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A machine learning-derived
Immune-related prognostic
model identifies PLXNA3

as a functional risk gene

In colorectal cancer
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Introduction: Colorectal Cancer (CRC) remains a leading cause of cancer-
related mortality, characterized by substantial interpatient heterogeneity and
limited effective prognostic biomarkers.

Methods: To address this gap, we constructed a robust prognostic model by
integrating over 100 machine learning algorithms—such as LASSO, CoxBoost,
and StepCox—based on transcriptomic and clinical data from The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts.

Results: Plexin-A3 (PLXNA3) emerged as a top risk gene within the ensemble
model, which achieved strong predictive performance, surpassing conventional
clinical indicators. Multi-omics validation confirmed PLXNA3’s prognostic
relevance. Spatial and single-cell transcriptomics demonstrated their enrichment
in malignant epithelial regions and negative association with immune cell
infiltration, particularly CD8" T cells and plasma cells. Transcription factor (TF)
and microRNA (miRNA) correlation analyses revealed potential upstream
regulators of PLXNA3 linked to tumor stemness and immune suppression.
Functional enrichment indicated its association with cell cycle, DNA damage
repair, and interferon signaling pathways. Immunohistochemistry (IHC)
confirmed PLXNA3 overexpression in tumor tissues and its correlation with
nodal metastasis. Moreover, drug sensitivity profiling and Connectivity Map
(CMap) analysis identified potential compounds, including imatinib, MS-275 and
fasudil, capable of reversing PLXNA3-driven transcriptional programs.
Discussion: This study identifies PLXNA3 as a novel immune-related biomarker in
colorectal cancer and elucidates its multifaceted role in tumor progression,
immune evasion, and therapeutic resistance. These findings provide a
foundation for incorporating PLXNA3 into precision oncology frameworks for
gastrointestinal malignancies.
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1 Introduction

CRC is among the most common and lethal malignancies
worldwide, ranking third in incidence and second in cancer-related
mortality (1). Despite progress in early detection and therapeutic
advances, the prognosis of CRC patients remains highly variable (2).
This heterogeneity is largely attributed to the diverse genetic landscape
and complex tumor microenvironment (TME), which are not fully
captured by conventional clinicopathological staging (3).

Recent advances in transcriptomics and bioinformatics have
enabled more precise prognostic modeling, particularly through the
integration of high-throughput expression data with machine learning
frameworks (4). Traditional statistical methods such as logistic
regression, have been extensively applied to identify prognostic
biomarkers in cancer. However, their performance is often limited
when dealing with high-dimensional, non-linear, and heterogeneous
biological datasets (5). In contrast, machine learning (ML) and
ensemble learning models—particularly those employing stacked or
hybrid architectures—have shown superior performance in capturing
complex patterns in omics data (6, 7). In recent years, multi-model
integration strategies have emerged as a dominant trend, offering
improved generalizability and robustness in prognostic prediction (8).

Here, our study employed over 100 machine learning
algorithms in a stacked ensemble framework to construct a novel
immune-related prognostic model for CRC. Among the candidate
genes identified, we focused on PLXNA3, a member of the plexin
family (9), due to its consistent high-risk signal across models.
Although PLXNA3 has been implicated in neural development and
tumor metastasis in several malignancies (10-12), its role in
gastrointestinal cancers remains largely uncharacterized.

To explore the prognostic relevance and biological function of
PLXNA3, we initiated our investigation with a pan-cancer screening
strategy to broadly evaluate its expression patterns and clinical
significance across multiple tumor types. This led to the observation
of elevated PLXNA3 expression in gastrointestinal malignancies,
particularly in colorectal, gastric, and esophageal cancers. Building on
this, we conducted comparative analyses within gastrointestinal cancers
to highlight the specific prognostic and immunological role of PLXNA3
in CRC.

We subsequently focused our study on CRC, integrating bulk
transcriptomic, spatial transcriptomic, single-cell RNA sequencing,

Abbreviations: COAD, Colon Adenocarcinoma; CRC, Colorectal Cancer; GEO,
Gene Expression Omnibus; GSEA, Gene Set Enrichment Analysis; GTEx,
Genotype-Tissue Expression project; HPA, Human Protein Atlas; IHC,
Immunohistochemistry; IC50, half maximal inhibitory concentration; miRNA,
microRNA; PLXNA3, Plexin-A3; ROC, Receiver Operating Characteristic; RNA-
seq, RNA sequencing; STAD, Stomach Adenocarcinoma; TCGA, The Cancer
Genome Atlas; TISCH, Tumor Immune Single-cell Hub; TPM, Transcripts Per
Million; CMap, Connectivity Map; TNM, Tumor-Node-Metastasis; AUC, area
under the curve; KM, Kaplan-Meier; ML, machine learning; TF, transcription
factor; TME, tumor microenvironment; READ, rectum adenocarcinoma; ESCA,
esophageal carcinoma; OS, overall survival; DSS, disease-specific survival; PFI,
progression-free interval; DFI, disease-free interval; KEGG, Kyoto Encyclopedia

of Genes and Genomes; XSum, extreme sum.
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immunohistochemistry, and pharmacogenomic data to
comprehensively assess PLXNA3 at multiple biological levels. An
overall workflow illustrates the design of the study, from initial
screening and model construction to CRC-specific multi-omics
validation (Figure 1). Through this multilayered approach, we aimed
to delineate the spatial, cellular, and functional characteristics of
PLXNA3, and to assess its potential as a prognostic biomarker and
therapeutic target in CRC.

2 Methods and materials
2.1 Data collection and preprocessing

Transcriptomic and clinical data for Colon Adenocarcinoma
(COAD) were obtained from TCGA through the Genomic Data
Commons (https://portal.gdc.cancer.gov/). External validation data
were retrieved from the GEO dataset GSE39582 (13). Normal tissue
expression data were sourced from the Genotype-Tissue Expression
(GTEx) project (14). Transcript-per-million (TPM) values from
TCGA and GTEx were merged and standardized using Z-score
transformation to enable cross-cohort comparability. Immune-
related gene lists were acquired from the Immunology Database
and Analysis Portal (ImmPort, https://www.immport.org/. Gene
dependency scores, including CRISPR-based essentiality metrics,
were downloaded from the DepMap portal (https://depmap.org/
portal/). Protein-level expression data for PLXNA3 were obtained
from the Human Protein Atlas (HPA), and integrated tissue-level
TPM values were accessed via the UCSC Xena platform.

2.2 Differential expression and prognostic
analysis

Differentially expressed immune-related genes between tumor and
adjacent normal tissues were identified using the "DESeq2" package in
R (15), with cutoff thresholds set at [log2 fold change| > 1.5 and false
discovery rate (FDR) < 0.05. Prognostic evaluation was performed
using univariate Cox proportional hazards regression and Kaplan-
Meier (KM) survival analysis. The “survival' (16) and ‘survminer' (17)
packages were used to compute hazard ratios (HR) and generate KM
curves. High and low expression groups were defined using the optimal
cutoff determined by ‘surv_cutpoint' (17) while enforcing a minimum
group proportion of 30% to avoid over-segmentation. Log-rank tests
were applied to evaluate statistical significance between survival curves.
A summary heatmap was constructed to visualize significance patterns
across cancer types and survival endpoints including overall survival
(OS), disease-specific survival (DSS), progression-free interval (PFI),
and disease-free interval (DFI).

2.3 Machine learning model construction

To construct a robust prognostic model, we implemented a
stacked ensemble learning framework that integrated over 100
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FIGURE 1

Overview of the study design and analytical workflow. Transcriptomic and clinical data from TCGA and GEO cohorts were integrated and processed
using over 100 machine learning algorithms to construct an immune-related prognostic model for colorectal cancer. PLXNA3 was identified as a key
risk gene based on risk group stratification and functional dependency analysis using DepMap. Subsequent validation included spatial
transcriptomics, single-cell RNA sequencing, transcriptional and post-transcriptional regulatory profiling, immunohistochemistry (IHC), and drug
sensitivity analysis. The study further explored the biological role of PLXNA3 in tumor progression and T cell immune exclusion.

machine learning algorithms. Candidate models included LASSO
regression, CoxBoost, elastic net, and plsRcox. Feature selection was
performed using recursive elimination and cross-validation. Model
performance was evaluated using the concordance index (C-index),
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and the model with the highest C-index was selected for
downstream validation. The training cohort was derived from
TCGA-COAD, and external validation was conducted using the
GSE39582 dataset. Time-dependent ROC (Receiver operating
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characteristic) curves and C-index curves were generated to
compare predictive accuracy with conventional clinical indicators.
For both the TCGA (training) and GSE39582 (validation) cohorts,
risk scores for each patient were calculated using the final selected
ensemble prognostic model (CoxBoost + SuperPC). Patients were
then stratified into high-risk and low-risk groups based on the
median value of the risk score within each respective cohort. This
median-based dichotomization enabled consistent and data-specific
stratification, facilitating survival comparison and model validation
across datasets.

2.4 CRISPR-based functional dependency
analysis using DepMap

Gene dependency scores were obtained from the DepMap
Public 22Q2 release via the DepMap portal (https://depmap.org/
portal/) . The CERES-corrected CRISPR knockout scores, which
estimate the effect of gene inhibition on cell viability, were used to
quantify gene essentiality across a broad panel of cancer cell lines
(18). PLXNA3 and other candidate genes were evaluated for their
dependency scores in colorectal cancer cell lines. Data processing
and integration with gene expression profiles were conducted in
Python using the Pandas and Seaborn packages.

2.5 Pan-cancer expression and diagnostic
efficacy

PLXNA3 expression profiles across 33 cancer types were
analyzed using merged TCGA and GTEx datasets. TPM values
were standardized via Z-score transformation for cross-tumor
comparison. ROC curves were generated using the '‘pROC’
package (19) to assess diagnostic accuracy, and area-under-the-
curve (AUC) values were reported separately for TCGA-only and
TCGA-GTEx merged datasets.

2.6 Spatial transcriptomic analysis

Spatial transcriptomic data from ten colorectal cancer tissue
sections were obtained from the Sparkle database (https://
grswsci.top/). The Sparkle database, following previous studies
(20, 21), integrates 10x Visium spatial transcriptomic data to
construct a pan-cancer spatial atlas. By characterizing the cell
types within each spot, regions were annotated according to the
predominant cell type based on proportional composition. Raw
count matrices were normalized using Seurat’s ‘NormalizeData'
function (22). Gene expression was visualized using
‘SpatialFeaturePlot’ (22). Tissue spots were categorized into
malignant (Mal) and non-malignant (nMal) regions based on
prior deconvolution analysis, and Wilcoxon tests were used to
compare PLXNA3 expressions between zones. Expression
heatmaps were generated across dominant cell-type zones using
Z-score-scaled values.

Frontiers in Immunology

10.3389/fimmu.2025.1653794

2.7 Single-cell transcriptomic analysis

Single-cell RNA sequencing (ScRNA-seq) data from
gastrointestinal tumors were analyzed via the Tumor Immune
Single-cell Hub2 (TISCH2) portal (23). Cell-type-specific
expression levels of PLXNA3 were visualized with heatmaps and
bar plots. Z-score transformation was conducted to evaluate
associations between PLXNA3 expression and immune cell
proportions (e.g., pDCs, CD8" T cells). Correlation results were
visualized with lollipop plots and scatter curves. Multi-method
immune infiltration correlations were generated and plotted using
‘ComplexHeatmap' (24).

2.8 Transcription factor correlation analysis

Expression data for PLXNA3 and transcription factors were
obtained from the normalized RNA-seq dataset EBPlusPlusAdjust
PANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv (25), available
through the TCGA Pan-Cancer Atlas project (https://gdc.cancer.gov/
about-data/publications/pancanatlas) . Log2 transformation was
applied to gene expression values for normalization. Pearson
correlation coefficients between PLXNA3 and all transcription
factors were calculated using the cor.test function (method =
“Pearson”) in R (version 4.3.3). For stratification analysis, samples
were divided into four quartiles (Q1-Q4) based on transcription
factor expression levels. Differential expression of PLXNA3 across
quartiles was evaluated using the Kruskal-Wallis test (kruskal.test
function), enabling detection of expression trends across TEF-
defined subgroups. For miRNA association analysis, predicted
PLXNA3-related miRNAs were obtained from the grswsci
platform (https://grswsci.top/) . Pearson correlations were
computed using cor.test, and statistical enrichment was assessed
using Fisher’s exact test.

2.9 Functional and immunological pathway
analysis

Functional correlations between PLXNA3 and cellular states (e.g.,
proliferation, cell cycle, DNA repair) were evaluated using CancerSEA
(26) across pan-gastrointestinal tumors. gene set enrichment analysis
(GSEA) was performed with the ‘clusterProfiler’ package against
Hallmark and Kyoto Encyclopedia of Genes and Genomes (KEGG)
gene sets (27). Enrichment results were stratified by PLXNA3
expression levels. Pairwise Pearson correlations between PLXNA3
and immune-related genes in gastrointestinal tumors were computed
using ‘cor.test’ and presented as complex heatmaps.

2.10 Immunohistochemistry staining and
scoring

Twenty-two colorectal cancer samples were collected for
immunohistochemical validation. All specimens were obtained

frontiersin.org
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from postoperative colorectal cancer patients at Fuzhou University
Affiliated Provincial Hospital, and the sample acquisition was
approved by the hospital’s Ethics Committee (Approval number:
K2024-12-064). Among them, ten paired tumors and adjacent
normal tissues were used for quantitative analysis. Formalin-fixed
paraffin-embedded sections were stained with anti-PLXNA3
antibodies. Representative images were acquired at 5x, 20x
magnifications. Staining intensity was graded on a 0-3 scale, and
THC scores were calculated as intensity x positive cell percentage
(28). Group comparisons were made using two-tailed Student’s t-
tests in GraphPad Prism. Correlations between THC score and
Tumor-Node-Metastasis (TNM) staging were visualized using
scatter plots.

2.11 Drug sensitivity and CMap analysis

Drug response profiles were downloaded from Profiling
Relative Inhibition Simultaneously in Mixtures (PRISM), Cancer
Therapeutics Response Portal (CTRP), and Genomics of Drug
Sensitivity in Cancer (GDSC) datasets (29-31). Pearson
correlation coefficients were calculated between PLXNA3
expression and AUC drug sensitivity metrics. Strongly associated
compounds in GDSC1 and GDSC2 were prioritized. CMap analysis
was performed using the eXtreme Sum (XSum) method to identify
candidate small molecules predicted to reverse the transcriptional
signature associated with PLXNA3 overexpression. Among the 1288
compounds screened, those with the lowest connectivity scores
were highlighted as potential therapeutic inhibitors (32).

3 Result

3.1 Immune-related gene expression and
prognostic model construction

To identify immune-related prognostic biomarkers in COAD,
we first integrated transcriptomic profiles from 461 COAD samples
in TCGA with immune gene sets curated from the Immunology
Database and Analysis Portal (ImmPort). This yielded a
comprehensive dataset of immune-related gene expressions
specific to COAD. Differential expression analysis between tumor
and adjacent normal tissues revealed substantial immune
heterogeneity, as visualized by a heatmap highlighting
significantly dysregulated genes (Figure 2A).

Next, we performed univariate Cox regression analysis by
combining the expression profiles of differentially expressed
immune genes with matched clinical outcomes from the TCGA
cohort. This analysis identified a set of immune genes significantly
associated with OS. Among these, PLXNA3 emerged as one of the
top high-risk genes (HR=1.656, 95% CI: 1.004-2.267, p=0.032),
suggesting its potential role in driving adverse clinical
outcomes (Figure 2B).
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To investigate potential biological interactions among the
survival-related immune genes, a protein-protein interaction
(PPI) network was constructed using the GeneMANIA platform.
The resulting network (Figure 2C) illustrated functional
connectivity among these genes, implying their involvement in
immune regulation and tumor signaling.

Building on these findings, we developed a robust prognostic
model by integrating immune-related gene expression data from
both TCGA and an independent GEO cohort (GSE39582). Using a
stacked ensemble machine learning framework incorporating over
100 algorithms—including LASSO, Coxboost, and StepCox—we
identified the model with the highest concordance index (C-index =
0.645) as our final prognostic model (Figure 2D). This model
demonstrated consistent accuracy in both training (TCGA, C-
index = 0.684) and validation (GEO, C-index = 0.606) datasets,
establishing a reliable foundation for COAD prognosis prediction.

Notably, the top-performing model—based on the integration
of CoxBoost and SuperPC—yielded 17 high-weighted genes,
including well-established immune regulators (e.g., CD19, CCL24,
CCL28, PLCG2 and FABP4) (33-37). Among these, PLXNA3
emerged as a gene of particular interest due to its comparable
model-derived importance score, coupled with its limited prior
characterization in colorectal cancer immunity. The full list of
model-scoring genes and their hazard ratios is provided in
Supplementary Table S2.

3.2 Survival analysis and validation of the
prognostic model

To evaluate the clinical utility of our prognostic model, we
performed KM survival analyses using both the TCGA and GEO
(GSE39582) datasets. As shown in Figure 3A, patients stratified into
the high-risk group had significantly worse OS than those in the
low-risk group in both cohorts (log-rank test, p < 0.001 in TCGA; p
= 0.002 in GSE39582), underscoring the model’s robust
discriminative ability across independent populations.

ROC curve analysis further confirmed the model’s predictive
accuracy at different time points. In the TCGA cohort, the AUC
reached 0.711, 0.720, and 0.684 for 1-, 3-, and 5-year survival,
respectively, indicating strong temporal consistency (Figure 3B). In
the GEO cohort, the AUCs were 0.627, 0.628, and 0.662, suggesting
moderate external generalizability.

To assess the added prognostic value beyond standard clinical
indicators, we compared our model’s predictive performance
against common clinicopathological features. Combined ROC
analyses demonstrated that the risk score achieved competitive or
superior predictive ability, and time-dependent C-index curves
revealed consistent long-term prognostic accuracy (Figure 3C).

Univariate and multivariate Cox regression analyses based on
TCGA data confirmed that the model-derived risk score served as
an independent prognostic factor. In the multivariate analysis, the
risk score yielded a HR of 2.2446 (95% CI: 1.394-3.620, p < 0.001),
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FIGURE 2

Identification of immune-related prognostic genes and construction of a multi-model prognostic risk model. (A) Heatmap of differentially expressed
immune-related genes between tumor and adjacent normal tissues in TCGA-COAD (log2 fold change > 1.5, FDR < 0.05). (B) Forest plot of univariate
Cox regression analysis showing hazard ratios (HR) for selected immune-related genes associated with overall survival in TCGA-COAD. PLXNA3 was
identified as a significant high-risk gene (HR = 1.656, p = 0.032). (C) Protein-protein interaction (PPI) network of prognostic immune-related genes
constructed using the GeneMANIA database. (D) Performance comparison of ensemble machine learning models using integrated TCGA and GEO
datasets. The selected prognostic model achieved the highest concordance index (C-index = 0.645) and was used for downstream survival analysis.

second only to TNM stage (HR = 2.275, 95% CI: 1.713-3.021, p < Finally, calibration analysis showed excellent agreement
0.001). Notably, in the univariate setting, the risk score  between predicted and observed survival at 1, 3, and 5 years. The
demonstrated even stronger predictive power than TNM  nomogram integrating the risk score with clinical parameters
stage (Figure 3D). yielded a C-index of 0.766 (95% CI: 0.707-0.825), supporting its
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FIGURE 3

Survival validation and clinical utility of the prognostic model, risk groups were stratified using surv_cutpoint. (A) Kaplan—Meier survival curves
demonstrating significantly poorer overall survival in high-risk groups in both TCGA and GEO validation cohorts (log-rank p < 0.001). (B) Time-
dependent receiver operating characteristic (ROC) curves showing high predictive performance of the model in TCGA and GEO. (C) Comparison of
model performance with clinical features using time-dependent concordance index, indicating superior prognostic value of the model across
follow-up years. (D) Univariate and multivariate Cox regression analysis showing that the model-derived risk score is an independent predictor of
overall survival (multivariate HR = 2.246, p < 0.001). (E) Calibration curves confirming the agreement between predicted and actual survival
probabilities. (F) Nomogram combining the risk score with clinical variables for individualized survival prediction. The asterisks (*, **, ***) next to
variables in the nomogram indicate statistical significance derived from the Cox regression analysis used for model construction, consistent with

conventional notation (*p < 0.05, **p < 0.01, ***p < 0.001).
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potential for individualized prognostic assessment in clinical
practice (Figures 3E, F).

3.3 Comparison of immune functional
differences between high- and low-risk
groups

To explore the immunological landscape associated with our
prognostic model, we stratified TCGA-COAD samples into high-
and low-risk groups and analyzed immune-related characteristics
across multiple dimensions.

First, correlation analysis between immune cell infiltration levels
and risk scores revealed distinct patterns (Figure 4A). Key effector
cells—including CD8" T cells, CD4™ T cells, Mast cells, eosinophils
and neutrophils—showed significant negative correlations with risk
scores, while immunosuppressive populations such as regulatory T
cells (Tregs), tumor-associated fibroblasts and macrophages were
positively correlated. These findings suggest that high-risk tumors are
characterized by reduced immune activation and enhanced
immunosuppressive cell infiltration.

Consistently, comparisons of immune cell abundance between
risk groups confirmed that low-risk patients exhibited significantly
higher Cytolytic activity and higher infiltration of NK cells, and Th2
cells, whereas high-risk patients demonstrated enrichment of
macrophages and IFN response (Figure 4B, p < 0.01). These
immune infiltration profiles indicate an immunosuppressive
tumor microenvironment in high-risk COAD.

Immune subtyping analysis showed no statistically significant
distribution differences between groups (p = 0.13; Supplementary
Figure 1) and was therefore not considered further.

We investigated the expression of immune checkpoint-related
genes between high- and low-risk groups. Several inhibitory
markers, including CD276, HAVCR2, CTLA4, PDCDILG2,
LAIRI, and ADORA2A, were significantly upregulated in the
high-risk group (Figure 4C, p < 0.05), suggesting an
immunosuppressive tumor microenvironment.

Further, TME scoring revealed that high-risk patients had
significantly lower immune scores and higher stromal scores
(Figure 4D), consistent with a less inflamed, stromal-
dominant phenotype.

Finally, TIDE (Tumor Immune Dysfunction and Exclusion)
analysis demonstrated significantly elevated immune escape scores
in the high-risk group (p < 0.001; Figure 4E), reinforcing the
concept that these tumors may evade immune surveillance more
effectively and show reduced responsiveness to immunotherapy.

3.4 Prognostic significance and pan-cancer
expression analysis of PLXNA3

Following the identification of 17 prognostic immune-related
genes through our machine learning pipeline (Figure 2D), we
performed cross-platform prioritization using gene expression
profiles and CRISPR dependency scores from the DepMap
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database. PLXNA3 stood out for its combination of high
expression and strong dependency across multiple digestive
system cancer cell lines, highlighting its potential functional
relevance in tumor maintenance and positioning it as a candidate
of interest for downstream investigation (Figure 5A).

To assess the diagnostic performance of PLXNA3, we conducted
ROC curve analyses across tumor types using the pROC package. In
the TCGA cohort, PLXNA3 demonstrated excellent discriminatory
power in gastrointestinal malignancies, including Esophageal
Carcinoma (ESCA), Stomach Adenocarcinoma (STAD), COAD,
and Rectum Adenocarcinoma (READ), with AUC values all
exceeding 0.8. Additionally, PLXNA3 showed exceptionally high
AUC values for Cholangiocarcinoma (CHOL) across both TCGA
and TCGA-GTEx datasets (AUC > 0.9), suggesting potential pan-
digestive tract utility (Figure 5B).

Expression comparisons between tumor and normal tissues
from TCGA confirmed significant upregulation of PLXNA3 in
gastrointestinal cancers. Wilcoxon test results showed consistently
higher expression levels in COAD, READ, STAD, and ESCA
tumors compared to matched normal tissues (p < 0.001 for all;
Figure 5C). These findings were supported by transcriptomic data
from the Human Protein Atlas, which reported markedly higher
expression of PLXNA3 in gastrointestinal tumors relative to normal
counterparts—colorectal cancer (9.5), gastric cancer (9.2), and
rectal cancer (8.7), compared to corresponding normal tissues
(7.2, 6.8, and 2.1, respectively) (Figure 5D).

To visualize intra-group organ-level expression trends, we
standardized TPM data from TCGA and GTEx using Z-score
transformation and mapped median scores onto a human anatomical
atlas via the gganatogram package. In normal tissues, PLXNA3
expression was primarily enriched in the colorectal region of the
gastrointestinal tract, whereas in tumor tissues, its expression was
concentrated in gastric and esophageal organs (Supplementary Figure 2).

Finally, paired sample analyses within TCGA confirmed
significantly higher PLXNA3 expression in tumor tissues
compared to adjacent non-tumor controls across COAD, READ,
STAD, and ESCA. This pattern was particularly consistent in
colorectal cancer (Figure 5E), reinforcing PLXNA3’s relevance as
a tumor-associated gene within the digestive tract.

3.5 Prognostic survival analysis of PLXNA3
in pan-gastrointestinal cancers

To further investigate the prognostic relevance of PLXNA3, we
performed survival analyses across gastrointestinal malignancies
using both univariate Cox regression and KM survival analyses.
These analyses covered four major survival metrics: overall survival
(OS), disease-specific survival (DSS), progression-free interval
(PFI), and disease-free interval (DFI).

In the univariate Cox model, PLXNA3 consistently appeared as a
high-risk factor (HR >1) across several cancer types, with particularly
strong statistical significance in COAD (Figure 6A). KM analyses
further confirmed this trend: high PLXNA3 expression was
significantly associated with poor prognosis across all survival
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FIGURE 4

Immune microenvironment characteristics associated with the prognostic model. (A) Correlation between risk scores and immune cell infiltration
levels using multiple computational algorithms (e.g. XCell, TIMER, MCPcounter). CD8" T cells and CD4" T cells show negative correlations, while
Tregs and cancer associated fibroblast show positive correlations. (B) Boxplots comparing immune cell infiltration scores between high- and low-
risk groups. Immune effector cells such as Th2 cells are significantly reduced in high-risk patients (p < 0.01). (C) Expression of immune checkpoint
genes including CD276 and CTLA4 is significantly higher in the high-risk group (p < 0.05). (D) Tumor microenvironment (TME) scores: high-risk
patients exhibit lower immune scores and higher stromal scores (p < 0.01). (E) Tumor Immune Dysfunction and Exclusion (TIDE) scores are
significantly elevated in high-risk patients, indicating potential immune escape (p < 0.001). The asterisks (*, **, ***) in the figures indicate statistical

significance levels: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***).

endpoints in COAD (p < 0.05 for OS, DSS, PFI, and DFI;
Figures 6B-E).

To consolidate these findings, we compiled a summary
heatmap integrating Cox and log-rank results across multiple
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gastrointestinal tumors (Figure 6F). PLXNA3 stood out as a
robust and consistent risk gene in COAD across both analytical
approaches, while READ demonstrated partial significance in
specific endpoints.
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Survival analyses of PLXNA3 across gastrointestinal malignancies. (A) Forest plot of univariate Cox regression analyses evaluating PLXNA3 expression
in relation to OS,DSS, PFl, and DFI across gastrointestinal cancers.(B-E) Kaplan—Meier survival curves showing that high PLXNA3 expression is
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FIGURE 7

Spatial transcriptomic profiling of PLXNA3 in colorectal cancer (CRC). (A) SpatialFeaturePlot visualizations showing PLXNA3 expression across six
primary CRC samples (CRC/CRC2/CRC3/CRC6/CRC7/CRC8). (B) Bar plots comparing PLXNA3 expression between Mal and nMal regions. All
samples show significantly higher expression in malignant zones (Wilcoxon test, p < 0.05). (C) Heatmap displaying PLXNA3 expression across
dominant cell-type zones (e.g., malignant cells, endothelial cells, immune cells). PLXNA3 is primarily enriched in malignant regions and suppressed in
immune-dense zones such as plasma cells and CD8" T cells. (D-H) Spearman correlation matrix summarizing the relationship between PLXNA3
expression and microregional cellular composition across 6 CRC spatial samples. PLXNA3 shows strong positive correlations with malignant zones
and negative correlations with immune-associated regions.
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3.6 Spatial transcriptomic analysis of
PLXNAS3 in colorectal cancer

Given its prognostic significance in COAD and READ, we next
explored the spatial expression patterns of PLXNA3 in CRC using
spatial transcriptomic data. Normalized expression data from ten
CRC tissue sections were analyzed using Seurat’s SpatialFeaturePlot
function. Spatial visualization revealed that PLXNA3 was
predominantly expressed in tumor-enriched regions across all
primary CRC samples (Figure 7A; Supplementary Figure 3A).

To quantify this spatial localization, we divided each tissue
section into Mal and nMal zones based on the proportion of
malignant cells. In all CRC samples, PLXNA3 expression was
significantly higher in malignant regions compared to non-
malignant areas (p < 0.05; Figure 7B and Supplementary
Figure 3B), underscoring its spatial enrichment in tumor tissue.

Further, we analyzed PLXNA3 expression across spatially
defined cell-type dominant regions (Figure 7C). Heatmaps
showed that PLXNA3 was enriched in malignant cell regions,
while expression in immune-associated regions (e.g. plasma cells,
CD8" T cells, CD4" T cells) was consistently lower. This spatial
distribution mirrors prior survival and immune correlation results,
reinforcing its role in tumor-specific proliferation.

Finally, Spearman correlation analysis across all 10 samples
(Figures 7D-H and Supplementary Figure 3C) revealed that
PLXNA3 expression was most positively correlated with
malignant zones and negatively associated with immune-dense
regions. Furthermore, negative correlation could be found
between tumor cells and immune-associated cells such as CD8" T
cells, CD4" T cells and plasma. These findings highlight the gene’s
spatial specificity and support its potential role in promoting tumor
progression and shaping immune exclusion in CRC.

3.7 Single-cell analysis of PLXNA3 in
colorectal and pan-cancer contexts

Following the spatial transcriptomic observation of PLXNA3
enrichment in malignant epithelial regions, we performed a single-
cell level analysis across gastrointestinal tumors to evaluate its
expression in diverse cell types, particularly immune populations.
Using the TISCH2 database, we selected three high-quality
colorectal cancer datasets—GSE166555, EMTAB8107, and
GSE146771—for integrated analysis.

UMAP-based clustering revealed epithelial and malignant cells
as predominant populations (Figure 8A and Supplementary
Figure 4A). PLXNA3 was highly expressed in these cell types,
with markedly lower expression in plasma cells and mast cells, as
shown by the gene-level heatmap (Figure 8A and Supplementary
Figure 4A). Bar plots further confirmed elevated PLXNA3
expression in malignant and fibroblast cells, while immune
subsets such as plasma cells, DC, and monocyte exhibited
minimal expression (Figure 8B and Supplementary Figure 4B).

We next used Z-score transformation across all three datasets to
assess the relationship between PLXNA3 expressions and specific
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cell type abundances (Figure 8C). PLXNA3 was consistently and
positively correlated with malignant cells and negatively correlated
with plasma cells. Boxplots comparing PLXNA3 expression between
malignant and plasma cells in all datasets revealed highly significant
differences (p < 0.001; Figure 8D and Supplementary Figure 4C).

To further explore the distributional impact of PLXNA3
expression, we stratified cells into PLXNA3" and PLXNA3" groups
and compared their cellular composition. In the PLXNA3-negative
group, immune cells—including CD4" T cells, monocytes, and
plasma cells—were significantly enriched, while malignant cell
proportions were markedly reduced (Figure 8E).

Finally, to validate these findings on a broader scale, we
examined all single-cell datasets within TISCH2. Lollipop plots of
Spearman correlation coefficients between PLXNA3 expression and
cell type fractions across datasets showed consistent trends:
PLXNA3 expression positively correlated with pDCs and Thl
cells, but negatively correlated with monocytes, B cells, and CD8*
T cells (Figure 8F).

3.8 Multi-layer regulatory and functional
profiling of PLXNA3 in gastrointestinal
cancers

To further elucidate the mechanistic basis by which PLXNA3
may contribute to tumor progression and immune suppression, we
performed a multi-layered regulatory and functional analysis across
gastrointestinal cancers.

We first examined transcriptional regulation by identifying the top
25 transcription factors (TFs) most positively and negatively correlated
with PLXNA3 expression in each TCGA cancer type (Supplementary
Figure 5). In COAD, Pearson correlation analysis revealed strong
positive correlations between PLXNA3 and MZF1, OGT, LHX4, and
MED12, while ILF2 and GTF2A2 showed strong negative correlations
(Figure 9A). Stratification analysis based on quartile expression levels
(Q1-Q4) of the selected TFs further confirmed the relationship with
PLXNA3 expression, demonstrating consistent patterns with the
correlation results (Figure 9B).

We next explored post-transcriptional regulation of PLXNA3
using miRNA correlation data from the grswsci platform (https://
grswsci.top/). Among the predicted miRNAs, hsa-miR-221-3p and
hsa-miR-224-3p exhibited notable positive associations with
PLXNA3 expression. These findings were validated through
Pearson correlation and Fisher’s exact test, both showing
significant associations (Figures 9C, D and Supplementary Table 1).

To identify functional pathways potentially modulated by
PLXNA3, we performed GSEA using both Hallmark and KEGG
gene sets across COAD, ESCA, READ, and STAD (Figure 10A and
Supplementary Figure 6). In COAD, PLXNA3 expression was
negatively associated with key oncogenic and immunoregulatory
pathways including Interferon Gamma Response, KRAS signaling,
Oxidative Phosphorylation, Myc Targets V1, Inflammatory
Response, and E2F Targets.

We then evaluated co-expression patterns between PLXNA3
and immune-related genes using Pearson correlation analysis and
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Single-cell landscape of PLXNA3 expression in colorectal and pan-cancer contexts. (A) UMAP plot showing cell type clustering (left) and PLXNA3
expression density (right) in CRC dataset GSE166555. (B) Mean expression of PLXNA3 across cell types in GSE166555. (C) Heatmap of PLXNA3

expression Z-scores in 13 cell types across three CRC datasets (GSE166555, EMTAB8107, and GSE146771). (D) Boxplot comparing PLXNA3
expression between malignant cells and plasma cells in GSE166555 (Wilcoxon test, p < 0.001). (E) Proportional composition of major cell types in

PLXNA3* vs. PLXNA3™ groups. Immune cells are enriched in the PLXNA3™ group, while malignant cells dominate the PLXNA3" group in GSE166555.
(F) Spearman correlation coefficients between PLXNA3 expression and relative abundance of immune/stromal cell types across all TISCH2
pan-cancer datasets. Positive correlations observed with pDCs and Thl cells; negative correlations with CD8™ T cells, B cells, and monocytes.
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Transcriptional and post-transcriptional regulatory analysis of PLXNA3 in colorectal cancer. (A) Pearson correlation analysis between PLXNA3 and
selected TFs in COAD, showing strong positive correlations with MZF1, OGT, LHX4, MED12, and negative correlations with ILF2 and GTF2A2.

(B) Expression distributions of PLXNA3 stratified by TF expression quartiles (Q1-Q4), using MZF1 and ILF2 as examples. (C, D) Correlation between
PLXNA3 and two oncogenic miRNAs—hsa-miR-221-3p (C) and hsa-miR-224-3p (D)—including Pearson correlation coefficients, scatter plots, and

Fisher's exact test results for categorical expression levels.

visualized the results via heatmap (Figure 10B). Notably, PLXNA3
was significantly correlated with several key immune modulators in
COAD, including CXCL8, CXCR3, PVR, TNFRSF14, and
TNFRSF25, indicating its potential role in modulating immune
infiltration and immune checkpoint signaling.

Lastly, to assess how PLXNA3 links with broader tumor
phenotypes, we integrated CancerSEA functional state scores and

Frontiers in Immunology

conducted correlation analysis across 14 tumor-related biological
processes (Supplementary Figure 7). Focused analysis in
gastrointestinal cancers revealed that in both COAD and READ,
PLXNA3 exhibited strong negative correlations with DNA repair,
and DNA damage pathways, while in COAD, PLXNA3 exhibited
certain negative correlations with quiescence (Figure 10C), further
supporting its functional role in tumor aggressiveness.
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3.9 Immunohistochemical validation and
drug sensitivity analysis of PLXNA3 in CRC

To validate our bioinformatics findings at the protein level, we
performed IHC staining for PLXNA3 in 22 clinical samples of
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colorectal cancer. Representative images demonstrated markedly

increased staining intensity in tumor tissues compared to paired

peritumoral tissues, both at 5x and 20x magnifications
(Figure 11A). Staining intensity was graded into four levels (0-3

points), as shown in high-magnification examples (Figure 11B).
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FIGURE 11
Immunohistochemical validation and drug sensitivity analysis of PLXNA3 in colorectal cancer. (A) Representative IHC staining of PLXNA3 in paired
tumor and adjacent normal CRC tissues (magnifications: 5%, 20x). (B) Reference panel of staining intensity scores (0—-3) used for IHC scoring.

(C) Boxplot comparing IHC scores between tumor and normal tissues. PLXNA3 expression is significantly higher in tumor tissues (p = 0.0005).

(D) Scatter plots showing IHC scores in relation to tumor TNM stage. A positive trend is observed between lymph node (N) stage and PLXNA3 levels.
(E) Correlation heatmap between PLXNA3 expression and drug response across four sensitivity datasets (PRISM, CTRP, GDSC1, GDSC2), with
strongest associations in GDSC1 and GDSC2. (F) Identification of individual compounds showing significant positive correlations between PLXNA3
expression and sensitivity to specific chemotherapeutics. (G) CMap analysis revealing candidate small molecules with potential to reverse
PLXNA3-driven transcriptional programs. Compounds with the lowest connectivity scores are highlighted. The asterisks (*, **, ***) in the figures
indicate statistical significance levels: p < 0.05 (*), p < 0.01. (**), p < 0.001 (***).

THC scores were calculated as the product of staining intensity and ~ 0.0005; Figure 11C), supporting the translational relevance of
percentage of positive cells. Quantitative comparison between  our transcriptomic predictions.

tumor and adjacent normal tissues revealed significantly To preliminarily explore potential clinical relevance, we plotted
higher PLXNA3 IHC scores in tumor samples (p = IHC scores against TNM staging parameters. Although sample size
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precluded statistical testing, a trend of increasing PLXNA3
expression with advancing N stage was observed (Figure 11D),
suggesting possible association with nodal metastasis and
tumor progression.

To investigate the potential druggability of PLXNA3, we
assessed its correlation with compound sensitivity across multiple
pharmacogenomic databases. Among PRISM, CTRP, GDSC1, and
GDSC2 datasets, the strongest correlations were observed in
GDSC1 and GDSC2, where PLXNA3 expression exhibited
significant positive associations with drug half maximal inhibitory
concentration (IC50) values (Figure 11E), indicating reduced drug
sensitivity in PLXNA3-high contexts. Subsequent analysis identified
several compounds whose IC50 values were positively correlated
with PLXNA3 expression in both datasets, including mTOR and
PI3K pathway inhibitors (Figure 11F).

Finally, to identify compounds that might reverse PLXNA3-
associated transcriptional programs, we performed a CMap analysis
using the XSum algorithm. A total of 1288 small molecules were
scored based on their inverse similarity to PLXNA3-related gene
signatures. Among these, compounds with the most negative scores
—suggestive of therapeutic potential—were enriched in kinase
inhibitors and differentiation inducers (Figure 11G).

4 Discussion

In this study, we developed a robust immune-related prognostic
model for CRC by integrating transcriptomic and clinical data from
TCGA and GEO cohorts using over 100 machine learning
algorithms. This ensemble-based model achieved strong
predictive performance and highlighted PLXNA3 as a top-ranking
risk gene with consistent prognostic significance across
gastrointestinal cancers. Multi-level validations—spanning spatial
transcriptomics, single-cell analysis, and TF expression—confirmed
its elevated expression in tumor tissues and its enrichment in
malignant epithelial compartments.

PLXNA3, a member of the plexin family originally implicated in
axon guidance (9), has recently been linked to oncogenic processes
in breast cancer and nephroblastoma (11, 12). Consistent with prior
studies suggesting its upregulation correlates with poor prognosis in
various cancers (10), our analysis extended its significance to
gastrointestinal malignancies, particularly COAD. Notably, spatial
and single-cell analyses revealed a mutually exclusive distribution
pattern between PLXNA3 and immune-rich regions, especially
CD8" T cells, suggesting a role in immune evasion. Furthermore,
we identified a strong negative correlation between PLXNA3 and
plasma cells in CRC, although this finding requires further
validation in larger cohorts.

Our transcription factor analysis uncovered several TFs highly
correlated with PLXNA3 expression in COAD. Among them,
MZF1, OGT, LHX4, and MEDI12 have been implicated in tumor
stemness, drug resistance, and immune escape mechanisms (38-
41). In contrast, GTF2A2 and ILF2—downregulated in PLXNA3-
high tumors—play roles in transcriptional activation and T cell
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signaling (42, 43), respectively, suggesting a potential
immunosuppressive reprogramming in PLXNA3-high tumors.
Additionally, two well-established oncogenic miRNAs, hsa-miR-
221-3p and hsa-miR-224-3p, were positively correlated with
PLXNA3 expression. Given their roles in shaping the tumor
immune microenvironment (44-46), their association with
PLXNA3 supports its relevance in immune modulation.
Furthermore, hsa-miR-224-3p was found upregulated in serum
and tissues of colorectal cancer patients with lymph node
metastasis, suggesting that it could be used as a marker to predict
progression (47).

Functionally, GSEA revealed that PLXNA3 expression in COAD
is negatively associated with pathways such as Interferon Gamma
Response, Oxidative Phosphorylation, and Inflammatory Response,
which are central to T cell activation and recruitment (48-50).
Moreover, PLXNA3 expression was negatively correlated with
KRAS signaling UP and positively correlated with KRAS signaling
DN gene sets, suggesting a potential suppression of classical Ras
pathway activity. This is consistent with structural evidence that
PLXNA3 possesses Ras-GAP activity, particularly toward R-Ras and
M-Ras, which leads to the attenuation of downstream RAS-RAF-
MAPK signaling (51). These results suggest that PLXNA3 may
suppress classical RAS signaling activity and influence tumor
progression through non-canonical pathways beyond KRAS
activation. As a gene closely related to CRC, the relationship
between RAF and PLXNA3 remains to be further explored;
however, evidence from PLXNAI suggests a potential link between
plexins and RAF-mediated signaling (52). In addition, while PLXNA3
showed a weak negative correlation with most immune-related genes,
it was positively associated with PVR, TNFRSF14, and TNFRSF25,
which are known to foster immunosuppressive niches (53-57). In
tumor cells, PLXNA3 showed consistent negative correlations with
pathways that are typically associated with tumor-suppressive
functions, including DNA repair, DNA damage response, and
quiescence (58, 59). By concurrently modulating oncogenic
signaling and impairing anti-tumor immunity via CD8" T cell
dysfunction and immune exclusion, along with suppressing tumor-
protective cellular program, PLXNA3 may play a dual role in driving
colorectal cancer progression both through immune evasion and
intrinsic cellular aggressiveness.

The THC results further validated PLXNA3 overexpression at
the protein level, and a trend of increasing expression with higher N
stages suggested a potential link to lymph node metastasis. Drug
sensitivity profiling across GDSC1 and GDSC2 databases revealed
widespread positive correlations between PLXNA3 expression and
drug IC50 values, indicating a potential role in therapeutic
resistance. Finally, using CMap analysis, we identified several
candidate compounds—including imatinib, fasudil, and MS-275—
that may reverse PLXNA3-driven transcriptional programs. While
the exact mechanisms remain to be elucidated, MS-275’s inhibition
of HDACI1/3 (60) and known effects on IFN-y signaling (61),
antigen presentation, and T cell recruitment (62) lend biological
plausibility to its potential efficacy against PLXNA3-high tumors.
Meanwhile, imatinib exerts crucial immunomodulatory functions.
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It suppresses IDO, leading to enhanced intertumoral CD8" T cell
activation and Treg apoptosis, promotes DC maturation and CD8"
T cell infiltration, and inhibits M2 macrophage polarization (63-
65).As for fasudil, remodels the tumor immune microenvironment
by multiple mechanisms: it enhances phagocytosis by antigen-
presenting cells and promotes dendritic cell maturation, leading
to potent CD8" T cell priming and infiltration (66). These findings
also indirectly support our previous discovery of a potential
association between PLXNA3 and T cells.

Despite these strengths, our study has limitations. The reliance on
public datasets may introduce batch effects and clinical heterogeneity.
Moreover, functional validation in vivo and prospective clinical cohorts
is essential to establish PLXNA3 as a reliable therapeutic target.
Notably, we did not directly assess the predictive value of PLXNA3
in the context of immune checkpoint inhibitor (ICI) therapy, due to the
lack of large-scale, colorectal cancer-specific immunotherapy cohorts
with available treatment outcome data. While many recent studies have
used immunotherapy cohorts from other cancer types for CRC-related
analyses, such extrapolations are inherently limited (67, 68). Moreover,
current immunotherapy decision-making in colorectal cancer is
primarily based on MSI-H/dMMR status rather than gene-level
expression (69). Nonetheless, our findings provide a meaningful
background for future investigations, and we plan to validate the role
of PLXNA3 in immunotherapy through well-designed in vitro and in
vivo experiments. In conclusion, the integration of multi-omics
analyses—encompassing survival modeling, spatial and single-cell
transcriptomics, immunohistochemistry, and pharmacogenomic
screening—positions PLXNA3 as a promising biomarker for
prognosis and immunotherapy response in colorectal cancer.
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SUPPLEMENTARY FIGURE 1
Immune subtyping analysis showed no statistically significant distribution
differences between groups

SUPPLEMENTARY FIGURE 2

Organ-level expression pattern of PLXNA3 in normal and tumor tissues. Z-
score normalized TPM values from GTEx and TCGA were visualized using the
gganatogram package. PLXNA3 expression was higher in the colorectal
region among normal tissues and enriched in gastric and esophageal
regions among tumor tissues.
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