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Objective: Ubiquitination plays a crucial role in the malignant progression of
ovarian cancer. With the advent of proteolysis-targeting chimeras (PROTACs)
targeting ubiquitin enzymes, precision therapies are now possible. Therefore, it is
imperative to ascertain the prognostic significance of ubiquitination-related
genes in ovarian cancer.

Methods: A prognostic model based on ubiquitination-related genes was
developed using data from TCGA and GTEx databases. Performance was
assessed via Kaplan-Meier, ROC curves, and Cox regression; a nomogram was
created. The model's stability was checked using training and test sets. FBXO45
was also experimentally validated in ovarian cancer.

Results: The model, based on 17 genes related to ubiquitination, showed high
performance (1-year AUC = 0.703, 3-year AUC = 0.704, 5-year AUC = 0.705).
The high-risk group had significantly lower overall survival (P < 0.05). Immune
analysis showed higher levels of CD8+ T (P < 0.05), M1 (P < 0.01) and follicular (P <
0.05) cells in the low-risk group. High-risk patients had more mutations in
MUC17 and LRRK2, while low-risk patients had more RYR2 mutations. FBXO45
is a key E3 ubiquitin ligase in ovarian cancer, promoting growth, spread and
migration via the Wnt/B-catenin pathway.
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Conclusion: Ubiquitination-related markers provide reliable prognostic insights
and reflect the immune microenvironment in ovarian cancer, offering a basis for
clinical targeting strategies.

ovarian cancer, ubiquitination, prognostic model, immunotherapy, FBXO45, Wnt/B-
catenin signaling pathway

1 Introduction

Ovarian cancer is the leading cause of gynecological cancer-related
mortality. In 2018, it accounted for 4.4% of all cancer-related deaths,
rising to 4.7% in 2020 (1, 2). 70% of cases are already advanced at
diagnosis, with a 5-year survival rate of just 29% (3, 4). The high
mortality is compounded by the tumor’s resistance to both
chemotherapy and targeted therapies, driven by genetic and
epigenetic alterations as well as a complex Tumor Microenvironment
(TME). This resistance extends to alternative treatment options (5),
making OV a persistent challenge in oncology. As a result, identifying
prognostic factors and novel biomarkers for targeted therapeutic
strategies has become an urgent clinical priority.

Ubiquitination is the process by which ubiquitin is covalently
linked to a substrate, thereby modifying the substrate for either
degradation or stabilization. This modification is ordinarily brought
about by the interplay of El ubiquitin-activating enzymes, E2
ubiquitin-conjugating enzymes, and E3 ubiquitin ligases (6).
These enzymes are critical in regulating cellular processes,
including tumor proliferation, invasion, apoptosis, DNA damage
response, repair mechanisms, metabolism, immune responses, and
drug resistance (7-9).

Studies have established a link between ubiquitination-related
factors and diverse facets of cancer biology, encompassing tumor
initiation, invasion, metastasis, drug resistance, and immune
microenvironment modulation. Notable factors include RNF168,
UBRS5, and WWP2 (10-12). Among these, pathogenic mutations in
the ubiquitin ligase BRCA1 (OR, 75.6; 95% CI, 31.6-180.6) elevate
the risk of OV by 75-fold (13). To date, 50 ubiquitination-related
genes have been targeted by Proteolysis Targeting Chimeras
(PROTAC:s), with several emerging as promising clinical drug
targets for cancer treatment (14, 15). Li et al. emphasized that
PROTACs offered significant advantages, such as reducing drug
dosage and administration frequency, enhancing therapeutic
duration, minimizing toxicity, and overcoming drug resistance—
making them a promising avenue for future drug development (16).
Despite these advancements, the precise role of various
ubiquitination-related factors in OV remains poorly understood.

Abbreviations: OV, Ovarian cancer; TME, Tumor Microenvironment;
PROTAG:s, Proteolysis Targeting Chimeras; IHC, Immunohistochemical; ECL,
Enhanced chemiluminescence; DEGs, Differentially expressed genes; AML, Acute

myeloid leukemia.
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Further systematic investigations are required to unravel the
molecular mechanisms underpinning their involvement in OV.

This study examined the differential expression between OV
and normal ovarian tissues from TCGA and GTEX databases. The
analysis was further refined by intersecting these datasets with a set
of ubiquitination-related genes, resulting in the identification of 162
co-expressed genes. A risk model for prognosis based on 17
ubiquitination-related genes was constructed through COX
univariate analysis, LASSO regression, and the DEVIANCE test.
The model’s predictive performance was assessed using Kaplan-
Meier curves, ROC curves, and nomograms. External validation was
performed by applying the model to the GSE165808 and GSE26712
datasets. Furthermore, the study investigated the immune
infiltration characteristics and high-frequency mutation gene
distribution patterns of patients in different risk groups. In order
to further evaluate the prognostic value of the OV risk model, the
biological function of its key component, the ubiquitin ligase
FBXO45, was analyzed in the context of OV, and its role in the
Wnt/B-catenin pathway was explored. Collectively, these results
imply that ubiquitination-related risk models provide useful
predictive information about OV patients and could lead to the
creation of innovative target-based treatments.

2 Materials and methods
2.1 Reagents list

The main laboratory reagents and sources are detailed
in Table 1.

2.2 Data collection and processing

376 tumor and 88 normal ovarian tissue samples’
transcriptomes and clinical profiles were accessed via the TCGA-
OV (https://www.cancer.gov/) and GTEx databases (UCSC Xena,
https://xenabrowser.net). These datasets were subsequently used for
evaluation as part of the training set. Using the ‘edgeR’ package (17).
The differential gene expression between OV and normal tissues
was examined. For OV, differentially expressed genes (DEGs) were
identified by applying a [logFC| = 1 and a corrected p-value
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TABLE 1 Main laboratory reagents and sources.

DMEM (12800017) Gibco
RNAiso Reagent (9108) Takara
Real-time fluorescence quantitative PCR kit (RR064A) Takara
Trypsin (03-050-1A/03-050-1B) BI
RNA Reverse Transcription Kit (RR037A) Takara

Lipo2000 transfection reagent (31985-062) Thermo fisher

FBS (04-001AUS-1A/) BI

5x Protein loading Buffer (P104) Solarbio
High-performance RIPA lysate (R0010) Solarbio
Phosphatase/Protease Inhibitor Mix (P1081) Beyotime
ECL Chemiluminescent Liquid (WBKLS0500-2) Millipore
TEMED (G4829) Solarbio
4% paraformaldehyde (DF0133) Leagene
1% crystal violet staining solution (G106) Solarbio
GAPDH (5174S) CST
FBXO45 (NM_001105573) Abmart
WNT1 (WL05209) Wanleibio

B-cadherin (51067-2-AP) Proteintech

C-myc (WL01781) Wanleibio

threshold of < 0.01. GSE165808 and GSE26712 datasets were used
to validate the prognostic model. These datasets include 49 and 153
OV samples with survival data.

2.3 Candidate gene screening

The list of ubiquitinating enzyme UBQ genes was derived from
the UUCD (http://uucd.biocuckoo.org/) (downloaded March 2017)
and then modified by removing non-UBQ genes. The final UBQ
genome included 929 genes, grouped into the established UUCD
categories: E1 (8 genes), E2 (39 genes) and E3 (882 genes). A Venn
diagram was used to intersect these genes with DEGs, identify 162
co-expressed genes. COX analysis selected ubiquitination-related
genes with a P value < 0.05, identifying the top 20 genes associated
with OV survival prognosis.

2.4 Predictive model construction

LASSO regression analysis and the DEVIANCE (18) test were
applied to the candidate genes, with a selection criterion of [logFC|
> 1 and adjusted p-values < 0.05. The prognostic model was
constructed using 17 genes. The risk score was calculated by

Risk score = >'niCoefi x Ai
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Coef_i = regression coefficient; A_i = gene expression level (19).
Patients were grouped by risk (high/low) using the median risk
score. Performance of the model was evaluated using survival
analysis and ROC curve analysis.

2.5 Immune landscape and gene mutation
analyses

The risk model uses expression profiles of 17 genes to assess 22
immune cell levels with R package el1071. First, stromal and
immune scores were calculated and visualized using ESTIMATE
(20). The Wilcoxon rank sum test was employed to analyze the
differences between the two groups. Furthermore, the TCGA
database was searched for single nucleotide variation (SNV) data
for OV, and gene mutation analysis was performed using the
“maftools” software package (21) based on somatic mutation
data, focusing on genes with higher mutation frequencies in the
two patient groups and using a waterfall diagram to show.

2.6 Single-cell RNAseq analysis

Single-cell RNA sequencing data of ovarian cancer were
obtained from the E-MTAB-8381 dataset in ArrayExpress. Cells
exhibiting a gene count of fewer than 200, or a mitochondrial gene
count that exceeds 15%, are to be considered as having undergone a
significant deviation from the standard. The process of gene
expression was eliminated. Genes that exhibited expression in
fewer than three cells were excluded from further analysis. The
data underwent a process of normalization, employing the
LogNormalize method. This was followed by the identification of
2,000 genes that exhibited high variability, along with scaling and
principal component analysis (PCA). The top 20 components were
used for graph-based clustering and UMAP reduction. Cell type
annotation was conducted using canonical marker genes and
automated classification via the “SingleR” package, referencing the
Human Primary Cell Atlas (https://www.proteinatlas.org/
ENSG00000174013-FBXO45/single+cell/ovary).

2.7 Cell culture and transfection

Human OV cell lines A2780 and HEY were obtained from the
Cell Center, Institute of Basic Medical Sciences, Chinese Academy
of Medical Sciences. Cell validation was performed via short tandem
repeat (STR) analysis, and mycoplasma testing yielded negative
results. DMEM and RPMI 1640 media, along with fetal bovine
serum, were sourced from Gibco (USA). Penicillin-streptomycin
solution (1%) was procured from Wuhan Boster Biological
Technology Co., Ltd. Primary and secondary antibodies for
Western blot analysis, as well as the corresponding diluents, were
obtained from Wuhan Boster Biological Technology Co., Ltd. The
transfection reagent Lipo8000""" was purchased from Shanghai
Beyotime Co., Ltd. FBXO45-specific small interfering RNAs (si-
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FBXO045) and control siRNA (NC) were synthesized by Shanghai
Sangon. Horseradish peroxidase-labelled goat anti-rabbit IgG was
supplied by Wuhan Sanying Biotechnology Co., Ltd. The CCK-8
cell proliferation assay kit was purchased from MedChemExpress
(USA). Matrigel matrix was sourced from Corning (USA), and
Trizol reagent (T9424, 200 ml) was obtained from Sigma (USA).
qPCR reagents, including SYBR® Premix Ex—TaqTM II (Tli RNaseH
Plus, RR820Q), were provided by Takara (Japan). The target
sequences for FBXO45 siRNA were listed in Table 2.

2.8 Western blotting

The same RIPA lysis buffer was used for all samples of the WB
experiment and quantified using BCA method after extraction, and
each sample was repeated three times, and based on the
quantification results, all samples were adjusted to the same
concentration of 10 ug/uL with the lysis buffer, and the upper
volume of about 5 PL corresponded to 50 pg of total protein.
Western Blot quantification was performed by Image] (NIH
version 1.53) analysis. After all images were converted to 8-bit, the
bands were delineated with the rectangle tool, the background was
subtracted, and the integrated density was recorded. Target protein
expression was normalized by an internal reference protein
(GAPDH), and cross-gel experiments were corrected by internal
control samples. Data are from 3 independent experiments and are
expressed as mean + SD. Exposure time was controlled within 30 s to
avoid signal saturation. The membranes were incubated with primary
antibodies (FBXO45, 1:1000; WNT1 1:1000; B-cadherin, 1:1000; C-
myc, 1:1000; GAPDH, 1:50,000) then HRP-conjugated anti-rabbit
secondary antibody (1:5000) was added. Protein bands were
visualized using ECL reagent (Bioworld, Nanjing, China).

2.9 Enrichment analyses

We followed the methods of Chen et al. (22). Enrichment
analyses were performed using the “ClusterProfiler” R package.
Gene Set Enrichment Analysis (GSEA) and OverRepresentation
Analysis (ORA) were both conducted in order to investigate the
biological pathways and processes associated with the gene
expression profiles. It is important to note that all enrichment
analyses gave rise to adjusted p-values (Benjamini-Hochberg
corrected) of <0.05, which have been considered to be statistically
significant. Pathway visualization and interpretation were aided by
enrichment maps, dot plots, and ridge plots generated via
ClusterProfiler or associated visualization functions.

TABLE 2 Three target sequences of FBXO45 small interfering
RNA (siRNA).

Sil- FBXO45 UUAAUGUAGACAUUCCUGGT
Si2- FBXO45 UAGUAGAUUAUUGUCCACCT
Si3 -FBXO45 UAAACCAAAGUCACUUCUGT
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2.10 Statistical analysis

R software (version 4.2.0; New York, USA) was used for data analysis
and visualization. The Student’s t-test compares normally distributed
quantitative data, the Wilcoxon test for non-normally distributed data
between groups. Significant levels: * P < 0.05, ** P < 0.01, ** P < 0.001.
For detailed methods, in Supplementary Material 1.

3 Results

3.1 Development of a prognostic model for
ubiquitination-related genes and internal
validation

The identification of prognostic factors for OV was facilitated
by data obtained from the TCGA-OV and GTEx databases. Clinical
and transcriptomic (HTSeq-FPKM) data from 376 OV tissues and
88 normal ovarian tissues were downloaded. A total of 8,035 genes
were identified that exhibited differential expression (DEGs)
between ovarian and normal tissues, including 3,516 upregulated
and 4,519 downregulated genes (p < 0.01, |log2FC| > 1) (Figure 1A).
GSEA analysis was performed based on the differential expression
results between tumor and normal tissues. In tumor tissues,

» o«

pathways such as “cell division,” “epithelial cell differentiation,”

» «

“regulation of cell adhesion,” “regulation of cell -cell adhesion,”and
“cytokine response” were found to be suppressed (Figure 1B). The
NES values of the five pathways are respectively: -1.76,-1.59,-1.63,-
1.77,-1.46. Venn analysis was used to identify the intersection
between differentially expressed genes and 929 ubiquitination-
related genes reported in the literature (23). These ubiquitination
genes contained validated and predicted E1, E2 and E3 enzymes and
adapters. Ultimately, 162 ubiquitination-related genes significantly
co-expressed in ovarian cancer tissues were obtained (Figure 1C).
These 162 genes were further analyzed through COX univariate
analysis, leading to the identification of the top 20 ubiquitination-
related genes (p < 0.05) as candidates associated with OV survival
prognosis (Figure 1D). The candidate genes underwent LASSO
regression analysis and the DEVIANCE test, identifying 17 genes
for the establishment of the OV prognostic model (Figures 1E, F).
The model was implemented in the TCGA database, and the
median risk score was utilized to stratify patients in the OV
training set into high- and low-risk groups. (Figures 1G, H). The
model’s predictive accuracy was assessed through the generation of
a time-dependent ROC curve. The AUC for OV at 1, 3, and 5 years
was 0.703, 0.704, and 0.705, respectively, demonstrating strong
predictive performance (Figure 1I). The Kaplan-Meier analysis
revealed a statistically significant disparity in survival outcomes
between the groups, with high-risk patients showing notably worse
OS (Figure 1J). To further evaluate the model’s clinical applicability,
a nomogram was built using the ubiquitination-related score and
five clinical features (age, gender and stage) to predict 1-, 3-, and 5-
year survival rates. Calibration plots indicated that the model
predicted survival rates closely mirrored the actual rates,
validating the model’s potential (Supplementary Figure S2).
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FIGURE 1

Development of a prognostic model for ubiquitination-related genes and internal validation. (A) Volcano plot of up-regulated (n =
= 4519) genes (FDR < 0.01, [LogFC| > 1) between OV and normal tissues. (B) GSEA of KEGG pathways for DEGs in high/low expression
QV groups. (C) The Venn diagram illustrating the common features of DEGs and ubiquitination-related genes (n=162). (D) Forest plot from univariate
Cox analysis. (E) LASSO regression coefficients for ubiquitination-related genes, with each curve representing a gene associated with ubiquitin.

(F) Parameter selection process in the LASSO model. (G) The training set contains risk scores. (H) Training set survival status. (I) ROC curves for

regulated (n

predicting 1- to 5-year OS in the training set. (J) K-M survival curves for high- and low-risk groups in the training set.
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3.2 External datasets validate the model's
generalizability

The model was validated using external datasets GSE165808 and
GSE26712. Patient risk scores were calculated and classified
(Figures 2A, E). The dataset revealed a clear difference between
groups (Figures 2B, F). ROC curve analysis of the model’s

10.3389/fimmu.2025.1654180

performance in OV across both datasets revealed the following
AUCs for one-year, three-year, and five-year predictions: (0.704,
0.701, and 0.704) and (0.604, 0.603, and 0.605) (Figures 2C, G).
Kaplan-Meier analysis showed obvious prognostic differences
between groups, with high-risk patients exhibiting notably lower
overall survival (OS) compared to their low-risk counterparts
(p < 0.01, and p < 0.05) (Figures 2D, H).
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External datasets evaluate the model's generalizability. Demonstrating stable prediction performance across diverse datasets. The risk score, survival
status, ROC curves, and K-M survival curves in the (A-D) GSE165808, and (E-H) GSE26712.
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3.3 Immune characteristics of the
prognostic model in the OV
microenvironment

To explore the immune landscape associated with the
prognostic model, first, we used ESTIMATE to obtain stromal
and immune scores for each sample, with the immune scores in
the high-risk group being observed to be lower than those in the
low-risk group (Figure 3A) and higher stromal S score was
observed in patients classified as low-risk (Figure 3B), and the
ORT algorithm to assess immune cell infiltration in both groups
(Figure 3C). The analysis demonstrated a negative correlation
between immune infiltration, encompassing both naive B cells and
YOT cells, and the score within the low-risk group (p < 0.05)
(Figures 3D, E). Conversely, patients in the low-risk group
exhibited elevated levels of CD8+ T cells (p < 0.05), M1
macrophages (p < 0.01), and Tth cells (p < 0.05) (Figures 3F-H).
The results indicate a correlation between ubiquitination-
associated scores and the extent of tumor cell infiltration and

activity in the OV microenvironment.

3.4 ldentification of mutational features of
the genome

In order to provide further clarification regarding the
mechanisms underlying the prognostic risk score’s effectiveness in
predicting patient outcomes, the mutation frequency associated
with the prognostic model was examined. SNV data for OV were
retrieved from the TCGA database. Using the Maftools R package,
the mutation profiles of the relevant genes were thoroughly
analyzed. The waterfall plots displayed the top 10 most frequently
mutated genes in both groups. TP53, TIN, CSMD3, and MUC16
mutations were observed in both groups (Supplementary Figures
S3A, B), suggesting their potential involvement in OV pathology.
Notably, the high-risk group exhibited mutations in MUC17 and
LRRK2, while the low-risk group had more RYR2 mutations.

3.5 FBXOA45 is overexpressed in OV and
correlates with poor prognosis

In order to further elucidate the pivotal function of ubiquitination-
related genes in ovarian cancer, significant interactions between the
eight core proteins included in the ubiquitination-associated prognostic
model were identified by protein interaction network PPI analysis
(Figure 4A), namely TRAF4, UBE2L3, FBXO45, UBE2L6, FBXL14,
SKP2, CHAF1B, WDR77 The protein with the highest impact (HR
1.0615) in univariate regression based on the above proteins was
selected for further validation. IHC data from the Human Protein
Atlas (https://www.proteinatlas.org/search/FBX0O45) confirmed that
FBXO45 expression was elevated in ovarian endometroid carcinoma,
mucinous carcinoma, and serous carcinoma samples compared to
normal ovarian tissues (Figure 4B). FBXO45 was highly expressed in
plasmacytoid ovarian cancer in the GSE36668 dataset of the GEO
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database by analyzing data from four normal ovaries and four patients
with serous ovarian cancer (Figure 4C). Furthermore, analysis using the
Kaplan-Meierdatabase (https://kmplot.com/analysis/index.php?
P=service&cancer=ovar) demonstrated that higher FBXO45
expression linked to lower PFS and OS in ovarian cancer patients,
in contrast to those with low FBXO45 expression (Figures 4D, E).
UMAP projection was used to visualize the clustering and
annotation results. Each point on the graph represents a single
cell, colored according to its assigned cell type as determined by
marker gene expression. The annotation included stromal cells
(expressing MPZ, ACTA2, SERPINE2), immune cells (marked by
CD45), oocytes (FIGLA, ZP2), and endothelial cells (CD34,
PECAMI), all of which displayed distinct clustering patterns on
the UMAP plot (Figures 4F, G). Subsequently, the STAR-Counts
data and the corresponding clinical information of OV tumors were
downloaded from the TCGA database (https://portal.gdc.cancer.
gov) and analyzed the immune cell infiltration using CIBERSORT
after standardizing the data (Figure 4H). The analysis demonstrated
a positive correlation between FBXO45 expression and both naive B
cells and M0 macrophages and negatively correlated with monocyte
and myeloid dendritic cell dormancy. Immune checkpoint-
associated transcripts extracted from OV patients showed that
FBXO45 expression was found to correlate positively with PD-L1
(CD274) (Figure 4I).

3.6 FBXO45 modulates proliferation,
invasion, and migration of OV cells

The impact of FBXO45 expression on the malignant behavior of
OV was assessed by transfecting A2780 and HEY cells with
FBXO45-targeting siRNA. Successful knockdown of FBXO45 was
confirmed (Figures 5A, F), after which the proliferative, invasive,
and migratory capacities of OV cells were evaluated. CCK8 and cell
cycle assays demonstrated that FBXO45 silencing suppressed OV
cell proliferation (Figures 5B, C, G, H). Furthermore, transwell and
invasion assays revealed a significant reduction in invasion
following FBXO45 knockdown (Figures 5D, I). Additionally,
Wound healing assays also showed a marked decrease in
migration ability when FBXO45 was depleted (Figures 5E, J). The
obtained results indicate that FBXO45 knockdown suppresses the
proliferation, migration, and invasion of OV cells.

3.7 FBXO45 activates the Wnt/B-catenin
pathway

In order to provide further elucidation on the biological role
and mechanism of FBXO45 in OV progression, the samples
contained within the TCGA database were categorized into
groups of high and low expression, based on the median
expression of FBXO45. KEGG enrichment analysis of the high-
expression group revealed a significant association of FBXO45 with
cancer-related pathways, the cell cycle, RNA transport, and WNT
signaling pathways (Figure 6A). Further analysis of TCGA RNAseq
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silencing of FBXO45 in A2780 and HEY cells inhibited signaling
while suppressing c-Myc expression. (Figures 6D, E). Meanwhile,
we found that the high expression of FBXO45 in ovarian cancer
tissues was accompanied by a corresponding elevation of WNT1

data using the GEPIA online tool revealed a positive correlation
between FBXO45 expression and [3-catenin levels in the WNT/j3-
catenin pathway (Figure 6B). Further analysis using GSEA revealed
that FBXO45 upregulated this pathway, The NES values of the

pathways is 2.196. (Figure 6C); Western blotting confirmed that  protein in clinical samples of 3 ovarian cancer tissues and normal
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ovarian tissues (Figure 6F). These results lend support to the

hypothesis that FBXO45 activates the Wnt/B-catenin signaling
pathway, contributing to the malignant development of

ovarian cancer.
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4 Discussion

Despite recent advancements in medicine, the clinical prognosis of
OV remains a significant challenge in oncology (24, 25). Ubiquitination
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FIGURE 5

FBXO45 modulates the proliferation, invasion, and migration of OV cells. (A, F) Western blotting assessing the efficiency of FBXO45 knockdown in
A2780 and HEY cells. (B, G) Cell cycle analysis evaluating the proliferative capacity of OV cells following FBXO45 knockdown. (C, H) The CCK-8
assay measuring cell proliferation in OV cells post-FBXO45 knockdown (OD450). (D, 1) Transwell assays evaluating the invasive and migratory
potential of OV cells after FBXO45 gene silencing. (E, J) Assessing the migration ability of OV cells following FBXO45 knockdown for wound healing
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modification has been demonstrated to play a critical role in the

processes of OV, including tumor progression, treatment resistance,
and the TME (26, 27). As research into the role of ubiquitination-
related genes in OV has deepened, it has become clear these genes may

help with diagnosis and offer new ways to treat the disease.
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With the increasing research on the function of ubiquitin-

related genes, their clinical value as potential prognostic markers
and therapeutic targets has gradually emerged. The present study
developed a survival prognostic model for OV patients by means of

the identification of differentially expressed ubiquitin-related genes
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Human tissue samples

FBXO45 activates the Wnt/B-catenin signaling pathway. (A) KEGG enrichment analysis. (B) Pearson correlation analysis revealing the relationship
between FBXO45 and B-catenin. (C) GSEA of the FBXO45 and Wnt/B-catenin signaling pathway. (D, E) Western blot analysis assessing the impact of
FBXO45 knockdown on key proteins in the Wnt/B-Catenin pathway in A2780 and HEY cells. (F) Western blot analysis of FBXO45 and WNT1
expression in three normal ovarian tissues and three OV tissues, accompanied by statistical analysis (*p < 0.05; **p < 0.01; ***p < 0.001).

through RNA sequencing. Validation with the training set and two
independent cohorts confirmed that the model effectively stratified
patients into high- and low-risk groups. The above experimental
results demonstrate the stability of prognostic models based on
ubiquitination-associated genes have stable predictive effects and
good generalization ability in external datasets.

Additionally, Ubiquitination plays a key role in immunomodulation
and influences tumor progression by modulating the host immune
response. For example, inhibition of USP18 enhances UBCH5- and
Nedd4-mediated CSFIR proteasomal degradation, thereby increasing
the number of antitumor macrophages within the TME (28). Similarly,
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PD-L1 is a unique target for UFMylation. Decreased expression of UFL1
has been demonstrated to reduce the UFMylation of PD-L1, thereby
stabilizing PD-L1 and imparting immune evasion (29). The study
established a correlation between elevated risk scores and a poorer
prognosis, as well as immunosuppression. Patients in the low-risk group
exhibited higher levels of activated CD8+ T cells, M1-macrophages, and
follicular helper T cells within the TME. This may result in a prolonged
survival period for patients by enhancing anti-tumor immune
responses. Conversely, patients in the high-risk group demonstrated
low immunity scores, and stromal low scores exhibited a more
pronounced immunosuppressive profile, which may have a
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deleterious effect on the outlook for high-risk patients. These findings
suggest that patients with low risk may demonstrate a heightened
sensitivity to immune checkpoint inhibitor therapy.

Among the identified mutations, TP53, TIN, CSMD3, and
MUCI16 were commonly mutated in both risk groups. MUC17
and LRRK2 mutations were more prevalent in the high-risk group,
while RYR2 mutations were more prevalent in the low-risk group.
Low MUCI7 expression in biliary cancer correlates with poorer
survival and vascular invasion (30). LRRK2 inhibits rapid vesicle
circulation, thereby promoting a novel signaling axis through
the PI3K-Akt immune response to enhance chemokine receptor
signal transduction (31). Additionally, a correlation has been
demonstrated between low RYR2 expression and unfavorable
prognoses in patients diagnosed with thyroid and breast cancer
patients (32, 33); however, mutations at these loci remain
underexplored in OV. Zibi Marchocki and colleagues identified
four gene mutations associated with platinum resistance in OV
cases following neoadjuvant treatment, including MUC17 (34).
Research on OV has demonstrated that elevated LRRK2
expression can suppress cell proliferation, invasion, and migration
(35). Whole exome sequencing of 87 patients with ovarian yolk sac
tumors revealed that cancer driver mutations in eight patients with
persistent or recurrent disease included ANKRD36, ANKRD62,
DNAHS, MUC5B, NUP205, and RYR2 (36). Differences in the
distribution of these mutations suggest potential differences in
genomic instability between high- and low-risk patients, and
mutations in high-risk groups may influence prognosis and
treatment outcomes in OV by promoting tumor malignancy and
impairing immune function.

The study created a prognostic model using 17 ubiquitin-
associated genes and found that eight proteins interacted to form
the model’s core. These core genes—TRAF4, UBE2L3, FBXO45,
UBE2L6, FBXL14, SKP2, CHAF1B, and WDR77—have been
implicated in tumor progression in previous studies.

TRAF4 has been determined to be a prognostic biomarker in
OV, with elevated expression levels observed in OV cell lines.
TRAF4 silencing has been shown to inhibit cell proliferation,
migration and invasion, and stem cell factor expression.
Moreover, sh-TRAF4 suppresses Akt and PI3K phosphorylation,
effectively blocking the PI3K/Akt signaling pathway activation in
OV cell lines (37). Additionally, TRAF4 overexpression has been
implicated in prostate cancer, where it mediates K27-linked
ubiquitination of the AR C-terminus, elevates intracellular cAMP
levels, enhances E2F transcription factor activity, and promotes cell
proliferation (38).

UBE2L3, an E2 ubiquitin-conjugating enzyme, has been shown
to reduce HPV16 E7 protein levels and inhibit tumor growth in
HPV+ HNC cells through its overexpression (39). Similarly,
UBE2L6 (aka UbcHS8) is an essential ubiquitin-conjugating
enzyme that controls the degradation of c-Myc through E3
ubiquitin ligases, thus regulating cell growth (40). UBE2L6
enhances the binding of ISG15 to cellular proteins and promotes
apoptosis in cervical cancer cells (41). It has been identified as both
a tumor suppressor and a prognostic marker for melanoma (42).
Additionally, studies have demonstrated reduced expression of

Frontiers in Immunology

10.3389/fimmu.2025.1654180

UBE2L6 in primary acute myeloid leukemia (AML) cells, where
silencing UBE2L6 inhibits ATRA-induced ISG15 conjugation, thus
impairing isgylation and hindering AML cell differentiation (43). In
a study of 92 clinical samples from patients diagnosed with serous
OV, immunohistochemical analysis showed marked correlation
among UBE2L6 expression and platinum sensitivity. Given that
UBE2L6 is implicated in platinum resistance (44), further in vitro
and in vivo validation is warranted. The role of UBE2L6 in OV
remains to be more thoroughly investigated in future studies.
Moreover, the gene functions of the core genes FBXO45,
UBE2L3, FBXL14, CHAF1B, and WDR77 in OV have yet to be
explored, and this represents a promising avenue for
further research.

FBXO45 is a constituent of the F-box family of proteins, which
are a subfamily of the E3 ligase substrate recognition family (45). It
has been reported that FBXO45 regulates malignant behaviors such
as cell proliferation, metastasis, and drug resistance by
ubiquitinating and degrading FBXW?7 (46), and ZEB1 (47), but its
function in ovarian cancer has not been reported. This study
identifies FBXO45 as a potentially significant prognostic factor in
OV, based on its highest single-factor regression coefficient among
the core proteins (HR 1.0615). Single-cell sequencing results
indicate that FBXO45 is most significantly associated with oocytes
in ovarian fine. Recent studies have highlighted that oocyte
depletion accelerates ovarian aging, which, in turn, contributes to
cancer progression (48). It was also found that FBXO45 was highly
expressed in ovarian plasmacytoid, mucinous and endometrioid
cancer samples, and elevated levels of the protein expression were
associated with poor prognosis. To validate the model’s predictive
value, FBXO45 was silenced in A2780 and HEY cells, resulting in
reduced cell proliferation, migration, and invasion. It is well known
that the WNT signaling pathway regulates several key biological
processes (cell proliferation, epithelial-mesenchymal transition,
DNA damage response and chemotherapy tolerance) (49-51).
Analysis of RNAseq data from OV patients in the TCGA
database, coupled with GEPIA database and clinical patient
sample analysis, further suggested that FBXO45 may enhance
WNT/B-catenin signaling, thereby promoting the malignant
phenotype of OV cells.FBXO45 frequently forms SCF complexes
with Skpl and Cull to perform its E3 ligase function (52), while
FBXW?7 is a substrate for ubiquitination degradation of FBX045
(46). It has been found that FBXW?7 inhibits TNBC cell stemness by
ubiquitination degradation of the CHD4 protein. It has been
established that the aforementioned mechanism functions by
obstructing the activation of the Wnt/B-catenin pathway (53),
Furthermore, research has demonstrated that the knockdown of
SKP1 results in the inhibition of the Wnt signaling pathway, whilst
concurrently inducing ROS production (54). The above literature
further supports our conclusion.

OV is an immunogenic inflammatory disease closely associated
with immune cell activity (55). Clinical trials have reported
response rates to PD-1 and PD-LI1 inhibitors in OV patients
ranging from 4% to 15% (56). In our study, FBXO45 expression
was positively correlated with naive B cells and M0 macrophages,
while negatively correlating with the dormancy of monocytes and
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bone marrow dendritic cells. Additionally, FBXO45 expression was
positive associated with the immune checkpoints CD274 (PD-L1).
These suggests that it may promote the formation of an
immunosuppressive microenvironment by inhibiting the
antitumor activity of the host immune system. Meanwhile, tumor
cells highly express PD-L1 and evade immune attack, thus
promoting tumor growth and metastasis. These findings suggest
that patients with higher FBXO45 expression may be more likely to
respond positively to therapy involving PD-1 or PD-L1 inhibitors.

Our ubiquitination-related marker offers greater predictive
value than other prognostic markers identified in previous
studies, owing to the strong potential of ubiquitination-related
factors for drug development. As an example, the UBE2L3 in
prognostic model, whose small molecule inhibitor BAY 11-7082
has been shown to inhibit the inflammatory response, has been
widely used (57). The pharmacological inhibition of TRAF4 by
risperidone has been demonstrated to be an effective means of
inhibiting tumor self-renewal in glioblastoma, with a concomitant
reversal of temozolomide (TMZ) resistance (58).

As reported in previous articles, FBXO45 has been demonstrated
to have pro-tumorigenic effects in cases of pancreatic, esophageal and
lung cancers. Moreover, treatment of FBXO45-silenced lung cancer
patients with afatinib has been shown to greatly increase patient
sensitivity (45, 52, 59). In this study, FBXO45 was confirmed as a
significant oncogene in OV, with its mechanism of action elucidated
in vitro. This finding indicates that FBXO45 may represent a
promising therapeutic target and that its clinical translation could
prove advantageous for patients with diverse tumor types.

However, it should be noted that the study has limitations.
Despite the study’s emphasis on the tumorigenic role of FBXO45 in
OV, it is noteworthy that it lacked in vivo experiments and large-
sample clinical trials. In order to understand the molecular
mechanism more comprehensively, further 3D protein structure
modeling (https://www.genecards.org/cgi-bin/carddisp.pl?gene=
FBXO45#domains_families) (Supplementary Figures S4),
structural domain identification, and proteomic screening of
interacting proteins are needed to further analyze the pro-cancer
mechanism of FBXO45 in depth. In addition, further research is
required in the form of in vivo animal experiments, broader
prospective clinical trials and larger sample studies in order to
further explore the accuracy of prognostic models and the
prognostic value of the key factor FBOX45 in ovarian cancer.
Ultimately, this research will lead to clinical translation through
the study of small molecule inhibitors and PROTACs.

5 Conclusion

Ubiquitination-related genes serve as reliable prognostic markers
for OV and may inform clinical decision-making in patient
management. As a core gene in the prognostic model, FBXO45
has the potential to function as a therapeutic target for ovarian
cancer. Moreover, it can be argued that the results of this study
provide a new concept for future targeted therapy against the Wnt
signaling pathway.
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