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Changes in T lymphocyte
subsets in patients with
acute neuromyelitis
optica spectrum disorder
Ying-Zhe Shao †, Tao-Feng Tan †, Lin-Jie Zhang, Ning Zhao,
Li Yang and Qiu-Xia Zhang*

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital,
Tianjin, China
Background: Neuromyelitis optica spectrum disorder (NMOSD) is a rare

autoimmune disease of the central nervous system, primarily characterized by

anti-AQP4 antibodies. While, treatment for preventing recurrence of NMOSD

predominantly focuses on the production of anti-AQP4 antibodies and the

subsequent inflammatory response, one effective strategy is targeting B cells,

investigating the status of T lymphocytes during NMOSD onset holds significant

importance for elucidating disease mechanisms and identifying potential novel

therapeutic approaches.

Methods: Peripheral blood samples were collected from NMOSD patients with

acute exacerbation. The NMOSD patients were divided into the pre-

glucocorticoid treatment NMOSD patient group (PRE) and the glucocorticoid

treatment NMOSD patient group (GC) based on whether they received

glucocorticoid therapy. Healthy controls were included at the same time. Flow

cytometry was employed to analyze differences in T cell compartment.

Results: Multivariate linear regression analysis adjusted for age revealed that the

GC group had fewer CD8+ TEM cells than controls (b=-14.96, P=0.002). In
addition, the PRE group had higher frequencies of HLA-DR+CD38+ CD4+ cells

and HLA-DR+ CD4+ T cells compared to the control group (P= 0.005, P= 0.004,

respectively), the frequency of HLA-DR+ CD4+ T cells in PRE group was higher

than the GC group (P= 0.007). The multivariate analysis results showed that in

CD4+ T cells, the frequency of Th1Th17 cells in the PRE patient group was higher

than that in the control group (b= 6.37, 98.33% CI:1.96-10.78, P = 0.001), and the

frequency of Th2 cells in the PRE group was lower than that in the control group

(b=-11.41, 98.33% CI: -22.26– -0.55, P = 0.012).

Conclusion: These findings underscore the pivotal role of Th1Th17 and Th17 cells

in NMOSD pathogenesis. Exploring intervention strategies targeting Th17 cells or

T cell activation (e.g., HLA-DR-targeted therapies) may hold clinical relevance.
KEYWORDS
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1 Introduction

Neuromyelitis optica spectrum disorder (NMOSD) is a rare

autoimmune-mediated demyelinating disease of the central nervous

system characterized by pathogenic antibodies targeting aquaporin-

4 (AQP4) on astrocytes (1). The disorder manifests with distinctive

clinical features including optic neuritis, longitudinally extensive

transverse myelitis, area postrema syndrome, and acute brainstem

syndrome (2). Epidemiologically, NMOSD demonstrates

considerable geographic and ethnic variation, with reported

incidence rates ranging from 0.037 to 0.71 per 100,000 person-

years and prevalence rates between 0.7 and 10 per 100,000 person-

years worldwide. A striking female predominance is observed, with

women affected at more than twice the rate of men (3). The disease

follows a relapsing course with cumulative, irreversible disability

progression, underscoring the critical need for elucidating its

immunopathogenic mechanisms to develop novel therapeutic

strategies (4).

The immunopathogenesis of NMOSD involves a complex

interplay between humoral and cellular immunity. In AQP4-IgG

seropositive patients, peripherally activated plasma cells produce

pathogenic autoantibodies that cross the compromised blood-brain

barrier. These AQP4-IgG antibodies initiate astrocytic injury through

antibody-dependent cellular cytotoxicity and complement-dependent

cytotoxicity, subsequently leading to secondary oligodendrocyte

damage and demyelination (5). Importantly, T lymphocytes play a

pivotal role in this process by facilitating B cell activation,

differentiation, and antibody production. Experimental evidence

from murine models demonstrates that AQP4-reactive T cells can

induce NMOSD-like pathology even in the absence of AQP4-IgG,

highlighting their autonomous pathogenic potential (6).

CD4+ andCD8+ T lymphocytes can be classified into functionally

distinct subsets based on CD45RA and CCR7 expression profiles:

naive (TN), central memory (TCM), effector memory (TEM), and

terminally differentiated effector memory cells re-expressing CD45RA

(TEMRA). Naive T cells (TN) of the innate immune system can

migrate to the T cell area of secondary lymphoid organs to search for

antigen-presenting dendritic cells (7). After antigen contact, they are

activated and start to proliferate. Study found that compared with

healthy controls, the frequencies of CD8+ TN (CD62LhiCD45RO-)

cells in NMOSD and multiple sclerosis (MS) patients were

significantly decreased, while the frequencies of CD8+ TE/M

(CD62LloCD45RO+) cells were significantly increased. In NMOSD

patients receiving immunotherapy, the frequencies of CD8+ TN

increased and those of CD8+ TE/M decreased (8). Moreover, MS

patients show an age-related abnormal increase in activated (HLA-DR

+CD38+) and cytotoxic CD4 T cells (9). However, these have rarely

been reported in NMOSD patients. Additionally, Helper T
Abbreviations: NMOSD, Neuromyelitis optica spectrum disorder; AQP4, anti-

aquaporin-4; TEMRA, Terminally differentiated effector memory T cells; TN,

Naïve T cell; TCM: Central memory T cell; TEM, Effector memory T cell; EDSS,

Expanded Disabil i ty Status Scale ; SD, standard deviation; IQR,

interquartile range.
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lymphocytes (Th) cells, especially Th17 cells, have gradually

attracted attention in immune-related neurological diseases (10).

To better characterize T lymphocyte dynamics during acute

NMOSD episodes and identify potential therapeutic targets, we

conducted an immunological analysis in patients presenting with

acute attack.
2 Methods

2.1 Patients and controls

This study recruited patients diagnosed with NMOSD in the acute

phase, admitted to the Department of Neurology at Tianjin Medical

University General Hospital between January 2024 and May 2025.

Inclusion criteria: 1. Diagnosed with NMOSD, 2. Acute stage defined as

a new or recurrent neurological symptom that lasts for at least 24

hours, without fever, infection or other autoimmune diseases, with

symptoms persisting or worsening from the onset of this disease to the

time of admission, 3. No immunomodulatory treatment (such as

rituximab, tocilizumab, infliximab, etc.) since the onset of this

disease. Exclusion criteria: 1. Pregnant or lactating, 2. Active

infection, 3. Severe liver or kidney dysfunction, abnormal coagulation

function, history of tumor, 4. Currently participating in other clinical

trials. Patients with NMOSD had not yet undergone glucocorticoid

therapy were assigned to the pre- glucocorticoid treatment group

(PER), while those had received one week of glucocorticoid

treatment were included in the glucocorticoid treatment group (GC).

Age- and sex-matched healthy controls were recruited from the

hospital’s health examination center. Inclusion criteria: No immune

system-related diseases, no history of tumors, no severe coagulation

function abnormalities, no organ dysfunction (liver dysfunction,

kidney dysfunction, etc.), no history of immunosuppressant use.

Exclusion criteria: 1. Pregnant or lactating, 2. Active infection, 3.

Currently participating in other clinical trials. A total of 9 patients

with NMOSD before treatment, 9 patients with NMOSD treated with

glucocorticoids and 25 healthy controls were included in this study.
2.2 Collection of basic information

Demographic characteristics, including age and sex, were recorded

for all study participants. For NMOSD patients, serum anti-aquaporin-

4 (AQP4) antibody levels were measured, and neurological disability

was assessed using the Expanded Disability Status Scale (EDSS).
2.3 Flow cytometry

Peripheral blood samples were collected via antecubital

venipuncture from all study participants. PBMCs were isolated using

red blood cell lysing solution (BD FACS Lysing Solution, 349202) and

were stained with two panels. Panel 1: The cells were stained with

PerCP/Cyanine5.5 anti-human CD3 (300430, BioLegend), Brilliant

Violet 510™ anti-human CD4 (317444, BioLegend), APC/Cyanine7

anti-human CD8 (344714, BioLegend), PE/Cyanine7 anti-human
frontiersin.org
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CD45RA (304126, BioLegend), PE anti-human CCR7 (353204,

BioLegend), APC anti-human HLA-DR (307610, BioLegend),

Brilliant Violet 421™ anti-human CD38 (303526, BioLegend). Panel

2: The cells were stained with PerCP/Cyanine5.5 anti-human CD3

(300430, BioLegend), Brilliant Violet 510™ anti-human CD4 (317444,

BioLegend), FITC anti-human CXCR3 (353704, BioLegend), APC/

Cyanine7 anti-human CCR6 (353432, BioLegend), PE/Cyanine7 anti-

human CD45RA (304126, BioLegend), Brilliant Violet 421™ anti-

human CCR7(353208, BioLegend). PBMCs were incubated with

above-mentioned antibody cocktails for 30 min at room

temperature. The cells were then washed twice in cold phosphate

buffered saline (PBS). Finally, the cells were resuspended in 500ml PBS
and acquired using a FACS Aria III (BD Biosciences, San Jose, CA,

USA). The results were analyzed using FlowJo v10 software.
2.4 Data analysis and statistics

Univariate analysis among the three groups was conducted using

ANOVA and Bonferroni multiple comparison correction, and the

significance of the adjusted P value was 0.05. Linear regression was

used to analyze the effects of age and different groups on T cell

compartment. Due to multiple comparisons the significance level

(0.05/3 = 0.017) and confidence intervals (98.33% CI) were adjusted.

For age, the significance level was 0.05, and the 95% confidence interval

was used. Statistical analysis was performed using SPSS 22.0 software.

Graphs were performed using GraphPad Prism 6.
2.5 Ethics

This study was approved by the Ethics Committee of Tianjin

Medical University General Hospital (IRB2025-YX-113-01). All the

subjects included in the study gave their informed consent either by

themselves or through their legal representatives.
3 Results

3.1 Basic information of the participants

This study included 9 research subjects in the group pre-

glucocorticoid treatment (PRE), 9 research subjects in the

glucocorticoid treatment group (GC), and 25 research subjects in
Frontiers in Immunology 03
the control group. The average age of the PRE group, the GC group

and the control group was 51.56 years, 56.22 years and 51.00 years

respectively. All the research subjects were female. 17 NMOSD

patients were anti-AQP4 antibody positive, while the median EDSS

scores for both the PRE group and the GC group were 2 (Table 1).
3.2 Differences in lymphocyte functional
subsets among the pre- glucocorticoid
treatment group, the glucocorticoid
treatment group and the healthy controls

ANOVA analysis showed that the GC group patients had

significantly lower CD8+ TEM cell frequencies compared to

healthy controls (21.71 vs. 35.03, adjust P=0.033). (Figure 1;

Supplementary Table S1).

Multivariate linear regression analysis adjusted for age revealed

that the GC group had fewer CD8+ TEM cells than controls

(b=-14.96, 98.33% CI: -26.13 – -3.79; P=0.002). In addition,

regression analysis also indicated that TN cells, CD8+ TN cells, and

CD4+ TN cell frequencies decreased with age (P<0.001, P<0.001,

P=0.003, respectively). In contrast, TEM and CD8+TEM cell

frequencies increased with age: each additional year was associated

with 0.23 increase in TEM cells (P=0.009), and 0.38 increase in CD8+

TEM cells (P=0.002). Similar trends were observed in CD8+ TCM and

CD4+ TEMRA cell subsets, with each year of age corresponding

to 0.15 increase in CD8+ TCM cells (P=0.045) and 0.14 increase in

CD4+ TEMRA cells (P=0.047) (Table 2).
3.3 Differences in activated T lymphocyte
subsets among the pre- glucocorticoid
treatment group, the glucocorticoid
treatment group and the healthy controls

ANOVA analysis showed that the frequency of HLA-DR+ CD38+

CD4+T cells in PRE group was higher than that in the control group

(2.15 vs. 1.20, adjust P = 0.014). The frequency of HLA-DR+ CD4+ T

cells in PRE group was higher than those in both the GC group and the

control group, being 3.39 vs. 1.70, adjust P = 0.016, and 3.39 vs. 2.05,

adjust P = 0.022, respectively (Figure 2; Supplementary Table S2).

Multivariate regression analysis adjusted for age revealed that the

PRE group had higher frequencies of HLA-DR+CD38+ CD4+ cells

compared to the control group (b=0.96, 98.33% CI: 0.16-1.75, P=
TABLE 1 Basic information among the pre- glucocorticoid treatment group, the glucocorticoid treatment group and the healthy controls.

Basic characteristics PRE (n=9) GC (n=9) HC (n=25)

Age (mean, SD) 51.56 (19.32) 56.22 (13.74) 51.00 (15.61)

Sex

Female (n, %) 9 (100.0%) 9 (100.0%) 25 (100.0%)

Anti-AQP4 IgG positive (n, %) 8 (88.9%) 9 (100.0%) –

EDSS (median, IQR) 2.00(1.75) 2.00 (2.75) –
SD, standard deviation; IQR, interquartile range. PRE, pre- glucocorticoid treatment group; GC, post- glucocorticoid treatment group; HC, health controls.
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0.005). In addition, the frequency of HLA-DR+ CD4+ T cells in PRE

group was higher than those in both the GC group and the control

group (b=1.34, 98.33% CI: 0.17-2.51, P= 0.007, b=1.77, 98.33% CI:

0.34-3.19, P= 0.004, respectively). The frequencies of CD4+ HLA-DR-
Frontiers in Immunology 04
CD38+ T cells and CD4+ CD38+ T cells exhibited a significant decline

with advancing age (P = 0.039, and P = 0.044, respectively). For each

additional year of age, the frequencies of CD4+ HLA-DR− CD38− T

cells increased by 0.40 (P=0.047) (Table 3).
FIGURE 1

The flow cytometry gating strategy (A). Frequencies of lymphocyte functional subsets among the pre- glucocorticoid treatment group, the
glucocorticoid treatment group and the healthy controls (B–M).
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TABLE 2 The linear regression of lymphocyte functional subsets among the pre- glucocorticoid treatment group, the glucocorticoid treatment group and the healthy controls.

T cell subsets PRE vs. HC b (98.33%CI) P GC vs. HC b (98.33%CI) P PRE vs. GC b (98.33%CI) P Age b (95%CI) P

3 -0.30 (-12.16-11.57) 0.950 -4.42 (-18.79-9.95) 0.446 0.26 (0.02-0.50) 0.036*

0 3.51 (-8.46-15.48) 0.468 5.05 (-9.45-19.54) 0.389 -0.24 (-0.48-0.01) 0.058

8 3.46 (-6.73-13.65) 0.400 2.52 (-9.82-14.86) 0.613 0.10 (-0.11-0.31) 0.323

7 5.03 (-6.38-16.44) 0.277 -3.68 (-17.50-10.14) 0.510 -0.57 (-0.80 – -0.34) <0.001*

0 -0.41 (-12.14-11.32) 0.931 -5.54 (-19.75-8.67) 0.335 0.23 (-0.01-0.47) 0.055

4 -8.06 (-16.49-0.36) 0.022 6.69 (-3.51-16.90) 0.109 0.23 (0.06-0.41) 0.009*

7 7.43 (-6.66-21.51) 0.195 2.76 (-14.31-19.82) 0.688 0.31 (0.03-0.60) 0.033*

9 6.21 (-4.94-17.36) 0.171 -2.90 (-16.40-10.61) 0.594 -0.85 (-1.08 – -0.62) <0.001*

7 1.32 (-6.06-8.70) 0.656 -6.65 (-15.58-2.29) 0.070 0.15 (0.003-0.30) 0.045*

3 -14.96 (-26.13 – -3.79) 0.002# 6.78 (-6.76-20.31) 0.218 0.38 (0.15-0.61) 0.002*

0 -1.20 (-8.00-5.59) 0.660 2.59 (-5.64-10.82) 0.436 0.14 (0.02-0.28) 0.047*

6 2.85 (-10.02-15.72) 0.583 -2.83 (-18.42-12.77) 0.653 -0.41 (-0.67 – -0.15) 0.003*

5 -1.10 (-14.72-12.52) 0.841 -5.03 (-21.52-11.47) 0.450 0.14 (-0.14-0.41) 0.324

1 -0.58 (-7.82-6.67) 0.844 5.27 (-3.51-14.04) 0.141 0.14 (-0.01-0.28) 0.070

y T cell; TEM, Effector memory T cell; PRE, pre- glucocorticoid treatment group; GC, post- glucocorticoid treatment group; HC, health controls. *P<0.05; #P<0.017.
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3.4 Differences in helper T lymphocyte
subsets among the pre- glucocorticoid
treatment group, the glucocorticoid
treatment group and the healthy controls

ANOVA analysis showed that in CD4+ T cells, the PRE group

had a higher frequency of Th1Th17 cells compared to the control
Frontiers in Immunology 06
group (15.15 vs. 8.81, adjust P= 0.003), while the frequency of Th2

cells was lower in the PRE group than in controls (33.23 vs. 44.62,

adjust P= 0.034). In CD4+ TCM cells, the GC group exhibited a

lower frequency compared to controls, respectively, 28.18 vs. 38.05

(adjust P= 0.003). Conversely, the frequency of Th17 cells in the GC

patient group was 26.43 (5.20), which was higher than that in the

control group 17.97 (5.99) (adjust P = 0.002). In the CD4+TEM
FIGURE 2

The flow cytometry gating strategy (A). Frequencies of activated T lymphocyte subsets among the pre- glucocorticoid treatment group, the
glucocorticoid treatment group and the healthy controls (B–S).
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TABLE 3 The linear regression of activated T lymphocyte subsets among the pre- glucocorticoid treatment group, the glucocorticoid treatment group and the healthy controls.

T cell GC vs. HC b (98.33%
P

PRE vs. GC b (98.33%
CI)

P Age b (95%CI) P

0.516 0.75 (-0.47-1.97) 0.131 0.02 (-0.01-0.04) 0.147

0.379 1.47 (-0.23-3.17) 0.037 0 (-0.03-0.03) 0.992

0.240 -8.79 (-28.95-11.37) 0.282 -0.29 (-0.63-0.05) 0.090

) 0.292 6.54 (-13.76-26.85) 0.425 0.28 (-0.07-0.62) 0.110

0.331 2.23 (-0.13-4.58) 0.023 0.02 (-0.03-0.05) 0.452

0.281 -7.32 (-27.95-13.31) 0.380 -0.29 (-0.64-0.06) 0.097

0.883 0.914 (-1.81-3.63) 0.406 0.03 (-0.01-0.08) 0.168

0.623 2.312 (-1.33-5.96) 0.121 0.01 (-0.05-0.07) 0.746

) 0.478 1.36 (-19.97-22.69) 0.874 -0.29 (-0.65-0.07) 0.105

) 0.529 -4.60 (-26.37-17.18) 0.601 0.25 (-0.11-0.62) 0.172

0.778 3.23 (-1.71-8.17) 0.110 0.04 (-0.04-0.12) 0.317

) 0.556 3.67 (-19.05-26.39) 0.688 -0.28 (-0.67-0.10) 0.141

0.116 0.84 (-0.02-1.68) 0.018 0.01 (-0.01-0.02) 0.178

0.944 0.93 (-0.04-1.90) 0.021 0.01 (-0.01-0.02) 0.365

) 0.194 -16.17 (-39.63-7.29) 0.093 -0.42 (-0.81– -0.02) 0.039*

) 0.213 14.38 (-9.04-37.80) 0.133 0.40 (0.01-0.79) 0.047*

0.371 1.77 (0.34-3.19) 0.004# 0.02 (-0.01-0.04) 0.159

) 0.197 -15.24 (-38.93-8.46) 0.116 -0.41 (-0.81– -0.01) 0.044*
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PRE vs. HC b (98.33%CI) P

CI)

T cell HLA-DR+ CD38- 0.49 (-0.51-1.49) 0.230 -0.26 (-1.27-0.74

HLA-DR+CD38+ 0.97 (-0.42-2.37) 0.090 -0.50 (-1.90-0.90

HLA-DR-CD38+ -0.85 (-17.40-15.70) 0.899 7.94 (-8.70-24.59

HLA-DR-CD38- -0.62 (-17.29-16.05) 0.927 -7.16 (-23.92-9.60

HLA-DR+ 1.46 (-0.47-3.39) 0.066 -0.76 (-2.71-1.18

CD38+ 0.13 (-16.81-17.06) 0.985 7.44 (-9.59-24.48

CD8+ T cell HLA-DR+ CD38- 1.05 (-1.19-3.28) 0.248 0.13 (-2.11-2.38)

HLA-DR+CD38+ 1.72 (-1.28-4.71) 0.159 -0.60 (-3.61-2.41

HLA-DR-CD38+ 6.41 (-11.10-23.91) 0.366 5.05 (-12.56-22.65

HLA-DR-CD38- -9.16 (-27.03-8.71) 0.207 -4.57 (-22.54-13.4

HLA-DR+ 2.76 (-1.29-6.82) 0.096 -0.46 (-4.54-3.61

CD38+ 8.12 (-10.52-26.77) 0.283 4.45 (-14.30-23.20

CD4+ T cell HLA-DR+ CD38- 0.39 (-0.32-1.08) 0.169 -0.45 (-1.15-0.26

HLA-DR+CD38+ 0.96 (0.16-1.75) 0.005# 0.02 (-0.78-0.82)

HLA-DR-CD38+ -5.94 (-25.19-13.32) 0.445 10.23 (-0.13-29.60

HLA-DR-CD38- 4.58 (-14.64-23.81) 0.554 -9.79 (-29.13-9.54

HLA-DR+ 1.34 (0.17-2.51) 0.007# -0.43 (-1.60-0.75

CD38+ -4.98 (-24.43-14.47) 0.525 10.26 (-9.30-29.82

PRE, pre- glucocorticoid treatment group; GC, post- glucocorticoid treatment group; HC, health controls. *P<0.05; #P<0.017.
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cells, the frequency of Th17 cells in the GC group was 19.01 (8.05),

which was higher than that in controls 11.28 (4.44) (adjust P =

0.004) (Figure 3, Supplementary Table S3).
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The multivariate analysis results showed that in CD4+ T cells,

the frequency of Th1Th17 cells in the PRE patient group was higher

than that in the control group (b=6.37, 98.33% CI:1.96-10.78, P =
FIGURE 3

The flow cytometry gating strategy (A). Frequencies of helper T lymphocyte subsets among the pre- glucocorticoid treatment group, the
glucocorticoid treatment group and the healthy controls (B–M).
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0.001), and the frequency of Th2 cells in the PRE group was lower

than that in the control group (b=-11.41, 98.33% CI: -22.26– -0.55,

P = 0.012). In CD4+ TCM cells, the frequency of Th1 cells in the GC

group was 9.57 lower than that in the control group (P = 0.001), and

the frequency of Th17 cells in the GC group was higher than that in

the control group (b=8.22, 98.33% CI: 2.36-14.09, P = 0.001). In

CD4+ TEM cells, the frequency of Th17 cells in the GC group was

higher than that in the control group (b=7.93, 98.33% CI: 2.33-

13.52, P = 0.001) (Table 4).
4 Discussion

This study found that, compared to healthy controls, patients

with untreated NMOSD in the acute phase exhibited higher

frequency of CD4+ Th1Th17 and fewer CD4+ Th2 cells. Patients

with NMOSD who received glucocorticoid treatment had fewer

frequency of CD8+TEM cells compared to healthy controls.

Additionally, NMOSD patients in the acute phase before

glucocorticoid treatment showed higher frequencies of CD4

+HLA-DR+CD38+ T cells and CD4+HLA-DR+ T cells, while

glucocorticoid therapy reduced the frequencies of CD4+HLA-DR

+ T cells.

Naïve T cells are mature T cells that have not been exposed to

antigens, which have a high proliferative potential. When they

encounter antigens for the first time, they are activated and

differentiate into effector cells or memory cells. Memory T cells

can be classified into TCM cells (central memory T cells), TEM cells

(effector memory T cells), and TEMRA cells (terminally

differentiated effector memory T cells), each exhibiting distinct

homing and effector functions. When an infection or re-exposure

to the same antigen occurs, TCM cells can rapidly proliferate and

differentiate into effector T cells, promoting and maintaining the

immune response against the specific pathogen (11). Compared to

TCM cells, TEM cells have a weaker proliferative capacity. They can

migrate to different tissues in the body after infection and exert their

effector functions by receiving appropriate antigen signals (12).

TEMRA is in the terminal differentiation stage and has strong

effector functions but extremely low proliferation capacity. TN cells

gradually decline with age, while TCM and TEM cells increase (7,

13, 14). Memory T cells play a crucial role in processes such as

infection, organ transplant rejection and tolerance (15),

autoimmune diseases (16, 17), and tumors (18). TEM cells play a

crucial protective role against viral pathogens (19).

The research conducted by Shi et al. showed that, compared

with healthy controls, the CD8 + TN (CD62LhiCD45RO-) cells in

patients with NMOSD and MS were significantly decreased, while

the CD8 + TE/M (CD62LloCD45RO+) cells were significantly

increased. The CD8 + TN in NMOSD patients who received

immunotherapy increased, and the CD8 + TE/M decreased,

which was related to the treatment (8). Previous findings in MS

on CD8+ TEM cells have yielded conflicting results: Pender et al.

reported a deficiency of peripheral CD8+ TEM and TEMRA cells in

MS patients, suggesting a possible link to EBV-infected B cells and

impaired CD8+ T-cell responses (20). This study found that the
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frequency of CD8+TEM cells in the GC group were significantly

lower than those in the control group, but there was no statistical

significance when compared with the PRE group. Glucocorticoids

may exert immunomodulatory effects by inhibiting the activation

and expansion of TEM cells, thereby alleviating the inflammatory

response in autoimmune diseases. However, the correlation

between viral infections and the onset of NMOSD is not clear.

Currently, most of the related studies are small-sample and

retrospective in nature (21–23). This study revealed a downward

trend in TEM cells in untreated patients with NMOSD, but this

trend was not statistically significant. This suggests that there may

be a connection between the onset of NMOSD and viral infection,

but further exploration is needed through larger sample size

longitudinal studies.

HLA-DR and CD38 are classic markers of T cell activation, and

their upregulation may be associated with enhanced antigen

presentation, increased pro-inflammatory cytokine release, and

exacerbation of autoimmune responses. In pediatric patients with

immune thrombocytopenia, the frequency of CD4+HLA-DR+ T

cells was significantly higher than in healthy controls (24). HLA-DR

+CD38+ T cells have also been identified in MS (9, 25, 26).

Currently, there are few clinical studies on peripheral activated T-

cell subsets in NMOSD patients. This study found that untreated

NMOSD patients in the acute phase exhibited higher frequencies of

CD4+HLA-DR+CD38+ and CD4+HLA-DR+ T cells, suggesting a

highly activated state of T cells. This finding supports the notion

that widespread T-cell activation occurs during the acute phase of

NMOSD, which may drive disease exacerbation. Furthermore,

glucocorticoid treatment significantly reduced the frequency of

CD4+HLA-DR+ T cells in patients with NMOD. Previous studies

have shown that glucocorticoids have a certain immunosuppressive

effect (27). Glucocorticoids selectively induce the apoptosis of

activated T cells by upregulating the pro-apoptotic protein Bim

and inhibiting Bcl-2, which may lead to a reduction in HLA-DR+ T

cells (28). Glucocorticoids can inhibit the functions of dendritic

cells and the anti-inflammatory effects of macrophages. They

indirectly affect the differentiation and activation of T cells

through antigen presentation and cytokines, and may reduce T

cell activation and HLA-DR expression (29).

Th1 cells mediate the immune response against intracellular

pathogens and are also involved in the induction of some

autoimmune diseases. Their main cytokine products are IFNg and
IL-2 (30). The production of IL-2 is of great significance for CD4+ T

cell memory. IL-2 is crucial for stimulating the formation of CD8+

T cell memory during the initiation stage of CD8 cells (31). Th2

cells mediate host defense against extracellular parasites including

helminths. They play an important role in the induction and

persistence of asthma and other allergic diseases. Th2 cells

produce cytokines such as IL-4, IL-5, IL-9, IL-10, IL-13, and IL-

25 (30). Th17 cells have the function in the clearance of specific

types of pathogens that require a massive inflammatory response,

including Gram-positive and Gram-negative bacteria, and fungi

(such as Candida albicans), which can trigger a strong Th17

response. The main cytokines secreted by Th17 cells include IL-

17, IL-22, and IL-23 (32). They play an important role in
Frontiers in Immunology 10
autoimmune diseases and some bacterial and fungal infections

(33). Th1Th17 cells are a subset identified by CXCR3+CCR6+,

sharing proinflammatory features of both Th1 and Th17 cells.

Th1Th17 cells have been found to be associated with the onset of

autoimmune diseases such as multiple sclerosis (34, 35).

The study by Cao et al. found that Th1 levels in NMOSD

patients during the acute phase were higher than those in the

remission-phase cohort and healthy controls (36). Another study

observed Th1 predominance only in MS patients, with no Th1/Th2

imbalance detected in NMO patients (37). This study observed a

decreased frequency of CD4+ Th2 cells in pre-glucocorticoid

treatment acute-phase NMOSD patients compare to the controls.

The GC group showed a significantly lower frequency of Th1 cells

in CD4+ TCM cells compared to the control group, but there was

no difference when compared to the PRE group, suggesting that

glucocorticoid therapy may reduce Th1 cell frequencies.

Previous histopathological studies have indicated that CD4+ T

cell infiltration is prominent in the lesions of NMOSD during the

acute phase and decreases during remission, suggesting the

involvement of helper T lymphocytes in the pathogenesis of

NMOSD (38). Research on the pathogenesis of NMO suggests

that Th17 cells and their effector molecules play a significant role. A

meta-analysis reported eight studies on the frequency of Th17 cells

among CD4+ T cells in peripheral blood, revealing that NMOSD

patients had a higher frequency of Th17 cells compared to controls.

Additionally, NMOSD patients exhibited elevated levels of IL-1b,
IL-6, IL-17, and IL-21 in cerebrospinal fluid and plasma, as well as

higher serum levels of IL-6, IL-21, IL-22, and IL-23 compared to

controls. However, due to high heterogeneity among multiple study

results, it remains inconclusive whether Th17 cells are reliable

biomarkers of NMOSD disease activity (39). This study found an

increase in Th17 cells (including CD4+ Th17 and Th1Th17 subsets)

in NMOSD patients during the acute phase. The frequency of

Th1Th17 cells weas significantly higher in the PRE group compared

to the control group. The Th17 cells showed a trend of being higher

in the PRE group than in the control group, but the difference was

not significant. However, in the GC group, the Th17 cells within

CD4+TCM cells and CD4+TEM cells were significantly higher than

in the control group, suggesting that short-term glucocorticoid

treatment did not significantly reduce the circulating Th17 levels.

These findings do not conflict with previous studies and further

support the crucial role of Th17 cells, especially Th1Th17, in

NMOSD pathogenesis.

Th17 cells were discovered and characterized based on their

production of IL-17A (40, 41). IL-17A secreted by Th17 cells can

activate endothelial cells and astrocytes, inducing the release of pro-

inflammatory cytokines (e.g., IL-6, TNF-a) and chemokines,

thereby recruiting myeloid cells such as neutrophils to infiltrate

the central nervous system (CNS) and exacerbate inflammation

(42). IL-17A disrupts tight junction proteins, increasing blood-

brain barrier (BBB) permeability and facilitating the entry of

autoantibodies (e.g., AQP4-IgG) and CD4+ lymphocytes into the

CNS (10). IL-17A can directly activate astrocytes, making them

more susceptible to AQP4-IgG-mediated complement-dependent

cytotoxicity and antibody-dependent cellular cytotoxicity (43, 44).
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Furthermore, IL-6. a key factor in NMOSD, promotes Th17

differentiation, while IL-17 and IL-21 secreted by Th17 cells

further stimulate IL-6 production, amplifying inflammation (45).

In summary, Th17 cells contribute to BBB disruption, CNS

inflammatory infiltration, and autoantibody production. In the

EAE model, CD4+ T cells co-secreting IFN-g and IL-17

(Th1Th17 cells) infiltrated the brain before the onset of clinical

symptoms, whereas significant Th1 cell infiltration was only

detected after clinical disease progression. This suggests that

Th1Th17 cells exhibit stronger pro-inflammatory activation than

Th1 cells, potentially mediating CNS inflammation through pro-

inflammatory cytokines and microglial activation (46). However,

research on NMOSD remains limited. Most current studies suggest

that the Th1/Th17 balance plays a more significant pro-

inflammatory role in NMOSD than the Th1/Th2 balance, and

further exploration of this issue is warranted in future studies (10).

This study has certain limitations. First, NMOSD is a rare

neurological disease with low incidence. As a single-center study

with a limited number of enrolled cases, the findings should be

validated in larger sample studies in the future. Second, this is a

cross-sectional study. Longitudinal follow-up to monitor changes in

various T cell compartment in NMOSD patients would be of great

significance for both pathogenesis research and treatment.
5 Conclusion

The findings of this study further emphasize the importance of

Th17 cells, especially Th1Th17, in NMOSD pathogenesis and suggest

potential therapeutic targets. Exploring intervention strategies targeting

Th17 cells (e.g., IL-17 inhibitors) or T cell activation (e.g., HLA-DR-

targeted therapies) may help optimize immunomodulatory treatments

for NMOSD. Additionally, the regulatory effects of glucocorticoids on

TEM cells highlight their value in acute-phase management. However,

long-term use may lead to adverse effects, necessitating the integration

of more precise immunomodulatory approaches to achieve long-term

disease control.
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