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Prognostic model of
ubiquitination-related genes
in ovarian cancer based on
transcriptomic analysis and
experimental validation
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Qiang Zhong7, Huali Luo2, Qizhu Zhang1,3,4, Shuxiong Xu8,
Qinshan Li1,2,3* and Mengxing Li6*

1Department of Obstetrics and Gynecology, Institute of Precision Medicine of Guizhou Province,
Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, 2Department of Clinical
Biochemistry, School of Medical Laboratory Science, Guizhou Medical University, Guiyang,
Guizhou, China, 3Department of Gynecology and Obstetrics, School of Clinical Medicine, Guizhou
Medical University, Guiyang, China, 4Department of Obstetrics and Gynecology, Affiliated Hospital of
Guizhou Medical University, Guiyang, Guizhou, China, 5Department of Obstetrics, Guizhou Provincial
People’s Hospital, Guiyang, Guizhou, China, 6Department of Hematology, Guizhou Province Institute
of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre,
Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China, 7Department of
Gynecology, Guizhou Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guiyang,
Guizhou, China, 8Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
Objective: Ubiquitination plays a crucial role in the malignant progression of

ovarian cancer. With the advent of proteolysis-targeting chimeras (PROTACs)

targeting ubiquitin enzymes, precision therapies are now possible. Therefore, it is

imperative to ascertain the prognostic significance of ubiquitination-related

genes in ovarian cancer.

Methods: A prognostic model based on ubiquitination-related genes was

developed using data from TCGA and GTEx databases. Performance was

assessed via Kaplan-Meier, ROC curves, and Cox regression; a nomogram was

created. The model’s stability was checked using training and test sets. FBXO45

was also experimentally validated in ovarian cancer.

Results: The model, based on 17 genes related to ubiquitination, showed high

performance (1-year AUC = 0.703, 3-year AUC = 0.704, 5-year AUC = 0.705).

The high-risk group had significantly lower overall survival (P < 0.05). Immune

analysis showed higher levels of CD8+ T (P < 0.05), M1 (P < 0.01) and follicular (P <

0.05) cells in the low-risk group. High-risk patients had more mutations in

MUC17 and LRRK2, while low-risk patients had more RYR2 mutations. FBXO45

is a key E3 ubiquitin ligase in ovarian cancer, promoting growth, spread and

migration via the Wnt/b-catenin pathway.
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Conclusion: Ubiquitination-related markers provide reliable prognostic insights

and reflect the immune microenvironment in ovarian cancer, offering a basis for

clinical targeting strategies.
KEYWORDS

ovarian cancer, ubiquitination, prognostic model, immunotherapy, FBXO45, Wnt/b-
catenin signaling pathway
1 Introduction

Ovarian cancer is the leading cause of gynecological cancer-related

mortality. In 2018, it accounted for 4.4% of all cancer-related deaths,

rising to 4.7% in 2020 (1, 2). 70% of cases are already advanced at

diagnosis, with a 5-year survival rate of just 29% (3, 4). The high

mortality is compounded by the tumor’s resistance to both

chemotherapy and targeted therapies, driven by genetic and

epigenetic alterations as well as a complex Tumor Microenvironment

(TME). This resistance extends to alternative treatment options (5),

making OV a persistent challenge in oncology. As a result, identifying

prognostic factors and novel biomarkers for targeted therapeutic

strategies has become an urgent clinical priority.

Ubiquitination is the process by which ubiquitin is covalently

linked to a substrate, thereby modifying the substrate for either

degradation or stabilization. This modification is ordinarily brought

about by the interplay of E1 ubiquitin-activating enzymes, E2

ubiquitin-conjugating enzymes, and E3 ubiquitin ligases (6).

These enzymes are critical in regulating cellular processes,

including tumor proliferation, invasion, apoptosis, DNA damage

response, repair mechanisms, metabolism, immune responses, and

drug resistance (7–9).

Studies have established a link between ubiquitination-related

factors and diverse facets of cancer biology, encompassing tumor

initiation, invasion, metastasis, drug resistance, and immune

microenvironment modulation. Notable factors include RNF168,

UBR5, and WWP2 (10–12). Among these, pathogenic mutations in

the ubiquitin ligase BRCA1 (OR, 75.6; 95% CI, 31.6-180.6) elevate

the risk of OV by 75-fold (13). To date, 50 ubiquitination-related

genes have been targeted by Proteolysis Targeting Chimeras

(PROTACs), with several emerging as promising clinical drug

targets for cancer treatment (14, 15). Li et al. emphasized that

PROTACs offered significant advantages, such as reducing drug

dosage and administration frequency, enhancing therapeutic

duration, minimizing toxicity, and overcoming drug resistance—

making them a promising avenue for future drug development (16).

Despite these advancements, the precise role of various

ubiquitination-related factors in OV remains poorly understood.
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Further systematic investigations are required to unravel the

molecular mechanisms underpinning their involvement in OV.

This study examined the differential expression between OV

and normal ovarian tissues from TCGA and GTEX databases. The

analysis was further refined by intersecting these datasets with a set

of ubiquitination-related genes, resulting in the identification of 162

co-expressed genes. A risk model for prognosis based on 17

ubiquitination-related genes was constructed through COX

univariate analysis, LASSO regression, and the DEVIANCE test.

The model’s predictive performance was assessed using Kaplan-

Meier curves, ROC curves, and nomograms. External validation was

performed by applying the model to the GSE165808 and GSE26712

datasets. Furthermore, the study investigated the immune

infiltration characteristics and high-frequency mutation gene

distribution patterns of patients in different risk groups. In order

to further evaluate the prognostic value of the OV risk model, the

biological function of its key component, the ubiquitin ligase

FBXO45, was analyzed in the context of OV, and its role in the

Wnt/b-catenin pathway was explored. Collectively, these results

imply that ubiquitination-related risk models provide useful

predictive information about OV patients and could lead to the

creation of innovative target-based treatments.
2 Materials and methods

2.1 Reagents list

The main laboratory reagents and sources are detailed

in Table 1.
2.2 Data collection and processing

376 tumor and 88 normal ovarian tissue samples ’

transcriptomes and clinical profiles were accessed via the TCGA-

OV (https://www.cancer.gov/) and GTEx databases (UCSC Xena,

https://xenabrowser.net). These datasets were subsequently used for

evaluation as part of the training set. Using the ‘edgeR’ package (17).

The differential gene expression between OV and normal tissues

was examined. For OV, differentially expressed genes (DEGs) were

identified by applying a |logFC| ≥ 1 and a corrected p-value
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threshold of < 0.01. GSE165808 and GSE26712 datasets were used

to validate the prognostic model. These datasets include 49 and 153

OV samples with survival data.
2.3 Candidate gene screening

The list of ubiquitinating enzyme UBQ genes was derived from

the UUCD (http://uucd.biocuckoo.org/) (downloaded March 2017)

and then modified by removing non-UBQ genes. The final UBQ

genome included 929 genes, grouped into the established UUCD

categories: E1 (8 genes), E2 (39 genes) and E3 (882 genes). A Venn

diagram was used to intersect these genes with DEGs, identify 162

co-expressed genes. COX analysis selected ubiquitination-related

genes with a P value < 0.05, identifying the top 20 genes associated

with OV survival prognosis.
2.4 Predictive model construction

LASSO regression analysis and the DEVIANCE (18) test were

applied to the candidate genes, with a selection criterion of |logFC|

≥ 1 and adjusted p-values < 0.05. The prognostic model was

constructed using 17 genes. The risk score was calculated by

Risk score =on i Coef i �  Ai
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Coef_i = regression coefficient; A_i = gene expression level (19).

Patients were grouped by risk (high/low) using the median risk

score. Performance of the model was evaluated using survival

analysis and ROC curve analysis.
2.5 Immune landscape and gene mutation
analyses

The risk model uses expression profiles of 17 genes to assess 22

immune cell levels with R package e1071. First, stromal and

immune scores were calculated and visualized using ESTIMATE

(20). The Wilcoxon rank sum test was employed to analyze the

differences between the two groups. Furthermore, the TCGA

database was searched for single nucleotide variation (SNV) data

for OV, and gene mutation analysis was performed using the

“maftools” software package (21) based on somatic mutation

data, focusing on genes with higher mutation frequencies in the

two patient groups and using a waterfall diagram to show.
2.6 Single-cell RNAseq analysis

Single-cell RNA sequencing data of ovarian cancer were

obtained from the E-MTAB-8381 dataset in ArrayExpress. Cells

exhibiting a gene count of fewer than 200, or a mitochondrial gene

count that exceeds 15%, are to be considered as having undergone a

significant deviation from the standard. The process of gene

expression was eliminated. Genes that exhibited expression in

fewer than three cells were excluded from further analysis. The

data underwent a process of normalization, employing the

LogNormalize method. This was followed by the identification of

2,000 genes that exhibited high variability, along with scaling and

principal component analysis (PCA). The top 20 components were

used for graph-based clustering and UMAP reduction. Cell type

annotation was conducted using canonical marker genes and

automated classification via the “SingleR” package, referencing the

Human Primary Cell Atlas (https://www.proteinatlas.org/

ENSG00000174013-FBXO45/single+cell/ovary).
2.7 Cell culture and transfection

Human OV cell lines A2780 and HEY were obtained from the

Cell Center, Institute of Basic Medical Sciences, Chinese Academy

of Medical Sciences. Cell validation was performed via short tandem

repeat (STR) analysis, and mycoplasma testing yielded negative

results. DMEM and RPMI 1640 media, along with fetal bovine

serum, were sourced from Gibco (USA). Penicillin-streptomycin

solution (1%) was procured from Wuhan Boster Biological

Technology Co., Ltd. Primary and secondary antibodies for

Western blot analysis, as well as the corresponding diluents, were

obtained from Wuhan Boster Biological Technology Co., Ltd. The

transfection reagent Lipo8000™ was purchased from Shanghai

Beyotime Co., Ltd. FBXO45-specific small interfering RNAs (si-
TABLE 1 Main laboratory reagents and sources.

Reagents Sources

DMEM (12800017) Gibco

RNAiso Reagent (9108) Takara

Real-time fluorescence quantitative PCR kit (RR064A) Takara

Trypsin (03-050-1A/03-050-1B) BI

RNA Reverse Transcription Kit (RR037A) Takara

Lipo2000 transfection reagent (31985-062) Thermo fisher

FBS (04-001AUS-1A/) BI

5× Protein loading Buffer (P104) Solarbio

High-performance RIPA lysate (R0010) Solarbio

Phosphatase/Protease Inhibitor Mix (P1081) Beyotime

ECL Chemiluminescent Liquid (WBKLS0500-2) Millipore

TEMED (G4829) Solarbio

4% paraformaldehyde (DF0133) Leagene

1% crystal violet staining solution (G106) Solarbio

GAPDH (5174S) CST

FBXO45 (NM_001105573) Abmart

WNT1 (WL05209) Wanleibio

b-cadherin (51067-2-AP) Proteintech

C-myc (WL01781) Wanleibio
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FBXO45) and control siRNA (NC) were synthesized by Shanghai

Sangon. Horseradish peroxidase-labelled goat anti-rabbit IgG was

supplied by Wuhan Sanying Biotechnology Co., Ltd. The CCK-8

cell proliferation assay kit was purchased from MedChemExpress

(USA). Matrigel matrix was sourced from Corning (USA), and

Trizol reagent (T9424, 200 ml) was obtained from Sigma (USA).

qPCR reagents, including SYBR® Premix Ex-Taq™ II (Tli RNaseH

Plus, RR820Q), were provided by Takara (Japan). The target

sequences for FBXO45 siRNA were listed in Table 2.
2.8 Western blotting

The same RIPA lysis buffer was used for all samples of the WB

experiment and quantified using BCA method after extraction, and

each sample was repeated three times, and based on the

quantification results, all samples were adjusted to the same

concentration of 10 mg/mL with the lysis buffer, and the upper

volume of about 5 mL corresponded to 50 mg of total protein.

Western Blot quantification was performed by ImageJ (NIH

version 1.53) analysis. After all images were converted to 8-bit, the

bands were delineated with the rectangle tool, the background was

subtracted, and the integrated density was recorded. Target protein

expression was normalized by an internal reference protein

(GAPDH), and cross-gel experiments were corrected by internal

control samples. Data are from 3 independent experiments and are

expressed as mean ± SD. Exposure time was controlled within 30 s to

avoid signal saturation. The membranes were incubated with primary

antibodies (FBXO45, 1:1000; WNT1 1:1000; b-cadherin, 1:1000; C-
myc, 1:1000; GAPDH, 1:50,000) then HRP-conjugated anti-rabbit

secondary antibody (1:5000) was added. Protein bands were

visualized using ECL reagent (Bioworld, Nanjing, China).
2.9 Enrichment analyses

We followed the methods of Chen et al. (22). Enrichment

analyses were performed using the “ClusterProfiler” R package.

Gene Set Enrichment Analysis (GSEA) and OverRepresentation

Analysis (ORA) were both conducted in order to investigate the

biological pathways and processes associated with the gene

expression profiles. It is important to note that all enrichment

analyses gave rise to adjusted p-values (Benjamini-Hochberg

corrected) of <0.05, which have been considered to be statistically

significant. Pathway visualization and interpretation were aided by

enrichment maps, dot plots, and ridge plots generated via

ClusterProfiler or associated visualization functions.
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2.10 Statistical analysis

Rsoftware (version4.2.0;NewYork,USA)wasused fordataanalysis

and visualization. The Student’s t-test compares normally distributed

quantitative data, the Wilcoxon test for non-normally distributed data

between groups. Significant levels: * P < 0.05, ** P < 0.01, *** P < 0.001.

For detailed methods, in Supplementary Material 1.
3 Results

3.1 Development of a prognostic model for
ubiquitination-related genes and internal
validation

The identification of prognostic factors for OV was facilitated

by data obtained from the TCGA-OV and GTEx databases. Clinical

and transcriptomic (HTSeq-FPKM) data from 376 OV tissues and

88 normal ovarian tissues were downloaded. A total of 8,035 genes

were identified that exhibited differential expression (DEGs)

between ovarian and normal tissues, including 3,516 upregulated

and 4,519 downregulated genes (p < 0.01, |log2FC| > 1) (Figure 1A).

GSEA analysis was performed based on the differential expression

results between tumor and normal tissues. In tumor tissues,

pathways such as “cell division,” “epithelial cell differentiation,”

“regulation of cell adhesion,” “regulation of cell -cell adhesion,”and

“cytokine response” were found to be suppressed (Figure 1B). The

NES values of the five pathways are respectively: -1.76,-1.59,-1.63,-

1.77,-1.46. Venn analysis was used to identify the intersection

between differentially expressed genes and 929 ubiquitination-

related genes reported in the literature (23). These ubiquitination

genes contained validated and predicted E1, E2 and E3 enzymes and

adapters. Ultimately, 162 ubiquitination-related genes significantly

co-expressed in ovarian cancer tissues were obtained (Figure 1C).

These 162 genes were further analyzed through COX univariate

analysis, leading to the identification of the top 20 ubiquitination-

related genes (p < 0.05) as candidates associated with OV survival

prognosis (Figure 1D). The candidate genes underwent LASSO

regression analysis and the DEVIANCE test, identifying 17 genes

for the establishment of the OV prognostic model (Figures 1E, F).

The model was implemented in the TCGA database, and the

median risk score was utilized to stratify patients in the OV

training set into high- and low-risk groups. (Figures 1G, H). The

model’s predictive accuracy was assessed through the generation of

a time-dependent ROC curve. The AUC for OV at 1, 3, and 5 years

was 0.703, 0.704, and 0.705, respectively, demonstrating strong

predictive performance (Figure 1I). The Kaplan-Meier analysis

revealed a statistically significant disparity in survival outcomes

between the groups, with high-risk patients showing notably worse

OS (Figure 1J). To further evaluate the model’s clinical applicability,

a nomogram was built using the ubiquitination-related score and

five clinical features (age, gender and stage) to predict 1-, 3-, and 5-

year survival rates. Calibration plots indicated that the model

predicted survival rates closely mirrored the actual rates,

validating the model’s potential (Supplementary Figure S2).
TABLE 2 Three target sequences of FBXO45 small interfering
RNA (siRNA).

Si1- FBXO45 UUAAUGUAGACAUUCCUGGT

Si2- FBXO45 UAGUAGAUUAUUGUCCACCT

Si3 -FBXO45 UAAACCAAAGUCACUUCUGT
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FIGURE 1

Development of a prognostic model for ubiquitination-related genes and internal validation. (A) Volcano plot of up-regulated (n = 3516) and down-
regulated (n = 4519) genes (FDR < 0.01, |LogFC| > 1) between OV and normal tissues. (B) GSEA of KEGG pathways for DEGs in high/low expression
OV groups. (C) The Venn diagram illustrating the common features of DEGs and ubiquitination-related genes (n=162). (D) Forest plot from univariate
Cox analysis. (E) LASSO regression coefficients for ubiquitination-related genes, with each curve representing a gene associated with ubiquitin.
(F) Parameter selection process in the LASSO model. (G) The training set contains risk scores. (H) Training set survival status. (I) ROC curves for
predicting 1- to 5-year OS in the training set. (J) K-M survival curves for high- and low-risk groups in the training set.
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3.2 External datasets validate the model’s
generalizability

The model was validated using external datasets GSE165808 and

GSE26712. Patient risk scores were calculated and classified

(Figures 2A, E). The dataset revealed a clear difference between

groups (Figures 2B, F). ROC curve analysis of the model’s
Frontiers in Immunology 06
performance in OV across both datasets revealed the following

AUCs for one-year, three-year, and five-year predictions: (0.704,

0.701, and 0.704) and (0.604, 0.603, and 0.605) (Figures 2C, G).

Kaplan-Meier analysis showed obvious prognostic differences

between groups, with high-risk patients exhibiting notably lower

overall survival (OS) compared to their low-risk counterparts

(p < 0.01, and p < 0.05) (Figures 2D, H).
FIGURE 2

External datasets evaluate the model’s generalizability. Demonstrating stable prediction performance across diverse datasets. The risk score, survival
status, ROC curves, and K-M survival curves in the (A-D) GSE165808, and (E-H) GSE26712.
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3.3 Immune characteristics of the
prognostic model in the OV
microenvironment

To explore the immune landscape associated with the

prognostic model, first, we used ESTIMATE to obtain stromal

and immune scores for each sample, with the immune scores in

the high-risk group being observed to be lower than those in the

low-risk group (Figure 3A) and higher stromal S score was

observed in patients classified as low-risk (Figure 3B), and the

ORT algorithm to assess immune cell infiltration in both groups

(Figure 3C). The analysis demonstrated a negative correlation

between immune infiltration, encompassing both naïve B cells and

gdT cells, and the score within the low-risk group (p < 0.05)

(Figures 3D, E). Conversely, patients in the low-risk group

exhibited elevated levels of CD8+ T cells (p < 0.05), M1

macrophages (p < 0.01), and Tfh cells (p < 0.05) (Figures 3F-H).

The results indicate a correlation between ubiquitination-

associated scores and the extent of tumor cell infiltration and

activity in the OV microenvironment.
3.4 Identification of mutational features of
the genome

In order to provide further clarification regarding the

mechanisms underlying the prognostic risk score’s effectiveness in

predicting patient outcomes, the mutation frequency associated

with the prognostic model was examined. SNV data for OV were

retrieved from the TCGA database. Using the Maftools R package,

the mutation profiles of the relevant genes were thoroughly

analyzed. The waterfall plots displayed the top 10 most frequently

mutated genes in both groups. TP53, TIN, CSMD3, and MUC16

mutations were observed in both groups (Supplementary Figures

S3A, B), suggesting their potential involvement in OV pathology.

Notably, the high-risk group exhibited mutations in MUC17 and

LRRK2, while the low-risk group had more RYR2 mutations.
3.5 FBXO45 is overexpressed in OV and
correlates with poor prognosis

In order to further elucidate the pivotal function of ubiquitination-

related genes in ovarian cancer, significant interactions between the

eight core proteins included in the ubiquitination-associated prognostic

model were identified by protein interaction network PPI analysis

(Figure 4A), namely TRAF4, UBE2L3, FBXO45, UBE2L6, FBXL14,

SKP2, CHAF1B, WDR77 The protein with the highest impact (HR

1.0615) in univariate regression based on the above proteins was

selected for further validation. IHC data from the Human Protein

Atlas (https://www.proteinatlas.org/search/FBXO45) confirmed that

FBXO45 expression was elevated in ovarian endometroid carcinoma,

mucinous carcinoma, and serous carcinoma samples compared to

normal ovarian tissues (Figure 4B). FBXO45 was highly expressed in

plasmacytoid ovarian cancer in the GSE36668 dataset of the GEO
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database by analyzing data from four normal ovaries and four patients

with serous ovarian cancer (Figure 4C). Furthermore, analysis using the

Kaplan-Meierdatabase (https://kmplot.com/analysis/index.php?

P=service&cancer=ovar) demonstrated that higher FBXO45

expression linked to lower PFS and OS in ovarian cancer patients,

in contrast to those with low FBXO45 expression (Figures 4D, E).

UMAP projection was used to visualize the clustering and

annotation results. Each point on the graph represents a single

cell, colored according to its assigned cell type as determined by

marker gene expression. The annotation included stromal cells

(expressing MPZ, ACTA2, SERPINE2), immune cells (marked by

CD45), oocytes (FIGLA, ZP2), and endothelial cells (CD34,

PECAM1), all of which displayed distinct clustering patterns on

the UMAP plot (Figures 4F, G). Subsequently, the STAR-Counts

data and the corresponding clinical information of OV tumors were

downloaded from the TCGA database (https://portal.gdc.cancer.

gov) and analyzed the immune cell infiltration using CIBERSORT

after standardizing the data (Figure 4H). The analysis demonstrated

a positive correlation between FBXO45 expression and both naïve B

cells and M0 macrophages and negatively correlated with monocyte

and myeloid dendritic cell dormancy. Immune checkpoint-

associated transcripts extracted from OV patients showed that

FBXO45 expression was found to correlate positively with PD-L1

(CD274) (Figure 4I).
3.6 FBXO45 modulates proliferation,
invasion, and migration of OV cells

The impact of FBXO45 expression on the malignant behavior of

OV was assessed by transfecting A2780 and HEY cells with

FBXO45-targeting siRNA. Successful knockdown of FBXO45 was

confirmed (Figures 5A, F), after which the proliferative, invasive,

and migratory capacities of OV cells were evaluated. CCK8 and cell

cycle assays demonstrated that FBXO45 silencing suppressed OV

cell proliferation (Figures 5B, C, G, H). Furthermore, transwell and

invasion assays revealed a significant reduction in invasion

following FBXO45 knockdown (Figures 5D, I). Additionally,

Wound healing assays also showed a marked decrease in

migration ability when FBXO45 was depleted (Figures 5E, J). The

obtained results indicate that FBXO45 knockdown suppresses the

proliferation, migration, and invasion of OV cells.
3.7 FBXO45 activates the Wnt/b-catenin
pathway

In order to provide further elucidation on the biological role

and mechanism of FBXO45 in OV progression, the samples

contained within the TCGA database were categorized into

groups of high and low expression, based on the median

expression of FBXO45. KEGG enrichment analysis of the high-

expression group revealed a significant association of FBXO45 with

cancer-related pathways, the cell cycle, RNA transport, and WNT

signaling pathways (Figure 6A). Further analysis of TCGA RNAseq
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data using the GEPIA online tool revealed a positive correlation

between FBXO45 expression and b-catenin levels in the WNT/b-
catenin pathway (Figure 6B). Further analysis using GSEA revealed

that FBXO45 upregulated this pathway, The NES values of the

pathways is 2.196. (Figure 6C); Western blotting confirmed that
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silencing of FBXO45 in A2780 and HEY cells inhibited signaling

while suppressing c-Myc expression. (Figures 6D, E). Meanwhile,

we found that the high expression of FBXO45 in ovarian cancer

tissues was accompanied by a corresponding elevation of WNT1

protein in clinical samples of 3 ovarian cancer tissues and normal
FIGURE 3

Immune characteristics of the prognostic model in the OV microenvironment. (A) Immune scores. (B) Stromal scores. (C) Histogram illustrating the
differential expression of tumor-infiltrating immune cells between the high-risk and low-risk groups. Red and blue represent high- and low-risk
groups, respectively (ns p>0.05; *p<0.05; **p<0.01). (D-H) Comparative analysis of the TME between the two groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1654180
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2025.1654180
ovarian tissues (Figure 6F). These results lend support to the

hypothesis that FBXO45 activates the Wnt/b-catenin signaling

pathway, contributing to the malignant development of

ovarian cancer.
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4 Discussion

Despite recent advancements in medicine, the clinical prognosis of

OV remains a significant challenge in oncology (24, 25). Ubiquitination
FIGURE 4

FBXO45 is overexpressed in OV and correlates with poor prognosis. (A) PPI network illustrating the interactions among candidate genes.
(B) FBXO45 expression comparison between normal ovarian tissues and various OV types, based on IHC data from the HPA database. (C) FBXO45 is
expressed in normal ovarian tissues and plasmacytoid ovarian cancer in the GSE36668 dataset. (D, E) PFS and OS analysis for OV patients with FBXO45
involvement, sourced from the R2 genomic analysis platform. (F) UMAP plots (left) and histograms (right) depicting RNA expression of the identified
single-cell clusters in OV tissues. (G) The top 20 markers heat map. (H) Immune cell abundance estimation using CIBERSORT. (I) Spearman correlation
analysis of FBXO45 and CD274 in TCGA.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1654180
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2025.1654180
modification has been demonstrated to play a critical role in the

processes of OV, including tumor progression, treatment resistance,

and the TME (26, 27). As research into the role of ubiquitination-

related genes in OV has deepened, it has become clear these genes may

help with diagnosis and offer new ways to treat the disease.
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With the increasing research on the function of ubiquitin-

related genes, their clinical value as potential prognostic markers

and therapeutic targets has gradually emerged. The present study

developed a survival prognostic model for OV patients by means of

the identification of differentially expressed ubiquitin-related genes
FIGURE 5

FBXO45 modulates the proliferation, invasion, and migration of OV cells. (A, F) Western blotting assessing the efficiency of FBXO45 knockdown in
A2780 and HEY cells. (B, G) Cell cycle analysis evaluating the proliferative capacity of OV cells following FBXO45 knockdown. (C, H) The CCK-8
assay measuring cell proliferation in OV cells post-FBXO45 knockdown (OD450). (D, I) Transwell assays evaluating the invasive and migratory
potential of OV cells after FBXO45 gene silencing. (E, J) Assessing the migration ability of OV cells following FBXO45 knockdown for wound healing
assays. (*p <0.05; **p <0.01; ***p <0.001; ****p <0.0001).
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through RNA sequencing. Validation with the training set and two

independent cohorts confirmed that the model effectively stratified

patients into high- and low-risk groups. The above experimental

results demonstrate the stability of prognostic models based on

ubiquitination-associated genes have stable predictive effects and

good generalization ability in external datasets.

Additionally, Ubiquitination plays a key role in immunomodulation

and influences tumor progression by modulating the host immune

response. For example, inhibition of USP18 enhances UBCH5- and

Nedd4-mediated CSF1R proteasomal degradation, thereby increasing

the number of antitumor macrophages within the TME (28). Similarly,
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PD-L1 is a unique target for UFMylation. Decreased expression of UFL1

has been demonstrated to reduce the UFMylation of PD-L1, thereby

stabilizing PD-L1 and imparting immune evasion (29). The study

established a correlation between elevated risk scores and a poorer

prognosis, as well as immunosuppression. Patients in the low-risk group

exhibited higher levels of activated CD8+ T cells, M1-macrophages, and

follicular helper T cells within the TME. This may result in a prolonged

survival period for patients by enhancing anti-tumor immune

responses. Conversely, patients in the high-risk group demonstrated

low immunity scores, and stromal low scores exhibited a more

pronounced immunosuppressive profile, which may have a
FIGURE 6

FBXO45 activates the Wnt/b-catenin signaling pathway. (A) KEGG enrichment analysis. (B) Pearson correlation analysis revealing the relationship
between FBXO45 and b-catenin. (C) GSEA of the FBXO45 and Wnt/b-catenin signaling pathway. (D, E) Western blot analysis assessing the impact of
FBXO45 knockdown on key proteins in the Wnt/b-Catenin pathway in A2780 and HEY cells. (F) Western blot analysis of FBXO45 and WNT1
expression in three normal ovarian tissues and three OV tissues, accompanied by statistical analysis (*p < 0.05; **p < 0.01; ***p < 0.001).
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deleterious effect on the outlook for high-risk patients. These findings

suggest that patients with low risk may demonstrate a heightened

sensitivity to immune checkpoint inhibitor therapy.

Among the identified mutations, TP53, TIN, CSMD3, and

MUC16 were commonly mutated in both risk groups. MUC17

and LRRK2 mutations were more prevalent in the high-risk group,

while RYR2 mutations were more prevalent in the low-risk group.

Low MUC17 expression in biliary cancer correlates with poorer

survival and vascular invasion (30). LRRK2 inhibits rapid vesicle

circulation, thereby promoting a novel signaling axis through

the PI3K-Akt immune response to enhance chemokine receptor

signal transduction (31). Additionally, a correlation has been

demonstrated between low RYR2 expression and unfavorable

prognoses in patients diagnosed with thyroid and breast cancer

patients (32, 33); however, mutations at these loci remain

underexplored in OV. Zibi Marchocki and colleagues identified

four gene mutations associated with platinum resistance in OV

cases following neoadjuvant treatment, including MUC17 (34).

Research on OV has demonstrated that elevated LRRK2

expression can suppress cell proliferation, invasion, and migration

(35). Whole exome sequencing of 87 patients with ovarian yolk sac

tumors revealed that cancer driver mutations in eight patients with

persistent or recurrent disease included ANKRD36, ANKRD62,

DNAH8, MUC5B, NUP205, and RYR2 (36). Differences in the

distribution of these mutations suggest potential differences in

genomic instability between high- and low-risk patients, and

mutations in high-risk groups may influence prognosis and

treatment outcomes in OV by promoting tumor malignancy and

impairing immune function.

The study created a prognostic model using 17 ubiquitin-

associated genes and found that eight proteins interacted to form

the model’s core. These core genes—TRAF4, UBE2L3, FBXO45,

UBE2L6, FBXL14, SKP2, CHAF1B, and WDR77—have been

implicated in tumor progression in previous studies.

TRAF4 has been determined to be a prognostic biomarker in

OV, with elevated expression levels observed in OV cell lines.

TRAF4 silencing has been shown to inhibit cell proliferation,

migration and invasion, and stem cell factor expression.

Moreover, sh-TRAF4 suppresses Akt and PI3K phosphorylation,

effectively blocking the PI3K/Akt signaling pathway activation in

OV cell lines (37). Additionally, TRAF4 overexpression has been

implicated in prostate cancer, where it mediates K27-linked

ubiquitination of the AR C-terminus, elevates intracellular cAMP

levels, enhances E2F transcription factor activity, and promotes cell

proliferation (38).

UBE2L3, an E2 ubiquitin-conjugating enzyme, has been shown

to reduce HPV16 E7 protein levels and inhibit tumor growth in

HPV+ HNC cells through its overexpression (39). Similarly,

UBE2L6 (aka UbcH8) is an essential ubiquitin-conjugating

enzyme that controls the degradation of c-Myc through E3

ubiquitin ligases, thus regulating cell growth (40). UBE2L6

enhances the binding of ISG15 to cellular proteins and promotes

apoptosis in cervical cancer cells (41). It has been identified as both

a tumor suppressor and a prognostic marker for melanoma (42).

Additionally, studies have demonstrated reduced expression of
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UBE2L6 in primary acute myeloid leukemia (AML) cells, where

silencing UBE2L6 inhibits ATRA-induced ISG15 conjugation, thus

impairing isgylation and hindering AML cell differentiation (43). In

a study of 92 clinical samples from patients diagnosed with serous

OV, immunohistochemical analysis showed marked correlation

among UBE2L6 expression and platinum sensitivity. Given that

UBE2L6 is implicated in platinum resistance (44), further in vitro

and in vivo validation is warranted. The role of UBE2L6 in OV

remains to be more thoroughly investigated in future studies.

Moreover, the gene functions of the core genes FBXO45,

UBE2L3, FBXL14, CHAF1B, and WDR77 in OV have yet to be

explored, and this represents a promising avenue for

further research.

FBXO45 is a constituent of the F-box family of proteins, which

are a subfamily of the E3 ligase substrate recognition family (45). It

has been reported that FBXO45 regulates malignant behaviors such

as cell proliferation, metastasis, and drug resistance by

ubiquitinating and degrading FBXW7 (46), and ZEB1 (47), but its

function in ovarian cancer has not been reported. This study

identifies FBXO45 as a potentially significant prognostic factor in

OV, based on its highest single-factor regression coefficient among

the core proteins (HR 1.0615). Single-cell sequencing results

indicate that FBXO45 is most significantly associated with oocytes

in ovarian fine. Recent studies have highlighted that oocyte

depletion accelerates ovarian aging, which, in turn, contributes to

cancer progression (48). It was also found that FBXO45 was highly

expressed in ovarian plasmacytoid, mucinous and endometrioid

cancer samples, and elevated levels of the protein expression were

associated with poor prognosis. To validate the model’s predictive

value, FBXO45 was silenced in A2780 and HEY cells, resulting in

reduced cell proliferation, migration, and invasion. It is well known

that the WNT signaling pathway regulates several key biological

processes (cell proliferation, epithelial-mesenchymal transition,

DNA damage response and chemotherapy tolerance) (49–51).

Analysis of RNAseq data from OV patients in the TCGA

database, coupled with GEPIA database and clinical patient

sample analysis, further suggested that FBXO45 may enhance

WNT/b-catenin signaling, thereby promoting the malignant

phenotype of OV cells.FBXO45 frequently forms SCF complexes

with Skp1 and Cul1 to perform its E3 ligase function (52), while

FBXW7 is a substrate for ubiquitination degradation of FBXO45

(46). It has been found that FBXW7 inhibits TNBC cell stemness by

ubiquitination degradation of the CHD4 protein. It has been

established that the aforementioned mechanism functions by

obstructing the activation of the Wnt/b-catenin pathway (53),

Furthermore, research has demonstrated that the knockdown of

SKP1 results in the inhibition of the Wnt signaling pathway, whilst

concurrently inducing ROS production (54). The above literature

further supports our conclusion.

OV is an immunogenic inflammatory disease closely associated

with immune cell activity (55). Clinical trials have reported

response rates to PD-1 and PD-L1 inhibitors in OV patients

ranging from 4% to 15% (56). In our study, FBXO45 expression

was positively correlated with naive B cells and M0 macrophages,

while negatively correlating with the dormancy of monocytes and
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bone marrow dendritic cells. Additionally, FBXO45 expression was

positive associated with the immune checkpoints CD274 (PD-L1).

These suggests that it may promote the formation of an

immunosuppressive microenvironment by inhibiting the

antitumor activity of the host immune system. Meanwhile, tumor

cells highly express PD-L1 and evade immune attack, thus

promoting tumor growth and metastasis. These findings suggest

that patients with higher FBXO45 expression may be more likely to

respond positively to therapy involving PD-1 or PD-L1 inhibitors.

Our ubiquitination-related marker offers greater predictive

value than other prognostic markers identified in previous

studies, owing to the strong potential of ubiquitination-related

factors for drug development. As an example, the UBE2L3 in

prognostic model, whose small molecule inhibitor BAY 11–7082

has been shown to inhibit the inflammatory response, has been

widely used (57). The pharmacological inhibition of TRAF4 by

risperidone has been demonstrated to be an effective means of

inhibiting tumor self-renewal in glioblastoma, with a concomitant

reversal of temozolomide (TMZ) resistance (58).

As reported in previous articles, FBXO45 has been demonstrated

to have pro-tumorigenic effects in cases of pancreatic, esophageal and

lung cancers. Moreover, treatment of FBXO45-silenced lung cancer

patients with afatinib has been shown to greatly increase patient

sensitivity (45, 52, 59). In this study, FBXO45 was confirmed as a

significant oncogene in OV, with its mechanism of action elucidated

in vitro. This finding indicates that FBXO45 may represent a

promising therapeutic target and that its clinical translation could

prove advantageous for patients with diverse tumor types.

However, it should be noted that the study has limitations.

Despite the study’s emphasis on the tumorigenic role of FBXO45 in

OV, it is noteworthy that it lacked in vivo experiments and large-

sample clinical trials. In order to understand the molecular

mechanism more comprehensively, further 3D protein structure

modeling (https://www.genecards.org/cgi-bin/carddisp.pl?gene=

FBXO45#domains_families) (Supplementary Figures S4),

structural domain identification, and proteomic screening of

interacting proteins are needed to further analyze the pro-cancer

mechanism of FBXO45 in depth. In addition, further research is

required in the form of in vivo animal experiments, broader

prospective clinical trials and larger sample studies in order to

further explore the accuracy of prognostic models and the

prognostic value of the key factor FBOX45 in ovarian cancer.

Ultimately, this research will lead to clinical translation through

the study of small molecule inhibitors and PROTACs.
5 Conclusion

Ubiquitination-related genes serve as reliable prognostic markers

for OV and may inform clinical decision-making in patient

management. As a core gene in the prognostic model, FBXO45

has the potential to function as a therapeutic target for ovarian

cancer. Moreover, it can be argued that the results of this study

provide a new concept for future targeted therapy against the Wnt

signaling pathway.
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