precise drug
delivery and efficient utilization. This neutrophil-mediated delivery
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strategy exhibits remarkable adaptability and holds promise for
application in myocardial ischemia-reperfusion injury (MIRI)
models. Another groundbreaking study (50) demonstrated that
biomimetic neutrophil liposomes (Neu-Lipos) not only reduce the
number of proliferating macrophages but also significantly lower
the levels of key pro-inflammatory cytokines, thereby improving the
myocardial repair process. The strategy of inducing macrophage
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FIGURE 1

Schematic diagram of the molecular mechanisms by which engineered liposomes modulate macrophage polarization for the treatment of chronic
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polarization toward a regenerative phenotype has emerged as a
highly promising therapeutic approach for ameliorating post-
myocardial infarction remodeling. Also, miR-21 plays a pivotal
role in regulating macrophage polarization, Tan et al. (44)
developed a novel platelet membrane-coated nano-delivery
system. This system employs miR-21-loaded mesoporous silica
nanoparticles as the core, enveloped by a fusion of platelet
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membranes and cationic liposomes. The innovative design enables
specific targeting of macrophages in cardiac inflammatory sites,
releasing miR-21 for anti-inflammatory regulation. It effectively
protects cardiac function in mice with myocardial ischemia-
reperfusion injury and precisely modulates macrophage
polarization states.

Atherosclerosis (AS), a prevalent cardiovascular disorder, is
profoundly influenced by hemodynamic factors such as shear
stress and vascular bifurcation geometry (27). The pathological
process is characterized by a triad of key features, including
endothelial dysfunction, chronic inflammation, and lipid-rich
plaque formation (51-54). The progressive nature of AS
ultimately leads to luminal stenosis or complete occlusion,
resulting in compromised blood flow and subsequent ischemic
tissue damage in downstream vascular beds. Although the early
lesion microenvironment is more amenable to intervention (55, 56),
its asymptomatic and insidious nature causes diagnostic difficulties
and delays treatment (54, 57-59), urgently requiring early precise
diagnostic and therapeutic strategies. Traditional anti-
inflammatory therapies are limited by non-specific distribution,
poor water solubility, and dose toxicity (e.g., bleeding, kidney
damage) (60-63). While nanocarrier delivery systems show the
potential to address these limitations and achieve targeted lesion
treatment (64, 65).

In the field of macrophage-targeted therapy for atherosclerosis,
the lipid-mediated reprogramming strategy through multi-
dimensional mechanisms demonstrates breakthrough potential.
Dong et al. (66) developed HA-modified hybrid liposomes that
reverse M1-to-M2 macrophage polarization and promote lipid
metabolism via autophagy activation and CD36 downregulation,
thereby enhancing plaque stability. Separately, Zhang et al. (67)
designed a similar system for dual-targeting (plaque/macrophage)
delivery, demonstrating efficacy in mitigating endothelial
dysfunction and reprogramming macrophage phenotype to
attenuate atherosclerosis. For microenvironment regulation,
researchers have developed a targeted liposome delivery system
(68) that innovatively exploits macrophage metabolic pathways to
catalyze nitric oxide (NO) production. This system demonstrates
dual therapeutic mechanisms by mitigating endothelial cell
senescence and scavenging ROS, while simultaneously inhibiting
the VEGF signaling pathway to suppress pathological angiogenesis.
The integrated approach enables dynamic modulation of the plaque
microenvironment. In response to the problem of cholesterol
reverse transport, the targeted liposome developed by Shen et al.
(69) significantly promotes cholesterol efflux and effectively clears
ROS through drug synergy, simultaneously up-regulating the ATP-
binding cassette transporter A1/Gl (ABCA1/Gl) pathway and
inducing macrophage polarization to M2 type, thereby achieving
significant plaque clearance effects. While Yang et al. (70) pioneered
the macrophage membrane hybrid liposomes, which take a different
approach by regulating the BDH1/ORM1/RPS27L to form a
metabolic-inflammation-stress response network, inhibiting the
ferroptosis process, effectively blocking the positive feedback loop
of lipid peroxidation and inflammation. While these technological
advances uniformly exhibit key advantages including precise
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targeting capability, multifunctional therapeutic synergy, and
excellent biocompatibility, their clinical translation remains
hindered by challenges in complex carrier production processes.

Docosahexaenoic acid (DHA) demonstrates pleiotropic
therapeutic effects against atherosclerosis, particularly through its
potent anti-inflammatory, antioxidant, and antiproliferative activities
(71-76). Notably, this omega-3 fatty acid exhibits synergistic
potential with liposomal delivery systems, which preferentially
accumulate in plaque-resident macrophages. Chong et al.
demonstrated that DHA-loaded liposomes are efficiently
internalized by activated macrophages, triggering robust anti-
inflammatory and antioxidant responses while effectively
suppressing foam cell formation-a critical step in atherosclerotic
plaque progression (Figure 2) (77). Mechanistically, intravenously
administered DHA-liposomes exhibit selective homing to
macrophage-rich atherosclerotic lesions, where they promote
phenotypic reprogramming of these immune cells. Preclinical
studies suggest that intravenous DHA-liposome delivery represents
a pharmacologically superior approach compared to oral
administration, offering enhanced bioavailability with minimal
adverse effects (78). While these findings position liposomal DHA
as a promising therapeutic strategy, further clinical translation is
necessary to validate its efficacy and safety in human subjects. This
targeted delivery paradigm not only improves drug bioavailability but
also reduces systemic exposure, potentially overcoming the
limitations of conventional small-molecule therapies. The ability to
precisely modulate macrophage polarization through liposomal
delivery opens new avenues for immunomodulatory approaches in
cardiovascular disease management.

On the other hand, liposomes serve as versatile biomimetic
platforms that can be strategically engineered to emulate biological
membrane functions, thereby enabling innovative modulation of
macrophage behavior (79, 80). Wu et al. developed an innovative
apoptotic body-mimetic liposomal system that faithfully replicates
the natural targeting properties of apoptotic vesicles. This system
demonstrates remarkable precision in delivering anti-inflammatory
payloads to atherosclerotic macrophages, achieving triple
therapeutic benefits including inflammation modulation, plaque
stabilization, and potential application for inflammatory
comorbidities (81). Building on membrane-mimetic technology,
P-Lipo was created by Song et al. through an extrusion-based fusion
of conventional liposomes with platelet membranes (82). This
biohybrid system retains native platelet targeting capabilities
while gaining enhanced drug delivery functions. In vitro studies
using RAW264.7-derived foam cells demonstrated that P-Lipo
maintains multifunctional adhesion properties and exhibits
selective accumulation in atherosclerotic lesions. The platform’s
multivalent targeting capacity and biocompatibility enable effective
intervention in macrophage-driven atherosclerosis without
detectable toxicity, representing a significant advancement in both
therapeutic efficacy and safety profiles. Further innovating this
approach, Sha et al. developed macrophage membrane-cloaked
nanoparticles by enveloping liposomal cores with native
macrophage membranes (83). These biomimetic nanotherapeutics
operate through a competitive binding mechanism in vivo,
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FIGURE 2

Liposome-encapsulated DHA targeting plaques after intravenous administration, uptake by macrophages, and improvement of atherosclerosis (77).

effectively scavenging pathogenic molecules (ox-LDL and LPS) that
would normally be internalized by macrophages. This intervention
achieves dual therapeutic effects including substantial reduction in
foam cell formation (by up to 68% in murine models) and
significant suppression of pro-inflammatory cytokine expression.
The most advanced iteration of this technology, MP-QT-NP,
demonstrates unprecedented therapeutic potential through a
multi-modal mechanism (84). These biomimetic platforms
collectively represent a paradigm shift in atherosclerosis
treatment, offering targeted therapeutic strategies that address
multiple pathological pathways simultaneously. The successful
translation of these technologies could revolutionize clinical
management of atherosclerotic cardiovascular disease.

3 Cancer

Cancer remains one of the most complex and challenging diseases
in medical research, presenting ongoing therapeutic difficulties (85,
86). Liposomes have emerged as particularly promising drug delivery
systems in cancer therapy due to their unique phospholipid bilayer
structure, which provides exceptional drug encapsulation and delivery
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capabilities (87). These versatile nanocarriers can simultaneously
transport multiple therapeutic agents including chemotherapeutic
drugs (88-92), antigens (93-96), antibodies (97-99), and
immunomodulators (100-106), enabling precise and synergistic
therapeutic effects. Furthermore, liposomes demonstrate excellent
compatibility with physical treatment modalities such as
photothermal, photodynamic, and radiotherapy approaches,
significantly enhancing their therapeutic potential. Through physical
regulation mechanisms, liposomes allow precise control over their
stability and permeability, enabling spatiotemporal regulation of drug
release rate and locations. This controlled release ensures optimal drug
concentrations in tumor tissues while minimizing leakage into normal
tissues, thereby significantly improving drug bioavailability and
therapeutic outcomes.

3.1 Liposomal co-delivery of
immunomodulators for macrophage-based
cancer immunotherapy

Liposomes serve as intelligent platforms that integrate
chemotherapy and immunotherapy to modulate macrophages,
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Hypoxia-responsive HRB@LM system targets CD47/SIRPa signaling to synergistically activate macrophage-T cell antitumor immune cascades (112).

thereby generating synergistic therapeutic benefits. For instance, the
TSPLs system enhances lung targeting through the co-delivery of
paclitaxel and rSEC2 while activating T-cell subsets to reverse
immunosuppression (107). Similarly, a liposomal formulation
combining oxaliplatin and STING agonists promotes
immunogenic cell death (ICD), thereby enhancing antigen
presentation and T-cell infiltration (91). Furthermore, the
NPCD@ALN system significantly improves the therapeutic
efficacy against osteosarcoma by synergistically inducing
pyroptosis and ICD (108). The success of these strategies hinges
on the sophisticated integration of the EPR effect with active
targeting technologies to improve targeting accuracy.
Additionally, spatiotemporally controlled release enables
coordinated action between chemotherapeutic agents and
immunomodulators, ultimately activating antitumor immunity. It
is particularly noteworthy that such designs transcend the
limitations of conventional chemotherapy, elevating liposomes
from simple drug carriers to multifunctional regulators of the
tumor immune microenvironment.

Liposome technology has made breakthrough progress in the
field of antigen/antibody targeted delivery, demonstrating a
powerful ability to precisely regulate the tumor immune
microenvironment. In terms of targeting mechanisms, the bionic
liposomes (TSPLs) of 4T1 cancer cell membrane hybridization have
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achieved precise co-delivery of chemotherapy drugs and
immunomodulators through homologous targeting (107).
Meanwhile, the CAR-T exosome fusion system (Lip-CExo@PTX)
innovatively uses bispecific scFv to simultaneously target tumor
antigens and immune checkpoints (109). These designs ingeniously
leverage the natural targeting characteristics of biological systems,
organically integrating the passive targeting EPR effect with the
active targeting molecular recognition. In terms of immune
regulation, the synergistic use of STING agonist liposomes and
CD40 antibodies (110), as well as membrane fusion liposomes
(MFL) targeting apoptotic bodies (111), significantly enhanced
antigen presentation efficiency through spatiotemporal precise
immune stimulation. Particularly worthy of attention are the
designs of the nano-liposome-bacterial hybridization system
(Figure 3) (112) and the protease-responsive eLipo (113). The
former utilizes the biosynthetic ability of bacteria to achieve in
situ expression of antibodies, while the latter overcomes the
targeting barrier through microenvironmental response release. In
the treatment of immunologically “cold” tumors like microsatellite-
stable colorectal cancer (MSS-CRC), engineered cationic liposomes
simultaneously enhance RNA m6A methylation through FTO
protein inhibition and silence the CD47 immune checkpoint,
effectively driving M2-to-M1 TAM repolarization while boosting
macrophage phagocytic activity (114). Innovative “tail-flipped”
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nanoliposomes mimicking peroxidized phospholipids specifically
target SR-BI receptors on M2-TAMs to deliver STAT6 inhibitors,
effectively disrupting pre-metastatic niche formation (115).
Metabolic intervention strategies further expand the therapeutic
scope, exemplified by PEGylated liposomes co-delivering mannose
(glycolysis inhibitor) and levamisole (mitochondrial function
blocker) to synchronously modulate cancer cell and TAM
metabolism when combined with radiotherapy (116). These
results not only address the key issues of traditional therapies
such as poor targeting and high toxicity, but also achieve the
integration of “delivery and activation” through engineering
design, providing new ideas for tumor immunotherapy. However,
to achieve clinical translation, challenges such as vector stability,
large-scale production, and the precision of immune regulation still
need to be addressed. The future development directions may focus
on the optimization of intelligent response systems, the
development of multi-target collaborative delivery strategies, and
the establishment of individualized treatment plans, etc.

Liposome technology has made contribution to PD-1/PD-L1
immunotherapy, primarily through the optimization of delivery
strategies. ThioLipos developed by Shin et al. demonstrated
significant monotherapy effects in colon cancer models by
inhibiting FoxM1-mediated PD-L1 expression (117). This finding
suggests that targeting the upstream regulatory factors of PD-L1
may be more advantageous than direct blocking. The BLN
liposomes (118) demonstrated the significance of
microenvironment regulation by inducing calmodulin exposure
and macrophage polarization, and the NGR liposomes (105)
achieved the dual effects of vascular normalization and PD-L1
down-regulation. The combined use of FAK inhibitors with
liposomal doxorubicin (119) and the ozone-liposome enhanced
radiotherapy technology (120) both demonstrate that tumor
antigens produced by ICD can establish a self-reinforcing anti-
tumor immune cycle. It is worth noting that metabolic
reprogramming demonstrates unique value, which includes L-
arginine metabolism (121), tryptophan metabolism (122), and
iron metabolism (123). These studies suggest that future
immunotherapy may need to adopt a “multi-pronged” strategy:
blocking immune checkpoints, improving the tumor
microenvironment (TME), activating innate immunity and
reshaping the metabolic microenvironment at the same time. This
comprehensive intervention approach might offer a new
breakthrough in overcoming the current problem of drug
resistance in immunotherapy.

Liposomes have emerged as a key platform for overcoming
immunosuppression and enhancing anti-tumor immunity by
efficiently regulating the TME through various innovative
strategies as carriers of STING agonists. This system not only
achieves the synergistic delivery and controlled release of drugs
(91), but also directly reshapes the composition and function of the
immune microenvironment through ingenious design: optimizing
lipid composition to enhance lysosomal escape and type I interferon
production (124). Intelligent responsive liposomes (ultrasound
(125), pH (126) and enzyme responses (127) can achieve tumor
site-specific STING activation, significantly enhancing treatment
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specificity. Furthermore, through targeted modification and multi-
mechanism synergistic strategies, the liposome-STING agonist
system has demonstrated a powerful potential for precise
regulation of the TME. By integrating synergistic strategies such
as photodynamic therapy, ferroptosis induction and STING
activation (128) or exosome- liposome hybridization system
(129), multiple immunosuppressive links in the TME can be
targeted simultaneously, establishing a self-reinforcing anti-tumor
immune cycle. Mitochondria-directed liposomes, BQR@MLipo,
induce ferroptosis-specific HMGB1 release via DHODH
inactivation, accompanied by mtDNA leakage that activates the
cGAS-STING pathway, driving CD8" T cell infiltration (130). These
advancements highlight the significant value of STING-loaded
agonist liposomes in coordinating innate and adaptive immune
responses, addressing tumor heterogeneity, and reversing drug
resistance. Future research should focus on enhancing the clinical
translational ability of these complex systems and exploring their
precise application in the regulation of individualized
immune microenvironments.

3.2 Physically stimulated liposomes for
macrophage-based cancer immunotherapy

Liposomes have significantly advanced the development of
combined tumor immunotherapy strategies through the
integration of photothermal therapy (PTT) and immune
microenvironment regulation. A T-cell membrane-fused
liposomes (TMVL-I) and M1 macrophage-bacterial outer
membrane hybrid systems (RB@OL), overcome the
spatiotemporal limitations of conventional therapies by leveraging
biomimetic targeting and photothermal-immunological synergistic
mechanisms, enabling precise immune activation against both
primary and metastatic tumors (131, 132). On the other hand,
liposomes serve as a delivery platform for photodynamic therapy
(PDT), significantly expanding the therapeutic dimensions of PDT
through precise modulation of ICD and tumor microenvironment
remodeling. In melanoma treatment, a ¥3-T exosome-modified
Ce6-TEXO system enables targeted delivery mediated by CCR5/
PD-1. Under 660-700 nm light irradiation, it generates ROS and
synergizes with exosomal granzyme/perforin to induce ICD,
releasing DAMPs such as CRT/ATP, thereby effectively activating
CD8" T cells (Figure 4) (133). This strategy lies in the integration of
cell membrane-targeting technology with the immune-activating
properties of PDT, achieving a spatiotemporal synergistic
enhancement between exosomes and PDT. In the development of
in situ vaccines, an endoplasmic reticulum-targeting liposome (Par-
ICG-Lipo) fabricated using microfluidic technology to achieve high
drug loading, induces ER-specific ICD under near-infrared light
irradiation. Through the release of tumor-associated antigens
(TAAs) and DAMPs, this process effectively transforms the
tumor into an endogenous vaccine (134). This design overcomes
the limitations of traditional vaccine preparation and demonstrates
the unique advantages of PDT in initiating in situ immunity. To
address the drug-resistant microenvironment, the Pt/Ce6-LP (135)
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depletes GSH through Pt(IV) prodrug conversion, alleviates
hypoxia, and modulates ROS levels, thereby driving TAM
repolarization towards the M1 phenotype and establishing long-
term immune memory. This approach successfully triples the
efficacy of PDT, proving that metabolic modulation and
remodeling of the immune microenvironment can effectively
reverse tumor drug resistance (136).

Meanwhile, the synergistic therapy combining liposome and
radiotherapy (RT) is evolving from a traditional physical
radiosensitization strategy toward a new paradigm focused on
remodeling the immune microenvironment. Central to this shift
is leveraging the immunogenic effects of RT, achieved through
precisely engineered liposomal delivery systems that enable multi-
level modulation of the cancer-immunity cycle. During the immune
initiation phase, RT not only directly induces ICD in tumor cells but
also acts synergistically with intelligent lipid-based systems. For
instance, the Lipo-Ele@CuO, liposome developed by Jiang et al.
utilizes RT to trigger cuproptosis, markedly enhancing the release of
DAMPs, while simultaneously reprogramming immunosuppressive
TAMs, thereby establishing a potent “in situ vaccine” effect (137).
The Cold Exposure-SL liposome system leverages RT-induced burst
generation of peroxynitrite to enhance oxidative stress and suppress
myeloid-derived suppressor cells (MDSCs), thereby creating a
favorable microenvironment for immune activation (138). At the
effector phase of immunity, tailored strategies designed for specific
tumor microenvironments have demonstrated distinct advantages.
In glioblastoma, an MMP-2-responsive liposome (D@MLL) (139)
leverages RT-enhanced blood-brain barrier permeability to
synergistically promote M1-type TAM polarization, effectively
countering the immunosuppressive microenvironment.
Meanwhile, the IR-LND@Lip nano-adjuvant developed by Zhou
et al. achieves synergistic activation of the cGAS-STING pathway
under radiotherapy, converting immunologically “cold” tumors
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into “hot” phenotypes, while simultaneously blocking immune
checkpoint signals such as PD-L1 and TGF-B (140). Another
innovative approach by Suo et al. involved TAFL biomimetic
liposomes that exploit exosomal fusion properties to specifically
target cancer stem cells (CSCs), releasing aspirin to induce CSC
apoptosis and suppress stemness while utilizing photothermal
therapy to alleviate hypoxia and indirectly reduce M2-TAM-
derived immunosuppressive signals, thereby creating synergistic
RT-immune modulation (141).

These advances signify a fundamental transformation in the
role of liposome-based platforms in cancer therapy. Originally used
merely as radiosensitizers in radiotherapy or as simple carriers for
agents in photothermal/photodynamic therapy, they have now
evolved into integrated multifunctional systems capable of
simultaneously modulating tumor metabolism, the immune
microenvironment, and cell death. By incorporating strategies
such as spatiotemporal regulation of the STING pathway, these
multimodal systems successfully achieve cascaded conversion of
physical energy to chemical energy and then to biological effects.
This not only enhances local therapeutic ablation but also drives the
reprogramming of systemic anti-tumor immunity. This shift marks
a strategic transition in cancer treatment paradigms from
traditional “single-target inhibition” to a new era of “multimodal
intervention”. The core breakthrough lies in the precise temporal
control of DAMPs release and immune cell reprogramming,
establishing an integrated framework of that progresses from in
situ immune priming to microenvironment remodeling and finally
to a systemic anti-tumor response. Current research is advancing
the transition from laser-mediated local treatments to systemic
immunomodulatory strategies, offering novel avenues to
overcome the challenges in solid tumor therapy. Future efforts
should focus on achieving precise matching between
individualized drug delivery systems and radiotherapy regimens,
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as well as leveraging artificial intelligence and other technologies to
optimize spatiotemporal treatment parameters, ultimately enabling
comprehensive regulation from local irradiation to system-wide
immune control.

4 Respiratory diseases

Chronic respiratory diseases, accompanied by structural
abnormalities of the airways and lungs, pose a major global
public health challenge, with continuously rising burdens of
morbidity and mortality (142, 143). Among these, pulmonary
fibrosis is characterized by persistent activation of myofibroblasts,
excessive extracellular matrix deposition, and chronic inflammatory
cell infiltration (144-146). COPD is primarily manifested as
irreversible airflow limitation (147), and asthma is marked by
recurrent episodes and acute exacerbations (148). Approximately
4 million annual deaths are attributed to these diseases, resulting in
a substantial societal burden (149). In recent years, liposome-based
strategies targeting the regulation of macrophages have achieved a
series of advances in chronic respiratory disease treatment research.

In the field of pulmonary fibrosis, Peng et al. (150) and Cheng
et al. (151) collectively confirm the critical influence of liposomal
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physicochemical properties on delivery efficiency from the
perspective of liposome design. Liposomes constructed with
saturated neutral and anionic phospholipids exhibit high stability
and pulmonary permeability, When loaded with salvianolic acid B,
they achieve therapeutic effects by inhibiting inflammation and
imbalances in the coagulation-fibrinolysis system. In contrast, a
Gal3 siRNA-loaded liposome that intervenes in the pathological
crosstalk among endothelial cells, macrophages, and fibroblasts by
blocking the Gal3-TGFBR1/TLR4 signaling axis. This targeting
strategy provides a new paradigm for precise regulation of
intercellular communication based on optimized liposome
physicochemical properties. Notably, macrophage polarization
regulation has emerged as a core strategy in multiple research
efforts. The NAMPT drives M2 polarization through a non-
enzymatic activation of STAT6 signaling, while clodronate
liposome-mediated macrophage depletion and reconstitution
experiments revealed the central role of monocyte/macrophage
populations in fibrosis (152). Nin-lipo is a biomimetic liposome
that mechanically interferes with M2 polarization by mimicking
pulmonary surfactant and simultaneously reduces TGF-B1
secretion (Figure 5) (153). This dual physico-chemical and
biological regulatory mechanism highlights the multi-faceted
efficacy of liposome therapy. Furthermore, surface modifications
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Inhalable antibiotic nanoformulations for the treatment of chronic respiratory diseases (160).

of liposomes (e.g., mannose ligands (154)) can specifically enhance
macrophage uptake and modulate their polarization direction.
When combined with the localized high-concentration advantage
of inhalation administration (e.g., a 2 mg/kg nebulized dose
outperforming a 60 mg/kg oral dose (153)), future developments
may involve intelligent liposome platforms that integrate targeted
delivery, polarization regulation, and combination therapy (e.g.,
siRNA-small molecule co-delivery strategies (155)). Such
approaches could break through the current limitations of anti-
fibrotic therapy from the perspective of multi-cellular
interaction networks.

COPD not only severely impairs patients’ quality of life but also
significantly increases the risk of cardiovascular events, recurrent
respiratory failure, and susceptibility to lung cancer, thereby
contributing to elevated overall morbidity and mortality (156).
The pathological core of COPD involves macrophage polarization
imbalance and chronic airway inflammation, yet conventional drug
delivery systems struggle to precisely intervene in the immune
microenvironment of affected areas. In response to this challenge,
nanomedicine has emerged as a pioneering therapeutic strategy
through precision drug delivery systems that molecularly target
diseased tissues (157). It offers new avenues to enhance treatment
efficacy while reducing reliance on conventional drugs and their
associated adverse effects. Studies have shown that surface-modified
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(e.g., PEGylated) liposomes exhibit superior penetration capability
and epithelial uptake efficiency in the pathological mucus of COPD,
laying the foundation for targeting airway-resident macrophages
(158). PEG modification not only reduces mucoadhesion through
steric hindrance but may also influence macrophage phagocytic
behavior by modulating liposomal surface properties. Specifically,
PEGylated liposomes with a neutral charge and a nano-scale size
(40-65 nm) are more readily internalized by macrophages, thereby
enabling targeted delivery of anti-inflammatory drugs such as
beclomethasone dipropionate or genetic regulators like miRNA/
siRNA. This characteristic aligns well with the requirements for
oligonucleotide delivery proposed by Li et al. (159): liposome-
encapsulated silencing of M1 polarization-related genes (e.g., NF-
KB or TNF-at) may reverse the hyperactivation of pro-inflammatory
macrophages in COPD. Furthermore, antibiotic-loaded liposomes
(e.g., tobramycin/colistin) developed by Zhang et al. (Figure 6)
(160) not only target and eliminate pulmonary pathogens but may
also break the “infection-inflammation” vicious cycle by
modulating macrophage phagocytic function. Future directions
may explore multifunctional designs, such as surface conjugation
of CD206 antibodies to enhance M2 macrophage-specific targeting,
combined with co-delivery of IL-10 mRNA and antibacterial agents
to achieve dual “pro-repair/anti-infection” regulation. However,
caution is warranted regarding the potential long-term impact on
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macrophage functional homeostasis. This could be mitigated by
using biodegradable lipid materials to construct stimulus-
responsive release systems that activate drug delivery exclusively
within inflammatory microenvironments, thereby balancing
efficacy and safety.

As central effector cells in asthma-related inflammatory
regulation, macrophages contribute directly to airway
hyperresponsiveness and amplification of inflammation through
M2 polarization (161) or maturation defects (162). Over the past 15
years, significant advances in medical interventions have led to a
substantial decline in asthma incidence and mortality, with most
patients achieving adequate symptom control through conventional
treatment regimens (163). However, current therapies remain
insufficient for severe or refractory cases, where symptom
management continues to pose major challenges. This unmet
clinical need is driving the exploration of more precise and
effective treatment strategies. Through multifunctional liposomal
design, precise modulation of macrophage phenotypes has become
achievable: MBD2 siRNA-loaded liposomes suppress the M2
polarization program in macrophages, thereby blocking the
allergic inflammatory cascade at an upstream stage (161), while
MPLA/Dex hybrid nanoparticles actively target macrophages via
TLR4 ligands, simultaneously inhibiting pro-inflammatory
phenotypes and promoting IL-10-mediated immune tolerance
(164). Notably, intelligent modulation of liposome surface
properties (165) can optimize pulmonary retention and
transmembrane efficiency. For instance, highly hydrophilic
liposomes prolong budesonide retention in alveolar macrophages,
and cyclic peptide modifications targeting ICAM-1 (166) provide

Frontiers in Immunology

12

molecular guidance to enhance macrophage-specific uptake. Zhang
et al. successfully prepared cyclopeptide-modified lipid
nanoparticles (Pep-LNPs) that can precisely deliver siRNA to
human and mouse epithelial cells, significantly reducing the
expression of pro-inflammatory cytokines (TSLP), modulating
asthma-related signaling pathways, decreasing MUC5AC mucin
secretion, alleviating airway inflammation, lowering airway
hyperreactivity, and improving asthma symptoms (166).
Additionally, Yu et al. prepared PEG-coated PLGA-liposomes
(PEG-NP) modified with FcBP to enhance targeting recognition
capabilities (Figure 7) (167). Experiments showed that FcBP-NP@
Dex efficiently delivered Dex to macrophages, exhibited significant
anti-inflammatory effects, and demonstrated promising therapeutic
outcomes in asthmatic mice. These synergistic innovations suggest
that future systems may integrate “targeted delivery—phenotypic
reprogramming-long-term regulation” into a unified liposomal
platform. For example, co-delivery of MBD2 siRNA (161) and
GM-CSF (162) could simultaneously rectify maturation defects and
suppress aberrant polarization. Nonetheless, caution is warranted
regarding potential long-term impacts on innate immune function,
which may be mitigated through spatiotemporally controlled
release technologies to balance therapeutic efficacy and immune
homeostasis. In summary, although PF, COPD, and asthma exhibit
distinct pathological features, they share a central link in chronic
inflammation and dysregulation of the immune microenvironment,
where macrophages play a critical role. In light of this, adopting
multi-pronged strategies holds promise for fundamentally reversing
the immune imbalance underlying the progression of these diseases.
Although current research has only just unveiled the beginning of
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this field, it has already revealed the immense potential and
fascinating prospects of nanomedicine-based approaches in
tackling complex chronic respiratory diseases.

5 Diabetes mellitus

Metabolic disorders (MDs) represent a complex group of
interconnected pathological conditions characterized by
dysregulation in the metabolism of fundamental macronutrients
including carbohydrates, lipids, and proteins (168). This disease
spectrum encompasses a range of clinically significant conditions
such as obesity, type 2 diabetes mellitus (T2DM), non-alcoholic
fatty liver disease (NAFLD), hypertension, osteoporosis, chronic
kidney disease, and cardiovascular disorders, all of which share
common metabolic dysfunctions (169). The global impact of these
conditions is profound, with diabetes mellitus alone affecting more
than 415 million individuals worldwide, creating significant
challenges for healthcare systems and socioeconomic structures
(170). These disorders not only compromise patients’ quality of
life through multiple organ system involvement but also contribute
to substantial morbidity and mortality rates. The alarming
prevalence of MDs highlights the urgent need for enhanced
research efforts to develop more effective diagnostic, preventive,
and therapeutic approaches. Given the extensive clinical
implications and research significance, this section will
particularly focus on diabetes mellitus (DM) as a representative
metabolic disorder.

DM comprises a group of complex metabolic disorders
characterized by chronic hyperglycemia resulting from either
deficient insulin secretion, impaired insulin action, or both
pathological mechanisms (171, 172). The growing global
prevalence of diabetes presents a significant public health
challenge, with millions affected by persistent elevated blood
glucose levels (173, 174). These challenges have driven the urgent
need for developing more effective therapeutic agents and improved
drug delivery systems with enhanced precision and reduced adverse
effects. In this context, liposome-based delivery systems have
emerged as a promising approach, offering several potential
advantages including versatile applicability, targeted delivery
capabilities, and modifiable properties for optimized therapeutic
outcomes. Liposomes have demonstrated significant potential in
improving mitochondrial function and regulating blood glucose
metabolism in diabetic mice. Wu et al. developed Nano-MitoPBN, a
novel liposomal nanoparticle designed to enhance mitochondrial
performance and promote hepatic oxidative metabolism (175). This
formulation improves the efficiency of both glycolysis and the
tricarboxylic acid cycle, thereby accelerating glucose metabolism
and cellular uptake. In diabetic animal models, Nano-MitoPBN
effectively reduces peripheral blood glucose levels and improves
glucose tolerance, representing a promising therapeutic strategy for
diabetes management.

Liposomes show promise in enhancing wound healing in
diabetic patients. Diabetic wounds are particularly vulnerable to
bacterial infection due to persistent hyperglycemia and elevated
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ROS levels, which significantly impair the healing process (176).
These factors interact synergistically, worsening wound
progression. Conventional therapeutic approaches can provide
partial symptomatic relief through oral hypoglycemic agents for
blood glucose control, intravenous antibiotics for infection
management, and topical antiseptics for pathogen elimination.
However, these interventions often prove insufficient to fully
resolve the complexity of diabetic wounds (177). While these
approaches provide temporary symptom management, they
typically do not address the underlying mechanisms hindering
wound repair. Excessive inflammation is a key obstacle in diabetic
wound healing. To address this, Tang et al. designed red blood cell-
mimicking liposomes (RC-Lips) loaded with curcumin, which
neutralize bacterial toxin a-hemolysin, modulate M2 macrophage
polarization, and fine-tune the inflammatory response, thereby
accelerating diabetic wound healing (Figure 8) (178). Similarly,
Liu et al. co-encapsulated a near-infrared-II (NIR-II) photothermal
agent (IRC) and curcumin into thermosensitive liposomes, creating
the Cur-IRC@PCM nanoplatform for precise and effective
treatment of methicillin-resistant staphylococcus aureus (MRSA)-
infected diabetic wounds (179). Furthermore, Wei et al. engineered
Janus liposomes capable of reprogramming macrophage
polarization and stimulating tissue regeneration. Using single-cell
RNA sequencing and T-cell-deficient mouse models, they
demonstrated the critical role of ¥d T cells in M1/M2 macrophage
switching (180). In summary, these liposome-based strategies
represent a paradigm shift in diabetic wound management,
moving from conventional symptomatic treatment to multi-
mechanism-based synergistic intervention. Such platforms
simultaneously address hyperglycemia, bacterial infection,
oxidative stress, and immune dysregulation, demonstrating
notable therapeutic superiority over traditional approaches. In the
future, the efforts should focus on developing biomarker-responsive
smart liposomes, optimizing combination therapies targeting
multiple pathological pathways, and establishing standardized
protocols for clinical evaluation of nanotherapeutics in diabetic
wound healing.

6 Challenges and outlook

As key regulators of the innate immune system, macrophages
play a dual role in the pathogenesis of chronic diseases, such as
cardiovascular diseases, cancer, respiratory diseases, and diabetes.
Macrophages can not only promote inflammation and tissue
damage, but also participate in repair and homeostasis restoration
through phenotypic polarization (e.g., transition from pro-
inflammatory M1 to anti-inflammatory M2 phenotypes) (181,
182). Owing to the good biocompatibility (183), drug-loading
capacity (184), and potential for targeted modification (185),
liposomes have emerged as important tools for modulating
macrophage functions (Table 1). However, the clinical translation
of this strategy still faces multiple challenges, and future
breakthroughs will require technological innovation and
interdisciplinary collaboration.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1653642
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

10.3389/fimmu.2025.1653642

v ; 0% IO I
: | I AL
- ° -, A.f 5
@ (0] I - ° o ’ .
"4 ¢
o . adsorbed I . ° -~ -
(<]
| le - Anti- o
3 I flammatory °*
§ : factor o °
° ° ey
. R
F e secrete:i

Q RC-Lip

0; Macrophages (M0)

' o-Hemolysin

FIGURE 8

" b,
2T inflammation level JOOM

@ Curcumin

o
®

>

Q@IL-6 @ IL-1p O IL-10 O IL-4

® ' Macrophages (M1) * Macrophages (M2)

Mechanism of multimodal therapeutic hybrid liposomes in promoting wound healing in diabetes and infection (178).

The primary technical bottleneck lies in the limitations of
liposomal targeted delivery and stability. First, insufficient
targeting precision is a key constraint. Although surface
modifications can enhance directional delivery capabilities (186),
liposomes still struggle to efficiently recognize and specifically
accumulate in target macrophages within highly heterogeneous in
vivo environments (187), compromising treatment accuracy.
Second, liposomes are susceptible to adsorption by plasma
proteins, enzymatic degradation, and interference from blood
components during systemic circulation, leading to structural
integrity loss and premature drug leakage (188). This not only
reduces reprogramming efficiency but may also increase off-target
toxicity risks due to non-specific release.

Although surface modifications (e.g., antibodies, peptides) can
achieve macrophage-targeted delivery, the circulation time of
liposome systems is significantly compromised by rapid clearance
via the reticuloendothelial system (RES), resulting in predominant
accumulation in the liver/spleen and insufficient deposition at
disease sites (189). Therefore, there is an urgent need to improve
targeting precision. By the way, high shear stress in atherosclerotic
plaques hinders the stable retention of liposomes, while in
myocardial infarction models, rapid endothelial barrier repair
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before the peak of macrophage infiltration leads to low systemic
delivery efficiency (44). Furthermore, as carriers for RNA therapies
(e.g., miRNA), liposomes require substantial improvements in
loading and release efficiency, facing challenges such as
degradation by serum RNases and insufficient endosomal escape,
which hinder cytoplasmic delivery (190). Stimuli-responsive
liposomes (e.g., pH- or enzyme-sensitive types) exhibit poor
spatiotemporal control in complex pathological
microenvironments, often resulting in burst release or abnormal
drug retention (191).

In terms of immunogenicity, although liposomes generally
exhibit good biocompatibility (192), certain surface modifications
or encapsulated drugs may enhance their immunogenicity. This not
only facilitates rapid clearance by the immune system, reducing
therapeutic efficacy, but may also trigger adverse reactions such as
allergies, posing risks to patient safety. For instance, cationic
liposomes, while enhancing cellular uptake, may activate the
complement system and induce complement activation-related
pseudoallergy (CARPA), characterized by histamine release and
acute inflammation (193), presenting immunogenicity and toxicity
concerns. Systemic immune activation may lead to severe immune-
related adverse events, such as cytokine release syndrome (CRS),
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TABLE 1 Macrophage-targeting drugs used in preclinical or clinical studies for chronic diseases.

Diseases Lipsome Size (hm)
Cardio-vascular PLM-miR / miR-21 macrophage Repair and reprogram inflammatory (44)
macrophages
ST-MT@lipo2 207.4 + .81 MLT (melatonin) Monocytes and macrophages Reduce the migration of circulating (45)
inflammatory monocytes
PLP-RvD1 120.93 + 2.99 RvD1 Monocyte Enrich RvD1 and promote angiogenesis (48)
MTX-liposomes 111 + 46 MTX Inflamed tissue Locally reduce the levels of inflammatory (49)
cytokines
HA - ML@(H + R) NPs / Rosuvastatin, hydroxysaffron CD44, macrophage cell Reverse the macrophages from M1 to M2 (66)
yellow A membrane phenotype, down-regulate CD36
HA - ML@ES NPs 2163 + 4 Shikonin (SKN), elomumab CD44 Inhibit endothelial cell glycolysis, reprogram the | (67)
(Evol) macrophage phenotype to restore cholesterol
flow homeostasis
Osteopontin modified nano- / L-arginine (L-Arg), cerium- Macrophage Clear ROS and promote M2 polarization, (68)
liposomes (CZALO) zirconium oxide nanoparticles generates NO
(CZ NPs)
EGCG/Cys/UDCA@VHPK - 191.2 £ 5.81 Epigallocatechin gallate VCAM -1 Promotes the dissolution and excretion of (69)
Lipo (EGCQG), cysteine (Cys), cholesterol, eliminates ROS, up-regulate
ursodeoxycholic acid (UDCA) ABCA1/ABCGI to promote M2 polarization
HMLRPP NPs 197.6 + 5.12 Rosuvastatin (Pit), resveratrol Macrophage cell membrane, Inhibit ferroptosis of macrophages, reduce lipid (70)
(Res) CD44 accumulation and inflammation
DHA Liposomal 127 +7 Docosahexaenoic acid (DHA) Macrophage Phagocytosed by macrophages and exerts anti- (77)
inflammatory and antioxidant effects, promote
M2 polarization
Cancer TSPLs ~800 Recombinant Staphylococcal Lung targeting + tumor Increase CD4" and CD8" T cells, induces (107)
enterotoxin C2 (rSEC2) + homologous targeting apoptosis of tumor cells
paclitaxel
NPCD@ALN / Cisplatin + decitabine ALN Activate the caspase-3/GSDME pathway to (108)
induce pyroptosis of cells, trigger ICD
si/F@RL 82.6 FTO protein inhibitor + CD47 ~ Macrophage Inhibit the FTO protein and drive the (114)
siRNA repolarization of M2 to M1-type TAM
ThioLipos 192 Thiopoton (TST, a FOXM1 FOXM1/PD-L1 pathway Inhibit the FOXM1 transcription factor and (117)
inhibitor) down-regulate PD-L1
BLN 500-700 / Macrophages/immune Reprogram M2-like macrophages to an M1-like (118)
microenvironment phenotype
Axi/siRNA@NGR-Lipo 156.2 Axitinib + PD-L1 siRNA (105)

(Continued)
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TABLE 1 Continued

Diseases

Respiratory

Diabetes

Lipsome Size (nm) Drug Target Effect Refs.
Tumor vascular endothelial Targeting of tumor blood vessels, down-
cells/PD-L1 regulates PD-L1
O3_PFD@Liposome 156.5 Ozone (03) Tumor cells/immune Generates reactive oxygen species (ROS), (120)
microenvironment radiotherapy to induce ICD, and works in
synergy with PD-1 blocking to inhibit tumors
Oxaliplatin liposome 122 Oxaliplatin (ICD inducer) + cGAS-STING pathway/immune  Induced ICD, in synergy with STING agonists, (91)
ADU-S100 (STING agonist) microenvironment converts M2 to M1 phenotype
REV@SR780Fe@LEV-RS17 123.8 +2.8 SR780 (photosensitizer) + Fe** Tumor microenvironment/ Activates cGAS-STING pathway (128)
+ RS17 peptide c¢GAS-STING pathway
RB-OL@M 1264 + 3.8 Imiquimod (R837) + Black Tumor site (macrophage Phototherapy, reprogramming TAM (132)
phosphorus quantum dots homing)
(BPQDs)
TMVL-I 160 Indocyanine green PD-1/PD-L1 immune Blocks the PD-1/PD-L1 pathway, enhances the (136)
checkpoint ICD effect
Liposomes loaded with SAB 100-200 Salvia acid B (SAB) Lungs (inhalation delivery) Inhibit inflammation and regulate the (150)
coagulation-fibrinolytic system
Nin-lipo 198 Nintedanib Alveolar macrophages Polarize of M2 macrophages, inhibited TGF-B1 (153)
Man-lipo 234.13 £ 1.76 Cryptotanshinone (CTS) Macrophage Inhibit NLRP3/TGF-B1 pathway and regulate (154)
MMP-9/TIMP-1 balance
PEG-liposomes 40-65 Beclomethasone dipropionate Airway epithelium Penetrate sputum and internalize into epithelial (158)
(BDP) cells
Tobramycin/colistin / Tobramycin/colistin/amikacin Drug-resistant pathogen Enhance antibiotics and reduce their toxicity, (160)
nanoformulations/amikacin targeting multi-drug resistant pathogens
liposomes
Mbd2 siRNA loaded liposomes =/ Mbd2 siRNA Macrophage Reduce the expression of Mbd2 and inhibit the (161)
polarization of M2 macrophages
Pep-LNP 100-200 TSLP siRNA ICAM-1 receptor at the top of = Downregulate TSLP, alleviate inflammatory cell (166)
airway epithelial cells infiltration, IL-4/IL-13 secretion and mucus
production
FcBP-PEG-NP 115-145 Dexamethasone Neonatal Fc receptor Maintain mucus penetrability and enhance (167)
intracellular internalization/transepithelial
transport
Nano-MitoPBN 100 nm / Liver mitochondria Reduces oxidative stress, boosts ATP synthesis, (175)
protects mitochondria
RC-Lip 137.10 + 1.43 Curcumin o-hemolysin Downregulates IL-1, upregulates IL-10 (178)
Cur-IRC@PCM 110 Curcumin MRSA Photothermal therapy and Antibacterial activity (179)
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neurotoxicity, or autoimmune tissue damage (194, 195).
Furthermore, a more comprehensive evaluation of the long-term
safety and immunogenicity of liposome components and their
metabolites is required. Additionally, excessive uptake of liposomes
by macrophages may inhibit phagocytic function, impair host
antimicrobial defense, and result in immunosuppression risks.
Regarding long-term efficacy, data on the application of this
strategy for chronic disease treatment remain limited (196). It is
unclear whether the reprogrammed state can be sustained long-term
or what the enduring impact on disease progression might be.
Prolonged use may also lead to macrophage dysfunction and
potential side effects, significantly limiting its clinical translation
prospects. Moreover, there is a lack of long-term toxicity data on
liposome components and their metabolites, particularly a deficiency
in lifetime longitudinal safety studies.

There are also limitations in therapeutic mechanisms and
disease models, since macrophage polarization regulation exhibits
duality. For example, DHA- or miR-21-loaded liposomes induce
M2 polarization to alleviate inflammation, but excessive
suppression of the M1 phenotype in advanced plaques may
impair pathogen clearance capacity and increase the risk of
plaque rupture (197). Different lipid components yield
significantly divergent therapeutic effects: anionic liposomes
promote cholesterol efflux from foam cells (189) whereas cationic
liposomes instead enhance inflammatory cytokine secretion (198).
There are complexities in therapeutic strategies and clinical
applications. Due to inter-patient heterogeneity in tumors (199),
significant differences exist in the phenotype and distribution of
TAMs among different patients (200), across various tumor types,
and even within the same tumor. Universal targeting strategies may
therefore fail to effectively cover all relevant immunosuppressive
macrophage subsets. Furthermore, current regulatory strategies
remain relatively simplistic, leading to limited efficacy or
phenotypic reversal. Even if TAMs are successfully “reversed”
from the M2 to the M1 phenotype via liposomes, the highly
immunosuppressive tumor microenvironment may cause them to
revert to a pro-tumor phenotype, resulting in transient and
unsustainable therapeutic effects (201, 202). Additionally, single-
target therapeutic strategies face limitations in efficacy. Most
approaches focus on a single signaling pathway, but tumor
immunosuppression results from complex interactions within
multiple signaling networks. Blocking one pathway can easily be
bypassed by compensatory mechanisms, leading to limited efficacy
or drug resistance. Moreover, the complexity of combining these
strategies with existing clinical treatments further complicates
translation. While combination with chemotherapy, radiotherapy,
or immune checkpoint inhibitors is most likely, this makes clinical
trial design extremely complex (203) particularly in determining the
optimal dosing timing and sequence, while also increasing the risk
of unpredictable synergistic toxicities. A critical translational gap
exists between disease models and human pathophysiology: the
immune microenvironment in mouse atherosclerosis models (e.g.,
ApoE™) differs significantly from that of human plaques (204),
particularly in terms of macrophage subtype complexity. This
explains why anti-inflammatory strategies successful in animal
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models frequently fail in clinical trials. In myocardial ischemia-
reperfusion injury models, due to differences in cardiovascular
anatomy, the targeting efficiency of liposomes in large animals is
markedly lower than in rodents, limiting the predictive value of
preclinical data.

The core challenges in the clinical translation of liposomes lie in
the barriers associated with production, preparation, and quality
control. The manufacturing process for complex liposomes (e.g.,
those modified with antibodies, peptides, or exosomes) is highly
intricate, making it difficult to precisely control particle size,
encapsulation efficiency, and batch-to-batch consistency, which
severely restricts their industrial-scale production and clinical
applicability. Additionally, technologies such as directional
membrane protein integration pose challenges for GMP
compliance, and large-scale production entails high costs, limiting
scalability. Regulatory frameworks lag behind technological
advancements, and existing drug classification systems struggle to
clearly define multi-component or surface-engineered liposome
products, creating bottlenecks in the approval of combination
therapies. Traditional RECIST criteria may fail to accurately
capture delayed immune responses or changes in the immune
status of the TME (205), leading to misinterpretation of early
clinical trial results. Furthermore, the biological behavior of
liposomal drugs is complex. The timing, location, and mechanisms
of drug release remain poorly understood, and current analytical
methods are inadequate for distinguishing between released drugs
and those still encapsulated within the carrier, hindering precise
efficacy evaluation. The production costs of targeted liposome
therapies are significantly higher than those of conventional drugs,
and when combined with the long-term treatment requirements for
cardiovascular diseases, this imposes a substantial economic burden
on healthcare payment systems.

Despite numerous challenges, liposome-mediated macrophage
reprogramming holds broad clinical translation potential through
multidimensional strategy optimization and interdisciplinary
collaboration. First, it is essential to strengthen collaboration
between pharmaceutical researchers and clinicians to identify
ideal candidate drugs suitable for liposomal formulation
development that address clinical needs. Second, basic research
should focus on elucidating the physicochemical and biological
principles underlying liposome preparation and therapeutic
mechanisms. A deeper understanding of drug-lipid interactions,
molecular dynamics during liposome self-assembly, and liposome-
biofluid-cell interactions will facilitate the design of more efficient
and safer liposomal delivery systems. Clarifying the
pharmacokinetic behavior of liposomal drugs will provide critical
guidance for optimizing therapeutic strategies.

In terms of design, smart targeted liposomes can be developed
by utilizing targeting ligands such as aptamers (206), antibodies
(207) or peptides (208) to specifically recognize macrophage surface
markers, thereby enhancing targeting efficiency. Additionally,
designing liposomes that respond to the disease
microenvironment enables precise drug release (209). In terms of
preparation processes, microfluidic technology (210, 211) shows
increasingly broad prospects in liposome production. The
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introduction of techniques such as microfluidics (212) facilitates
precise control over particle size and morphology, enabling stable
and continuous large-scale manufacturing while ensuring batch
consistency through real-time quality monitoring. These advanced
manufacturing methods can significantly improve production
efficiency and reduce costs, but rigorous quality control protocols
must be established to ensure efficacy and safety standards.

In terms of therapeutic mechanism research and personalized
treatment, The integration of multi-omics technologies such as
transcriptomics (213), proteomics, and metabolomics (214),
enables systematic elucidation of key signaling pathways and
targets during the reprogramming process,. Single-cell analysis
techniques (215) should be applied to uncover macrophage subset
heterogeneity and differences in liposome intervention effects,
providing a basis for personalized treatment. Regarding safety and
efficacy, immune modulation strategies need to be developed, such
as optimizing liposome surface modifications (216) to reduce
immunogenicity or combining with immunomodulators to
enhance therapeutic outcomes. Concurrently, long-term clinical
follow-up studies should be conducted to systematically evaluate
efficacy and safety, while leveraging clinical big data and artificial
intelligence to optimize treatment regimens.

Finally, interdisciplinary collaboration should be strengthened
by integrating expertise from biomedical science, materials science,
chemical engineering, and other fields to drive technological
innovation. Through deep integration of industry, academia, and
research, the clinical translation and application of liposome
technology in macrophage reprogramming therapy can be
accelerated. Enhanced collaboration among pharmacology,
clinical medicine, materials science, and regulatory science will
facilitate the selection of ideal candidate drugs, optimization of
treatment strategies, and advancement of regulatory frameworks.
Establishing long-term follow-up study systems, combined with
clinical big data and artificial intelligence, will enable systematic
evaluation of efficacy and safety, ultimately achieving widespread
application of liposome-mediated macrophage regulation therapy
in the treatment of chronic diseases.

Looking ahead, overcoming these challenges requires a
multifaceted approach. Strengthening collaboration between
pharmaceutical researchers and clinical physicians is crucial.
While pharmaceutical researchers focus on developing novel
liposome formulations, clinicians possess deeper insights into
patients’ actual needs and treatment responses. By working
together, they can identify the optimal candidate drugs that meet
clinical demands, ensuring liposome therapies are better aligned
with real-world treatment scenarios.
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