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Machine learning insights
into vaccine adjuvants
and immune outcomes
Yuhyun Ji*, Kavitha Bekkari , Ruchin Patel, Mohammed Shardar,
Geoffrey A. Walford, SamMoon Kim, Yaping Liu,
Willis Read-Button, Kristina Tracy, Jennifer Kriss, Colleen Barr,
Marissa Wolfle, Shailaa Kummar, Celia LaPorta,
Madison Radnoff, Milan Ghodasara, Jian Xiong,
William J. Smith, Kunal Bakshi , Nicole L. Sullivan*

and Nicholas Murgolo*

Merck & Co., Inc., Rahway, NJ, United States
Adjuvants boost the immune response to vaccine antigens, serving as key

components in safe and effective vaccines. However, selecting a suitable

adjuvant for a new vaccine can be challenging. This is due to the wide variety of

adjuvants and the many mechanisms of vaccines they are meant to enhance.

Therefore, the adjuvant selection process heavily relies on empirical experiments,

which are time-consuming and resource-intensive. In this study, we introduce a

machine learning approach leveraging non-human primate RNA transcriptomic

data to predict immunogenic antibody levels after vaccination. Furthermore,

analysis of the trained deep learning models enabled the identification of

immune response mechanisms that are stimulated by adjuvants. Integration of

machine learning has the potential to expedite vaccine adjuvant selection by

focusing on evaluating adjuvant candidates with the highest probability of success.

This may ultimately facilitate the development of more effective vaccines.
KEYWORDS

machine learning, deep learning, artificial intelligence, adjuvant, vaccine, RNA
transcriptomics, antibody titers, immune response
1 Introduction

Adjuvants are immune-boosting substances that are added to vaccines to enhance their

immunogenicity and stimulate a more robust and long-lasting immune response (1–3).

The use of adjuvants in vaccines has played a significant role in enhancing vaccine efficacy,

reducing the required antigen dose, and improving the overall effectiveness of

immunization programs (4–6). Among the different adjuvants that have been developed

and utilized in vaccines, alum, monophosphoryl lipid A (MPL), and immunostimulating

complexes (ISCOMs) are popular and have shown promising results in boosting immune
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responses (1, 3, 7). The primary aspects of adjuvants are generally

categorized into two modes of action: enhancing the innate immune

response and modulating the adaptive immune response (8–11).

Adjuvants are known to activate and recruit various cells of the

innate immune system, thus priming the adaptive immune system

(1–3). However, there are variations in the specific mechanisms by

which different adjuvants achieve these effects (12–14). Therefore, it

is challenging to determine a single mode of action applicable to all

adjuvants universally, and understanding how they alter or enhance

vaccine-induced immune responses is often unclear (2, 13, 15).

Vaccine design heavily relies on an empirically intensive process

due to the complex mechanisms and multifactorial nature of how

adjuvants enhance vaccine-induced immune responses (9, 11, 16).

Adjuvants can have varying effects in shaping the immune response

when used in vaccines, and their effects are influenced by several

factors (3, 12, 13, 17). For instance, the characteristics of antigens

interact with adjuvants in their unique ways, potentially altering the

elicited immune response (18–20). The choice of vaccine

formulation and delivery systems can also impact the immune

cell targeting, antigen uptake, and subsequent immune signaling

events (3, 21, 22). Additionally, host factors, such as age, sex,

smoking, and previous infections, can impact the immune

response (23, 24). In consequence, researchers typically evaluate

various adjuvants in combination with different antigens to identify

the most effective adjuvant for a particular target (25, 26). This

labor- and resource-intensive process hampers vaccine

development, consequently hindering the widespread use of

vaccines in a timely manner.

To overcome the challenges and streamline antigen/adjuvant

vaccine design, we introduced a machine learning approach for

predicting the efficacy of adjuvants by taking into account the early

RNA signatures that interplay among various immune cells, cytokines,

and signaling pathways. By utilizing systems biology, molecular

modeling, and bioinformatics tools, researchers have tried to assist

the vaccine development process to efficiently achieve the desired

immune outcomes (21, 27–29). However, progress from empirical

experiments to computational approaches has been impeded because

of suboptimal performances of statistics-based computational tools for

processing complicated immune data (21, 27, 28, 30). To model

complex patterns and non-linear relationships that might not be

apparent to human or statistical methods, machine learning

algorithms are being actively incorporated in several stages of vaccine

design (15, 20, 31–35). Particularly, our study mainly aims to integrate

machine learning models to predict vaccine efficacy in an omics data

aspect, which can contribute across the vaccine development phases,

leading to more comprehensive computational tools.

Our study demonstrates two main results: 1. the superior

performance of deep learning compared to traditional statistical

tools, and 2. the potential of deep learning to predict the efficacy of

adjuvanted vaccines. First, we began by applying artificial

intelligence (AI) to the classification task, as distinguishing

between different adjuvant groups based on RNA expression data

is generally more straightforward and serves as an initial test of

model feasibility. By comparing a statistical learning method

(random forest model) with a deep learning approach, we
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established that deep learning models could more effectively

identify group-specific transcriptomic patterns induced by various

adjuvants. Second, building on this foundation, we then addressed

the more complex challenge of predicting vaccine efficacy—

specifically, antibody responses to adjuvanted 9-valent HPV

vaccine—using early-stage RNA expression profiles. This stepwise

approach allowed us to systematically evaluate the strengths of AI in

both classification and regression tasks within transcriptomic

analysis. Furthermore, by analyzing the weights of the trained

deep learning networks, we identified gene sets that differentiate

adjuvant-induced RNA patterns, providing mechanistic insights

into adjuvant action. Collectively, our findings highlight the

promise of deep learning not only for accurately classifying

adjuvant types but also for predicting immune responses, thereby

supporting its potential to accelerate and refine adjuvant selection

in vaccine development.
2 Materials and methods

2.1 Preparation of HPV VLP vaccine with
adjuvants

The 9-valent HPV vaccine was prepared using the major capsid

protein L1 of the human papillomavirus (HPV) (36–39). Briefly,

virus-like particles (VLPs) with recombinant HPV L1 major capsid

protein were independently produced intracellularly in a

Saccharomyces cerevisiae expression system. The cells were

harvested and lysed, and the self-assembled L1 protein VLPs were

purified chromatographically. The purified L1 protein VLPs

morphologically resembled the authentic HPV virions but contained

no viral DNA. Subsequently, VLPs were allowed for post-purification

disassembly and reassembly treatment during bioprocessing to

improve VLP immunoreactivity and stability (22, 40). The HPV

VLPs were absorbed to aluminum hydroxyphosphate sulfate (AAHS

or alum) and subsequently blended with additional adjuvants, as

detailed in Table 1.
2.2 Non-human primates study design

Non-human primates (NHPs) were on average 7.9 years old

and weighed 9.86 kg at the study start (Supplementary Table 1). The

male-to-female ratio of NHPs was about 4:1. The number of total

NHPs used for this study was 60 and they were randomly assigned

to 8 cohorts for vaccination. Information on randomization to a

vaccine group is available in Supplementary Table 1. The

adjuvanted vaccines (Table 1) were administered in a two-dose

series; the first dose was given on day 0, and the second dose

followed at week 24 (Figure 1). NHPs received a total intramuscular

injection of 1.0 ml, divided equally with 0.5 ml administered over

the right quadricep and 0.5 ml over the left quadriceps.

All studies utilized rhesus macaques (Macaca Mulatta) housed

at the University of Louisiana at Lafayette, New Iberia Research

Center (NIRC). Procedures involving the care and use of animals in
frontiersin.org
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the study were reviewed and approved by the Institutional Animal

Care and Use Committee (IACUC) at both the Research

Laboratories of Merck & Co., Inc., Rahway, NJ, USA and the

University of Louisiana at Lafayette. During the study, the care

and use of animals were conducted in accordance with the

principles outlined in the guidance of the Association for

Assessment and Accreditation of Laboratory Animal Care

(AAALAC), the Animal Welfare Act, the American Veterinary

Medical Association (AVMA) Panel on Euthanasia, and the

Institute for Laboratory Animal Research (ILAR) Guide to the

Care and Use of Laboratory Animals.

Prior to initiation, all animals underwent a physical

examination by the study veterinarian or designate. The

evaluation included a complete blood count, comprehensive

chemistry analysis, and any other diagnostics requested by the

study veterinarian to assess the health status of the animals. Only

animals that, in the opinion of the study veterinarian, were healthy

and otherwise met study criteria were admitted to the study.

Treatment of animals was done in accordance with NIRC

standards. Prior to the vaccination and bleeds, the animals were

sedated with ketamine hydrochloride, 10 mg/kg. Supplemental

ketamine hydrochloride (5 mg/kg) was administered to maintain

sedation for completion of all life activities. Administration routes

include 2 × 0.5 mL (total of 1 mL per animal) of vaccine

administered as an intramuscular injection dose per quadriceps
Frontiers in Immunology 03
muscle. Sedation agents were administered in an alternate site, as

the quadriceps are the optimal vaccination site.
2.3 Immune profiling – RNA sequencing

Peripheral blood mononuclear cells (PBMCs) for mRNA

profiles were collected to compare adjuvant effects on immune

genes. Blood was collected at 6 different time points: pre-dose, 1 day

after dose, and 7 days after dose (Figure 1). Total RNA was isolated

from whole blood preserved in PAXgene blood RNA tubes. Total

RNA was isolated using an accessory PAXgene blood RNA kit

(PreAnalytix) according to the manufacturer's instructions. The

quality and quantity of the total RNA sample were assessed using an

Agilent Bioanalyzer with the RNA6000 Nano Lab Chip

(Agilent Technologies).

For samples collected in PAXgene, cells were pelleted with

centrifugation at 10,000 × g for 6 min. After the supernatant fluid

was discarded, the cell pellets were washed by resuspension in 1 ml

of dimethylpyrocarbonate (DMPC)-treated water, and then

repelleted by centrifugation at 10,000 × g for 6 min. For all other

media, cells were pelleted by centrifugation at 2000 × g for 30 min

and used after removal of supernatant. All cell pellets were

disrupted by vortexing in the lysis media appropriate for each

extraction method.
FIGURE 1

Schematic representation of the non-human primate (NHP) experimental design: This diagram illustrates the experimental design of our study
involving NHP. Post-administration, blood was drawn at two intervals, 1 day and 7 days after the dose, to analyze the differentially expressed RNA
levels. The RNA expression levels from two different time points were further analyzed to monitor the innate and adaptive immune response to the
vaccine with adjuvant.
TABLE 1 Comparative summary of adjuvants used in the 9-valent HPV vaccine study: This table provides the variety of adjuvants used across all
experimental groups, each characterized by a unique adjuvant treatment.

Group Immunostimulatory type Licensed product (company) Reference

1 Alum Gardasil (Merck) (44, 45)

2 Alum + Lipid nanoparticle Comirnaty (Pfizer), Spikevax (Moderna) (46)

3 Alum + Chitosan nanoparticle Not Applicable (47)

4 Alum + Emulsion-based nanoparticle Not Applicable (2)

5 Alum + Squalene Fluad flu vaccine (Seqirus) (48)

6 Alum + MPL, QS21 (AS01 like) Shingrix Zoster (GSK) (49, 50)

7 Alum + MPL (AS04 like) Cervarix 2vHPV (GSK) (24, 51)

8 Alum + Cage-like nanoparticle (ISCOM) COVID-19 Vaccine (Novavax) (7)
The adjuvant groups, along with their immunostimulatory molecules and formulation types, are listed to offer a comprehensive overview of the experimental setup. As a note, all groups have 25
µg alum present with the 9-valent HPV vaccine.
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Total RNA was extracted from samples using standard

extraction methods ensuring high RNA integrity. RNA

sequencing libraries were prepared using the TruSeq Stranded

Total RNA Ribo-Zero kit (Il lumina) according to the

manufacturer’s instructions. This kit depletes ribosomal RNA to

enrich for coding and non-coding transcripts, preserving strand

specificity. Following RNA extraction and library preparation, the

libraries were sequenced on an Illumina platform using a paired-

end 50 base pair (bp) read format. Sequencing depth and

multiplexing were adjusted according to experimental design to

ensure sufficient coverage for downstream transcriptomic analyses

(22, 23). Orthologues were identified as gene IDs listed in the

Ensembl BioMart database.

Labeled cRNA was prepared by linear amplification of the Poly

(A)+ RNA population within the total RNA sample. Total RNA was

reverse transcribed after priming with a DNA oligonucleotide

containing the T7 RNA polymerase promoter 5’ to a d(T)24

sequence. After second-strand cDNA synthesis and purification of

double-stranded cDNA, in vitro transcription was performed using

T7 RNA polymerase. The quantity and quality of the cRNA were

assayed by spectrophotometry and on the Agilent Bioanalyzer as

indicated for total RNA analysis.

Purified cRNA was fragmented to a uniform size and applied to

Agilent Sheep 8x15K or Agilent Human 8x60K v2 Gene Expression

microarray (Agilent Technologies, Sheep Design ID 019921,

Human design ID 039494) in a hybridization buffer. Arrays were

hybridized at 37°C for 18 hours in a rotating incubator, washed, and

scanned with a G2565 Microarray Scanner (Agilent Technologies).

Arrays were processed with Agilent Feature Extraction

software, and data was analyzed with GeneSpring GX software

(Agilent Technologies). To compare individual expression values

across arrays, raw intensity data from each gene was normalized to

the 75th percentile intensity of each array. Genes were further

normalized to the subject-specific PBS sample. Genes with values

greater than background intensity in all replicates of at least one

condition were filtered for further analysis (22, 23). Orthologues

were identified as gene IDs listed in the Ensembl BioMart database.
2.4 Multiplexed meso scale discovery assay

To investigate adjuvant effects on adjuvanted vaccine

immunogenicity in NHP, binding of the serum antibodies to the

nine HPV VLP types was evaluated by multiplexed meso scale

discovery (MSD) electrochemiluminescence assay. Customized 96-

well MSD plates were pre-coated with 90 µg/ml of each of the nine

HPV VLPs (6, 11, 16, 18, 31, 33, 45, 52, and 58) and stored at 4°C in

individual sealed bags until analysis. MSD plates were removed

from 4°C storage and allowed to come to room temperature (RT)

prior to the assay. The plates were blocked with 150 µL of 3% nonfat

milk in PBST with 0.05% Tween 20 with shaking at 400 rpm for 30

minutes at RT, then washed three times with 300 mL of PBST by a

plate washer (BioTek).

NHP sera were diluted 1:100 in 1% fetal bovine serum (FBS)-

PBST (Assay buffer) using an automated liquid handler (Agilent
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BRAVO). To calculate the antibody concentration in NHP sera, a

reference standard cocktail was generated by pulling known

concentrations of HPV-specific mouse monoclonal antibodies

(mAbs) against each of the nine HPV types. The reference

standard cocktail was serially diluted (5-fold) in the assay buffer

to prepare a 7-point standard curve, and the assay buffer was used as

blank well control (Supplementary Figure 7).

The reference standard and NHP serum sample dilutions were

then added at 50 µl per well to MSD plates and incubated with

shaking at 400rpm for 1 hour at RT. The plates were washed three

times with 300 mL of PBST, then 50 µL of 0.5 ug/mL SULFO-TAG

labeled goat anti-mouse or anti-NHP IgG (MSD) diluted in the

assay buffer was added to wells containing mAb standard curve or

NHP sera, respectively. After incubation with shaking at 400rpm for

1h at RT, the plates underwent a final three-wash with 300 mL of

PBST. A total of 150 mL of MSD read buffer was then added per well

and the plate was read on an MSD Meso Sector S600 instrument.

Standard curves for the nine HPV type-specific mAbs were fitted

using a 4-parameter logistic regression algorithm to calculate HPV

type-specific antibody concentrations in the unknown samples

(DISCOVERY WORKBENCH v4.0, MSD).
2.5 Data preparation for computational
analysis and machine learning

RNA sequencing data was normalized to provide consistent and

comparablemeasures of gene expression (mRNA expression) that can

beused forperformingexpressionanalysis. Log10-transformationwas

applied to fragments per kilobase of transcript per million mapped

reads (FPKM)witha smoothing addon,pseudocount, of 0.01 for easier

visualization and analysis. This small pseudo count (0.01) was to avoid

division by zero, and the value was set small enough not to affect the

results. Also, we used log10 to symmetrize up/down regulation. We

filtered out transformed FPKM values (log(FPKM + 0.01)+0.01) that

are below -1 to remove low-intensity data. Among a total number of

35,398 RNA sequencing data, 22,413 data showing low intensity were

removed, and 12,985 data were left. Gene IDs of remaining RNA

sequencing data were converted to the human equivalent using the

BioMart-Ensemble database (https://mart.ensembl.org). 1,663 NHP

genes that do not have human equivalents were ignored, and 11,322

gene data were left. We manually selected 1,184 immune-related

genes from the remaining gene data for this study. Representative

genes and cytokines related to immune-related pathways, including

toll-like receptors (TLRs), cytosolic pattern recognition receptors,

and C-type lectin receptors, are selected to show RNA expression

patterns induced by different adjuvant types (Figures 2, 3) (8–11).
2.6 Computational analysis – principal
component analysis plot

The computational analysis was conducted to identify

immunogenicity differences among different time points in the

same cohorts and cohorts vaccinated with different adjuvants.
frontiersin.org

https://mart.ensembl.org
https://doi.org/10.3389/fimmu.2025.1654060
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ji et al. 10.3389/fimmu.2025.1654060
Specifically, we carried out principal component analysis (PCA) to

reduce the dimensionality of the dataset while retaining the most

important information. This was done by transforming the original

variables into a new set of uncorrelated variables known as principal

components. The first principal component accounted for the

largest possible variance, with each succeeding component

accounting for the highest possible remaining variance. Using the

PCA method, immune responses of 1 day and 7 days after

vaccination were compared to their pre-immune reference point

to show the differences between the two time points

(Supplementary Figure 1). We used the StandardScaler data

processing tool from the sklearn library in Python. Prior to

downstream analyses of PCA, the input features were

standardized to ensure comparability across variables. The

StandardScaler transformation standardizes each feature

independently by removing the mean and scaling to unit

variance. This transformation centers the data around zero and

rescales it so that each feature has a mean of zero and a standard

deviation of one. By standardizing the features, we ensured that all

variables contributed equally to the analysis, preventing those with

inherently larger scales or variances from dominating the results.
2.7 Gene set enrichment analysis

We conducted a gene set enrichment analysis (GSEA) to

explore the functional implications of the list of 1,184 immune-

related genes selected specifically for our study. Leveraging the web-
Frontiers in Immunology 05
based tool Enrichr, we analyzed the biological context of these

genes. Enrichr offers curated gene sets from well-established

databases, including WikiPathways, Reactome, BioPlanet, and

BioCarta. These gene sets represent distinct biological pathways,

cellular components, and molecular functions. Our analysis

involved assessing whether our ranked gene list demonstrated

enrichment or depletion within these pathways, based on the

associated p-values. To visually represent our findings, we

generated enrichment plots. Additionally, we summarized the top

10 impacted pathways across the four databases using bar graphs

(Supplementary Figure 2).
2.8 Machine learning design (deep
learning/random forest)

Total RNA transcriptome data from animals were randomly

split into 10 different folds for applying cross-validation. The cross-

validation approach was considered to prevent problems that can be

caused by the limited data, such as an insufficient amount of

training dataset and class imbalance. During the 10 iterations of

the training and testing process, 9 folds were used as a training

dataset, and the remaining fold was used as a testing dataset. We

conducted 10 iterations to cover all folds as testing datasets. The

testing results from all 10 iterations were averaged to show the total

accuracy of the entire dataset.

For the classification problem, we used two machine learning

models, deep learning and random forest model, to see if machine
FIGURE 2

Hierarchically clustered heatmap of differentially expressed genes post-adjuvanted vaccine treatment: this figure presents a hierarchically clustered
heatmap that visualizes the differential gene expression in groups treated with various adjuvants at two distinct time points, 1 day and 7 days post-
dose. The dendrogram on the left shows the cluster linkage of genes, facilitating an easy comparison of gene expression across different treatments
and time points.
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learning could differentiate an adjuvant-specific immune profile

(Figure 4a). The machine learning models for classification

problems were fed immune responses as an input and adjuvant

type as an output for training (Figure 4a). Briefly, the neural

network was designed to have an input layer with 1,184 features,

a hidden layer with 100 nodes, and an output layer corresponding to

the classes to predict.

To address the issue of class imbalance in the training dataset,

which can lead to biased model predictions favoring the majority

classes, we implemented a data balancing strategy. Specifically, we

ensured that each class contributed an equal number of samples

during both the training and testing phases. This was achieved by

undersampling the majority classes (groups 6 and 7) to match the
Frontiers in Immunology 06
size of the other classes. By maintaining a balanced dataset, the

model was trained and evaluated on an equal representation of all

classes, thereby mitigating bias and improving the fairness and

robustness of the classification performance.

For the immune response prediction problem, we used a deep

learning model that takes innate (early-stage) immune response as

an input and generates adaptive (late-stage) immune response and

antibody titer as an output (Figure 5a). The network design was the

same as the network for the classification task, but added a

regression layer at the end to predict antibody levels of 9 HPV

types. All the deep learning networks were designed to have fully

connected networks to handle RNA expression data, and there were

few reasons for selecting a fully connected network.
FIGURE 3

Diagrammatic representation of immune-related pathways and RNA expression levels: Immune response-related pathways and cytokines.
Specifically focused on toll-like receptors (TLRs), cytosolic pattern recognition receptors, and C-type lectin receptors. Bar plots representing the
RNA expression levels of each group are superimposed on these pathways, providing a comprehensive view of the immune response triggered by
each adjuvant type.
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First of all, adjacent data points in RNA data do not have a

strong relationship, and each data point can have its own

information individually. In images or spectral data, data must be

placed in a specific sequence to convey information. Images or

spectral data may lose their meaningful interpretation when data

points are misaligned, randomly shuffled, or when only a few

isolated data points are selected without preserving their original

context. However, RNA information does not have correlations

between individual data points, and each data point has its own

meaning. Therefore, the order of individual data points does not

affect the overall meaning of the data.
Frontiers in Immunology 07
The fully connected layer applies a linear transformation

through a weights matrix to make every input element influence

every output result without considering the alignment of input data.

Convolutional neural network (CNN) handles input data with

filters or kernels, and the filter uses adjacent elements for

propagating calculation. Therefore, CNN is a mathematically

reasonable way of extracting meaningful features from

sequentially aligned data, such as images or spectra. Unlike CNN,

the fully connected networks take all input data without considering

their sequential order because every neuron in one layer is

connected to every neuron in the other layer. This structural
FIGURE 4

Working flow of machine learning models and performance for classifying adjuvant-induced RNA expression patterns: (a) Diagram of input and output
for machine learning models, random forest and deep learning, used to classify RNA expression patterns induced by different adjuvants. (b) Performance
evaluation and comparative analysis of machine learning models. The performances of the models are evaluated using a confusion matrix to show their
ability for classifying the adjuvant-induced RNA expression patterns. Matric for indicating performances of each class includes true positive rate (TPR),
false negative rate (FNR), precision, false discovery rate (FDR), and F1-score. These matrices provide a clear visual representation of each model’s
classification performance, including true positives, false positives, true negatives, and false negatives. The total classification accuracies of the
random forest model and deep learning model are 71.1% and 96.9%, respectively.
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agnostic property and the calculating interpretation of the fully

connected networks are suitable for handling data that does not

have a specific order, such as RNA expression data.
2.9 Weights (saliency) analysis

The trained network with the highest predicted likelihoods for

each adjuvant class was calculated independently for saliency

analysis. The weights of each layer from the trained network are

multiplied after considering the activation function, ReLU, to get a

weight matrix per class, adjuvant group.

The input layer has 1,184 nodes, which is an equal number to

the input size. The first hidden layer (L1) has 100 nodes. The nth

node (0 < n < 101) in the first hidden layer connecting themth node

(0 < m < 1,185) in the input layer has a weight Wn,m, after the

training. The second hidden layer (L2) has 13 nodes, which is an

equal number to the number of classes. The pth node (0 < p < 14) in

the second hidden layer connecting the qth node (0 < q < 101) in the

first hidden layer has a weight Wp,q. All the weights posed to the

input data for the classification task can be calculated after taking

the ReLU (Rectified Linear Unit) function into consideration. In

this way, we were able to get the weights (Wr,s) imposed on the rth

genes in the input layer for classifying the sth adjuvant group. Since

we used the cross-validation technique with 10 folds, there were 10

different trained models. Even though the training datasets were

split into 10 folds and different sets of training data were given, each

model stressed the weight of the genes in a similar pattern.

Notably, the ReLU activation function, defined as f(x) = max(0,

x), which ensures that all output values are non-negative. During

the saliency analysis, we calculated the overall importance of each

gene by multiplying the weights across all layers of the trained deep

learning network, taking into account the effect of the ReLU

activation at each step. This approach inherently sets any negative

values to zero, thereby focusing the analysis on genes that positively
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contribute to the model’s predictions. To efficiently organize the

intensities per adjuvant group, we used a hierarchical clustering

approach with a Correlation distance measure. Further, the

intensity of weights imposed on each gene is visualized using a

heat map, with arbitrary units normalized to a range from 0 to 1 as

shown in the Supplementary Figure 3.

In this scale, a value of 0 represents the lowest weight, indicating

minimal contribution, while a value of 1 corresponds to the highest

weight, signifying maximal importance in the model. In other words,

genes with weight values close to zero are interpreted as having little to

no significance in describing the relationship between input features

and output classes, whereas genes with weight values approaching one

are considered highly important and sensitive indicators of the input-

output relationship. This method allows for an intuitive and

interpretable visualization of gene importance, facilitating the

identification of key molecular features that drive the classification

and prediction tasks within our study.

For further analysis and validation of genes showing high and

low importance for describing the input and output relationship, we

selected 100 genes that show high and low intensities across the

adjuvant types. These selected gene sets were further analyzed

statistically with the Pearson correlation coefficient, as shown in

Supplementary Figure 4.
2.10 Data and code availability

The data that support the findings of this study are available, but

restrictions apply to the availability of these data, which were used

under license for the current study, and so are not publicly available.

Data are, however, available from the corresponding author upon

reasonable request and with permission of Merck & Co., Inc. The

underlying code for this study is not publicly available but may be

made available to qualified researchers on reasonable request from

the corresponding author.
FIGURE 5

Working flow of deep learning model for predicting antibody titer and comparison with the ground truth value, measured antibody levels: (a) Diagram of
input and output for deep learning model for predicting antibody titer. Information from day 1 after dose is used as an input to predict antibody levels of
week 12 and 36. (b) Box-and-whisker plot illustrating the comparison between predicted antibody levels from deep learning model (orange box) and
ground truth levels (blue box). The trends and mean antibody amounts between predictions and ground truth values show high alignment. The results
demonstrate the capability of the deep learning model in understanding vaccine-induced RNA expression differences and the accuracy in predicting
antibody levels. Total prediction results for the 8 groups with 9-valent are shown in Supplementary Figure 6.
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3 Results

3.1 Non-human primates study with 8
different adjuvants for HPV vaccine

In our study, we utilize 8 adjuvants, which have been previously

employed in various vaccines, including those for HPV and

influenza. Each adjuvant contains unique immunostimulatory

molecules designed to enhance the immune response. The

adjuvants are also formulated in different ways, including as lipid

nanoparticles or liposomes. This experimental design contributes to

understanding how different adjuvants and their formulations can

influence RNA expressions and the performance of machine

learning models.

NHPs were dosed with the 9-valent HPV vaccine plus different

adjuvants, as detailed in Table 1. Supplementary Table 1 lists the

detailed information of the NHPs, such as age and weight, used in this

study. Post-administration, blood was drawn at two intervals, 1 day

and 7 days after the dose, to analyze the differentially expressed RNA

levels (Figure 1, Supplementary Figure 1). This allows us to monitor

the role of various adjuvants in modulating innate (day 1) and

adaptive (day 7) immune responses to the vaccine and adjuvant.

The database from the Ingenuity Pathway Analysis (IPA)

program is used to select 1,184 genes among all RNA expression

levels (Methods). Briefly, genes related to cellular immune response,

humoral immune response, pathogen-influenced signaling, and

cytokine signaling in the immune system are filtered for further

analysis. Additionally, genes related to TLRs, pattern recognition

receptors, and C-type lectin receptors are also included (Figures 2, 3).
3.2 Hierarchical clustering analysis

The hierarchical clustering analysis is to navigate the complex

terrain of RNA expression levels across adjuvant groups (Figure 2).

This robust visualization technique illuminated the patterns and

disparities in gene expression profiles, thereby elucidating the

influence of vaccine adjuvants. The data was compared from day

1 and day 7 with the baseline data from day 0 (pre-dose) to adjust

for subject-specific baselines and to show fold change values. From

the 1,184 genes related to immune responses, 54 representative

genes related to adjuvant response and pathogen recognition

systems were selected to enhance the clarity of the heatmap

presented in Figure 2. Also, hierarchical clustering analysis is

shown in the heatmap plot for the comparison of differentially

expressed RNA patterns.

The heatmap reveals unique fingerprints attributed to different

adjuvant types. The heat map encapsulates the dynamic interaction

of immune-related genes, unveiling clusters of co-expressed genes.

The data from day 1 and day 7 show distinct differences, indicating

that each adjuvant induces different innate and adaptive immune

responses (Supplementary Figure 1). Additionally, different

adjuvants induced unique fingerprints of immune responses,

generating distinctive RNA expression patterns. Notably, groups 6
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and 7, which both have MPL as an immune stimulatory molecule,

show similar patterns.
3.3 Principal component analysis

As depicted in Figure 2, the two different time points, 1 day

post-dose and 7 days post-dose, clearly exhibit different patterns

due to their distinct innate and adaptive immune responses. To

further support these differences, a PCA plot was generated. The

principal components of the data from day 1 and day 7 are

distinguishable, indicating that these two time points have

different expression patterns (Supplementary Figure 1). This

analysis provides valuable insights into the temporal dynamics of

gene expression following adjuvant treatment, contributing to our

understanding of the immune response dynamics.
3.4 Pathway analysis

Pathway maps were utilized to illustrate the distinct expression

levels across different groups that are treated with various vaccine

adjuvants. Different adjuvants induced unique patterns of gene

expression in each group, particularly in pathways related to

pathogen-influenced signaling. To visualize these differences,

pathways, such as TLRs, pattern recognition receptors, and C-

type lectin receptors, were evaluated since those pathways are

integral to pathogen recognition steps. These specific pathways

are known to play a crucial role in the immune response and are

significantly influenced by the adjuvants evaluated in this study

(Figure 3, Supplementary Figure 2).

Next, evaluation of a series of diagrams to visualize these

differences was done with each representing a specific pathway

(Figure 3). The expression levels of the elements in the pathways are

visualized using thermometer bars, providing a clear and intuitive

representation of the data. All the batches in the same group are

averaged to show a representative value in the bar plot, along with

the standard deviation. Bar plots on the side of each pathway allow

us to easily compare the adjuvant-induced expression levels across

different pathways and groups.

The analyses reveal that the vaccine adjuvants had a significant

impact on the expression levels in the immune response-related

pathways, especially in the pathogen recognition ligands. Notably,

adjuvants with the same immunostimulatory molecule tend to show

similar trends. For instance, groups 2 and 4, which contain the same

lipid substance, both show high expression levels in IRF7

(transcription factor that drives production of antiviral interferons)

and RIG-I (Viral RNA sensor that triggers antiviral signaling

pathways) (41). Overall, all adjuvants show downregulation of the

inflammatory response, which aligns well with previously known

knowledge (Figure 3) (1).

As previously explored, each adjuvant exhibits a different mode

of action, resulting in unique expression levels of ligands (1, 2).

Despite the distinct RNA expression levels of ligands observed in
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different groups, there are similarities in the expression levels of

certain cytokines at the end level of signaling pathways. The specific

effects vary depending on the type of adjuvant used, underscoring

the complexity of the immune response and the role of adjuvants in

modulating this response. Because of the complexity of the

signaling pathways, our understanding of these processes is not

yet complete. However, this highlights the significance of

integrating machine learning approaches to aid in understanding

adjuvants for facilitating vaccine development.
3.5 Gene set enrichment analysis

Enrichment analyses play a pivotal role in bioinformatics,

aiding researchers in interpreting complex genomic data. Among

these methods, gene set analysis stands out as a valuable and widely

adopted approach. In our study, GSEA was employed. GSEA is a

computational method designed to identify gene sets that exhibit

significant enrichment or depletion within a large gene pool.

Gene sets represent functionally related genes, each set

reflecting a common biological theme. These themes can range

from disease associations and chromosomal locations to regulatory

pathways. In our investigation, gene sets were harnessed to

represent specific biological pathways. To unravel the functional

implications of our gene list, two web-based tools: Enrichr

(Supplementary Figures 2a–d) and IPA were uti l ized

(Supplementary Figure 2e). Enrichr and IPA function as gene

signature search engines, capable of extending enrichment

analysis while also facilitating downstream signal interpretation

and functional analytics.

Enrichr, in particular, integrates more than 30 gene-set libraries,

providing a comprehensive resource for pathway exploration. The

interactive visualization approaches of Enrichr, powered by the

JavaScript library Data-Driven Documents, offer a concise

summary of known pathways based on a collective gene function

list. These results from Enrichr provide a detailed overview of the

enriched pathways and biological processes associated with the gene

list that we selected as described in the methods.

IPA, on the other hand, transforms our gene list into a set of

relevant networks based on extensive records maintained in the

Ingenuity Pathways Knowledge Base (IPKB). This allows for the

analysis and visualization of the data, providing insights into the

biological context of the expression analyses. These IPA results

highlight the key pathways and networks that our gene list is

involved in, offering a deeper understanding of the biological

implications of our findings.

Since the list we curated specifically focuses on immune

response-related genes, the results of GSEA, as depicted in

Supplementary Figure 2, reveal that the selected gene sets are

highly related to antigen processing and presentation

mechanisms. The analysis results from these databases reveal that

the gene sets are highly related to antigen processing and

presentation mechanisms. This includes Th1 activation, Th2

activation, TLRs, and C-type lectin receptors pathways.
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Supplementary Figure 2 further illustrates that these enriched

pathways are not only statistically significant but also biologically

meaningful in the context of adjuvant action. For example, the

prominent enrichment of TLRs and C-type lectin receptor

pathways highlights the role of adjuvants in activating innate

immune sensors, which are crucial for initiating and shaping the

adaptive immune response (1, 2). The activation of different

pathways, as shown in Figure 2, reflects the ability of different

adjuvants to skew the immune response toward either cellular or

humoral immunity, depending on their mode of action. This

mechanistic insight is particularly important as not only the

balance between Th1 and Th2 responses, but also the pathogen

recognition receptor pathways, can influence the overall efficacy

and safety profile of a vaccine.

Furthermore, different adjuvants are known to enhance and

shape the immune response to antigens through diverse

mechanisms, ultimately aiming to influence both the efficacy and

durability of vaccine-induced protection. Overall, aluminum

promotes antigen uptake by antigen-presenting cells and induces

strong Th2-type humoral responses, supporting robust antibody

production. It is also known to stimulate the production of pro-

inflammatory cytokines, such as IL-6, which is well aligned with the

result in Figure 3. Lipid nanoparticles (LNP) (group 2) facilitate

efficient delivery of nucleic acids and activate innate immune

pathways, including TLRs, thereby promoting both cellular and

humoral immunity. Previous work has shown that empty LNPs (no

nucleic acid) can act as an adjuvant as well (42). Chitosan (group 3),

a natural polysaccharide, enhances antigen uptake at mucosal

surfaces and stimulates both Th1 and Th2 responses by activating

pattern recognition receptors, such as TLRs and C-type lectin

receptors. Chitosan, as a vaccine adjuvant, induces the production

of IL-10, an anti-inflammatory cytokine, thereby helping to balance

immune activation with the regulation of inflammation, as shown

in Figure 3. Squalene (group 5), often formulated as an oil-in-water

emulsion, recruits immune cells to the injection site and promotes

antigen presentation, leading to a balanced Th1/Th2 response. MPL

(groups 6 and 7), a TLR4 agonist, stimulates robust innate immune

activation and skews the adaptive response toward Th1-type

cellular immunity, which is crucial for protection against

intracellular pathogens.

These findings provide valuable insights into the immune

response mechanisms triggered by different adjuvants and

contribute to our understanding of vaccine efficacy. By engaging

distinct molecular pathways, adjuvants not only enhance the

magnitude and quality of the immune response but also promote

the development of immunological memory, resulting in more

effective and longer-lasting vaccine protection. The genes

identified in this study align well with previous knowledge and

effectively represent the signals induced by the adjuvants. This not

only validates the biological relevance of the gene selected in this

study, but also offers a biological foundation and legitimacy of AI

approaches for predicting the immunogenic potential of novel

adjuvants based on their transcriptomic impact. Also, these tools

provide valuable context for understanding the functional
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significance of the selected genes. This alignment validates the

selection of genes and underscores the relevance of our study.
3.6 Machine learning models

Random forest models, while commonly and traditionally used

for classification tasks, can struggle with complex datasets, such as

those in bioinformatics (43). They are prone to overfitting,

particularly when the data is noisy or high-dimensional. This

sensitivity to noise can lead to poor performance on unseen data

and difficulty distinguishing between relevant and irrelevant

features. Furthermore, if the relationship between the features and

the target variable is complex and non-linear, the model may

struggle to capture these relationships accurately.

They can be computationally expensive and slow to train,

particularly when the dataset is large. This is because the model

needs to construct and store multiple decision trees, each of which

requires computational resources (27). The interpretation of these

models can also be challenging due to the large number of decision

trees. Each tree contributes to the final prediction, making it difficult

to understand the role of individual features. Furthermore, random

forest models may not work well with categorical variables and can

generate biased results. These limitations are particularly

pronounced in fields like bioinformatics, where datasets are often

large, complex, and include many data points (27).

To address the challenges of statistical approaches, we propose

the use of a deep learning model, designed to handle large amounts

of data with complex inter-gene relationships. First of all, the model

was designed with fully connected layers to mimic the structural

characteristics of the random forest model (Figure 4a). Models with

convolutional layers are a common strategy, but the calculation

method is more explainable when handling data where adjacent

data points have meaningful information. This is because it uses a

convolutional layer with kernels that stride on data for calculating

data points right next to each other.

Images are a common data format for the 2-dimensional

convolutional network. The network is trainable when each pixel

in the image is in the right order to show the object in that image. If

the pixels in the image are randomly sorted without order, we

cannot see the features of an object in the image, and the machine

learning model cannot be trained. In the same way, spectral

information can only be delivered when they are arranged in the

right order in the frequency domain. Sequential information of

wavelength is crucial when using a 1-dimensional convolutional

layer for finding meaningful features.

However, RNA expression data are 1-dimensional data without

an order. The nth gene (1 ≤ n ≤ 1,184) in the data may not have any

relationship with the n-1th or n+1th gene. Considering that a fully

connected layer doesn’t count the order of the input data, as in the

random forest model, and it propagates the calculation of all the

nodes independently, makes the fully connected layer more

explainable and reasonable for our goal.
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3.7 Machine learning – RNA classification

Our study compares the performance of two machine learning

models: random forest and deep learning, in classifying RNA

expression patterns induced by different adjuvants. The deep

learning model outperforms the random forest model, achieving

an accuracy (sum of all true positive (TP)/total number of samples)

of 96.9%, while the random forest model achieves an accuracy of

71.1%. The random forest model particularly struggles to classify

groups 7 and 8 (Figure 4b). As shown in Figure 2, the expression

patterns are very similar to those of groups 7 and 8, which might

confuse the random forest model. On the other hand, the deep

learning model efficiently identifies the subtle differences between

the signatures induced by the different adjuvant types, even though

they have similar RNA expression patterns (Figures 2, 4b). This is

reflected in its high accuracy, concluding that the deep learning

model can find subtle but unique features of adjuvant-induced

signals that the random forest model wasn’t able to catch.

In addition to the accuracy, the confusion matrix in Figure 4b

provides several key metrics for evaluating the multi-class

classification performance of two machine learning models. For a

given class k, the true positive rate (TPR), or recall, measures the

proportion of actual class k samples correctly identified and is

computed as TPk ÷ (TPk + FNk), where TPk is the count of

correctly predicted samples of class k and FNk is the count of class

k samples misclassified as other classes. The false negative rate (FNR)

complements this by representing the proportion of class k samples

missed, calculated as FNk ÷ (TPk + FNk). Precision for class k

indicates the accuracy of predictions labeled as class k and is given

by TPk ÷ (TPk + FPk), where FPk counts samples incorrectly

predicted as class k. Additionally, the false discovery rate (FDR),

defined as FPk ÷ (TPk + FPk), reflects the proportion of incorrect

predictions among all predictions for class k. Also, the F1 scores for

class k are derived as 2(Precisionk � Recallk) ÷ (Precisionk + Recallk)

to show the harmonic mean of precision and TPR, balancing both.

It’s important to note that previous studies achieved over 90%

accuracy with the random forest model, which used a mere 10 to 20

genes to classify 2 adjuvant groups (34, 35). In contrast, this study

used a set of 1,184 genes to train machine learning models to classify

8 adjuvant groups. This complexity likely contributes to the lower

accuracy of the random forest model. These findings clearly

demonstrated that the statistical model struggles to process

complex datasets or complex classification tasks, while the deep

learning model excels in these areas.
3.8 Saliency analysis

Using saliency analysis, evaluation of the deep learning network

was done to comprehend how the deep learning model operates. By

illustrating the influences of various genes on adjuvant prediction,

evaluation of which genes gained more attention during the training

process was done. The weights of each node are calculated as
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described in Methods. This methodology enables the identification

of genes that contribute significantly to the classification of specific

adjuvant groups by examining the weights assigned to them.

Heat maps showing saliency analysis to investigate the

predictions of a deep neural network for adjuvant type

classification were generated. Deep learning networks are often

considered to be “black boxes” that offer no way offiguring out what

a network has learned or which part of an input to the network was

responsible for the prediction of the network. To understand genes

that are influenced more when differentiating the immune

signatures induced by adjuvants, the weights of the trained

network were visualized in Supplementary Figure 3. Using the

saliency analysis, specific genes of input RNA transcriptomes that

focused more when classifying the adjuvant types were identified.

All the weights from the trained model are arranged in a

heatmap, from high to low (Supplementary Figure 3). The

weights for classifying groups 1 to 8 exhibit a similar trend, albeit

not identical. Furthermore, the 10 trained models from 10 different

folds display very similar trends, indicating that the training process

was effectively executed to highlight specific genes for the

classification task. Despite the black-box nature of the deep

learning process, the consistent trend in the weights clearly

demonstrates that the process is not random. This finding

underscores the reliability and robustness of our deep learning

model in classifying adjuvant groups.

The weights of each gene are arranged from high to low, as

shown in Supplementary Figure 3. The top 100 genes with high

weights across all classes on average were selected for further

analysis. The RNA expression levels of the 100 genes with high

weights underwent a Pearson correlation coefficient analysis. This

analysis aims to understand the correlation between two different

groups. The Pearson correlation coefficient measures the correlation

between two sets of data. If the Pearson correlation coefficient is

closer to 1, this means the two data sets have a higher correlation

and a similar RNA expression pattern. Also, 100 genes with low

intensities are selected to compare the analysis results of 100 high-

intensity genes. Groups showing a high correlation with a p-value

lower than 0.05 are depicted in red, while others are in black.

The RNA expression level of the top 100 weighted genes

generally has low coefficient values between different groups,

indicating that the expression levels of these gene sets are not

identical. In other words, these genes received high weights because

they were unique to groups, making them an important marker for

classifying the groups. However, the RNA expression level of the

100 genes with low weights shows high coefficient values with a p-

value lower than 0.05. This result suggests that the expression

pattern of these 100 genes is similar across the adjuvant group. In

other words, these 100 genes received low weights because they

appeared similar across the groups and were not very useful for

classifying each group.

Additionally, the RNA expression levels of the 100 genes with

high weights are more similar in the day 7 data compared to the day

1 data (Supplementary Figures 4a, b). This suggests that the signals

induced by the adjuvant are more consistent in the adaptive

immune response than in the innate immune response. This
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observation underscores the dynamic nature of the immune

response and the distinct roles that these genes play at different

stages in adjuvant-induced signal pathways.

Furthermore, the Pearson correlation coefficients among groups

6 to 8 are significantly higher than others for both the top 100 genes

and the bottom 100 genes. This indicates that the immune response

of groups 6 to 9 and their RNA expression levels are highly

correlated in a linear way. The similarities in the immune

responses and gene expression patterns of these groups appear to

present a challenge for the classification task, indicating the

complexity of the biological processes involved. This finding

provides further explanation for the observed lower accuracy of

the random forest model when classifying different adjuvant types

(Figure 4b). Figure 4b interprets with slope between two different

adjuvant groups. Linear relationship of genes between two different

groups indicates that the genes with low weights have similar

patterns regardless of the groups. This means that the RNA

expression patterns are similar between groups, and the deep

learning network didn’t put stress on these genes during the

training process, since they are not useful for solving the

classification task.

To further analyze the highly weighted genes and understand

the pathways that can differentiate various adjuvants, genes were

compared within sets of the database (Supplementary Figure 5).

The gene sets that were highly focused during the training process

are involved in the anti-inflammatory signaling pathway, pro-

inflammatory and cytokine signaling in the immune system, as

well as the GPCR ligand binding pathway.

These genes and results further illuminate the path for adjuvant

mechanism studies, providing insights into which pathways require

more focus. Such analysis was not possible with statistical

approaches due to the complexity of the data and the lack of

computational algorithms. However, our custom deep learning

network demonstrates the potential to be used for the analysis of

complex pathways and differential expression levels of genes. This

approach opens up new avenues for understanding the mechanisms

of different adjuvants and their effects on the immune response.
3.9 Machine learning – antibody prediction

Finally, the capabilities of a machine learning algorithm for

predicting antibody levels following vaccination were investigated.

The experimental design involves analyzing the antibody levels of a

9-valent HPV vaccine at two critical time points: 12 weeks after the

first vaccine dose and 12 weeks after the second dose (administered

24 weeks apart). To ensure accurate comparisons, we subtracted the

baseline antibody level (measured at day 0) from each data point.

For the antibody level prediction, the deep learning model was

employed that leveraged RNA expression levels measured on day 1

after vaccination. Specifically, the model generates the antibody

levels of 12 weeks after the dose as an output by using the RNA

expression levels of 1 day after the dose as an input. The architecture

of the network includes a fully connected layer, as the network was

used for the classification task. However, instead of using the One-
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hot encoding layer for the classification task as described above, the

regression layer at the end was used to predict the antibody level

from the RNA expression data.

To assess the performance of the machine learning tool, we

compare the machine learning results with the ground truth

antibody levels (Figure 5b, Supplementary Figure 6). The machine

learning algorithm demonstrates remarkable accuracy in predicting

antibody levels. Side-by-side comparisons with ground truth data

highlight the similarities and validate the effectiveness of our

approach. Notably, the model successfully predicted both early-

stage (12 weeks after the first dose) and late-stage (12 weeks after the

second dose) antibody levels to show the antibody changing over

time. This ability to anticipate immune responses at different time

points is crucial for vaccine development.

The model not only effectively captures the differences in RNA

expression induced by the first and second vaccine doses, but it also

differentiates adjuvant-specific patterns (Figure 4), allowing precise

prediction of antibody trends for each group (Figure 5,

Supplementary Figure 6). These results underscore the potential

of machine learning to expedite vaccine development. By

computationally anticipating antibody titers, experimental time

and resource costs could be significantly reduced.
4 Conclusions

The integration of machine learning techniques has emerged as

a valuable tool in the development of vaccines. Moreover, the global

spread of pandemics underscores the urgency of equipping

computational methods for rapidly developing vaccines to avoid

facing similar challenges in the future. Scientists have been focusing

on AI for building protein structures and calculating their binding

affinities with molecules. By utilizing machine learning, scientists

have successfully demonstrated the ability of computational

approaches to expedite the screening and development of novel

adjuvant candidates, thereby accelerating the vaccine development

process. However, the binding of a pathogen-derived ligand to

pathogen recognition receptors is only the first step that triggers a

series of immune signaling events leading to the activation of the

body’s defense response. There remains a vast, untapped area, such

as cytokines and signaling pathways, following pathogen and

receptor binding.

This study has demonstrated the potential of using

computational approaches to identify the intricate and complex

immune-related signals induced by adjuvants. Given the complexity

of RNA expression levels and the relationship between RNA and

antibodies, creating a model that accurately represents this

relationship seemed difficult at best. Nevertheless, this paper

showed that RNA expression levels exhibit recognizable patterns

by using deep learning. This pattern wasn’t clearly understood with

a conventional statistical approach, random forest model, but our

custom deep learning model showed 96.9% accuracy for classifying

the RNA patterns. Moreover, the data used for analysis of this
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custom deep learning model has successfully predicted the antibody

amount from the RNA expression level that follows the trends of

the ground truth values.

This paper is the first to clearly demonstrate the possibilities of

using AI to understand unexplored areas of immunology and

vaccines. Ultimately, this pioneering study can fill the gap

between adjuvants and drug efficacy for the fully computational

vaccine development process. Additionally, insights were provided

to identify important genes for future studies by analyzing the genes

that showed high importance for predicting antibody levels.

Continued research and innovation in this field will drive the

advancement of adjuvant-based vaccines and reduce the cost for

the screening process, leading to improved global health outcomes.
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SUPPLEMENTARY TABLE 1

Information of non-human primates used for this study.

SUPPLEMENTARY FIGURE 1

Principal component analysis of gene expression post-dose: A principal

component analysis (PCA) plot that illustrates the variance in gene

expression between samples taken at two distinct time points: 1 day post-
dose and 7 days post-dose. The PCA plot encapsulates the differences and

similarities between the two time points, providing a visual representation of
the variance in gene expression.

SUPPLEMENTARY FIGURE 2

Gene set enrichment analysis (GSEA) of adjuvant-related genes using Biomart

and Ingenuity Pathway Analysis (IPA): The analysis provides insights into the
biological pathways these genes are involved in, offering a comprehensive

view of the immune response. GSEA with a different databank for
understanding the genes influenced by the adjuvants. (a) WikiPathways

2019 human, (b) Reactome 2022, (c) BioPlanet 2019, (d) BioCarta 2016,
and (e) IPA. Black dotted lines on the figure indicate the p-value of 0.05.

SUPPLEMENTARY FIGURE 3

Weight analysis of trained deep learning model: a comprehensive analysis of

the weights derived from the trained deep learning model. It emphasizes that
some genes played a more pivotal role during the training process, thereby

shedding light on the model’s decision-making mechanism.

SUPPLEMENTARY FIGURE 4

Pearson correlation coefficient analysis of genes having high and low weights
in the trained model: Pearson correlation coefficient analysis of the top 100

genes that were most and least influential during training. The analysis offers
insights into the relationship between genes and their impact on the model’s

decision making. (a) Genes obtained high weight during the training process
for the classification task. Low coefficient values (0.35 with 0.13 standard

deviation) with gentle slope between two different adjuvant groups are

notable. This means that the same genes showed different expression
levels. In other words, genes with high weights show different RNA

expression patterns that can easily distinguish between two different
groups. (b) Genes obtained low eight during the training process for the

classification task show a high coefficient value (0.50 with 0.18
standard deviation).

SUPPLEMENTARY FIGURE 5

Gene set enrichment analysis (GSEA) of highly weighted genes: This figure

showcases a gene set enrichment analysis of the top 100 genes that had
higher weights for the classification task. The analysis offers insights into the

biological pathways these genes are involved in, thereby providing a deeper
understanding of the adjuvant-induced changes. Also, the analysis can

provide potential genes that should be more focused for studying
adjuvant-specific mechanisms. GSEA with different datasets, including (a)
WikiPathways 2019 human, (b) Reactome 2022, (c) BioPlanet 2019, and (d)
BioCarta 2016, are shown.

SUPPLEMENTARY FIGURE 6

Predicted antibody titer using a deep learning model and its comparison with

the ground truth value, measured antibody levels: Box-and-whisker plot
illustrating the comparison between predicted antibody levels from deep

learning model (orange boxes) and ground truth levels (blue boxes). The

trends and mean antibody amounts between predictions and ground truth
values show high alignment. The results demonstrate the capability of the

deep learning model in understanding vaccine-induced RNA expression
differences and the accuracy in predicting antibody levels.

SUPPLEMENTARY FIGURE 7

Standard curves for nine virus-like particle (VLP) types, displaying the

measured signal for all seven standards (Std 1–Std 7). All points within the
validated dynamic range are shown. A broad dynamic range indicates a

reliable and proportional signal response across the entire concentration
series. The y-axis is shown on a logarithmic scale to illustrate the full range of

signal intensities.
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