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Introduction: Necrosis induced by sodium overload has recently been identified

as a novel form of regulated cell death. However, the specific genes associated

with sodium overload in breast cancer (BC) remain uncharacterized.

Methods: We identified 753 differentially expressed sodium-overload-related

genes (DESORGs) in BC. We performed pathway enrichment analyses, then used

univariate Cox regression to select 67 prognostic DESORGs. To build prognostic

models, we tested 101 combinations of ten machine learning algorithms. SHAP

analysis was used to determine feature importance. Mendelian randomization (MR)

was applied to assess causal effects. Experimental validation (in vitro) included

overexpression and knockdown studies. GSEA/GSVA and molecular docking were

conducted to explore downstream pathways and potential drug candidates.

Results: The ridge regression model showed optimal prognostic power. IFNG

was identified as the key feature. The computed risk score was an independent

prognostic factor, outperforming traditional clinical variables (AUC = 0.845), and

a nomogram built with it yielded good calibration (C-index = 0.815). MR

suggested a protective causal effect of NR1H3 in BC, and patients with high

NR1H3 expression had significantly better overall survival (p = 0.02). In vitro,

NR1H3 overexpression suppressed proliferation, colony formation, migration,

and invasion, whereas its knockdown had opposite effects. GSEA and GSVA

showed that high NR1H3 expression is enriched in immune activation–related

pathways. Molecular docking identified Cephaeline and Emetine as potential

drugs that upregulate NR1H3 expression.

Conclusions: These findings highlight NR1H3 as a novel DESORG and a

promising therapeutic target in breast cancer.
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1 Introduction

Breast cancer ranks among the top causes of mortality and new

cases globally, making it a serious global health concern. With 2.3

million incident cases (11.6% of Pan-cancers) in 2022, breast cancer

was the most prevalent cancer diagnosed worldwide. It was also the

main cause of cancer-related deaths among women, accounting for

an estimated 0.66 million deaths (1). According to current forecasts,

there will be 0.87 million BC deaths, and 2.7 million new cases

diagnosed globally each year by 2030 (2). Breast cancer mortality is

still a problem even with improvements in treatment plans. Patients

with distant metastases of breast cancer only had a 5-year overall

survival (OS) rate of around 25% (3). Early detection of breast

cancer markedly improves the likelihood of successful treatment

and patient survival. Thus, identifying new biomarkers for early

diagnosis and improved clinical management is urgently needed.

Growing evidence highlights diverse regulated cell death

pathways as pivotal players in oncogenesis, including apoptosis

(4), ferroptosis (5), cuproptosis (6), and pyroptosis (7). Recently, a

unique kind form of necrotic cell death has been discovered, termed

necrosis by sodium overload (NECSO) (8). Unlike ferroptosis or

cuproptosis, NECSO is uniquely characterized as a form of

regulated necrosis initiated by an extreme ionic imbalance—

specifically, a massive influx of sodium through channels like

TRPM4 that leads to osmotic swelling and subsequent cell

rupture. T Koike et al. discovered in 2000 (9) that rat superior

cervical ganglion (SCG) cells undergo necrosis and apoptosis in

vitro when exposed to sodium excess via voltage-dependent Na+

channels. Na+ excess and consequent involvement of the Na+/H+

exchanger cause veratridine neurotoxicity, leading to cytoplasmic

acidification and ultimately cell death.

Sodium overload contributes to severe human diseases such as

fetal development (10), renal function (10, 11) and cardiac

arrhythmias (12). Beyond these conditions, excessive sodium

intake can also provoke inflammatory responses. Sodium

overload resulted in elevated production of pro-inflammatory

markers, including RANTES, NF-kB, Ang II, as well as TGF-b1
(13). Moreover, sodium overload can lead to cell swelling and

dilution of intracellular potassium, which are proposed mechanisms

for activating the NLRP3 inflammasome which act as crucial

element in the process of innate immune response (14). Despite

these insights, studies investigating the involvement of sodium

overload-associated genes in cancer remain limited. More

importantly, high metabolic and proliferative rates of breast

cancer cells may render them more sensitive to disruptions in ion

homeostasis (15), making the study of sodium-overload pathways a

particularly relevant and timely avenue for investigation.

This study aims to uncover promising DESORG candidates for

diagnosis and therapeutic intervention in breast cancer by

integrating comprehensive bioinformatics analyses and

experimental validation. Specifically, this research focuses on the

identification of differentially expressed SORGs, the construction of

a robust prognostic model using machine learning techniques, and

the in-depth investigation of the lead candidate gene, NR1H3

(Nuclear Receptor Subfamily 1 Group H Member 3), to elucidate
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its functional role and possible application as a treatment target in

breast cancer. The discovery of new molecular targets, such as

NR1H3, could open new avenues for developing novel therapeutic

approaches in breast cancer care.
2 Materials and methods

2.1 Data sources

The Cancer Genome Atlas (TCGA) website (https://

portal.gdc.cancer.gov/) provided the clinical phenotypes and

TCGA-BRCA transcriptome data, which included 113 normal

samples and 1118 tumor samples. For validation, the GSE199633

dataset, containing microarray data from 637 primary BRAC

samples, was obtained from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/). This validation dataset was

annotated using the GPL15048 platform.
2.2 Screening of sodium overload-related
genes with differential expression

To identify genes with altered expression related to sodium

overload, we searched the GeneCards platform (https://

www.genecards.org/) (16) for “sodium overload”. This query

retrieved a comprehensive set of 2052 genes, including not only

those directly involved in sodium transport (e.g., ion channels,

exchangers, and pumps) but also a wide array of downstream

effectors and genes implicated in the physiological consequences

of altered sodium homeostasis. After processing the gene expression

data, we performed differential gene expression analysis. Genes

exhibiting an absolute log2 fold change (Log2FC) > 0.585 and a p <

0.05 were defined as differentially expressed. Heatmaps and volcano

plots were generated using the ‘pheatmap’ and ‘ggplot2’ R

packages, respectively.
2.3 KEGG and GO pathway enrichment
analysis

To elucidate the biological activities of all identified DESORGs,

“clusterProfiler” R package was performed for KEGG and GO

enrichment analyses. Additionally, GSEA was conducted on GO

and KEGG gene sets to reveal overall functional enrichment

patterns across different experimental groups (17). Hallmark

pathway scores were computed per sample using the ‘GSVA’ R

package (18).
2.4 Development of DESORG-based
prognostic models using machine learning

Initial screening via univariate Cox (uni_Cox) regression

identified prognostic DESORGs. Subsequently, 101 different
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modeling approaches were explored by combining ten machine

learning algorithms with 10-fold cross-validation using the TCGA-

BRCA for our training set. The selected model’s predictive accuracy

was independently validated using GSE199633. The model

exhibiting the greatest average C-index was selected as an ideal

one for further investigation.
2.5 SHAP analysis

SHAP assigns an important value to each gene for every

prediction by calculating its average contribution across all

possible combinations of genes in the model (19). SHAP values

were calculated using the Kernelshap R package to quantify each

gene’s impact on the model’s output. The resulting SHAP values

were illustrated utilizing shapviz R program to enhance

comprehension of each gene’s influence on the predicted outcome.
2.6 Prognostic analysis of DESORG risk
model

Time-dependent ROC analysis assessed the DESORG-based

risk model’s prognostic performance, with AUC values

quantifying predictive accuracy. Kaplan–Meier survival curves

were generated, and differences between groups were evaluated

using log-rank tests. Multivariate Cox (mul_Cox) regression

analysis was performed to determine independent predictors of

prognosis. A nomogram was established to display how the risk

score and clinical variables jointly predict survival outcomes.

Finally, calibration curves were plotted.
2.7 MR analysis

MR analysis was performed using five different MR methods

with “TwoSampleMR” R package. Single nucleotide polymorphisms

(SNPs) used in this analysis were stringently selected based on the

following criteria: strong association with the exposure factor (p <

5e-08), absence of linkage disequilibrium (r² threshold below 0.001

across a 10,000 kb genomic region.), and an F-statistic greater than

10. The IVW method served as the primary approach for

inferring causality.
2.8 Cell culture and transfection

Human BC cell lines MCF7 and MDA-MB-231 were

maintained at 37 °C in an atmosphere containing 5% CO2. Cells

were cultured in DMEM (Gibco, cat. #11965084) enriched with 10%

FBS (Gibco, cat. #10091155) and antibiotic solution (Gibco, cat.

#15140163). Small interfering RNAs (siRNAs) targeting human

NR1H3, along with a scrambled control siRNA (siRNA-NC), were

manufactured by Shenggong Co., Ltd. (Shanghai, China). The

siRNA sequences for anti-human NR1H3 were siNR1H3#1: 5’-
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GCAUCCAGAUAUCUACAAA-3 ’ ; s iNR1H3#2 : 5 ’ -

CCACUUCAUGCUGUUGGAA-3 ’ ; s iNR1H3#3 : 5 ’ -

GGAAUGCAGCUUCAAGAUG-3’. MCF7 cells were transiently

transfected with siRNAs with Lipofectamine RNAiMAX

(ThermoFisher Scientific, cat. # 13778030). MDA-MB-231 cells

underwent transfection with pENTR221-NR1H3 plasmid

(Addgene, cat. # 79514) using Lipofectamine 2000 (ThermoFisher

Scientific, cat. # 11668027).
2.9 qRT-PCR

Total RNA was extracted from MCF7 and MDA-MB-231 cells

using an RNA miniprep kit (Zymo Research, cat. # R1054) and

reverse-transcribed into cDNA with PrimeScript 1st strand cDNA

Synthesis Kit (Takara, cat. # 6110A). The reverse transcription

reaction was carried out at 37 °C for 15 min, then 85 °C for 5 sec to

inactivate the enzyme. Subsequently, qRT-PCR was performed with

SYBR Green PCR master mix (ThermoFisher Scientific, cat. #

A46012) and qPCR was performed with these primers: NR1H3: F

5’-AATGCTGGGGAACGAGC-3’, R 5’-CGGCATTTGCGAAGC

CGAC-3’ and b-ACTIN (control): F 5’-ACCATTGGCAAT

GAGCGGT-3’, R 5’-GGTCTTTGCGGATGTCCAC-3’. Reactions

were set up in triplicate for each biological sample. Amplification

was carried out on a real-time PCR instrument under the following

cycling conditions: Initial denaturation: 95 °C for 2 min; 40 cycles

of: 95 °C for 15 sec, 60 °C for 30 sec (annealing/extension); Followed

by a melting (dissociation) curve from 65 °C to 95 °C. Gene

expression was quantified via 2-DDCT analysis.
2.10 Immunoblotting

Total proteins were extracted from cells using RIPA buffer,

separated by SDS-PAGE, transferred to PVDF membranes, and

blocked with 5% skimmed milk for 1 hour, then subsequently

incubated at 4 °C in 5% mike containing primary antibodies NR1H3

(1:5000, proteintech, cat. # 14351-1-AP), and GAPDH (1:10000,

proteintech, cat. # 60004-1-Ig) overnight. The membranes were then

washed with PBS and incubated with the appropriate peroxidase-

conjugated secondary antibodies (1:10000). The images were

performed using Immobilon Classico Western HRP substrate

(MilliporeSigma, cat. # WBLUC0500) and analyzed with ImageJ

software and GraphPad Prism 6. Protein expression levels were

standardized to GAPDH expression levels. All Western blot

experiments were performed in three independent biological replicates.
2.11 CCK8 assay

Cells (5×10³/well) were plated in 96-well plates and incubated

for one week. Cell proliferation was evaluated using CCK8

(MeilunBio, cat. # MA0218) at 37 °C for 2 hours to detect

absorbance at 450 nm (OD450) with a microplate reader at

different time points.
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2.12 Colony formation assay

A total of 1,000 cells were seeded into each well of a 6-well plate

and incubated under standard conditions until distinct colonies

became visible. The colonies were washed with PBS, fixed in

methanol, and stained with 0.1% crystal violet for 20 minutes.

Rinse wells gently with water to remove excess stain and allow plates

to air-dry. ImageJ software (v1.53) was employed for automated

counting. To ensure accuracy, a size threshold of 50 mm in diameter

was established to exclude cellular debris from analysis.
2.13 Scratch assay

Cells (1×105/well) were plated in 12-well plates and cultured for

24 h to form monolayers. A sterile 200 μL pipette tip was used to

create uniform scratches, followed by PBS washing to remove

debris. Fresh medium was then added, and wound closure was

monitored by imaging at 0 h and 24 h post-scratching. The

migration rate was quantified by measuring the remaining wound

area at both time points.
2.14 Transwell assay

For migration assays, use uncoated 8 mm pore Transwell inserts

(Corning, cat. # 3422). For invasion assays, add 40–50 mL of diluted

Matrigel to the upper chamber of each insert, and incubate at 37 °C

for 60 minutes to solidify. For both migration and invasion assays,

600 mL of complete medium supplemented 10% FBS was added to

the lower chamber, while 200 mL of a cell suspension containing 5 ×

104 cells were seeded into the upper chambers of each insert. After

24 hours, remove non-migrated cells from the upper side of the

membrane using a cotton swab and fix migrated or invaded cells

with 70% ethanol for 10 minutes. Cells were stained with 0.1%

crystal violet and then visualized under a phase contrast microscope

at 200× magnification in multiple fields to obtain an average.
2.15 Drug prediction and molecular
docking

Potential drugs targeting NR1H3 were identified using the

DSigDB database (https://dsigdb.tanlab.org/DSigDBv1.0/). Drug

molecule structures were acquired from PubChem (https://

pubchem.ncbi.nlm.nih.gov/), while NR1H3’s 3D structure came

from the PDB (https://www.rcsb.org/). Subsequently, protein-

ligand blind docking was carried out via the CB-Dock2 platform

(https://cadd.labshare.cn/cb-dock2/index.php). This process

utilized the CurPocket algorithm, which detects surface curvature-

based cavities to predict potential binding sites on the NR1H3

protein, followed by performing blind docking of the selected drug

molecules to these identified regions.
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2.16 Statistical analysis

Data were performed with GraphPad Prism 6 (GraphPad

Software) and R 4.2.2 (R Foundation). Data are presented as

mean ± SD. For in vitro experiments, two-group comparisons

used unpaired t-tests; multi-group comparisons employed

ANOVA. Three independent biological replicates were

performed, and p < 0.05 was considered statistically significant.
3 Results

3.1 Identification of DESORGs and pathway
enrichment analyses

2052 genes related to the sodium overload pathway were

retrieved from the GeneCards database. Differential expression

analysis revealed a total of 753 genes exhibited significantly

differential expression in tumor tissues relative to norma samples.

Among the differentially expressed SORGs, 370 genes showed

down-regulated and 383 exhibited up-regulated in tumor samples.

A heatmap of DESORGs was shown in Figure 1A. The volcano plot

in Figure 1B highlights both top 10 of down-regulated and up-

regulated DESORGs with the most significant false discovery rate

(FDR) values. Among the downregulated genes, the most

significantly changed were VEGFD, CAVIN2, SCARA5, CA4,

CAV1, MME, DMD, ADRB2, SLC2A4, and NPR1. Conversely,

the top upregulated genes included CDKN3, INHBA, AURKB,

MMP13, EZH2, KIF23, LMNB1, NME1, CCL11, and GFUS. To

elucidate the functional implications of all DESORGs, KEGG was

conducted and revealed significant enrichment of DESORGs in

pathways including PI3K-Akt signaling, calcium signaling, lipid and

atherosclerosis, as well as MAPK signaling (Figure 1C). Further, GO

analysis (Figure 1D) indicated that the DESORGs participate in

biological processes such as the positive regulation of

phosphorylation, response to steroid hormone, and response to

oxidative stress. In terms of cellular components, DESORGs were

involved in the sarcomere, myofibril, and contractile muscle fiber.

Regarding molecular function, the DESORGs showed enrichment

in cytokine activity, growth factor activity, and protease binding.
3.2 Construction and evaluation of
machine learning-based prognostic models

Univariate Cox regression analysis (Figure 2A) revealed 67

DESORGs significantly linked to breast cancer prognosis,

including 36 potentially protective genes (hazard ratio [HR] < 1),

while 31 genes were associated with increased risk (HR > 1). To

develop a robust prognostic model, we evaluated 101 models

generated from combinations of 10 different machine learning

algori thms (Figure 2B). The Ridge regression model

outperformed other models, achieving greatest average C-index of
frontiersin.org
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0.692 across all evaluated models. Specifically, it yielded a C-index

of 0.775 in the TCGA training cohort and 0.609 in the GEO

validation cohort, indicating consistent prognostic ability across

different datasets. The Ridge model stratified TCGA patients into

high/low-risk groups, with poorer survival in high-risk cases (p <

0.001; Figure 2C). This finding was consistently observed in the

GEO validation cohort, where high-risk patients also had

significantly worse OS (p = 0.001; Figure 2D). Furthermore, high-

risk patients in testing cohort also exhibited shorter progression-

free survival (PFS) (p < 0.001; Figure 2E). In conclusion, these

results underscore the predictive capability of the Ridge regression

model for both OS and PFS in breast cancer patients.
3.3 Interpretation of the optimal
prognostic model using SHAP analysis

To illustrate the interpretability of the Ridge model, SHAP

values were used to explain feature importance and model

predictions. The bar chart in Figure 3A illustrates the top-ranked

features based on their mean absolute SHAP values, reflecting the
Frontiers in Immunology 05
average impact of each feature on the model’s predictions. Among

these, IFNG is shown as the most important feature with a mean |

SHAP value| of 0.329, followed by TFF1 (0.271), TRPM2 (0.259),

RPA3 (0.254), SRD5A2 (0.252), and others. SHAP summary plot

shown in Figure 3B provided a more detailed view of feature effects.

Each row corresponds to a feature, ordered by global importance.

Features where high values are predominantly associated with

positive SHAP values include IFNG, TFF1, TRPM2, RPA3,

SRD5A2, PGK1, TAGLN2, ADAMTSL1, EGR2, RACGAP1,

NRG1, ABCD2, NFE2. Conversely, features like SOCS3 and

ALDH3A1 show an opposi te trend: high values are

predominantly associated with negative SHAP values, indicating a

tendency to decrease the model’s predicted outcome. SHAP

waterfall plot (Figure 3C) shows how the model arrived at a

prediction f(x) = 1.9 starting from a baseline expected value E[f

(x)] = 2.77 (the average prediction over the dataset). Features

contributing positively to the model’s prediction are highlighted

in yellow with their corresponding positive SHAP values (e.g.,

KRT14 = 11.5 contributes +0.411, RACGAP1 = 3.72 contributes

+0.457, EGR2 = 6.43 contributes +0.481). Features contributing

negatively are shown in purple/maroon with their negative SHAP
FIGURE 1

Transcriptomic analysis and functional enrichment of DESORGs. (A) Heatmap of DESORGs between normal and tumor samples. (B) Volcano plot of
DESORGs. (C) Bubble plot of KEGG analysis for DESORGs. (D) Circos plot of GO analysis for DESORGs.
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FIGURE 2

Construction and evaluation of machine learning prognostic models. (A) Forest plot displays the results of univariate Cox regression analysis for
candidate prognostic DESORGs genes. (B) Bar chart comparing the performance (C-index) of 10 machine learning models and 101 feature selection
combinations for predicting prognosis. Higher C-index values indicate better model performance. (C, D) Kaplan-Meier survival curve for overall
survival in TCGA dataset (C) and GEO dataset (D), comparing patients stratified into high and low risk groups based on the prognostic signature. (E)
Kaplan-Meier survival curve for progression-free survival (PFS) in TCGA dataset.
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values (e.g., “20 other features” collectively contribute -1.36, SOCS3

= 7.77 contributes -0.458, ALDH3A1 = 1.79 contributes -0.405).
3.4 Development and validation of an
integrated nomogram

We aimed to create a practical clinical tool for overall survival

(OS) prediction, and integrated the risk score derived from the Ridge

regression model with relevant clinical variables from the TCGA

dataset, including age, pathological stage, tumor size (T classification),

lymph node (N classification), and metastasis (M classification).

Univariate Cox proportional hazards regression analysis (Figure 4A)

revealed that all considered variables were associated with increased

risk, with the “riskScore” exhibiting the strongest association (HR =

3.491, p < 0.001). In the multivariate Cox regression analysis

(Figure 4B), the “riskScore” remained a significant independent

predictor of OS (HR = 3.168, p < 0.001), even after adjusting for

other clinical factors. Age (HR = 1.030, p < 0.001) and pathological

stage (HR = 1.609, p = 0.040) also were independent predictors. ROC

analysis compared the ‘Risk’ model’s predictive accuracy against

individual clinical variables, with AUC values calculated for

quantitative evaluation (Figure 4C). The “Risk” model achieved a
Frontiers in Immunology 07
superior AUC of 0.845 compared to Age (0.611), Stage (0.722), T stage

(0.631), M stage (0.578), and N stage (0.650), indicating its enhanced

ability to discriminate between patients with different survival

outcomes. Time-dependent ROC analyses further demonstrated the

model’s consistent predictive performance over time, withAUC values

of 0.845, 0.807, and 0.779 at 1, 3, and 5 years, respectively (Figure 4D).

Additionally, the risk score consistently exhibited a higher C-index

compared to traditional clinical variables across different time points,

further supporting its superior prognostic value (Figure 4E).

Furthermore, a nomogram was developed that integrates clinical

variables with the risk score to predict OS probabilities (Figure 4F).

To assess the nomogram’s accuracy, we constructed a calibration

curve, which demonstrated satisfactory performance. The nomogram

also exhibited good discriminative ability, with a C-index of 0.815

(95% CI: 0.777-0.853; Figure 4G).
3.5 Prognostic performance of the risk
stratification model across diverse patient
subgroups

To assess the robustness of our risk stratification model, its

prognostic power within various clinically defined subgroups were
FIGURE 3

Interpretation of the prognostic model using SHAP Analysis. (A) Bar plot showing the global feature importance, ranked by the mean absolute SHAP
value. Each bar represents a feature included in the prognostic model. (B) SHAP summary plot illustrates the distribution of SHAP values for each
feature across all samples. Each dot represents a single sample for a given feature. (C) SHAP waterfall plot for an individual sample’s prediction,
explaining how different features contribute to deviating the prediction from the base value.
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further evaluated. Figures 5A-E demonstrates the risk score’s robust

prognostic value, with low-risk patients showing superior survival

versus high-risk counterparts across all clinical strata (age,

pathological stage, TNM classification; all p<0.001). Similarly, the

risk score demonstrated consistent prognostic ability within

molecularly defined subgroups, including molecular subtypes

(Luminal, HER2, and TNBC), ER status, PR status, and HER2

status (all p < 0.001) (Figures 5F-I). These findings underscore the

robust and independent prognostic value of our risk score across a

wide spectrum of established clinical and molecular prognostic

factors, consistently identifying patient groups with differing

survival probabilities regardless of these other variables.
3.6 Mendelian randomization study
between hub SORGs and breast cancer

MR analysis was performed to assess causal links between the 67

prognostic DESORGs from the Ridge regression model and breast

cancer risk. Figures 6A-C showed the estimated effect of each

individual genetic variant (SNP, listed on the y-axis) used as an
Frontiers in Immunology 08
instrumental variable on breast cancer risk. In Figures 6D-F, these

scatter plots where each point represents an instrumental SNP. The

x-axis shows the SNP’s effect on breast cancer (b_XY), and the y-

axis shows the inverse of the standard error of this effect (1/SE

(b_XY)), indicating precision. Leave-One-Out sensitivity analysis

(Figures 6G-I) shown how the overall MR estimate for the effect of

ADAM15, HLA-F and NR1H3 on breast cancer changes by

sequentially excluding each single nucleotide polymorphism

(SNP). Figures 6J-L displayed the relationship between each

SNP’s effect on the exposure (e.g., “SNP effect on ADAM15”) and

its corresponding effect on breast cancer risk. Various MR methods

were employed (Figure 7A). Weighted median, IVW and Simple

mode methods show ADAM15 has a statistically significant odds

ratio. All MR methods indicate HLA-F has a strong and statistically

significant causal risk effect, with ORs substantially greater than 1

(e.g., IVW OR = 3.115, 95% CI: 2.859-3.393; Weighted mode OR =

2.781, 95% CI: 1.366-5.659). Most MR methods suggest NR1H3 has

a strong and statistically significant protective causal effect, with

ORs substantially less than 1 (e.g., IVW OR = 0.132, 95% CI: 0.060-

0.289; Weighted mode OR = 0.105, 95% CI: 0.080-0.136). A circos

plot designed to visualize genomic information, including the
FIGURE 4

Development and validation of an integrated nomogram. (A, B) Forest plots display the results of univariate (A) and multivariate (B) Cox regression
analyses for overall survival. (C) ROC curves evaluating the predictive accuracy of the Risk Score, Age, Stage, T, M, and N for overall survival. (D)
Time-dependent ROC curves for the Risk Score, showing its predictive accuracy for overall survival at 1 year, 3 years, and 5 years. (E) C-index
analysis over 10 years for the Risk Score compared to Age, Stage, T, M, and N. (F) Nomogram integrates clinical variables and the Risk Score for
predicting 1-year, 3-year, and 5-year overall survival probability. (G) Calibration plot for the nomogram, assessing the agreement between
nomogram-predicted overall survival (OS) and observed OS at 1-year, 3-year, and 5-year time points. (*P < 0.05, ***P < 0.001).
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chromosomal locations of genes (Figure 7B): ADAM15 is located

on chromosome 1, HLA-F is on chromosome 6, and NR1H3 is on

chromosome 11. Compared to normal tissues, NR1H3 expression is

significantly downregulated in tumor samples, whereas HLA-F and

ADAM15 expression are significantly higher in tumor tissues

(Figure 7C). ROC curves were generated to evaluate the ability of

each gene to discriminate tumor and normal tissues. NR1H3 has the

highest AUC of 0.817, ADAM15 has an AUC of 0.768, HLA-F has

an AUC of 0.598 (Figure 7D), suggesting NR1H3 expression has the

best discriminatory power among the three for distinguishing

tumor from normal tissue. Kaplan-Meier survival analyses

showed that only NR1H3 is associated with OS (p = 0.02)

(Figure 7E). Higher expression of NR1H3 predicted a significantly

better OS. Although lower HLA-F expression showed a trend

toward better OS, this did not reach statistical significance (p =

0.068) (Figure 7F). No significant association was observed between

ADAM15 expression and OS (p = 0.092) (Figure 7G).
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3.7 NR1H3 suppresses proliferation and
metastasis

To further explore the function of NR1H3 expression in breast

cancer cell lines, we overexpressed NR1H3 in MDA-MB-231 cells

and knockdown NR1H3 in MCF7 cells. The mRNA and protein

levels were verified by qRT-PCR and western blot, respectively

(Figures 8A, B). siNR1H3#2 exhibiting the best knockdown

efficiency was selected for further experiments. Knockdown of

NR1H3 (siNR1H3#2) in MCF7 cells significantly increased cell

proliferation over 7 days compared to the control, while

overexpressed NR1H3 in MDA-MB-231 had opposite effect

(Figure 8C). Similarly, reducing NR1H3 expression increased the

number of colonies formed in MCF7 cells, overexpression of NR1H3

in MDA-MB-231 cells resulted in a marked reduction in colony

formation (Figure 8D). The wound healing assay demonstrated that

NR1H3 downregulation increases while NR1H3 upregulation
FIGURE 5

Stratified survival analysis of the prognostic riskscore across different clinical and molecular subgroups. (A-I) Kaplan-Meier survival curves illustrate
the prognostic performance of the risk score in various patient subgroups. In each panel, patients are first divided into high-risk and low-risk groups
based on the prognostic signature and then further stratified by Age (A), clinical Stage (B), T stage (tumor size) (C), N stage (node) (D), M stage
(metastasis) (E), molecular subtype (luminal, HER2, TNBC) (F), Estrogen Receptor (ER) status (G), Progesterone Receptor (PR) status (H), Epidermal
Growth Factor Receptor 2 (HER2) status (I).
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decreases the rate of wound closure (cell migration) at 24 hours

compared to the control group (Figure 8E). Consistently, NR1H3

siRNA#2 significantly increased both cell migration and invasion

through transwell membrane. In contrast, NR1H3 overexpression led
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to a substantial decrease in these invasive behaviors (Figure 8F).

Collectively, these findings suggest that NR1H3 functions as a tumor

suppressor in breast cancer by inhibiting cell proliferation, colony

formation, migration and invasion.
FIGURE 6

Mendelian randomization analyses for the causal effects of ADAM1S, HLA-F, and NR1H3 on breast cancer risk. (A-C) Forest plots showing the causal
effect estimates of each individual Single Nucleotide Polymorphism (SNP) on breast cancer risk, mediated through the respective gene (ADAM1S,
HLA-F, and NR1H3)’s expression. (D-F) Funnel plots visualizing the distribution of SNP effects on breast cancer (bGY) against their precision (1/SEGY).
These plots are used to assess heterogeneity and potential directional pleiotropy. (G-I) Leave-one-out sensitivity analysis plots. Each point represents
the MR estimate (IVW method) for the causal effect of the respective gene’s expression on breast cancer when the indicated SNP (y-axis) is excluded
from the analysis. (J-L) Scatter plots illustrate the relationship between the SNP effects on the respective gene’s expression (x-axis) and the SNP
effects on breast cancer risk (y-axis).
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3.8 GSEA and GSVA analyses

To explore the pathways that NR1H3 involved in breast cancer,

GSEA analysis was conducted. Among pathways enriched in samples

with high NR1H3 expression, the top five were primarily linked to

immune responses : GOBP_ANTIGEN_PROCESSING_

AND_PRESENTATION_OF _EXOGENOUS_ ANTIGEN, GOCC_

MHC_PROTEIN_COMPLEX, GOMF_ANTIGEN_BINDING and

GOMF_PEPTIDE_ANTIGEN_BINDING (Figure 9A). The enriched

pathways in low NR1H3 group were more diverse and include:

GOBP_AEROBIC_RESPIRATION, GOCC_PRESYNAPTIC

_ACTIVE_ZONE_CYTOPLASMIC_ COMPONENT ,
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GOBP_ S EN SORY_PERCEPT ION_OF _TA STE a n d

GOMF_TASTE_RECEPTOR_ ACTIVITY, which indicates that low

NR1H3 levels are associated with alterations in cellular respiration and

some neuronal or sensory-related pathways (Figure 9B). GSVA for

KEGG pathways showed their correlation with NR1H3 expression

(indicated by t-values). Pathways positively correlated with NR1H3 are

again heavily involved in immune processes, such as:

K EGG_CYTOSOL IC_DNA_ SENS ING_PATHWAY ,

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS , and

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION, while

pathways negatively correlated with NR1H3 include processes like:

KEGG_PROTEIN_ EXPORT and KEGG_UBIQUITIN_
FIGURE 7

Mendelian Randomization, Expression Analysis, and Prognostic Significance of ADAM15, HLA-F, and NR1H3. (A) Summary of Mendelian
Randomization (MR) results for the causal effects of ADAM15, HLA-F, and NR1H3 expression on breast cancer risk. (B) Circos plot illustrates the
genomic locations and surrounding regions of the genes ADAM15, HLA-F, and NR1H3. (C) Violin plots comparing the expression levels of NR1H3,
HLA-F, and ADAM15 between normal and tumor tissues. (D) ROC curves evaluating the performance of NR1H3, HLA-F and ADAM15 gene expression
in distinguishing between normal and tumor. (E-G) Kaplan-Meier curves for overall survival based on the expression levels of NR1H3 (E), HLA-F (F),
and ADAM15 (G).
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MEDIATED_PROTEOLYSIS (Figure 9C). Similarly, GSVA for GO

pathways show that pathways positively correlated with NR1H3

further confirm the strong association with immune activation, while

pathways negatively correlated with NR1H3 are related to

chromosomal organization and morphogenesis (Figure 9D).
3.9 Molecular docking of NR1H3 and
related ingredients

DSigDB_All_detailed data was downloaded from DSigDB

database. 155 drugs were identified associated with NR1H3.
Frontiers in Immunology 12
Among them, Cephaeline and Emetine were identified as

potential upregulators of NR1H3 via the Connectivity Map

(CMAP) database. This database contains gene expression data

from cell lines treated with various compounds. CMAP data

suggested that both Cephaeline and Emetine treatment lead to an

upregulation of NR1H3 expression in MCF7 and HL60 cells.

Following this lead from the gene expression data, we then

performed molecular docking to investigate a plausible

mechanism. Molecular docking shows that there are five potential

binding pockets (C1 through C5) for the drug Cephaeline on the

NR1H3 protein. The predicted binding affinities (Vina scores) for

Cephaeline range from -9.2 kcal/mol (strongest binding, pocket C1)
FIGURE 8

Functional effects of NR1H3 modulation on breast cancer cell proliferation, colony formation, migration, and invasion in vitro. (A, B) Verification of
NR1H3 mRNA level and protein level in MCF7 and MDA-MB-231 cells by qRT-PCR (A) and western blot (B), respectively. (C) Cell proliferation assays
(absorbance at OD 450 nm) over 7 days for MCF7 cells treated with siCtrol or siNR1H3#2, and for MDA-MB-231 cells with NC or NR1H3 OE.
(D) Colony formation assays. Representative images and quantification of colony counts for MCF7 and MDA-MB-231 cells. (E, F) Wound healing
assays for MCF7 (E) and MDA-MB-231 (F) cells. Representative images at 0h and 24h after scratching and quantification of the fold of wound
closure. (G, H) Transwell migration and invasion assays for MCF7 (G) and MDA-MB-231 (H) cells. Representative images of migrated and invaded
cells and quantification of cell numbers. (*P < 0.05, **P < 0.01, ***P < 0.001).
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FIGURE 9

Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) reveal pathways associated with NR1H3 Expression. (A) GSEA plot
showing top gene sets enriched in the high NR1H3 expression group. (B) GSEA plot illustrating top gene sets enriched in the low NR1H3 expression
group. (C) Bar plot displaying significantly altered KEGG pathways identified by GSVA in relation to NR1H3 expression. (D) Bar plot showing
significantly altered Gene Ontology (GO) terms identified by GSVA in relation to NR1H3 expression.
TABLE 1 Structure-based blind docking of NR1H3 with cephaeline.

Curpocket
ID

Vina score
Cavity volume
(Å3)

Center
(x, y, z)

Docking
size (x, y, z)

Contact residues

C1 -9.2 3735 69, 56, 24 24, 31, 24 Chain A: ARG426 SER427 LEU430 LYS431 GLU434 HIS435 PHE438
PHE439 LEU441
Chain B: LYS289 THR290 ILE293 GLU294 GLN330 ARG367 PRO368
ASN369 LEU412 ARG413 THR414 SER416 SER417 HIS419 SER420
GLU421 VAL423 PHE424 ALA425 ARG427 LEU428 ILE440 TRP441
ASP442 VAL443
Chain C: GLN270 ASP273 LEU276 ARG302 TRP305

C2 -8.9 1770 89, 38, 10 24, 24, 24 Chain B: GLN330 GLU332
Chain C: ILE299 ARG302 ALA303 GLY304 TRP305 ASN306 GLU307
ASN377 PRO378 ASP379 SER380 LYS381 GLY382 LEU383 PRO386
ALA387 GLU390 ARG393 GLU394 TYR397 ARG426 GLY429
LEU430 LEU433
Chain D: GLU332 ASN335 PRO336 GLU339 PHE340 ARG342
ALA343 GLU346 LEU347 PRO403 ARG404 MET405 MET407
LYS408 SER411 THR414 LEU415 SER417 VAL418 GLU421

C4 -8.5 1557 74, 42, 35 24, 24, 24 Chain A: ILE299 ARG302 ALA303 TRP305 ASN306 GLU307 ASN377
PRO378 ASP379 SER380 LYS381 GLY382 LEU383 PRO386 ALA387
GLU390 ARG393 TYR397 ARG426 GLY429 LEU430 LEU433
GLU434
Chain B: GLU332 ASN335 PRO336 GLU339 PHE340 SER341

(Continued)
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to -7.1 kcal/mol (weakest among those listed, pocket C5) (Table 1).

The binding pocket C1 was shown in Figure 10A displays

visualizations of protein-ligand interactions between NR1H3 and

Cephaeline. The ligand is shown interacting with 39 specific amino

acid residues of NR1H3 protein in chain A, chain B and chain C.

There are also five potential binding pockets (C1 through C5) for

the drug Emetine on the NR1H3 protein. The predicted binding

affinities (Vina scores) for Emetine range from -9.1 kcal/mol

(strongest, pocket C1) to -7.3 kcal/mol (pocket C3) (Table 2). The

ligand is shown interacting with 31 specific amino acid residues of

NR1H3 protein in chain A, chain B and chain C (Figure 10B). The

favorable binding affinities (Vina scores of -9.2 kcal/mol for

Cephaeline and -9.1 kcal/mol for Emetine) suggest a strong and

stable interaction is possible.
4 Discussion

Using machine learning, we established a new prognostic

signature derived from differentially expressed sodium overload-

related genes (DESORGs), with thorough development and

validation. Among these, we identified NR1H3 as a key gene and

experimentally confirmed its tumor-suppressive function in breast

cancer cells. Our initial analysis of the GeneCards database yielded

2052 sodium overload-related genes, of which 753 showed

differential expression in comparison between normal and tumor

samples. Notably, the most significantly downregulated genes

included VEGFD, CAVIN2, CAV1, and ADRB2, while CDKN3,

INHBA, AURKB, MMP13, and EZH2 were significantly

upregulated. Caveolin-1 (CAV1) has been reported to play dual

roles in breast cancer, acting as both a tumor suppressor and

promoter depending on the specific cellular context and breast

cancer subtype (20). Adrenergic Receptor Beta 2 (ADRB2) has been

implicated in cancer cell proliferation and stress responses (21).

Conversely, the upregulation of genes such as Aurora Kinase B

(AURKB) and Enhancer of Zeste Homolog 2 (EZH2) is commonly
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associated with increased cell proliferation and poor prognosis in

breast cancer (22, 23).

Pathway enrichment analyses provided valuable insights into

the functional consequences of the observed DESORG expression

changes. KEGG analysis revealed significant enrichment in

pathways critical for cancer development and progression,

including PI3K-Akt and MAPK signaling pathway, lipid and

atherosclerosis, and calcium signaling pathway. The PI3K-Akt

and MAPK signaling pathways are well-known drivers of cancer

cell growth, survival, and proliferation (24, 25). Given the

interconnectedness of sodium and calcium transport through

mechanisms like Na+/Ca2+ exchangers (26), alterations in

DESORGs could directly impact calcium signaling within tumor

cells. Leveraging these differentially expressed sodium overload-

related genes, we identified 67 genes with significant prognostic

value using univariate Cox regression. We then constructed and

evaluated 101 prognostic models using ten different machine

learning algorithms. Among these, the Ridge regression model

emerged as the optimal model. This validation across

independent datasets underscores the re l iabi l i ty and

generalizability of the prognostic signature (27). Using the

prognostic model, we stratified patients into high- and low-risk

categories, which showed markedly distinct OS and PFS outcomes.

Specifically, high-risk patients experienced substantially worse

outcomes (p < 0.001 in TCGA, p = 0.001 in GEO for OS). The

model’s ability to significantly stratify patients underscores its

clinical potential.

Integrating the DESORG-derived risk score with established

clinical variables— such as age, tumor stage, and TNM classification

—into a nomogram significantly improved prognostic accuracy.

The risk score emerged as a strong independent predictor and risk

factors for BC patients (multivariate HR: 3.168, 95% CI:2.487-

4.036), outperforming individual clinical factors in AUC analysis

(Risk model AUC: 0.845). The novel nomogram demonstrated

strong predictive accuracy (C-index = 0.815), indicating its

clinical utility. Such integrated models can facilitate more
TABLE 1 Continued

Curpocket
ID

Vina score
Cavity volume
(Å3)

Center
(x, y, z)

Docking
size (x, y, z)

Contact residues

ARG342 ALA343 GLU346 LEU347 PRO403 ARG404 MET405
MET407 LYS408 SER411 THR414 LEU415 SER417 VAL418 SER420
GLU421
Chain D: GLU332

C3 -7.8 1578 90, 58, 13 24, 24, 24 Chain A: LEU436 PHE439 LYS440
Chain C: ARG334 HIS338 ALA340 GLY341 VAL342 GLY343 ALA344
ILE345 ASP347 ARG348 LEU350 THR351 GLU352 SER427 LEU430
LYS431 GLU434
Chain D: LYS289 THR290 ILE293 GLU294 ALA365 ASP366 ARG367
PRO368 ASN369 VAL370 GLN371 GLN373 ARG413 SER416 SER417
HIS419 SER420 ILE440 TRP441 ASP442 VAL443

C5 -7.1 1516 55, 40, 24 24, 24, 24 Chain B: VAL216 GLN219 GLN220 GLN221 ASN223 ARG224
SER226 PHE227 PHE252 PHE255 THR256 LEU258 ALA259 VAL261
SER262 GLU265 ILE266 ILE293 MET296 LEU297 GLU299 THR300
ARG302 ARG303 TYR304 ASN305 ILE311 THR312 PHE313 LEU314
LYS315 SER318 PHE324 LEU329 PHE333 ILE334 ILE337 PHE338
SER341 ASP351 HIS419 GLN422 LEU426 LEU433 LEU437 TRP441
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TABLE 2 Structure-based Blind Docking of NR1H3 with Emetine.

Curpocket
ID

Vina
score

Cavity
volume
(Å3)

Center
(x, y, z)

Docking
size (x, y, z)

Contact residues

C1 -9.1 3735 69, 56, 24 25, 31, 25 Chain A: ARG348 SER427 LEU430 LYS431 LEU433 GLU434 HIS435 PHE438 PHE439
LEU441
Chain B: LYS289 THR290 ILE293 GLU294 ARG367 PRO368 ASN369 ARG413
SER416 SER417 HIS419 SER420 GLU421 VAL423 PHE424 ARG427 ILE440 TRP441
ASP442 VAL443
Chain C: ASP273

C2 -9.0 1770 89, 38, 10 25, 25, 25 Chain A: HIS435
Chain B: GLN330 GLU332 LEU428
Chain C: ILE299 ARG302 ALA303 GLY304 TRP305 ASN306 GLU307 ASN377
PRO378 ASP379 SER380 LYS381 GLY382 PRO386 ALA387 GLU390 ARG393 GLU394
TYR397 ARG426 GLY429 LEU430 LEU433 GLU434
Chain D: GLU332 PRO336 GLU339 PHE340 ARG342 ALA343 MET344 GLU346
LEU347 ARG404 MET407 LYS408 VAL410 SER411 THR414 LEU415 SER417 VAL418
GLU421

(Continued)
F
rontiers in Immun
ology
FIGURE 10

Molecular docking interactions of Cephaeline and Emetine with NR1H3 Protein. (A, B) Overall view of NR1H3- Cephaeline complex (A) and NR1H3-
Emetine complex (B) with a magnified insect showing the detailed interactions at the binding site. Specific amino acid residues of the protein are
depicted interacting with the bound ligand. Dashed lines likely indicate hydrogen bonds or other key interactions.
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personalized risk assessment, thereby aiding in treatment decisions.

Traditional prognostic markers in breast cancer, including

hormone receptor status and TNM classification are widely

utilized (28). However, their predictive power can be limited

within specific subtypes, highlighting the need for more

universally applicable biomarkers. Importantly, the prognostic

effectiveness of our DESORG-based risk score was consistently

observed across diverse clinically and molecularly defined patient

subgroups. Regardless of stratification by age, tumor stage, T/N/M

stages, molecular subtype (Luminal, HER2, TNBC), or ER/PR/

HER2 status, the model consistently distinguished between high-

and low-risk groups, with significant differences in survival

outcomes. This consistent performance across heterogeneous

subgroups emphasizes the fundamental function of DESORG-

related biology in BC prognosis and suggests the broad

applicability of the model in personalized risk assessment and

treatment decision-making.

Our MR analysis explores potential causal relationships

between expression level of key sodium overload-related genes

and breast cancer risk. This analysis identified HLA-F as a

significant causal risk factor (IVW OR = 3.115, p<0.001) and

NR1H3 as a strong protective factor (IVW OR = 0.132, p<0.001)

for breast cancer. ADAM15 also showed a statistically significant

odds ratio with some MR methods. HLA-F has been shown to be

upregulated in tumors and is associated with immune evasion and

poor prognosis in various cancers (29, 30). The strong causal risk

effect we identified for HLA-F warrants further investigation into its

specific role in breast cancer pathogenesis linked to sodium

overload pathways. Our MR analysis strongly suggested a

protective role for NR1H3. Consistent with this finding, NR1H3

expression was significantly lower in BC tumors. More importantly,

its low expression level predicts worse prognosis. NR1H3, also

known as Liver X Receptor Alpha (LXRa), is a nuclear receptor

involved in cholesterol homeostasis, lipid metabolism, and
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inflammation (31, 32). In breast cancer models, LXR has been

shown to inhibit cell growth though effecting EST expression (33).

In our study, in vitro experiments robustly confirmed the tumor-

suppressive function of NR1H3 in breast cancer cell lines. NR1H3

gain-of-function attenuated oncogenic behaviors (proliferation,

colony formation, motility), while loss-of-function in MCF7 cells

exacerbated these phenotypes. These results align with previous

studies indicating that LXRs can suppress breast cancer cell growth

and metastasis (34, 35). GSEA and GSVA further elucidated the

pathways associated with NR1H3 expression. High NR1H3

expression was strongly correlated with immune response

pathways, including antigen processing and presentation (via

both GO and KEGG), as well as cytosolic DNA sensing. This

suggests that part of NR1H3’s protective effect may be mediated

through the enhancement of anti-tumor immunity.

Molecular docking studies further predicted strong binding

affinities of these compounds to NR1H3, suggesting potential

therapeutic interactions. Emetine, an established anti-protozoal

drug, has been demonstrated anti-cancer effects in various

cancers, including gastric cancer (36). Cephaeline also inhibits cell

viability and migration in Mucoepidermoid carcinoma (MEC) (37).

However, their specific mechanism of action via NR1H3 in breast

cancer requires further validation. It is important to clarify the

distinction between the broad set of sodium overload-related genes

(SORGs) used to build our prognostic model and the specific subset

of genes that are mechanistic drivers of necrosis by sodium overload

(NECSO). Our study intentionally cast a wide net, analyzing a

comprehensive list of SORGs to build a robust prognostic signature

for breast cancer. NECSO, however, is a specific form of regulated

cell death defined by strict criteria, including persistent activation of

ion channels like TRPM4 [8], a resulting massive influx of sodium,

subsequent cell swelling, and eventual necrotic membrane rupture.

While our machine learning model identified genes such as TRPM2

as having high prognostic importance, this statistical association
TABLE 2 Continued

Curpocket
ID

Vina
score

Cavity
volume
(Å3)

Center
(x, y, z)

Docking
size (x, y, z)

Contact residues

C3 -7.3 1578 90, 58, 13 25, 25, 25 Chain A: ASP263
Chain C: ARG334 HIS338 GLY341 VAL342 GLY343 ALA344 ILE345 ASP347 ARG348
LEU350 THR351 GLU352 SER427 LEU430 LYS431 GLU434
Chain D: LYS289 THR290 ILE293 GLU294 ALA365 ASP366 ARG367 PRO368
ASN369 VAL370 GLN371 GLN373 ARG413 SER416 SER417 HIS419 SER420 ILE440
TRP441

C4 -8.3 1557 74, 42, 35 25, 25, 25 Chain A: ILE299 ARG302 ALA303 GLY304 TRP305 ASN306 GLU307 ASN377
PRO378 ASP379 SER380 LYS381 PRO386 ALA387 GLU390 ARG426 GLY429 LEU430
LEU433
Chain B: GLU332 ASN335 PRO336 GLU339 PHE340 ARG342 ALA343 GLU346
LEU347 ARG404 LYS408 SER411 THR414 LEU415 SER417 VAL418 GLU421
Chain D: GLU332

C5 -7.6 1516 55, 40, 24 25, 25, 25 Chain B: GLN219 GLN220 ASN223 ARG224 SER226 PHE227 PHE252 PHE255
THR256 LEU258 ALA259 VAL261 SER262 GLU265 MET296 LEU297 GLU299
THR300 ARG302 ARG303 TYR304 ASN305 PRO306 THR312 PHE313 LEU314
LYS315 SER318 PHE324 LEU329 ASN345 ASP351 LEU426 LEU433 LEU437 TRP441
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does not automatically classify it as a direct NECSOmediator. To be

confirmed as a true NECSO driver, TRPM2 would require

dedicated functional validation to demonstrate its direct role in

inducing these characteristic cellular events. Therefore, a critical

direction for future research will be to functionally screen our list of

prognostically significant DESORGs to determine which, if any, are

bona fide mediators of NECSO in breast cancer. Such work would

bridge our prognostic findings with the specific mechanisms of this

novel cell death pathway.
5 Conclusion

This research developed and evaluated a novel DESORGs

prognostic signature based on machine learning which shows

significant potential for predicting BC patients’ survival. MR

analysis provided causal insights into the roles of NR1H3 in

breast cancer risk. Importantly, we experimentally validated

NR1H3 as a tumor suppressor in breast cancer cells, influencing

proliferation, colony formation, migration, and invasion. These

findings highlight a novel link between sodium homeostasis,

immune response, and breast cancer prognosis, offering new

avenues for therapeutic intervention, potentially through the

modulation of NR1H3 activity. Further investigation into these

DESORGs may uncover novel mechanisms and treatment strategies

for BC.
6 Limitations

Despite the robust findings of this study, several limitations

should be acknowledged. First, our prognostic model was developed

and validated using retrospective data from public repositories

(TCGA and GEO). Although we demonstrated the model’s

consistency across these datasets, its predictive power must be

confirmed in prospective, multi-center clinical cohorts before

clinical application. Second, the use of different transcriptomic

platforms for the training (TCGA, RNA-seq) and validation

(GEO, microarray) cohorts could introduce technical variability

and potential batch effects. Third, our analyses relied on bulk tissue

transcriptomic data, which provides an average of gene expression

across all cell types within the tumor microenvironment. This

approach may obscure cell-type-specific functions and

interactions, a particularly relevant point given the strong link we

identified between high NR1H3 expression and immune

activation pathways.
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