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With the rapid advancement of nanotechnology, the application of

nanomedicine has become increasingly widespread, demonstrating remarkable

potential for highly precise targeting and efficacious drug delivery. Compared to

conventional drug delivery approaches, nanomedicine effectively addresses

issues such as nonspecific drug distribution and severe adverse effects,

significantly enhancing therapeutic efficacy through its targeted delivery

mechanisms. As an innovative drug delivery vehicle, liposomes exhibit

tremendous application potential owing to their outstanding biocompatibility,

extensive applicability, remarkable ability to improve drug stability and

bioavailability, precise targeting capabilities, membrane structures that facilitate

drug permeation, and high degree of tunability. In the field of chronic disease

management, liposomes serve as sophisticated vehicles for targeted and

controlled drug delivery, offering innovative therapeutic approaches for various

chronic conditions. Macrophages, which play a pivotal role in modulating

inflammatory responses and promoting tissue repair, have emerged as crucial

targets for alleviating inflammatory symptoms. Nevertheless, achieving precise

and efficient targeting of macrophages remains a significant challenge in current

research. This article systematically reviews recent advances in liposome-based

therapies for chronic diseases, including cardiovascular diseases, cancers,

chronic respiratory diseases (e.g., chronic obstructive pulmonary disease,

pulmonary fibrosis, and asthma), and metabolic disorders (e.g., diabetes), with

particular emphasis on the therapeutic potential of liposomes in modulating

macrophage activity. Furthermore, it summarizes and analyzes the major

challenges and obstacles currently faced in liposome research, providing novel

insights for future research directions and facilitating the translation of research

findings into clinical applications.
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1 Introduction

Chronic diseases (non-communicable diseases, NCDs) have

long courses and complex causes, involving the interaction of

genetic, environmental and behavioral factors. These diseases

mainly include cardiovascular diseases, malignant tumors, chronic

respiratory diseases (e.g., pulmonary fibrosis, chronic obstructive

pulmonary disease (COPD), and asthma), and metabolic disorders

(e.g., diabetes). Accounting for approximately 80% of all NCD-

related deaths, they represent the leading cause of global disability

and mortality (1, 2). The World Health Organization (WHO)

predicts that by 2030, the mortality rate of NCDs will account for

70% of the total global deaths (3). Moreover, the cumulative

economic losses from 2011 to 2030 are expected to reach 47

trillion US dollars (the above four categories account for 64%)

(4). The pathogenesis of these diseases is closely related to

macrophage dysfunction: abnormally activated macrophages in

cardiovascular diseases drive atherosclerosis (5); tumor-associated

macrophages in malignant tumors promote cancer progression and

metastasis (6); macrophages mediate chronic inflammation and

fibrosis in respiratory diseases (7); and they are directly involved in

insulin resistance in metabolic disorders occur (8). Therefore,

targeting the regulatory mechanism of macrophages will enable
Abbreviations: Non-communicable diseases, NCDs; Pulmonary fibrosis, PF;

Chronic obstructive pulmonary disease, COPD; World Health Organization,

WHO; Pathogen-associated molecular patterns, PAMPs; Damage-associated

molecular patterns, DAMPs; Programmed cell death protein 1, PD-1; Cluster

of Differentiation 47, CD47; Monocyte chemoattractant protein-1/C-C

chemokine receptor type 2, MCP-1/CCR2; Resolvin D1, RvD1; Signal

Regulatory Protein a, SIRPa; cyclic GMP-AMP Synthase-Stimulator of

Interferon Genes, cGAS-STING; Cancer stem cell, CSC; Interferon-gamma,

INF-g; Vascular Cell Adhesion Molecule 1, VCAM-1; Interleukin-1 beta, IL-1b;

Toll-Like Receptor 4, TLR4; Tumor Necrosis Factor-alpha, TNF-a; C-C Motif

Chemokine Ligand 2, CCL2; Interleukin-6, IL-6; Cluster of Differentiation 206,

CD206; Arginase-1, Arg-1; Cluster of Differentiation 36, CD36; Nuclear factor

erythroid 2-related factor 2, Nrf2; Interleukin-10, IL-10; Transforming Growth

Factor-beta, TGF-b; Interleukin-4, IL-4; Interleukin-13, IL-13; Complement

activation-related pseudoallergy, CARPA; Pattern recognition receptors, PRRs;

Food and Drug Administration, FDA; Tumor-associated macrophages, TAMs;

Cardiovascular diseases, CVDs; myocardial infarction, MI; myocardial ischemia-

reperfusion injury, MIRI; Ischemia-reperfusion injury, IRI; MicroRNA-21, miR-

21; Atherosclerosis, AS; ATP - binding cassette transporter A1/G1, ABCA1/G1; 3

- hydroxybutyrate dehydrogenase 1, BDH1; Orosomucoid 1(ORM1; Ribosomal

protein S27 – like, RPS27L; Hyaluronic acid, HA; Nitric oxide, NO; Reactive

oxygen species, ROS; Vascular endothelial growth factor, VEGF;

Docosahexaenoic acid, DHA; Oxidized low-density lipoprotein, oxLDL;

Lipopolysaccharide, LPS; Immunogenic cel l death, ICD; Tumor

microenvironment, TME; Tumor - associated antigens, TAAs; Photothermal

Therapy, PTT; Photodynamic therapy, PDT; Radiotherapy, RT; Doxorubicin,

DOX; Cancer stem cells, CSCs; Inducible nitric oxide synthase, iNOS; Metabolic

diseases, MDs; Type 2 diabetes, T2D; Non-alcoholic fatty liver disease, NAFLD;

Diabetes mellitus, DM.
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the development of innovative therapeutic interventions and

significantly alleviate the global health burden and socio-

economic pressure.

In the occurrence and development of chronic diseases,

macrophages, serving as the core effector cells of the innate

immune system and the “immune sentries” of the body’s

homeostasis, play a crucial triple regulatory role in inflammatory

responses, pathogen clearance, and tissue repair owing to their

unique polarization plasticity (9–12). They recognize pathogen-

associated molecular patterns (PAMPs) and damage-associated

molecular patterns (DAMPs) through pattern recognition

receptors (PRRs), thereby initiating a precise dual regulatory

program: (1) pro-inflammatory M1-type macrophages secrete

TNF-a, IL-6 and CCL2, and generate nitric oxide (NO) via

inducible nitric oxide synthase (iNOS) to enhance pathogen

clearance ability; (2) reparative M2-type macrophages highly

express arginase-1 (Arg-1), cluster of differentiation 36 (CD36),

and nuclear factor erythroid 2-related factor 2 (Nrf2), secrete anti-

inflammatory factors such as IL-10 and TGF-b, and promote tissue

remodeling and fibrosis (13–17). This dynamic balance in M1/M2

polarization states constitutes the core mechanism through which

macrophages coordinate inflammation control, pathogen clearance

and tissue repair.

However, in chronic pathological environments (e.g., tumor

microenvironment), this balance is frequently disrupted. Notably,

DAMPs exhibit complex bidirectional effects: they can not only

initiate protective immune responses but may also, due to excessive

accumulat ion, exacerbate inflammation, reshape the

microenvironment, and accelerate disease progression (18) (19). In

tumors, infiltrated tumor-associated macrophages (TAMs) mainly

present a pro-tumor M2-like phenotype and drive tumor progression

by promoting angiogenesis, metastasis, immunosuppression, and

matrix remodeling (20) (21). The plasticity of macrophages

(including TAMs) between inflammation and repair, as well as

between promoting and resisting disease, and their core regulatory

roles make them highly attractive targets for therapeutic interventions

through reprogramming their polarization states.

Against this backdrop, the rapid development of

nanotechnology has pushed nanomaterials to the forefront of

biomedicine. Among them, liposomes, as the most mature and

clinically verified nanocarriers, have demonstrated unique

advantages in targeted therapy. Since Bangham et al. discovered

the phospholipid vesicle structure in 1965 (22), liposomes have

developed into biomimetic membrane delivery systems (as

evidenced by multiple U.S. Food and Drug Administration

(FDA)-approved formulations) (23, 24). The core features

include: (1) an amphiphilic phospholipid bilayer structure (25)

that enables hydrophobic drug incorporation into lipid

membranes while encapsulating hydrophilic drugs within aqueous

cores (26), achieving flexible adaptation to dual drug-loading

modalities; (2) multiple functional advantages including targeted

delivery capability (through surface engineering for lesion-specific

targeting) (27), excellent biocompatibility and biodegradability, low

toxicity and immunogenicity, as well as prolonged drug circulation

time and enhanced stability (28, 29). These characteristics establish
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liposomes as an ideal platform for regulating the pathological

microenvironment, with demonstrated applications in the

following areas: cardiovascular diseases—precisely delivering

therapeutics to plaque-resident macrophages to attenuate

inflammatory progression (27); oncotherapy—targeting TAMs to

reprogram M2 polarization and reverse immunosuppression (30);

pulmonary diseases—enhancing pulmonary tissue bioavailability

through alveolar macrophage-targeted sustained drug release (31);

and diabetic ulcers—modulating macrophage polarization to

promote wound healing (32).

Liposome-based nanotherapeutic strategies represent an

innovative intervention approach for the treatment of chronic

diseases by precisely regulating the balance of macrophage M1/

M2 polarization. Engineered liposomes achieve efficient delivery to

pathological sites through surface-modified targeting moieties (e.g.,

carbohydrates, peptides, antibodies, and proteins) and accurately

d r ive macrophage phenotype sw i t ch ing v i a loaded

immunomodulators. In cancer treatment, they promote M1

polarization to enhance anti-tumor immunity; in cardiovascular

and respiratory diseases, they induce M2 polarization to accelerate

tissue repair; and in diabetes, they modulate the M1/M2 balance to

improve insulin sensitivity and facilitate wound healing. Given the

crucial role of macrophages in chronic inflammatory diseases, this

review systematically analyzes the application mechanisms of

liposomes in four major areas: cardiovascular diseases, malignant

tumors, chronic respiratory diseases, and metabolic disorders

(Figure 1). It critically discusses how liposome platforms leverage

macrophage biology to achieve targeted therapeutic effects, while

also outlining current challenges and future directions in the field,

providing new perspectives for advancing the clinical application of

liposome-based therapies in the management of chronic diseases.

Although this review aims to cover major chronic diseases, the more

extensive body of research in oncology is emphasized, reflecting

both the historical dominance and ongoing innovation of liposome

technology in the field of cancer therapy.
2 Cardiovascular diseases

Cardiovascular diseases (CVD) have become a major global

health burden (33–35). Although surgical operations are effective

for some patients, they carry inherent surgical risks (36–38). To

address these clinical challenges, liposome nanocarriers have been

developed as a promising therapeutic alternative (22, 39, 40). The

core therapeutic mechanism lies in precisely regulating the function

of macrophages - which is precisely the key pathogenic link of

cardiovascular diseases.

Myocardial infarction (MI) results from ischemic necrosis of

the myocardium due to coronary artery occlusion (41). However,

reperfusion therapy, as the cornerstone therapeutic strategy,

presents a paradoxical dilemma. While restoring blood flow is

essential, the reperfusion process itself precipitates a cascade of

pathological events, including reactive oxygen species (ROS) burst,

intracellular calcium overload, and maladaptive inflammatory

responses. These mechanisms collectively contribute to the
Frontiers in Immunology 03
demise of otherwise salvageable cardiomyocytes (termed

ischemia-reperfusion injury, IRI), with sustained inflammatory

activation serving as the central pathogenic driver (42, 43).

Consequently, effective modulation of inflammatory responses

remains a major therapeutic challenge in myocardial infarction

and reperfusion injury. Targeting the central pathological feature of

macrophage polarization imbalance, research groups have

investigated novel liposome-based delivery strategies. For

instance, Tan et al. (44) constructed platelet-mimicking liposomes

(PLP), which precisely delivered microRNA-21 (miR-21) to

circulating monocytes via membrane fusion, driving M2

polarization and improving cardiac function. This strategy is

minimally invasive and highly targeted, but it relies on the

overlap of monocyte recruitment timing and the window period

of the enhanced permeability and retention effect (EPR), which may

limit its clinical applicability. Dong et al. (45) developed spleen-

targeted liposomes (ST-MT@lipo2) to reduce inflammatory cell

migration by regulating the heart-spleen axis monocyte

chemoattractant protein-1/C-C chemokine receptor type 2 (MCP-

1/CCR2) pathway. However, the size-dependent targeting efficiency

of the nanoparticles cause inconsistent therapeutic effects, and the

heterogeneity of the spleen microenvironment may pose off-target

risks. Similarly, Cheng et al. (46) designed isogenic repair

macrophages (PS-c@M) to restore immune homeostasis by

synergistically inhibiting the STING pathway and repairing

mitochondrial funct ion. Their advantage l ies in low

immunogenicity and long-term retention characteristics, but the

complexity of the preparation process and high production costs

make it difficult to meet clinical demands. Additionally, Tan et al.

(47) adopted a synergistic strategy of transgenic macrophages

combined with CD47 antagonists, which can restore efferocytosis

and block the “do not eat me” signal. However, the potential

immunogenicity and long-term safety of gene editing have not

been fully verified. Weng et al. (48) developed a ROS-responsive

RvD1 delivery platform that achieves inflammation-targeted

controlled release through a biomimetic platelet membrane. The

challenge lies in the need to adapt the ROS response threshold to

different pathological gradients, and the biological half-life

limitation of RvD1 still needs to be overcome. Despite these

strategies breaking through the limitations of insufficient targeting

and single-pathway regulation of traditional therapies, they are still

mired in three major translational quagmires. The mass production

crisis of complex carriers, the safety black hole of gene/biomimetic

materials, and the common predicament of dynamic pathological

response mismatch.

Given the central role of macrophages in infarct repair and their

dual value as therapeutic targets and drug delivery vehicles, Che

et al. (49) revealed an innovative mechanism for the uptake of

methotrexate liposomes (MTX-liposomes) by target cells, as a

process dependent on a precisely regulated neutrophil-mediated

cascade transport system. This study found that neutrophils carry

MTX-liposomes and undergo physiological changes, safely

releasing the nanocarriers into target macrophages through a

strictly controlled cell lysis process, thereby achieving precise drug

delivery and efficient utilization. This neutrophil-mediated delivery
frontiersin.org
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strategy exhibits remarkable adaptability and holds promise for

application in myocardial ischemia-reperfusion injury (MIRI)

models. Another groundbreaking study (50) demonstrated that

biomimetic neutrophil liposomes (Neu-Lipos) not only reduce the

number of proliferating macrophages but also significantly lower

the levels of key pro-inflammatory cytokines, thereby improving the

myocardial repair process. The strategy of inducing macrophage
Frontiers in Immunology 04
polarization toward a regenerative phenotype has emerged as a

highly promising therapeutic approach for ameliorating post-

myocardial infarction remodeling. Also, miR-21 plays a pivotal

role in regulating macrophage polarization, Tan et al. (44)

developed a novel platelet membrane-coated nano-delivery

system. This system employs miR-21-loaded mesoporous silica

nanoparticles as the core, enveloped by a fusion of platelet
FIGURE 1

Schematic diagram of the molecular mechanisms by which engineered liposomes modulate macrophage polarization for the treatment of chronic
diseases. Promotion of M1 Polarization (Right Panel): Liposomes drive macrophages toward a pro-inflammatory, anti-tumor M1 phenotype. Activated
M1 macrophages upregulate the expression of IL-1b, TNF-a, IL-6, iNOS (producing NO), and ROS through pathways such as NF-kB, mediating tissue
damage and tumor apoptosis. Concurrently, they secrete CCL2 and IL-6 and upregulate VCAM-1, thereby inhibiting angiogenesis and recruiting
additional immune cells. Promotion of M2 Polarization (Left Panel): Liposomes drive macrophages toward an anti-inflammatory and pro-repair M2
phenotype. Activated M2 macrophages exert multiple functions including inflammation suppression (via IL-10, TGF-b, IL-4, IL-13), phagocytosis of
damaged cells (mediated by CD36, IL-10, TGF-b), promotion of cell proliferation (via IL-10, TGF-b, CD36, IL-4, IL-13), matrix remodeling (through IL-
10, TGF-b, IL-4, IL-13), reduction of allergic responses (by IL-10, IL-4, IL-13), anti-fibrotic effects (via TGF-b inhibition), and antibacterial/anti-
infection activities (mediated by TNF-a, IL-1b, IL-6). Additionally, the M2 phenotype facilitates physiological angiogenesis through VEGF-mediated
mechanisms. PD-1, Programmed cell death protein 1; CD47, Cluster of Differentiation 47; SIRPa, Signal Regulatory Protein a; cGAS-STING, cyclic
GMP-AMP Synthase-Stimulator of Interferon Genes; INF-g, Interferon-gamma; LPS, Lipopolysaccharide; VCAM-1, Vascular Cell Adhesion Molecule 1;
IL-1b, Interleukin-1 beta; TLR4, Toll-Like Receptor 4; ROS, Reactive Oxygen Species; iNOS, inducible Nitric Oxide Synthase; TNF-a, Tumor Necrosis
Factor-alpha; CCL2, C-C Motif Chemokine Ligand 2; IL-6, Interleukin-6; CD206, Cluster of Differentiation 206; CD36, Cluster of Differentiation 36;
IL-10, Interleukin-10; TGF-b, Transforming Growth Factor-beta; IL-4, Interleukin-4; IL-13, Interleukin-13; oxLDL, oxidized Low-Density Lipoprotein;
VEGF, Vascular Endothelial Growth Factor.
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membranes and cationic liposomes. The innovative design enables

specific targeting of macrophages in cardiac inflammatory sites,

releasing miR-21 for anti-inflammatory regulation. It effectively

protects cardiac function in mice with myocardial ischemia-

reperfusion injury and precisely modulates macrophage

polarization states.

Atherosclerosis (AS), a prevalent cardiovascular disorder, is

profoundly influenced by hemodynamic factors such as shear

stress and vascular bifurcation geometry (27). The pathological

process is characterized by a triad of key features, including

endothelial dysfunction, chronic inflammation, and lipid-rich

plaque formation (51–54). The progressive nature of AS

ultimately leads to luminal stenosis or complete occlusion,

resulting in compromised blood flow and subsequent ischemic

tissue damage in downstream vascular beds. Although the early

lesion microenvironment is more amenable to intervention (55, 56),

its asymptomatic and insidious nature causes diagnostic difficulties

and delays treatment (54, 57–59), urgently requiring early precise

diagnostic and therapeutic strategies. Traditional anti-

inflammatory therapies are limited by non-specific distribution,

poor water solubility, and dose toxicity (e.g., bleeding, kidney

damage) (60–63). While nanocarrier delivery systems show the

potential to address these limitations and achieve targeted lesion

treatment (64, 65).

In the field of macrophage-targeted therapy for atherosclerosis,

the lipid-mediated reprogramming strategy through multi-

dimensional mechanisms demonstrates breakthrough potential.

Dong et al. (66) developed HA-modified hybrid liposomes that

reverse M1-to-M2 macrophage polarization and promote lipid

metabolism via autophagy activation and CD36 downregulation,

thereby enhancing plaque stability. Separately, Zhang et al. (67)

designed a similar system for dual-targeting (plaque/macrophage)

delivery, demonstrating efficacy in mitigating endothelial

dysfunction and reprogramming macrophage phenotype to

attenuate atherosclerosis. For microenvironment regulation,

researchers have developed a targeted liposome delivery system

(68) that innovatively exploits macrophage metabolic pathways to

catalyze nitric oxide (NO) production. This system demonstrates

dual therapeutic mechanisms by mitigating endothelial cell

senescence and scavenging ROS, while simultaneously inhibiting

the VEGF signaling pathway to suppress pathological angiogenesis.

The integrated approach enables dynamic modulation of the plaque

microenvironment. In response to the problem of cholesterol

reverse transport, the targeted liposome developed by Shen et al.

(69) significantly promotes cholesterol efflux and effectively clears

ROS through drug synergy, simultaneously up-regulating the ATP-

binding cassette transporter A1/G1 (ABCA1/G1) pathway and

inducing macrophage polarization to M2 type, thereby achieving

significant plaque clearance effects. While Yang et al. (70) pioneered

the macrophage membrane hybrid liposomes, which take a different

approach by regulating the BDH1/ORM1/RPS27L to form a

metabolic-inflammation-stress response network, inhibiting the

ferroptosis process, effectively blocking the positive feedback loop

of lipid peroxidation and inflammation. While these technological

advances uniformly exhibit key advantages including precise
Frontiers in Immunology 05
targeting capability, multifunctional therapeutic synergy, and

excellent biocompatibility, their clinical translation remains

hindered by challenges in complex carrier production processes.

Docosahexaenoic acid (DHA) demonstrates pleiotropic

therapeutic effects against atherosclerosis, particularly through its

potent anti-inflammatory, antioxidant, and antiproliferative activities

(71–76). Notably, this omega-3 fatty acid exhibits synergistic

potential with liposomal delivery systems, which preferentially

accumulate in plaque-resident macrophages. Chong et al.

demonstrated that DHA-loaded liposomes are efficiently

internalized by activated macrophages, triggering robust anti-

inflammatory and antioxidant responses while effectively

suppressing foam cell formation-a critical step in atherosclerotic

plaque progression (Figure 2) (77). Mechanistically, intravenously

administered DHA-liposomes exhibit selective homing to

macrophage-rich atherosclerotic lesions, where they promote

phenotypic reprogramming of these immune cells. Preclinical

studies suggest that intravenous DHA-liposome delivery represents

a pharmacologically superior approach compared to oral

administration, offering enhanced bioavailability with minimal

adverse effects (78). While these findings position liposomal DHA

as a promising therapeutic strategy, further clinical translation is

necessary to validate its efficacy and safety in human subjects. This

targeted delivery paradigm not only improves drug bioavailability but

also reduces systemic exposure, potentially overcoming the

limitations of conventional small-molecule therapies. The ability to

precisely modulate macrophage polarization through liposomal

delivery opens new avenues for immunomodulatory approaches in

cardiovascular disease management.

On the other hand, liposomes serve as versatile biomimetic

platforms that can be strategically engineered to emulate biological

membrane functions, thereby enabling innovative modulation of

macrophage behavior (79, 80). Wu et al. developed an innovative

apoptotic body-mimetic liposomal system that faithfully replicates

the natural targeting properties of apoptotic vesicles. This system

demonstrates remarkable precision in delivering anti-inflammatory

payloads to atherosclerotic macrophages, achieving triple

therapeutic benefits including inflammation modulation, plaque

stabilization, and potential application for inflammatory

comorbidities (81). Building on membrane-mimetic technology,

P-Lipo was created by Song et al. through an extrusion-based fusion

of conventional liposomes with platelet membranes (82). This

biohybrid system retains native platelet targeting capabilities

while gaining enhanced drug delivery functions. In vitro studies

using RAW264.7-derived foam cells demonstrated that P-Lipo

maintains multifunctional adhesion properties and exhibits

selective accumulation in atherosclerotic lesions. The platform’s

multivalent targeting capacity and biocompatibility enable effective

intervention in macrophage-driven atherosclerosis without

detectable toxicity, representing a significant advancement in both

therapeutic efficacy and safety profiles. Further innovating this

approach, Sha et al. developed macrophage membrane-cloaked

nanoparticles by enveloping liposomal cores with native

macrophage membranes (83). These biomimetic nanotherapeutics

operate through a competitive binding mechanism in vivo,
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effectively scavenging pathogenic molecules (ox-LDL and LPS) that

would normally be internalized by macrophages. This intervention

achieves dual therapeutic effects including substantial reduction in

foam cell formation (by up to 68% in murine models) and

significant suppression of pro-inflammatory cytokine expression.

The most advanced iteration of this technology, MP-QT-NP,

demonstrates unprecedented therapeutic potential through a

multi-modal mechanism (84). These biomimetic platforms

collectively represent a paradigm shift in atherosclerosis

treatment, offering targeted therapeutic strategies that address

multiple pathological pathways simultaneously. The successful

translation of these technologies could revolutionize clinical

management of atherosclerotic cardiovascular disease.
3 Cancer

Cancer remains one of the most complex and challenging diseases

in medical research, presenting ongoing therapeutic difficulties (85,

86). Liposomes have emerged as particularly promising drug delivery

systems in cancer therapy due to their unique phospholipid bilayer

structure, which provides exceptional drug encapsulation and delivery
Frontiers in Immunology 06
capabilities (87). These versatile nanocarriers can simultaneously

transport multiple therapeutic agents including chemotherapeutic

drugs (88–92), antigens (93–96), antibodies (97–99), and

immunomodulators (100–106), enabling precise and synergistic

therapeutic effects. Furthermore, liposomes demonstrate excellent

compatibility with physical treatment modalities such as

photothermal, photodynamic, and radiotherapy approaches,

significantly enhancing their therapeutic potential. Through physical

regulation mechanisms, liposomes allow precise control over their

stability and permeability, enabling spatiotemporal regulation of drug

release rate and locations. This controlled release ensures optimal drug

concentrations in tumor tissues while minimizing leakage into normal

tissues, thereby significantly improving drug bioavailability and

therapeutic outcomes.
3.1 Liposomal co-delivery of
immunomodulators for macrophage-based
cancer immunotherapy

Liposomes serve as intelligent platforms that integrate

chemotherapy and immunotherapy to modulate macrophages,
FIGURE 2

Liposome-encapsulated DHA targeting plaques after intravenous administration, uptake by macrophages, and improvement of atherosclerosis (77).
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thereby generating synergistic therapeutic benefits. For instance, the

TSPLs system enhances lung targeting through the co-delivery of

paclitaxel and rSEC2 while activating T-cell subsets to reverse

immunosuppression (107). Similarly, a liposomal formulation

combining oxal iplat in and STING agonists promotes

immunogenic cell death (ICD), thereby enhancing antigen

presentation and T-cell infiltration (91). Furthermore, the

NPCD@ALN system significantly improves the therapeutic

efficacy against osteosarcoma by synergistically inducing

pyroptosis and ICD (108). The success of these strategies hinges

on the sophisticated integration of the EPR effect with active

targeting technologies to improve targeting accuracy.

Additionally, spatiotemporally controlled release enables

coordinated action between chemotherapeutic agents and

immunomodulators, ultimately activating antitumor immunity. It

is particularly noteworthy that such designs transcend the

limitations of conventional chemotherapy, elevating liposomes

from simple drug carriers to multifunctional regulators of the

tumor immune microenvironment.

Liposome technology has made breakthrough progress in the

field of antigen/antibody targeted delivery, demonstrating a

powerful ability to precisely regulate the tumor immune

microenvironment. In terms of targeting mechanisms, the bionic

liposomes (TSPLs) of 4T1 cancer cell membrane hybridization have
Frontiers in Immunology 07
achieved precise co-delivery of chemotherapy drugs and

immunomodulators through homologous targeting (107).

Meanwhile, the CAR-T exosome fusion system (Lip-CExo@PTX)

innovatively uses bispecific scFv to simultaneously target tumor

antigens and immune checkpoints (109). These designs ingeniously

leverage the natural targeting characteristics of biological systems,

organically integrating the passive targeting EPR effect with the

active targeting molecular recognition. In terms of immune

regulation, the synergistic use of STING agonist liposomes and

CD40 antibodies (110), as well as membrane fusion liposomes

(MFL) targeting apoptotic bodies (111), significantly enhanced

antigen presentation efficiency through spatiotemporal precise

immune stimulation. Particularly worthy of attention are the

designs of the nano-liposome-bacterial hybridization system

(Figure 3) (112) and the protease-responsive eLipo (113). The

former utilizes the biosynthetic ability of bacteria to achieve in

situ expression of antibodies, while the latter overcomes the

targeting barrier through microenvironmental response release. In

the treatment of immunologically “cold” tumors like microsatellite-

stable colorectal cancer (MSS-CRC), engineered cationic liposomes

simultaneously enhance RNA m6A methylation through FTO

protein inhibition and silence the CD47 immune checkpoint,

effectively driving M2-to-M1 TAM repolarization while boosting

macrophage phagocytic activity (114). Innovative “tail-flipped”
FIGURE 3

Hypoxia-responsive HRB@LM system targets CD47/SIRPa signaling to synergistically activate macrophage-T cell antitumor immune cascades (112).
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nanoliposomes mimicking peroxidized phospholipids specifically

target SR-B1 receptors on M2-TAMs to deliver STAT6 inhibitors,

effectively disrupting pre-metastatic niche formation (115).

Metabolic intervention strategies further expand the therapeutic

scope, exemplified by PEGylated liposomes co-delivering mannose

(glycolysis inhibitor) and levamisole (mitochondrial function

blocker) to synchronously modulate cancer cell and TAM

metabolism when combined with radiotherapy (116). These

results not only address the key issues of traditional therapies

such as poor targeting and high toxicity, but also achieve the

integration of “delivery and activation” through engineering

design, providing new ideas for tumor immunotherapy. However,

to achieve clinical translation, challenges such as vector stability,

large-scale production, and the precision of immune regulation still

need to be addressed. The future development directions may focus

on the optimization of intelligent response systems, the

development of multi-target collaborative delivery strategies, and

the establishment of individualized treatment plans, etc.

Liposome technology has made contribution to PD-1/PD-L1

immunotherapy, primarily through the optimization of delivery

strategies. ThioLipos developed by Shin et al. demonstrated

significant monotherapy effects in colon cancer models by

inhibiting FoxM1-mediated PD-L1 expression (117). This finding

suggests that targeting the upstream regulatory factors of PD-L1

may be more advantageous than direct blocking. The BLN

l ipo somes ( 118 ) demons t r a t ed th e s i gn ifi c ance o f

microenvironment regulation by inducing calmodulin exposure

and macrophage polarization, and the NGR liposomes (105)

achieved the dual effects of vascular normalization and PD-L1

down-regulation. The combined use of FAK inhibitors with

liposomal doxorubicin (119) and the ozone-liposome enhanced

radiotherapy technology (120) both demonstrate that tumor

antigens produced by ICD can establish a self-reinforcing anti-

tumor immune cycle. It is worth noting that metabolic

reprogramming demonstrates unique value, which includes L-

arginine metabolism (121), tryptophan metabolism (122), and

iron metabolism (123). These studies suggest that future

immunotherapy may need to adopt a “multi-pronged” strategy:

blocking immune checkpoints , improving the tumor

microenvironment (TME), activating innate immunity and

reshaping the metabolic microenvironment at the same time. This

comprehensive intervention approach might offer a new

breakthrough in overcoming the current problem of drug

resistance in immunotherapy.

Liposomes have emerged as a key platform for overcoming

immunosuppression and enhancing anti-tumor immunity by

efficiently regulating the TME through various innovative

strategies as carriers of STING agonists. This system not only

achieves the synergistic delivery and controlled release of drugs

(91), but also directly reshapes the composition and function of the

immune microenvironment through ingenious design: optimizing

lipid composition to enhance lysosomal escape and type I interferon

production (124). Intelligent responsive liposomes (ultrasound

(125), pH (126) and enzyme responses (127) can achieve tumor

site-specific STING activation, significantly enhancing treatment
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specificity. Furthermore, through targeted modification and multi-

mechanism synergistic strategies, the liposome-STING agonist

system has demonstrated a powerful potential for precise

regulation of the TME. By integrating synergistic strategies such

as photodynamic therapy, ferroptosis induction and STING

activation (128) or exosome- liposome hybridization system

(129), multiple immunosuppressive links in the TME can be

targeted simultaneously, establishing a self-reinforcing anti-tumor

immune cycle. Mitochondria-directed liposomes, BQR@MLipo,

induce ferroptosis-specific HMGB1 release via DHODH

inactivation, accompanied by mtDNA leakage that activates the

cGAS-STING pathway, driving CD8+ T cell infiltration (130). These

advancements highlight the significant value of STING-loaded

agonist liposomes in coordinating innate and adaptive immune

responses, addressing tumor heterogeneity, and reversing drug

resistance. Future research should focus on enhancing the clinical

translational ability of these complex systems and exploring their

precise application in the regulation of individualized

immune microenvironments.
3.2 Physically stimulated liposomes for
macrophage-based cancer immunotherapy

Liposomes have significantly advanced the development of

combined tumor immunotherapy strategies through the

integration of photothermal therapy (PTT) and immune

microenvironment regulation. A T-cell membrane-fused

liposomes (TMVL-I) and M1 macrophage-bacterial outer

membrane hybr id sys tems (RB@OL) , overcome the

spatiotemporal limitations of conventional therapies by leveraging

biomimetic targeting and photothermal-immunological synergistic

mechanisms, enabling precise immune activation against both

primary and metastatic tumors (131, 132). On the other hand,

liposomes serve as a delivery platform for photodynamic therapy

(PDT), significantly expanding the therapeutic dimensions of PDT

through precise modulation of ICD and tumor microenvironment

remodeling. In melanoma treatment, a gd-T exosome-modified

Ce6-TEXO system enables targeted delivery mediated by CCR5/

PD-1. Under 660–700 nm light irradiation, it generates ROS and

synergizes with exosomal granzyme/perforin to induce ICD,

releasing DAMPs such as CRT/ATP, thereby effectively activating

CD8+ T cells (Figure 4) (133). This strategy lies in the integration of

cell membrane-targeting technology with the immune-activating

properties of PDT, achieving a spatiotemporal synergistic

enhancement between exosomes and PDT. In the development of

in situ vaccines, an endoplasmic reticulum-targeting liposome (Par-

ICG-Lipo) fabricated using microfluidic technology to achieve high

drug loading, induces ER-specific ICD under near-infrared light

irradiation. Through the release of tumor-associated antigens

(TAAs) and DAMPs, this process effectively transforms the

tumor into an endogenous vaccine (134). This design overcomes

the limitations of traditional vaccine preparation and demonstrates

the unique advantages of PDT in initiating in situ immunity. To

address the drug-resistant microenvironment, the Pt/Ce6-LP (135)
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depletes GSH through Pt(IV) prodrug conversion, alleviates

hypoxia, and modulates ROS levels, thereby driving TAM

repolarization towards the M1 phenotype and establishing long-

term immune memory. This approach successfully triples the

efficacy of PDT, proving that metabolic modulation and

remodeling of the immune microenvironment can effectively

reverse tumor drug resistance (136).

Meanwhile, the synergistic therapy combining liposome and

radiotherapy (RT) is evolving from a traditional physical

radiosensitization strategy toward a new paradigm focused on

remodeling the immune microenvironment. Central to this shift

is leveraging the immunogenic effects of RT, achieved through

precisely engineered liposomal delivery systems that enable multi-

level modulation of the cancer-immunity cycle. During the immune

initiation phase, RT not only directly induces ICD in tumor cells but

also acts synergistically with intelligent lipid-based systems. For

instance, the Lipo-Ele@CuO2 liposome developed by Jiang et al.

utilizes RT to trigger cuproptosis, markedly enhancing the release of

DAMPs, while simultaneously reprogramming immunosuppressive

TAMs, thereby establishing a potent “in situ vaccine” effect (137).

The Cold Exposure-SL liposome system leverages RT-induced burst

generation of peroxynitrite to enhance oxidative stress and suppress

myeloid-derived suppressor cells (MDSCs), thereby creating a

favorable microenvironment for immune activation (138). At the

effector phase of immunity, tailored strategies designed for specific

tumor microenvironments have demonstrated distinct advantages.

In glioblastoma, an MMP-2-responsive liposome (D@MLL) (139)

leverages RT-enhanced blood-brain barrier permeability to

synergistically promote M1-type TAM polarization, effectively

countering the immunosuppressive microenvironment.

Meanwhile, the IR-LND@Lip nano-adjuvant developed by Zhou

et al. achieves synergistic activation of the cGAS-STING pathway

under radiotherapy, converting immunologically “cold” tumors
Frontiers in Immunology 09
into “hot” phenotypes, while simultaneously blocking immune

checkpoint signals such as PD-L1 and TGF-b (140). Another

innovative approach by Suo et al. involved TAFL biomimetic

liposomes that exploit exosomal fusion properties to specifically

target cancer stem cells (CSCs), releasing aspirin to induce CSC

apoptosis and suppress stemness while utilizing photothermal

therapy to alleviate hypoxia and indirectly reduce M2-TAM-

derived immunosuppressive signals, thereby creating synergistic

RT-immune modulation (141).

These advances signify a fundamental transformation in the

role of liposome-based platforms in cancer therapy. Originally used

merely as radiosensitizers in radiotherapy or as simple carriers for

agents in photothermal/photodynamic therapy, they have now

evolved into integrated multifunctional systems capable of

simultaneously modulating tumor metabolism, the immune

microenvironment, and cell death. By incorporating strategies

such as spatiotemporal regulation of the STING pathway, these

multimodal systems successfully achieve cascaded conversion of

physical energy to chemical energy and then to biological effects.

This not only enhances local therapeutic ablation but also drives the

reprogramming of systemic anti-tumor immunity. This shift marks

a strategic transition in cancer treatment paradigms from

traditional “single-target inhibition” to a new era of “multimodal

intervention”. The core breakthrough lies in the precise temporal

control of DAMPs release and immune cell reprogramming,

establishing an integrated framework of that progresses from in

situ immune priming to microenvironment remodeling and finally

to a systemic anti-tumor response. Current research is advancing

the transition from laser-mediated local treatments to systemic

immunomodulatory strategies, offering novel avenues to

overcome the challenges in solid tumor therapy. Future efforts

should focus on achieving precise matching between

individualized drug delivery systems and radiotherapy regimens,
FIGURE 4

Schematic diagram of photobiological immunotherapy for melanoma based on the fusion of gd-T exosomes and Ce6 liposomes (133).
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as well as leveraging artificial intelligence and other technologies to

optimize spatiotemporal treatment parameters, ultimately enabling

comprehensive regulation from local irradiation to system-wide

immune control.
4 Respiratory diseases

Chronic respiratory diseases, accompanied by structural

abnormalities of the airways and lungs, pose a major global

public health challenge, with continuously rising burdens of

morbidity and mortality (142, 143). Among these, pulmonary

fibrosis is characterized by persistent activation of myofibroblasts,

excessive extracellular matrix deposition, and chronic inflammatory

cell infiltration (144–146). COPD is primarily manifested as

irreversible airflow limitation (147), and asthma is marked by

recurrent episodes and acute exacerbations (148). Approximately

4 million annual deaths are attributed to these diseases, resulting in

a substantial societal burden (149). In recent years, liposome-based

strategies targeting the regulation of macrophages have achieved a

series of advances in chronic respiratory disease treatment research.

In the field of pulmonary fibrosis, Peng et al. (150) and Cheng

et al. (151) collectively confirm the critical influence of liposomal
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physicochemical properties on delivery efficiency from the

perspective of liposome design. Liposomes constructed with

saturated neutral and anionic phospholipids exhibit high stability

and pulmonary permeability, When loaded with salvianolic acid B,

they achieve therapeutic effects by inhibiting inflammation and

imbalances in the coagulation-fibrinolysis system. In contrast, a

Gal3 siRNA-loaded liposome that intervenes in the pathological

crosstalk among endothelial cells, macrophages, and fibroblasts by

blocking the Gal3-TGFBR1/TLR4 signaling axis. This targeting

strategy provides a new paradigm for precise regulation of

intercellular communication based on optimized liposome

physicochemical properties. Notably, macrophage polarization

regulation has emerged as a core strategy in multiple research

efforts. The NAMPT drives M2 polarization through a non-

enzymatic activation of STAT6 signaling, while clodronate

liposome-mediated macrophage depletion and reconstitution

experiments revealed the central role of monocyte/macrophage

populations in fibrosis (152). Nin-lipo is a biomimetic liposome

that mechanically interferes with M2 polarization by mimicking

pulmonary surfactant and simultaneously reduces TGF-b1
secretion (Figure 5) (153). This dual physico-chemical and

biological regulatory mechanism highlights the multi-faceted

efficacy of liposome therapy. Furthermore, surface modifications
FIGURE 5

Macrophage involvement in PF therapy. Impact of Nin-lipo on M2 macrophage polarization and lung fibrosis (153).
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of liposomes (e.g., mannose ligands (154)) can specifically enhance

macrophage uptake and modulate their polarization direction.

When combined with the localized high-concentration advantage

of inhalation administration (e.g., a 2 mg/kg nebulized dose

outperforming a 60 mg/kg oral dose (153)), future developments

may involve intelligent liposome platforms that integrate targeted

delivery, polarization regulation, and combination therapy (e.g.,

siRNA-small molecule co-delivery strategies (155)). Such

approaches could break through the current limitations of anti-

fibrotic therapy from the perspective of multi-cellular

interaction networks.

COPD not only severely impairs patients’ quality of life but also

significantly increases the risk of cardiovascular events, recurrent

respiratory failure, and susceptibility to lung cancer, thereby

contributing to elevated overall morbidity and mortality (156).

The pathological core of COPD involves macrophage polarization

imbalance and chronic airway inflammation, yet conventional drug

delivery systems struggle to precisely intervene in the immune

microenvironment of affected areas. In response to this challenge,

nanomedicine has emerged as a pioneering therapeutic strategy

through precision drug delivery systems that molecularly target

diseased tissues (157). It offers new avenues to enhance treatment

efficacy while reducing reliance on conventional drugs and their

associated adverse effects. Studies have shown that surface-modified
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(e.g., PEGylated) liposomes exhibit superior penetration capability

and epithelial uptake efficiency in the pathological mucus of COPD,

laying the foundation for targeting airway-resident macrophages

(158). PEG modification not only reduces mucoadhesion through

steric hindrance but may also influence macrophage phagocytic

behavior by modulating liposomal surface properties. Specifically,

PEGylated liposomes with a neutral charge and a nano-scale size

(40–65 nm) are more readily internalized by macrophages, thereby

enabling targeted delivery of anti-inflammatory drugs such as

beclomethasone dipropionate or genetic regulators like miRNA/

siRNA. This characteristic aligns well with the requirements for

oligonucleotide delivery proposed by Li et al. (159): liposome-

encapsulated silencing of M1 polarization-related genes (e.g., NF-

kB or TNF-a) may reverse the hyperactivation of pro-inflammatory

macrophages in COPD. Furthermore, antibiotic-loaded liposomes

(e.g., tobramycin/colistin) developed by Zhang et al. (Figure 6)

(160) not only target and eliminate pulmonary pathogens but may

also break the “infection-inflammation” vicious cycle by

modulating macrophage phagocytic function. Future directions

may explore multifunctional designs, such as surface conjugation

of CD206 antibodies to enhance M2 macrophage-specific targeting,

combined with co-delivery of IL-10 mRNA and antibacterial agents

to achieve dual “pro-repair/anti-infection” regulation. However,

caution is warranted regarding the potential long-term impact on
FIGURE 6

Inhalable antibiotic nanoformulations for the treatment of chronic respiratory diseases (160).
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macrophage functional homeostasis. This could be mitigated by

using biodegradable lipid materials to construct stimulus-

responsive release systems that activate drug delivery exclusively

within inflammatory microenvironments, thereby balancing

efficacy and safety.

As central effector cells in asthma-related inflammatory

regulation, macrophages contribute directly to airway

hyperresponsiveness and amplification of inflammation through

M2 polarization (161) or maturation defects (162). Over the past 15

years, significant advances in medical interventions have led to a

substantial decline in asthma incidence and mortality, with most

patients achieving adequate symptom control through conventional

treatment regimens (163). However, current therapies remain

insufficient for severe or refractory cases, where symptom

management continues to pose major challenges. This unmet

clinical need is driving the exploration of more precise and

effective treatment strategies. Through multifunctional liposomal

design, precise modulation of macrophage phenotypes has become

achievable: MBD2 siRNA-loaded liposomes suppress the M2

polarization program in macrophages, thereby blocking the

allergic inflammatory cascade at an upstream stage (161), while

MPLA/Dex hybrid nanoparticles actively target macrophages via

TLR4 ligands, simultaneously inhibiting pro-inflammatory

phenotypes and promoting IL-10-mediated immune tolerance

(164). Notably, intelligent modulation of liposome surface

properties (165) can optimize pulmonary retention and

transmembrane efficiency. For instance, highly hydrophilic

liposomes prolong budesonide retention in alveolar macrophages,

and cyclic peptide modifications targeting ICAM-1 (166) provide
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molecular guidance to enhance macrophage-specific uptake. Zhang

et al. successfully prepared cyclopeptide-modified lipid

nanoparticles (Pep-LNPs) that can precisely deliver siRNA to

human and mouse epithelial cells, significantly reducing the

expression of pro-inflammatory cytokines (TSLP), modulating

asthma-related signaling pathways, decreasing MUC5AC mucin

secretion, alleviating airway inflammation, lowering airway

hyperreactivity, and improving asthma symptoms (166).

Additionally, Yu et al. prepared PEG-coated PLGA-liposomes

(PEG-NP) modified with FcBP to enhance targeting recognition

capabilities (Figure 7) (167). Experiments showed that FcBP-NP@

Dex efficiently delivered Dex to macrophages, exhibited significant

anti-inflammatory effects, and demonstrated promising therapeutic

outcomes in asthmatic mice. These synergistic innovations suggest

that future systems may integrate “targeted delivery–phenotypic

reprogramming–long-term regulation” into a unified liposomal

platform. For example, co-delivery of MBD2 siRNA (161) and

GM-CSF (162) could simultaneously rectify maturation defects and

suppress aberrant polarization. Nonetheless, caution is warranted

regarding potential long-term impacts on innate immune function,

which may be mitigated through spatiotemporally controlled

release technologies to balance therapeutic efficacy and immune

homeostasis. In summary, although PF, COPD, and asthma exhibit

distinct pathological features, they share a central link in chronic

inflammation and dysregulation of the immune microenvironment,

where macrophages play a critical role. In light of this, adopting

multi-pronged strategies holds promise for fundamentally reversing

the immune imbalance underlying the progression of these diseases.

Although current research has only just unveiled the beginning of
FIGURE 7

FcBP-functionalized PEG nanoparticles overcoming airway barriers and enhancing asthma therapy (167).
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this field, it has already revealed the immense potential and

fascinating prospects of nanomedicine-based approaches in

tackling complex chronic respiratory diseases.
5 Diabetes mellitus

Metabolic disorders (MDs) represent a complex group of

interconnected pathological conditions characterized by

dysregulation in the metabolism of fundamental macronutrients

including carbohydrates, lipids, and proteins (168). This disease

spectrum encompasses a range of clinically significant conditions

such as obesity, type 2 diabetes mellitus (T2DM), non-alcoholic

fatty liver disease (NAFLD), hypertension, osteoporosis, chronic

kidney disease, and cardiovascular disorders, all of which share

common metabolic dysfunctions (169). The global impact of these

conditions is profound, with diabetes mellitus alone affecting more

than 415 million individuals worldwide, creating significant

challenges for healthcare systems and socioeconomic structures

(170). These disorders not only compromise patients’ quality of

life through multiple organ system involvement but also contribute

to substantial morbidity and mortality rates. The alarming

prevalence of MDs highlights the urgent need for enhanced

research efforts to develop more effective diagnostic, preventive,

and therapeutic approaches. Given the extensive clinical

implications and research significance, this section will

particularly focus on diabetes mellitus (DM) as a representative

metabolic disorder.

DM comprises a group of complex metabolic disorders

characterized by chronic hyperglycemia resulting from either

deficient insulin secretion, impaired insulin action, or both

pathological mechanisms (171, 172). The growing global

prevalence of diabetes presents a significant public health

challenge, with millions affected by persistent elevated blood

glucose levels (173, 174). These challenges have driven the urgent

need for developing more effective therapeutic agents and improved

drug delivery systems with enhanced precision and reduced adverse

effects. In this context, liposome-based delivery systems have

emerged as a promising approach, offering several potential

advantages including versatile applicability, targeted delivery

capabilities, and modifiable properties for optimized therapeutic

outcomes. Liposomes have demonstrated significant potential in

improving mitochondrial function and regulating blood glucose

metabolism in diabetic mice. Wu et al. developed Nano-MitoPBN, a

novel liposomal nanoparticle designed to enhance mitochondrial

performance and promote hepatic oxidative metabolism (175). This

formulation improves the efficiency of both glycolysis and the

tricarboxylic acid cycle, thereby accelerating glucose metabolism

and cellular uptake. In diabetic animal models, Nano-MitoPBN

effectively reduces peripheral blood glucose levels and improves

glucose tolerance, representing a promising therapeutic strategy for

diabetes management.

Liposomes show promise in enhancing wound healing in

diabetic patients. Diabetic wounds are particularly vulnerable to

bacterial infection due to persistent hyperglycemia and elevated
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ROS levels, which significantly impair the healing process (176).

These factors interact synergistically, worsening wound

progression. Conventional therapeutic approaches can provide

partial symptomatic relief through oral hypoglycemic agents for

blood glucose control, intravenous antibiotics for infection

management, and topical antiseptics for pathogen elimination.

However, these interventions often prove insufficient to fully

resolve the complexity of diabetic wounds (177). While these

approaches provide temporary symptom management, they

typically do not address the underlying mechanisms hindering

wound repair. Excessive inflammation is a key obstacle in diabetic

wound healing. To address this, Tang et al. designed red blood cell-

mimicking liposomes (RC-Lips) loaded with curcumin, which

neutralize bacterial toxin a-hemolysin, modulate M2 macrophage

polarization, and fine-tune the inflammatory response, thereby

accelerating diabetic wound healing (Figure 8) (178). Similarly,

Liu et al. co-encapsulated a near-infrared-II (NIR-II) photothermal

agent (IRC) and curcumin into thermosensitive liposomes, creating

the Cur-IRC@PCM nanoplatform for precise and effective

treatment of methicillin-resistant staphylococcus aureus (MRSA)-

infected diabetic wounds (179). Furthermore, Wei et al. engineered

Janus liposomes capable of reprogramming macrophage

polarization and stimulating tissue regeneration. Using single-cell

RNA sequencing and T-cell-deficient mouse models, they

demonstrated the critical role of gd T cells in M1/M2 macrophage

switching (180). In summary, these liposome-based strategies

represent a paradigm shift in diabetic wound management,

moving from conventional symptomatic treatment to multi-

mechanism-based synergistic intervention. Such platforms

simultaneously address hyperglycemia, bacterial infection,

oxidative stress, and immune dysregulation, demonstrating

notable therapeutic superiority over traditional approaches. In the

future, the efforts should focus on developing biomarker-responsive

smart liposomes, optimizing combination therapies targeting

multiple pathological pathways, and establishing standardized

protocols for clinical evaluation of nanotherapeutics in diabetic

wound healing.
6 Challenges and outlook

As key regulators of the innate immune system, macrophages

play a dual role in the pathogenesis of chronic diseases, such as

cardiovascular diseases, cancer, respiratory diseases, and diabetes.

Macrophages can not only promote inflammation and tissue

damage, but also participate in repair and homeostasis restoration

through phenotypic polarization (e.g., transition from pro-

inflammatory M1 to anti-inflammatory M2 phenotypes) (181,

182). Owing to the good biocompatibility (183), drug-loading

capacity (184), and potential for targeted modification (185),

liposomes have emerged as important tools for modulating

macrophage functions (Table 1). However, the clinical translation

of this strategy still faces multiple challenges, and future

breakthroughs will require technological innovation and

interdisciplinary collaboration.
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The primary technical bottleneck lies in the limitations of

liposomal targeted delivery and stability. First, insufficient

targeting precision is a key constraint. Although surface

modifications can enhance directional delivery capabilities (186),

liposomes still struggle to efficiently recognize and specifically

accumulate in target macrophages within highly heterogeneous in

vivo environments (187), compromising treatment accuracy.

Second, liposomes are susceptible to adsorption by plasma

proteins, enzymatic degradation, and interference from blood

components during systemic circulation, leading to structural

integrity loss and premature drug leakage (188). This not only

reduces reprogramming efficiency but may also increase off-target

toxicity risks due to non-specific release.

Although surface modifications (e.g., antibodies, peptides) can

achieve macrophage-targeted delivery, the circulation time of

liposome systems is significantly compromised by rapid clearance

via the reticuloendothelial system (RES), resulting in predominant

accumulation in the liver/spleen and insufficient deposition at

disease sites (189). Therefore, there is an urgent need to improve

targeting precision. By the way, high shear stress in atherosclerotic

plaques hinders the stable retention of liposomes, while in

myocardial infarction models, rapid endothelial barrier repair
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before the peak of macrophage infiltration leads to low systemic

delivery efficiency (44). Furthermore, as carriers for RNA therapies

(e.g., miRNA), liposomes require substantial improvements in

loading and release efficiency, facing challenges such as

degradation by serum RNases and insufficient endosomal escape,

which hinder cytoplasmic delivery (190). Stimuli-responsive

liposomes (e.g., pH- or enzyme-sensitive types) exhibit poor

s p a t i o t empo r a l c o n t r o l i n c omp l e x p a t h o l o g i c a l

microenvironments, often resulting in burst release or abnormal

drug retention (191).

In terms of immunogenicity, although liposomes generally

exhibit good biocompatibility (192), certain surface modifications

or encapsulated drugs may enhance their immunogenicity. This not

only facilitates rapid clearance by the immune system, reducing

therapeutic efficacy, but may also trigger adverse reactions such as

allergies, posing risks to patient safety. For instance, cationic

liposomes, while enhancing cellular uptake, may activate the

complement system and induce complement activation-related

pseudoallergy (CARPA), characterized by histamine release and

acute inflammation (193), presenting immunogenicity and toxicity

concerns. Systemic immune activation may lead to severe immune-

related adverse events, such as cytokine release syndrome (CRS),
FIGURE 8

Mechanism of multimodal therapeutic hybrid liposomes in promoting wound healing in diabetes and infection (178).
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TABLE 1 Macrophage-targeting drugs used in preclinical or clinical studies for chronic diseases.

Diseases Lipsome Size (nm) Drug Target Effect Refs.

Repair and reprogram inflammatory
macrophages

(44)

Reduce the migration of circulating
inflammatory monocytes

(45)

Enrich RvD1 and promote angiogenesis (48)

Locally reduce the levels of inflammatory
cytokines

(49)

Reverse the macrophages from M1 to M2
phenotype, down-regulate CD36

(66)

Inhibit endothelial cell glycolysis, reprogram the
macrophage phenotype to restore cholesterol
flow homeostasis

(67)

Clear ROS and promote M2 polarization,
generates NO

(68)

Promotes the dissolution and excretion of
cholesterol, eliminates ROS, up-regulate
ABCA1/ABCG1 to promote M2 polarization

(69)

Inhibit ferroptosis of macrophages, reduce lipid
accumulation and inflammation

(70)

Phagocytosed by macrophages and exerts anti-
inflammatory and antioxidant effects, promote
M2 polarization

(77)

Increase CD4+ and CD8+ T cells, induces
apoptosis of tumor cells

(107)

Activate the caspase-3/GSDME pathway to
induce pyroptosis of cells, trigger ICD

(108)

Inhibit the FTO protein and drive the
repolarization of M2 to M1-type TAM

(114)

Inhibit the FOXM1 transcription factor and
down-regulate PD-L1

(117)

Reprogram M2-like macrophages to an M1-like
phenotype

(118)

(105)
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Cardio-vascular PLM-miR / miR-21 macrophage

ST-MT@lipo2 207.4 ± .81 MLT (melatonin) Monocytes and macrophages

PLP-RvD1 120.93 ± 2.99 RvD1 Monocyte

MTX-liposomes 111 ± 46 MTX Inflamed tissue

HA - ML@(H + R) NPs / Rosuvastatin, hydroxysaffron
yellow A

CD44, macrophage cell
membrane

HA - ML@ES NPs 216.3 ± 4 Shikonin (SKN), elomumab
(Evol)

CD44

Osteopontin modified nano-
liposomes (CZALO)

/ L-arginine (L-Arg), cerium-
zirconium oxide nanoparticles
(CZ NPs)

Macrophage

EGCG/Cys/UDCA@VHPK -
Lipo

191.2 ± 5.81 Epigallocatechin gallate
(EGCG), cysteine (Cys),
ursodeoxycholic acid (UDCA)

VCAM - 1

HMLRPP NPs 197.6 ± 5.12 Rosuvastatin (Pit), resveratrol
(Res)

Macrophage cell membrane,
CD44

DHA Liposomal 127 ± 7 Docosahexaenoic acid (DHA) Macrophage

Cancer TSPLs ~800 Recombinant Staphylococcal
enterotoxin C2 (rSEC2) +
paclitaxel

Lung targeting + tumor
homologous targeting

NPCD@ALN / Cisplatin + decitabine ALN

si/F@RL 82.6 FTO protein inhibitor + CD47
siRNA

Macrophage

ThioLipos 192 Thiopoton (TST, a FOXM1
inhibitor)

FOXM1/PD-L1 pathway

BLN 500-700 / Macrophages/immune
microenvironment

Axi/siRNA@NGR-Lipo 156.2 Axitinib + PD-L1 siRNA
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TABLE 1 Continued

Diseases Lipsome Size (nm) Drug Target Effect Refs.

Targeting of tumor blood vessels, down-
regulates PD-L1

Generates reactive oxygen species (ROS),
radiotherapy to induce ICD, and works in
synergy with PD-1 blocking to inhibit tumors

(120)

Induced ICD, in synergy with STING agonists,
converts M2 to M1 phenotype

(91)

Activates cGAS-STING pathway (128)

Phototherapy, reprogramming TAM (132)

Blocks the PD-1/PD-L1 pathway, enhances the
ICD effect

(136)

Inhibit inflammation and regulate the
coagulation-fibrinolytic system

(150)

Polarize of M2 macrophages, inhibited TGF-b1 (153)

Inhibit NLRP3/TGF-b1 pathway and regulate
MMP-9/TIMP-1 balance

(154)

Penetrate sputum and internalize into epithelial
cells

(158)

Enhance antibiotics and reduce their toxicity,
targeting multi-drug resistant pathogens

(160)

Reduce the expression of Mbd2 and inhibit the
polarization of M2 macrophages

(161)

Downregulate TSLP, alleviate inflammatory cell
infiltration, IL-4/IL-13 secretion and mucus
production

(166)

Maintain mucus penetrability and enhance
intracellular internalization/transepithelial
transport

(167)

Reduces oxidative stress, boosts ATP synthesis,
protects mitochondria

(175)

Downregulates IL-1b, upregulates IL-10 (178)

Photothermal therapy and Antibacterial activity (179)
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16
Tumor vascular endothelial
cells/PD-L1

O3_PFD@Liposome 156.5 Ozone (O3) Tumor cells/immune
microenvironment

Oxaliplatin liposome 122 Oxaliplatin (ICD inducer) +
ADU-S100 (STING agonist)

cGAS-STING pathway/immune
microenvironment

REV@SR780Fe@LEV-RS17 123.8 ± 2.8 SR780 (photosensitizer) + Fe³+

+ RS17 peptide
Tumor microenvironment/
cGAS-STING pathway

RB-OL@M 126.4 ± 3.8 Imiquimod (R837) + Black
phosphorus quantum dots
(BPQDs)

Tumor site (macrophage
homing)

TMVL-I 160 Indocyanine green PD-1/PD-L1 immune
checkpoint

Respiratory Liposomes loaded with SAB 100–200 Salvia acid B (SAB) Lungs (inhalation delivery)

Nin-lipo 198 Nintedanib Alveolar macrophages

Man-lipo 234.13 ± 1.76 Cryptotanshinone (CTS) Macrophage

PEG-liposomes 40-65 Beclomethasone dipropionate
(BDP)

Airway epithelium

Tobramycin/colistin
nanoformulations/amikacin
liposomes

/ Tobramycin/colistin/amikacin Drug-resistant pathogen

Mbd2 siRNA loaded liposomes / Mbd2 siRNA Macrophage

Pep-LNP 100-200 TSLP siRNA ICAM-1 receptor at the top of
airway epithelial cells

FcBP-PEG-NP 115-145 Dexamethasone Neonatal Fc receptor

Diabetes Nano-MitoPBN 100 nm / Liver mitochondria

RC-Lip 137.10 ± 1.43 Curcumin a-hemolysin

Cur-IRC@PCM 110 Curcumin MRSA
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neurotoxicity, or autoimmune tissue damage (194, 195).

Furthermore, a more comprehensive evaluation of the long-term

safety and immunogenicity of liposome components and their

metabolites is required. Additionally, excessive uptake of liposomes

by macrophages may inhibit phagocytic function, impair host

antimicrobial defense, and result in immunosuppression risks.

Regarding long-term efficacy, data on the application of this

strategy for chronic disease treatment remain limited (196). It is

unclear whether the reprogrammed state can be sustained long-term

or what the enduring impact on disease progression might be.

Prolonged use may also lead to macrophage dysfunction and

potential side effects, significantly limiting its clinical translation

prospects. Moreover, there is a lack of long-term toxicity data on

liposome components and their metabolites, particularly a deficiency

in lifetime longitudinal safety studies.

There are also limitations in therapeutic mechanisms and

disease models, since macrophage polarization regulation exhibits

duality. For example, DHA- or miR-21-loaded liposomes induce

M2 polarization to alleviate inflammation, but excessive

suppression of the M1 phenotype in advanced plaques may

impair pathogen clearance capacity and increase the risk of

plaque rupture (197). Different lipid components yield

significantly divergent therapeutic effects: anionic liposomes

promote cholesterol efflux from foam cells (189) whereas cationic

liposomes instead enhance inflammatory cytokine secretion (198).

There are complexities in therapeutic strategies and clinical

applications. Due to inter-patient heterogeneity in tumors (199),

significant differences exist in the phenotype and distribution of

TAMs among different patients (200), across various tumor types,

and even within the same tumor. Universal targeting strategies may

therefore fail to effectively cover all relevant immunosuppressive

macrophage subsets. Furthermore, current regulatory strategies

remain relatively simplistic, leading to limited efficacy or

phenotypic reversal. Even if TAMs are successfully “reversed”

from the M2 to the M1 phenotype via liposomes, the highly

immunosuppressive tumor microenvironment may cause them to

revert to a pro-tumor phenotype, resulting in transient and

unsustainable therapeutic effects (201, 202). Additionally, single-

target therapeutic strategies face limitations in efficacy. Most

approaches focus on a single signaling pathway, but tumor

immunosuppression results from complex interactions within

multiple signaling networks. Blocking one pathway can easily be

bypassed by compensatory mechanisms, leading to limited efficacy

or drug resistance. Moreover, the complexity of combining these

strategies with existing clinical treatments further complicates

translation. While combination with chemotherapy, radiotherapy,

or immune checkpoint inhibitors is most likely, this makes clinical

trial design extremely complex (203) particularly in determining the

optimal dosing timing and sequence, while also increasing the risk

of unpredictable synergistic toxicities. A critical translational gap

exists between disease models and human pathophysiology: the

immune microenvironment in mouse atherosclerosis models (e.g.,

ApoE-/-) differs significantly from that of human plaques (204),

particularly in terms of macrophage subtype complexity. This

explains why anti-inflammatory strategies successful in animal
Frontiers in Immunology 17
models frequently fail in clinical trials. In myocardial ischemia-

reperfusion injury models, due to differences in cardiovascular

anatomy, the targeting efficiency of liposomes in large animals is

markedly lower than in rodents, limiting the predictive value of

preclinical data.

The core challenges in the clinical translation of liposomes lie in

the barriers associated with production, preparation, and quality

control. The manufacturing process for complex liposomes (e.g.,

those modified with antibodies, peptides, or exosomes) is highly

intricate, making it difficult to precisely control particle size,

encapsulation efficiency, and batch-to-batch consistency, which

severely restricts their industrial-scale production and clinical

applicability. Additionally, technologies such as directional

membrane protein integration pose challenges for GMP

compliance, and large-scale production entails high costs, limiting

scalability. Regulatory frameworks lag behind technological

advancements, and existing drug classification systems struggle to

clearly define multi-component or surface-engineered liposome

products, creating bottlenecks in the approval of combination

therapies. Traditional RECIST criteria may fail to accurately

capture delayed immune responses or changes in the immune

status of the TME (205), leading to misinterpretation of early

clinical trial results. Furthermore, the biological behavior of

liposomal drugs is complex. The timing, location, and mechanisms

of drug release remain poorly understood, and current analytical

methods are inadequate for distinguishing between released drugs

and those still encapsulated within the carrier, hindering precise

efficacy evaluation. The production costs of targeted liposome

therapies are significantly higher than those of conventional drugs,

and when combined with the long-term treatment requirements for

cardiovascular diseases, this imposes a substantial economic burden

on healthcare payment systems.

Despite numerous challenges, liposome-mediated macrophage

reprogramming holds broad clinical translation potential through

multidimensional strategy optimization and interdisciplinary

collaboration. First, it is essential to strengthen collaboration

between pharmaceutical researchers and clinicians to identify

ideal candidate drugs suitable for liposomal formulation

development that address clinical needs. Second, basic research

should focus on elucidating the physicochemical and biological

principles underlying liposome preparation and therapeutic

mechanisms. A deeper understanding of drug-lipid interactions,

molecular dynamics during liposome self-assembly, and liposome-

biofluid-cell interactions will facilitate the design of more efficient

and safer l iposomal del ivery systems. Clari fying the

pharmacokinetic behavior of liposomal drugs will provide critical

guidance for optimizing therapeutic strategies.

In terms of design, smart targeted liposomes can be developed

by utilizing targeting ligands such as aptamers (206), antibodies

(207) or peptides (208) to specifically recognize macrophage surface

markers, thereby enhancing targeting efficiency. Additionally,

d e s i gn i n g l i p o s ome s t h a t r e s pond t o t h e d i s e a s e

microenvironment enables precise drug release (209). In terms of

preparation processes, microfluidic technology (210, 211) shows

increasingly broad prospects in liposome production. The
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introduction of techniques such as microfluidics (212) facilitates

precise control over particle size and morphology, enabling stable

and continuous large-scale manufacturing while ensuring batch

consistency through real-time quality monitoring. These advanced

manufacturing methods can significantly improve production

efficiency and reduce costs, but rigorous quality control protocols

must be established to ensure efficacy and safety standards.

In terms of therapeutic mechanism research and personalized

treatment, The integration of multi-omics technologies such as

transcriptomics (213), proteomics, and metabolomics (214),

enables systematic elucidation of key signaling pathways and

targets during the reprogramming process,. Single-cell analysis

techniques (215) should be applied to uncover macrophage subset

heterogeneity and differences in liposome intervention effects,

providing a basis for personalized treatment. Regarding safety and

efficacy, immune modulation strategies need to be developed, such

as optimizing liposome surface modifications (216) to reduce

immunogenicity or combining with immunomodulators to

enhance therapeutic outcomes. Concurrently, long-term clinical

follow-up studies should be conducted to systematically evaluate

efficacy and safety, while leveraging clinical big data and artificial

intelligence to optimize treatment regimens.

Finally, interdisciplinary collaboration should be strengthened

by integrating expertise from biomedical science, materials science,

chemical engineering, and other fields to drive technological

innovation. Through deep integration of industry, academia, and

research, the clinical translation and application of liposome

technology in macrophage reprogramming therapy can be

accelerated. Enhanced collaboration among pharmacology,

clinical medicine, materials science, and regulatory science will

facilitate the selection of ideal candidate drugs, optimization of

treatment strategies, and advancement of regulatory frameworks.

Establishing long-term follow-up study systems, combined with

clinical big data and artificial intelligence, will enable systematic

evaluation of efficacy and safety, ultimately achieving widespread

application of liposome-mediated macrophage regulation therapy

in the treatment of chronic diseases.

Looking ahead, overcoming these challenges requires a

multifaceted approach. Strengthening collaboration between

pharmaceutical researchers and clinical physicians is crucial.

While pharmaceutical researchers focus on developing novel

liposome formulations, clinicians possess deeper insights into

patients’ actual needs and treatment responses. By working

together, they can identify the optimal candidate drugs that meet

clinical demands, ensuring liposome therapies are better aligned

with real-world treatment scenarios.
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